
N96- 12942

J Building Distributed Rule-Based Systems Using the AI Bus

Dr. Roger D. Schultz and Iain C. Stobie

Abacus Programming Corporation

Abstract

The AI Bus software architecture was designed to support the construction of large-scale, production-

quality applications in areas of high technology flux, running on heterogeneous distributed environments,

utilizing a mix of knowledge-based and conventional components. These goals led to its current

development as a layered, object-oriented library for cooperative systems.

This paper describes the concepts and design of the AI Bus and its implementation status as a library of

reusable and customizable objects, structured by layers from operating system interfaces up to high-level

knowledge-based agents. Each agent is a semi-autonomous process with specialized e_'pertise, and consists

of a number of knowledge sources (a knowledge base and inference engine). Inter-agent communication
mechanisms are based on blackboards and Actors-style acquaintances. As a conservative first

implementation, we used C++ on tap of Unix, and wrapped an embedded Clips with methods for the

knowledge source class. This involved designing standard protocols for communication and functions which
use these protocols in rules. Embedding several Clips objects within a single process was an unexpected

problem because of global variables, whose solution involved constructing and recompiling a C++ version of

Clips. We are currently working on a more radical approach to incorporating Clips, by separating out its

pattern matcher, rule and fact representations and other components as true object oriented modules.

I. Introduction

The AI Bus is a software architecture and toolkit which supports the construction of large-scale,

production-quality cooperating systems in areas of high technology flux. It was first developed as an
approach to integrating the Space Station software, and more recently has been applied to the Advanced

Launch Systems project (ALS). Both applications share requirements of a long life-time, during which new

technological advances should be seamlessly incorporated, and high degrees of autonomy. These two

classes of requirements - the software engineering need for flexible methods for combining heterogeneous
components, and the functional need to coordinate a mix of knowledge-based and conventional systems - led

to the development of the AI Bus as a layered, object-oriented, distributed architecture.

This paper describes the concepts and design of the AI Bus and its current implementation as a Unix C÷+
library of reusable objects. After an introduction to distributed processing and a discussion of the facilities

needed to build cooperating systems, we present the mechanisms provided by the AI Bus for these

facilities. Particular emphasis is placed on supporting high-level models of cooperation and problem-

solving, implemented via semi-autonomous agent processes with knowledge-based communication and

control. Finally we describe our approach to using Clips as a common knowledge representation language

for the prototype.

2. Overview of Distributed Cooperative Systems

A distributed system may be characterized as a collection of separate processes together with an

interaction medium. This separation and the interaction medium may be physical, as in processors

connected by a network, or logical, as in modules with semantically disparate representations. Although

developments in the last fifteen years have taken advantage of hardware advances by distributing data

and processing, the control has remained centralized in master-slave relationships. Machines are now
"talking" to one another, but the question for cooperative systems is deciding what to say, when, and by

676

https://ntrs.nasa.gov/search.jsp?R=19960002933 2020-06-16T05:31:17+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42779623?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

whose authority. Just as humans form organizations in order to function more effectively - the whole is

greater than the sum of the parts - the promise of cooperative systems is that they can tackle problems
beyond the capabilitiesofcurrentarchitectures.

Cooperativesystems use advances in distributedprocessing- algorithms for load balancing,efficient

network routing,errorrecoveryprocedures,synchronizationmechanisms, etc. -but build on them by

treatingthedistributionaspartoftheproblem solvingwhich needs tobe representedand reasonedabout.

For example, a distributeddatabase should appear coherent to itsusers,but maintaining itsglobal

consistencyisimpossiblewithout synchronizingtransactions,and thismay be prohibitivelyslow.The

promise of cooperativesystemsisthatsuch problems are amenable to techniquesofmodelling the users'

goalsand plans,handling uncertaintyand inconsistencygracefully,and adaptivelyallocatingtasksand

resources (Ref. [1,2]).

