
E"

N96-12947

On A Production System Using

Default Reasoning :For Pattern
Classification

Matthew R. Barry

Carlyle M. Lowe

Rockwell Space Operations Company

NASA/Johnson Space Center DF63
Houston. TX 77058

mbarry,__,nasamail.nasa.gov

1 May 1990

1 Introduction

This paper addresses an unconventional apphcation of a production system

to a problem involving belief specialization. The production system reduces

a large quantity of low-level descriptions into just a few higher-level descrip-

tions that encompass the problem space in a more tractable fashion. This

classification process utilizes a set of descriptions generated by combining

the component hierarchy of a physical system with the semantics of the

terminology employed in its operation. The paper describes an application

of this process in a program, constructed in C and CLIPS. that classifies

signatures of electromechanical system configurations. The program com-

pares two independent classifications, describing the actual and expected

system configurations, in order to generate a set of contradictions between

742

https://ntrs.nasa.gov/search.jsp?R=19960002938 2020-06-16T05:31:23+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42779618?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


the two.

1.1 Background

The problem application considered herein involves the operational evalua-

tion of NASA's Space Shuttle hardware configurations bv flight controllers

in the Mission Control Center (MCC). Specifically, the technique has been

appfied to one of the tasks involved in monitoring the two Shuttle propul-

sion systems: the Orbital Maneuverin9 S!lstem (OMS) and the Reaction

Control System (RCS).

Shuttle astronauts operate the propulsion systems by manipulating a collec-

tion of switches and valves that control fluid flows throughout the plumbing

network. Many of the switches control two propellant line valves simulta-

neously: an oxidizer valve and the corresponding fuel valve. Position indi-

cators within the valves and switches provide insight into their mechanical

position. Flight controllers in the MCC help the astronauts to manage

these systems by monitoring the on-board configuration. Valve and switch

positions appear to the flight controllers as binary values noting presence

of (or lack of) an open indication, closed indication, or both. A set of 16-

bit configuration words relay all of the available measurements through the

orbiter computers to the flight conlrollers.

The MCC computers help the flight controllers to monitor the on- board

valve and switch configuration by executing a program that compares ac-

tual and ezpected configurations. Since only some of the bits in a given

configuration word apply to the propulsion systems, the comparison pro-

cedure includes a set of masking words. When the bit patterns that are

not subject to the mask do not match, the program indicates a problem by

displaying a certain status character next to that word. Since the contents

of those words are displayed in hexadecimal, flight controllers are made

aware of a discrepancy condition through this status character, but are not

informed of the actual discrepancy. Furthermore. several discrepancies may"

occur in the same word.

743



1.2 Problem

The process of manually decoding this information is time consuming and

prone to error. A decoding program is available that will prompt the user

for hexadecimal input values, apply the mask values, then display the de-

scriptions of bits that do not match the expected pattern. It is up to the

user to remember the patterns from each individual decoding, and to con-

struct a complete signature from the many hexadecimal words. This process

actually must be performed twice, once for the actual signature and once

for the ezpected signature. Comparison of the two signatures relates the

changes that have occurred in the configuration since the last state update.

2 Description

A classifier can perform this decoding task easily through deductive and

default reasoning. The decoding program can be extended to isolate each

bit in the configuration words and to generate a proposition 1 for a database

stating the observed position of each valve or switch. The classifier can

then attempt to generate a state description for these indications. The

state descriptions offer an explanation in high-level, intuitive, terminology.

For example, instead of being offered the propositions

p_ = The manifold 1 ox open indication is present

P2 = The manifold I fu open indication is present

P3 = The manifold 1 ox dose indication is not present

p4 = The manifold 1 fu close indication is not present

the flight controller should be informed

p5 = The manifold 1 va/ves are open

IThe term propos,tzon is used here instead of the expected fact in order to provide
consistenl terminology with the deductive reasoning systems discussed throughout the

paper.

744



due to the application of a typical rule rl:

rl =ifp1Ap2Ap3Ap4 then

assert ps = The manifold 1 vaJves are open,

and retract Pl, P2, p3, and P4.

Better still, if the following propositions are available,

Ps = The manifold 1 vMves are open

ps = The manifold 2 vMves are open

pr = The manifold 3 valves are open

ps = The manifold 4 valves are open

p9 = The manifold 5 valves are open

then the best description is

Plo =All manifolds are open

from the rule r2:

r2 = if Ps A Ps/' P: i' Ps A P9 then

assert pro =All manifolds are open,

and retract ps. p6, pr, ps and pg.

Carrying on to "meta-level" statements regarding a "configuration of con-

figurations," one might make the specialization of the propositions

Plo =All manifolds are open

pt_ =Both regulators are open

Pl_ =Both crossfeed valves are dosed

P13 =A11 tank isolation valves are open

p14 =All thruster heaters are off

resolve to the imphcit description

745



Pls - Prelaunch configuration

Such descriptions explain implicitly the underlying meaning. In this sense,

the output of the production system is itself the ezplanation of the reasoning

process.

2.1 Specialization

The sort of classifier described above has been implemented through the

use of a production system shell. Statements providing a specialization

of beliefs are represented conveniently with conventional production rules.

The left-hand side of the rule consists of one or more predicate proposi-

tions which, when considered together, imply a more specialized statement

having equivalent meaning. The right-hand side of the rule asserts the new

statement and retracts all of the propositions that were held true in order

to activate the rule. This assertion/retraction process decreases the number

of propositions in the database, while maintaining equivalent knowledge of

the reasoning world. Since the system can retract its own assumptions later

in the deduction process, the process is a manifestation of nonmonotonic

reasoning.

The classifier employs a combination of procedural and declarative pro-

gramming techniques..NASA's C Language Integrated Production System

(CLIPS) provides the rule processing capabilities. The host program, writ-

ten in C, acquires the necessary data and applies a valuation algorithm to

generate database propositions. This algorithm assigns to each positive

component position indication a description of the component, a descrip-

tion of the position indication (e.g. Open, Close, On, or Off). and a qualifier

as to whether that position belongs to the actual or ezpected configuration.

When all necessary propositions have been generated, the production sys-

tem evaluates them and builds the state description. The contents of the

database after all possible specializations have been applied (i.e. when no

more rules fire) represent the state description. The host program expands

these remaining propositions into English sentences for display to the users.

746



2.2 Default Reasoning

Since the independence of valve or switch state indications is not guaranteed

by the physical system, the design-intended independence is not considered

important bv this production system. That is to say, though the valves

are intended to reside in either the opened or closed states, the indications

may not provide conclusive evidence and perhaps no default assumptions

are available. For these situations none of the statements that consider the

guilty valve will be appfied, thus leaving the lowest level propositions in

the database and resulting in a very specific state description. Detection of

these situations sometimes leads to further detailed observations of hard-

ware performance in order to obtain alternative cues that support one or

more of the indications. Moreover, facts are held based on observed states

rather than assumed states 2.

One important consideration in the solution is that lack of _ t,idence regard-

ing a poaition indication i5 uJeful information. That is. missing informa-

tion may imply a certain position indication. For the OMS and RCS, this

happens with the switch positions: lack of an OPEN or CLOSED indica-

tion means that the switch is assumed to be in the GPC (General Purpose

Computer) position for automatic valve control. Missing information is also

important in OMS and RCS valve positions: many valves lack a CLOSED

indication, so that if the OPEN indication is not present, then the flight

controllers must assume that the valve is closed. For these reasons, the

classification process must allow for default values for certain propositions.

Recent research efforts attempting to solve default logic problems have cen-

tered around extending classical mathematical logics to account for implicit

information in the database. This typically is done by making assumptions

about missing information by providing default values. In some cases, pro-

viding default values is in itself another problem that must be handled in

the reasoning system. Etherington i1988! provides a summary of current

techniques for handling nfissing information. Besnard 119891 provides a

formal introduction to default logic.