If an agent is to help another it must have a way to represent that agent's goals and plans, if it is to
receive help it must know which agents are able to provide assistance and hence must model their
abilities and resources, and if it is simply interested in avoiding coruqict it must be aware of their planned
use of shared resources. Thus facilities are needed for modelling capabilities and interests, above simple

interface specifications, and knowledge-based protocols for negotiation. Some approaches to realizing

these goals are (Ref [3]):

• Distributed Object-Oriented Systems (DOOS): A natural way to model cooperative systems uses the
object-oriented paradigm of autonomous modules communicating via messages. Extending this

paradigm to distributed environments involves difficult problems of several threads of control and
no single shared space of objects. (Ref. [4,5,6)

• Blackboards: In contrast to the message-passing model of DOOS, blackboards are an organizational
mechanism whereby agents share their current problem solving state. CRef. [7])

• Integrative Frameworks: Systems which combine a number of different mechanisms to support
various paradigms for developing and experimenting with large scale applications. (Ref. [8,9,10]).

3. Facilities Provided by the AI Bus for Building Cooperative Systems

3.1 Overview of Goals and Features

The AI Bus is an integrative framework for building cooperating systems with the following requirements:

• Technology Transparency: the architecture is open to allow integration of future advances and is

portable across disparate platforms.

• High Performance: the emphasis is on production quality, rather than experimentation.

• Support multiple coexistent problem solving paradigms: DOOS, blackboards, expert systems.

• Standard interfaces for combination of components and communication between subsystems.

• Mixed conventional and AI Approaches: through standard interfaces; included is the ability to
incorporate off the shelf commercial tools.

• Support for verification and validation: integrated tools include dynamic audit probes (which can
feed diagnosis and repair modules) and static compile-time checking of interfaces.

3.2 Software Engineering Principles

The components are divided into layers based on their abstraction level: at the bottom are the physical
entities, then the operating system components, then conventional tools such as databases and user
interfaces, followed by knowledge-based tools such as inference engines, and at the top are generic

applicationssuch as diagnosisshellswhich simplyneed tobe customizedfora specificapplication.Each
layerprovides servicesto higherlayers;sincethe internaldetailsof a layerare hidden from others,

softwarechanges are localizedand modules are easilyreplaceable;for performance reasonsa Layeris

permittedtocalla lowernon-adjacentLayerratherthan strictlysteppingthrough theintermediaries.The
AI Bus isdefinedas a setofobjectclasses,and implemented as a classlibrary,which again enablesthe

677

internal implementation of objects to be hidden from other objects. Off the shelf components can be

integrated by wrapping them in a suitable interface, but clearly the degree of support they receive from

other AI Bus services is proportional to their "white-box" nature. The layers and representative object

classes are illustrated in Figure 1, while the inheritance between a few classes is shown in Figure 2.

The "AI Bus" is a

6. Generic

Applications

Layered Architecture

7. Applications C Tools

,r-- Application-_s[Generic

5. AIParadigm L =Toolkits Domain Specific Objects Generic Tasks

4. BasicAIBus _ll
Toolktts

3. Al_mclExternal
World

2. Concrete
External
World

mlmm

1. Devices &

/Users Physical Objects

Figwe 1. The layers of theAI Bur

678

TSa_U_o_

i

Ts,._,sa H

T,,_,,,,_ J
J

TAO_t" J

TC_r J

TS_wmCan J

T_ J

.,o J

_t .]

_. _B,_ J
J

'rplm,I

'n:mckm'

rF_

_ure

TPlumUm_

TTrulhUllim_r_

TSwmmml

f TDBImmL_t J
TAmly J

•rvm]

TLo_Tn JT_ J

T_._F_ J-[T_,_ j

"_ a C_s HmWdm Pa_ Cimm

Figure2. A SubsetoftkeAI Bus Clas_Hierarcky

6'79

3.3 Probes, Messages, Agents and Organizations

3.3.1 Probes and Event.Driven Programming

The AI Bus followsthe distributedobjectorientedmodel ofinteractionbetween softwaremodules, here

consideredtobe loosely-coupledagents.Thisnot onlysupportstheabove softwareengineeringprinciples,

but alsothe open, continuousprocessingthatisa characteristicof cooperativesystems.Whereas event

handlers in conventionalsystems,such as X Windows or database transactions,are invoked from a

dispatchtableusingsimplemasks or triggers,the AI Bus extends thisparadigm in itsProbe object(Ref.

[11,12]).A probe isactivatedbased on matching patternsof eventsand conditionsand routesinformation

about subsystem activitytointerestedpartieswhich can installand modify them dynamically.A probe's

historycan be used tomaintainpartialmatches forefficiency(e.g.in theblackboard),itsprioritycan be
used toorder theactionsof severalprobes.A standardevent,conditionand actionlanguage allowsthe

evaluation and interpretation of probes to be implemented by the probed object - a class of probe.able objects
is specified, and includes databases, network communication, blackboards and agents; there are

corresponding subclasses of probes.