"There remains the underlying assumption, however, that the observed state represents
the actual state.

747



In an attempt to restrict the reasoning assumptions to information that is

available, the Closed-World Assumption (CWA) has been developed [Reiter

1978]. The CWA is the assumption of complete knowledge about which

positive facts are true in the world. Under the CWA, it is not necessary

to explicity represent negative information. Negative facts may be inferred

from the absense of the same positive fact. The CWA corresponds to the

knowledge base:

if K B _ P then infer _P,

which states that if the proposition P cannot be derived from the knowledge

base KB, then it is reasonable to assume that P is false. Furthermore. one

can imagine collecting the set of all false propositions derivable from KB

into another knowledge base. Reiter calls this set the negative eztension of

KB, or EKB.

Traditional logics do not possess means for considering the absence of

knowledge. Research has considered two sorts of information types whose

implementation can extend the capabilities of traditional logics to cover

this shortcoming. In the positive information category, one assumes that

relevant information is known, therefore anything that is not known must

be false. In the default information category, one has default values avail-

able to fill gaps in the absence of specific evidence. The default information

category describes the reasoning process embodied by the classifier.

A default logic may be Constructed from a standard first-order logic by

permitting addition of new inference rules [Reiter 1980'. These new rules

allow known and unknown premises, making possible conclusions based

on missing information. A default theory, A, is an ordered- pair (D, W)

consisting of a set of defaults, D, and a set of first-order formulae, W. The

fundamental statements in A are defaults, defined by the expression:

where a(Y), '3i(z), and -t(_) are formulae whose free variables are contained

in _" = x_,...,z,. This expression states that if certain prerequisites a are

748



believed, and it is consistent to belive that certain justifications 3 are true,

then it is reasonable to sanction the consequent "_. Stated another way, if

the prerequisites are known and their justifications are not disbelived, then

their ¢onsequents can be assumed. Conventionally, if 3(Y) = 7(_), then

the default is normal, and if '3(Y) = "r(Y) Ix ,-'(z), for some ,,_(_), then the

default is semi.normal. The sets of conclusions sanctioned by A are the

knowledge base eztensions.

As a simple demonstration, consider the typical AI example

W = {BLOCK(A) v BLOCK(B)}.

If we assume the closed-world defaults

•-SLOCU¢a l ,-SLOC_:(S)1.D = { -SLOCUIa_' _"

then the theory A has the two extensions E1 and E=.

E_ = Th({-BLOCK(A), BLOCK(B)})

E: = Th({BLOCK(A), -.,BLOCK(B)})

This example shows that the system has concluded that either A is a block

or B is a block, but not both. The system adds these conclusions to the

database as extensions. In elaborate situations it is likely that interac-

tions between defaults may raise conflicts. Semi-normal defaults provide a

means for resolving ambiguities between interacting defaults, so long as the

interactions are known a priori [Reiter and Criscuolo 1981].

Conventional deductive inference involves the monotonicity property: as

the set of beliefs grows, so does the set of conclusions that can be draw from

those beliefs [Ginsberg 1987]. However, if one now adds new information

to the set of beliefs, then some of the original conclusions may now be

invalidated. The ability to withdraw a previous assumption and reconstruct

a new set of conclusions is known as nonmonotonic reasoning.

749



3 Implementation

The pattern classifier presented herein performs default reasoning in a man-

ner analogous to the approach formulated by Reiter. The production sys-

tem inference engine controls application of the specializations and manages

the database. The host program and dcffact8 blocks initialize the database.

The host program then calls CLIPS to execute the inference process. Af-

ter completing the classification, the host program unloads the interesting

propositions remaining in the database and displays them to the user.

3.1 Input Processing

Input data can be provided by the user or can be acquired from the teleme-

try stream via local area network (LAN). If the user provides the data,

he is prompted by the host program to enter the configuration word iden-

tification tag (or "measurement stimulus identification") and the actual

and expected bit patterns (in hexadecimal). When all desired input has

been provided, the evalution process begins. The host program unloads

the resulting database and parses the remaining propositions into English

sentences for display. When the user is satisfied that he understands any

configuration descrepancies, he can issue a request to reset the expected

configuration words to the actual configuration words, thus updating the

comparison pattern to the known state.

Since there are 90 configuration words recognized by the host program,

it is unlikely that the user will provide all possible input. This is of no

significance to the classifier, as it will work on whatever propositions are

provided, no matter how limited. If very little information can be provided

from the configuration words provided, then one should expect low-level

results. The more information that is provided, the better the classification.

To assist in the data acquisition process, the host program was modified to

accept data from a LAN. The network interface requests 24 valve configu-

ration words and 66 switch configuration words from the telemetry stream.

These 90 words contain all of the discrete information that pertains directly

750



to OMS and RCS operations 3. With all of this data, the classifier is able

to make the most specific statements possible.

3.2 Providing Defaults

In order to perform reasoning about the default values, a group of special

rules were developed. These rules process the deffacts statements that are

labelled with the default token by attempting to match on any overriding

fact from the actual or ezpeet environments. Stated differently, if the default

fact is the only one available for a particular valve or switch, then the value

provided as the default indication for that component becomes the value of

the missing fact. If any evidence other than the default value is available,

that evidence is used in the classification process. The rules performing

these operations are described in more detail in the following section.

3.3 Production System

The CLIPS inference engine performs all of the deductive reasoning. It

is allowed to run through exhaustion, eliminating as many propositions as

possible by applying the specialization rules. These rules heavily exploit the

pattern matching capabilities provided by CLIPS, due to the symmetric

nature of the physical domain. Moreover, the rules work for either of the two

configuration states, matching (with restrictions) on the pattern predicate.

The knowledge base construction is rather simple. It consists of default pro-

cessing procedures, classification schemas, configuration comparators, and

physical s_stem information. The expertise is explicit in the classification

reductions: knowing how to represent a configuration through its opera-

tional semanlics, and knowing how to manage the associated default as-

sumptions.

The default processing procedures are probably the most interesting. These

rules fire first so as to build all of the lowest-level indications before starting

SDiscrete information from other subsystems, such as data processing, indirectly affect

OMS and RCS operations, but have not yet been included.

751



specializations. In order to reason about defaults one must be able to

decide when information is missing. This application uses the CLIPS not

operation for this purpose. This operation returns TRUE if a match is

not available for the pattern, thus allowing us to determine that default-

overriding evidence is not present in the database. Operation of these rules

may be described as follows: Given a set of default values in a deffacts

block,

(deffacts default-values

(default lrcs he-press-a sp-gp)

(default ircs he-press-b sp-gp)

(default Ircs tank-isol-12 sp-gp)

)

we are able to provide a default value for any particular component in the

physical system, including those that may be "exceptions. "4 The firs1 entry

in the abbreviated table above states that the default position for the Left

RCS Helium Pressurization A switch is the GPC position (sp-gp). Now,

consider the default assertion rule for the expected switch indications,

(defrule expect-switch-defaults

(declare (salience 100))

(default ?domain ?component ?d_sp-oplsp-cl]sp-gp)

(not (expect ?domain ?component sp-op))

(not (expect ?domain ?componen¢ sp-cl))

(not (expec_ ?domain ?component sp-dm))

(not (expec_ ?domain ?component sp-gp))

_->

(assert (expect ?domain ?componet ?d))

This rule binds a default indication from the default table (described be-

low), specifying that it handles only switches by restricting the default value

4Explicit statement of the default facts is required because the not operator is unable

to bind variables for use outside of the not scope.

752



to one of the three reasonable switch values (the value of dilemma (sp-dm),

though a possible observed state, is not a reasonable default value). It

then proceeds to search for an overriding indication by looking for all pos-

sible switch values in the expect indications. If a match is found, then an

expect indication is available and the rule fails. If no match is found, then

the default value is assumed appropriate, the rule fires, and the default

value is asserted as the expect value on the right-hand side. Similar rules

exist for reasoning about the actual indications and for valves.