Probes can be used to support validation in a testbed environment and to monitor resource usage and each
other. Since they are implemented by the probed object and installed by request, this access does not
violate the secure boundaries of active objects. A subclass of probes called abstract sensor/effectors can be

used in hierarch/cal process control applications - like probes they provide data, retain state and do some
filtering, but in addition they recognize alarm situations and provide direct pathways between each other

for fast response.

3.3.2 Communication Substrate

A layer of services exists between the operating system and the programming tools which allows the
developers to concentrate on problem-solving rather than worrying about actual physical locations. Of
course, for some applications, physical parameters are part of the problem definition (e.g. communication
delays, noise and failures) and so are available for querying. Each agent has a Post Office object, which
queues incoming messages and permits addressing by name, rather than location. The Post Office uses a
distributed Finder object, which keeps track of the addresses of active objects and maps them to their

globally unique names. Furthermore, agents can advertise certain attributes (see later section) which are
also registered with the Finder and permit communication by knowledge rather than just syntactic names.

The interaction medium is the message, the glue which enables the transfer of data and control between

the agents. A message contains fields which identify the sender and receiver, an object (such as a question
or answer) an optional time tag and list of attributes, which may include its expiration date or other
application-specificinformation.Controlispassed viamessages which representremote procedurecalls-

they are interceptedby an agent'sMessage Manager, which isresponsibleforconvertingmessages to

procedures,and keepsa queue ofquestionsreceivedtogetherwiththeiraskers(forsubsequentdirectionof

replies).Remote procedure callsby defaultare asynchronous - the callerdoesn'tblock and waitfor its

completion-butmay be synchronousifrequired.The questionofwhetherthereceivingagentblocksuntilit

processesthe requestdepends on theorganizationused:ifthe agent does,itisunder the controlof the
sender (a client-serverrelationship),ifnot itisautonomous. Of course,requeststolower-levelservices

(suchas a databasemanager) areprocessedsynchronously-only high-levelagentscan own a threadof

control.

3.3.3 Agent

The agent is the fundamental active entity in the AI Bus, encapsulated as an object which communicates by
messages. Currently an agent and its message manager occupy a Unix process, so its boundary exists not only
as a software object but is also enforced at the operating system level. An agent b defined as a collection of

knowledge sources and an organization; these knowledge sources may be implmnented as expert systems (an
inference engine and a knowledge base) or a conventional system - just so long as the specified interface is

680

followed. Each knowledge source has a list of capabilities and interests - which match questions it can
answer and information it would like to be told - the agent advertises these attributes with the Finder and

keeps a cache of other agents' capabilities and interests for subsequent communication.

An agent's specification thus permits implementation along several sizes of granularity. Internally, it can
be a whole organization of problem solvers, or just a simple procedural program. It has a scheduler

component for control of its knowledge sources and is not necessarily serial (it may be realized as one or
several processes or threads). Its state may be dormant or active, but currently most agents are eternally

vigilant or waiting for a reply. For efficiency reasons in Unix-like environments a large grain may be
preferred, and this can be used at the next layer up as a generic task - an agent which is a specialist in one

area of problem solving (Ref. [13]).

An agent's capabilities and interests represent a model of its goals, plans, abilities and needs that other
agents can use for cooperation. An agent can choose not to cooperate by not advertising this model, but in

general they can build up more extensive models of each other by starting with the originally advertised
capabilities and interests and then learning from experience by caching results: for example, two agents
may have a capability to do arithmetic, but by trying each the faster one is identified and will be
preferred in future requests. An agent can have a reflective ability by installing probes in itself (for

example, to measure the number of rules fired by a knowledge source's inference engine); this allows it to
monitor its progress and interrupt if necessary. The combination of agents into a cohesive problem-solving
team is achieved by creating an organization. One example of the internal organization of a complex agent

is illustrated in Figure 3.

MESSAGE MANAGER

AGENT

KNOWLEDGE SOURCE 1

Engine Ba_

- MESSAGE MANAGER

MESSAGE MANAGER

KNOWLEDGE SOURCE 2

BLACKBOARD

MANAGER

Figure 3. An E.xampieof an Agent Composedof Sewral Layer 4 Objects

68t

3.3.4 Organization

An organization is simply a collection of agents who know each others' capabilities and interests - this is

an implicit specification by knowledge existing in each agent. In contrast to structural definitions of

organizations, this model is adaptive, since agents can compute who knows how to answer a question it

cannot itself process, and thereby new relationships form within the organization. One agent can be

programmed to act as a manager, who delegates work to other agents according to their advertised

capabilities, monitors their progress using probes and adjusts their position in the organization.

A final method to combine agents is more indirect, by sharing access to a blackboard. A blackboard is
realized in the A1 Bus as a restricted subclass of agent - it is a passive server which is interested in

everything (or at least whatever it is programmed for). Agents post information on the blackboard by

sending it messages, they install probes on it to gather information resulting from matching events plus
several current and historical conditions. A blackboard is thus a semi-permanent communication space, but

also acts as a mechanism for loosely-coupled organization whereby several agents can combine partial

results without repeated inter-agent communication. It is more than a global database, in that the probes'

histories provide a short-term memory and record of partial matches, so that new additions and requests

can be processed quickly (in the style of the Rete algorithm for rule-based systems); in contrast, database

queries are processed one at a time. This is an object-oriented version of the blackboard concept, and it is

important to contrast it with blackboard systems which contain a centralized scheduler in control of the
serial execution of agents: in the AI Bus the agents are autonomous. Although logically centralized, a

blackboard may be physically distributed for performance reasons: in this case, consistency must be

maintained using techniques (e.g. multiple copies, deadlock avoidance) borrowed from distributed
databases. An illustration of the different methods of communication and cooperation is shown in Figure 4.

i)i))!ili))i)ii)iiiil)i)i)iiiiiiiiiiiiiiiiiiiiiiiiii

• tel

_tX)n m

Figure 4. A&enzs Communicme direczly wizk zketr Acqu_nzanceJ and idirecdy m Blackboardz

682

4. Development of the AI Bus

The design of the AI Bus was first summarized in a set of abstract-data-type class specifications,

intentionally kept language-independent in order to avoid restricting the design. See Figure 5.

Cla_

TAgent

Dsscriptk_n
A heterogeneous single-task seml-autonomous expert

Superdmm

1"..:.--:ableObpct_ TPro_ke__-bleObp¢!

C,omco_n=

Bet of KnowledgeSources

Tables of ¢apeblllUes and Interests

Orpnlzatlonal Paradigm ObJecle

8tale (Active/Inactive)

Fm

Install(List of Knowledge Sources)

Act/on : Inl_aJizesdala sU'ucZuresand oonsU'uc_ capablll_es and interests

Remove: rill -_ nll
Aclk_: removes Itoe4ffrom memocy, kJing Its

Ask (Message)

Xenon : passes message to knowledge r,ource wi_ me cavalry. Caller may _ may not

An*war (Message)
Action : passes message to knowk)dge source which asked the Qu_tton

Tell (Message)

Acbofl :passes message to _ knowtedge source wllh the Irflemt

Run(Amount)

Acbofl : nariseach knowledge source kx an amount of lime. cycles, or until condition

8endxOuestlonlAnswarlTelh. (Message))

Aclk)n : lends mew to the remote agent, using Finder (if Question or Tell) o¢lie
lender's address (if Answer)

po,_y
f) For remote access, mese meff_ds wfl be ca#ed from an anached message rnamger

2) The mem_ manapr Is responsible for rou_ng me a¢oor_g to oapaba_es,
inmrmts and acquatnWca
3) tnw-agem cornmunCmion can be goal.driven (Ask) or evem.drwen (Tell)

Figure 5. C_LssDescription for an Agent

4.1 Initial Implementation Approach

For the implementation, we chose C++ and Unix because of the performance benefits of a relatively low-
level language and its wide availability: a fundamental goal was to build a production quality system, not
an experimental testbed. For the common knowledge representation language (a KnowledgeUnit class) we
chose Clips because it is distributed with source code and hence is amenable to customization. Message
passing between Clips agents was easily accomplished by writing three user-defined C++ functions
(aibus ask, aibus_tell, aibus answer) that are called from the right hand side of a Clips rule and in turn

invoke the encapsulating agent's methods (Figure 5) to interface with remote objects. The communication

services were built on top of the RPC protocol.