Most of the production rules represent the pattern classification schemas.

As described, these rules assemble collections of facts into a more specialized

fact implying the same information. The right-hand side of the rule retracts

the premises and asserts the conclusion. Each of these rules works for either

of the two comparison states. Recalling the manifold example provided

above, the classification schema for this specialization appears as the rule:

(defrule specialize-group-manifolds

?ml <- (?mode&actualIexpec¢ ?domain manifold-1 ?s ?v)

?m2 <- (?mode ?domain manifold-2 ?s ?v)

_ ?m3 <- (?mode ?domain manifold-3 ?s ?v)

?m4 <- (?mode ?domain manifold-4 ?s ?v)

?mS <- (?mode 7domain manifold-5 ?s ?v)

=>

(retract ?ml ?m2 ?m3 ?m4 ?mS)

(asser_ (?mode ?domain manifolds ?s ?v))

)

This rule collects all five of the named manifolds for an arbitrary domain

(Left RCS, Right RCS or Forward RCS) and either environment (actual

or expect). Provided that the switch and valve positions {?s and ?v) for

each manifold are the same, the special conclusion ?domain manifolds

is asserted. Prior to the special assertion, however, the antecedants are

retracted from the database s. If not all of the five manifolds indicate _he

SThe retraction is performed before the assertion in order to reduce the complexity of

driving patterns through the network.

"/53



same vaJve and switch positions, this rule will fail for that domain. This

will leave the individual (lower-level) facts in the database for the display

utility, thus maintaining the highest level of speciaJization possible without

introducing ambiguity.

Two configuration comparison procedures perform the comparison between

the actual and ezpected configurations. These rules fire last, aJlowing all pos-

sible specialization to take place before evaluating the differences between

the two configurations. Simply put, if the actual and expect equivalents

for any one component or configuration are not the same, then the config-

uration is declared a mismatch. This simple rule performs those actions:

(defrule config-mismatch

(declare (salience -I00))

?ce <- (expect ?domain ?set $?des)

?ca <- (actual ?domain ?set $?ind)

(test (neq $?des $?ind))
=>

(retract ?ce ?ca)

(assert (mismatch ?domain ?set $?des $?ind))

The des and irtd variables are multifield variables because they can bind to

either one or two fields, depending on the degree of specialization achieved

for any one component. Through the test operation, we see that if the

multi fled variables are not the same, then the mismatch is declared. A

similar rule, config-valid, is used to assert cort:_irmed configurations.

There are only a few facts that remain fixed in the apphcation. These are

the physical Jystem information facts. All of these facts were installed in or-

der to reduce the number of rules required to manage only slightly different

configurations. These facts relate the interdependence among various com-

ponents in the physical system, and enforce some degree of control over

variable binding when a model requires information about a component

and another "corresponding" or "associated" component. For example.

the deflects block:

"/54



(deffacts relationships

(corresponding loms toms)

(correspondin E toms loms)

(corresponding ires rrcs)

(corresponding rrcs ires)

is used to associate the name of the system related to (but not identical to)

the system under consideration. Using the first fact, (corresponding lores

roms), the token toms becomes available when reasoning about the lores.

This is handy when trying to determine special hardware configurations

where one system is connected to another.

3.4 Post-Processing

The existing hexadecimal decoding program was modified slightly so as to

accomodate CLIPS fact processing. For each of the bit descriptions, a fact-

like sentence was attached to the corresponding data structure. When this

bit is given a value and the classifier is subsequently invoked, the associated

sentence is string.asserted into the fact list. The program was modified to

search the fact list for any mismatch, confirmed, actual and expect facts

upon return from the classifier. Since the first two fields completely define

the structure of the Engfish sentence used to describe the fact. the parse

tree is rather simple. The fact fields are assembled into a string using

sprinCf(), then sent to the display processor.

The host program "knows" a few things about CLIPS data structures.