683

This choice of implementation tools resulted in the compromise that an agent could only contain one

knowledge source: a C++ object resides in one process, but having several Clips instantiations in one process
is impossible because of its global variables. Furthermore, we had hoped to isolate out the inference engine

components (pattern match, agenda scheduling, etc.) from the Clips source code for reuse in other Layer 4
objects such as probes and blackboards; however C++'s strongish typing caused problems in handling free-
style C, even with the help of Abacus' automatic translation system, MetaPack. As a result we had to
write our own procedures for these purposes and just treat Clips as a black-box KnowledgeSource object
rather than a composite object (see Ref. [14] for the approach used in the Joshua system).

4.2 Current Implementation Direction

We are currently pursuing the direction outlined above, of decomposing the functionality of a Clips based
inference engine into object-oriented modules. Agents could then have several Clips components, rules could
inherit conditions and actions from other rules, rule-bases could inherit rules from other rule bases and the
distinction between rule-based and frame-based languages would disappear. For hard real-time

situations, the Rete net's good average-time but unpredictable worst-time performance is unsuitable and

alternative implementations are necessary. For example, linear searching with compiled-out pattern
matching (e.g. L'Star, Ref. [15]), or search algorithms like iterative deepening which always maintain
the best-solution-so-far.

We are also working on incorporating non-linear fact and pattern representations (e.g. Prolog's recursive
structures), and providing more support for probe access to AI Bus objects, especially for dynamic
validation. At the cooperative systems level, we are experimenting with negotiation protocols, and

providing agents with learning capabilities.

References

[1] Lesser,V. CorkilI,D. The Distributed Vehicle Monitoring Testbed. AI Magazine, Fall 1983

[2] Edmund H. Durfee, Victor R. Lesser, and Daniel D. Corkill. Coherent Cooperation Among

Communicating Problem Solvers. IEEE Transactions on Computers, C-36:1275-1291, 1987

[3] Alan H. Bond and Les Gasser. Readings in Distributed Artificial Intelligence. Morgan Kaufmann

Publishers, San Mateo, CA, 1988.

[4] Gul A. Agha. Actors: A Medal of Concurrent Computation in Distributed Systems. MIT Press, 1986

[5] Yutaka Ishikawa and Mario Tokoro. Offent84/K: An Object Oriented Concurrent Programming
LanguageforKnowledgeRegr_etnationin ObjectOrientedConcurrentProgramming, Yonezawa & Tokoro,

eds,MIT Press,1987

[6]A. Yonezawa, J-P.Briot,E. Shibayarna.Object-OrientedConcurrentProgramminginABCL/I. in[3]

[7]Penny Nil.BlackboardSystems.AI Magazine Volume 7,nos.3 and 4

[8]R. Bisiani,F. Alleva,A. Forin,R. Lerner,M. Bauer.The Architectureof the Agora Environment in

DistributedArtificialIntelligence,MichaelN. Huhns, Ed.,Morgan Kaufman, 1987

[9] Lee D. Erman, Jay S. Lark, and Frederick Haye_Roth. ABE: An Environment for Engineering Intelligent

Systems. IEEE Transactions on Software Engineering 14(12), December 1988

[10] Les Gasser, Carl Braganza, Nava Herman. Implementing Distributed AI Systems Using MACE. in [3]

[11] Roger D. Schultz and A. Cardenas. An Approach and Mechanism for Auidtable and Testable Advanced
Transaction Processing Systems. IEEE Transactions on Software Engineering, SE-13 (6), June 1987

[12] Roger D. Schultz and A. Cardenas. An Expert System Shell for Dynamic Auditing in a Distributed
Environment. ACM SIGSAC '87 Conference Proceedings

[13] B. Chandrasekaran. Generic Tasks in Knowledge-Based Reasoning: High-Level Building Blocks for

Expert System Design. IEEE Expert, Fall 1986

684

[14] S. Rowley,.H. Shrobe, R. Cassels, W. Hamscher. Joshua: Uniform Access to Heterogeneous Knowledge
Structures. AAAI-87

[15] T. Laffey, P. Cox, J. Schmidt, S. Kao. J. Read. Real-Time Knowledge-Based Systems. AI Magazine,

Spring 1988

685