Since the output is required to be processed on a graphics terminal running

under a window manager, display management has been delegated to the

host program instead of the production system. Therefore. in order to parse
the facts that remain in the database, a simple procedure for processing the

facts list was developed. This procedure steps through the linked fact list,

searching for facts whose first token identifies an item of interest to the

user, i.e. those with a mismatch or confirmed token. Once it finds a

match, tile remaining tokens in that fact are assembled into a text string.

755



with a prespecified format, then passed to the graphics processor for display.

A typical output may appear as follows:

Configuration Evaluation:

I] Difference in rrcs manifold-1

expected open, actual closed.

2] Difference in rrcs manifold-2

expected open, actual closed.

3] Difference in rrcs he-press-a

expected closed, actual open.

4] Difference in rrcs he-press-b

expected open, actual closed.

indication:

indication:

indication:

indication:

4 Examples

This section presents a number of examples stressing the various levels

of specialization involved in the classifier. Though the real application

of the classifier appears in a workstation environment requiring 1440 bit-

description inputs, this sequence of cases demonstrates the reasoning ca-

pabilities of the system without requiring the normal input or interpreted

output. This sequence shows each level of specialization available for full-

input classifications.

Default Assumption Given the default fact

(default Ires he-press-a sp-gp)

in the default-values construct, the actual switch defaults rule

checks for existence of the facts

(actual ires he-press-a sp-gp),

(actual ires he-press-a sp-op), and

(actual Ires he-press-a sp-cl).

756



If we say that none of these facts exist, then this rule will fire and

assert the fact

(actual ires he-press-a sp-gp)

per the default value.

Discrete Specialization Given the input statements

(actual Ires he-press-a ox-op)

(actual ires he-press-a fu-op)

the discrete specialization rule matches a combination pattern from

the valve discrete summary facts

(combine ox-op fu-op vp-op)

reducing the two discrete position statements to the one statement

(actual ires he-press-a vp-op)

This process reduces the lowest-level discretes for this valve, ozidizer

t,ah, e open and fuel vah, e open, into the summary statement ral_,e

position open.

Valve and Switch Assembly Now that the switch and valve positions

are available, they can be assembled into one statement that describes

the situation about each component. This operation takes two four-

field facts, representing almost identical information, and creates a

five-field fact. Drawing from the examples above, this operation will

take the two facts

(actual Ires he-press-a vp-op)

(actual ires he-press-a sp-gp)

and create the specialized fact

(actual ires he-press-a sp-gp vp-op).

757



This might seem unusual, but it is actually quite effective. The pro-

cess of constructing the classification through this point has been

one of determining the appropriate low-level signatures. By allowing

each indication to exist as a single proposition in the early stages, the

system has provided a consistent mechanism for managing default

values.

Actual/Expected Comparison Each of the steps outlined above is per-

formed for both the actual and expected signatures. The actual and

ezpect keywords define the environment in which the associated sig-

nature applies. In the examples above, the classifier would eventually

determine the ezpect fact corresponding to the actual fact that was

demonstrated:

(expect lres he-press-a sp-g9 vp-op).

So far there are no differences between the two modes. But the pur-

pose of the two different signatures is to provide a mechanism for

determining the differences between the two. This is performed by

the config mismatch and config valid rules. The config valid

rule determines whether both states indicate the same values. If they

do. then the statement

(confirmed lrcs he-press-a sp-gp vp-op)

might be asserted, for example. If the two states do not agree, then

the config misma'cch rule takes affect. Suppose the expected state

for the lrcs he press a valve is something different:

(expec$ lrcs he-press-a sp-cl vp-¢l).

Then the ¢onfig mismatch rule would fire because the two states _r

the same component are different, asserting:

(m/smatch ires he-press-a sp-cl vp-cl sp-gp vp-op).

This has detected that the valve, expected to be closed, is now open.

These two rules possess low salience so that they are not fired until

all of the specializations are complete. These rules operate upon

components as well as configurations, which are described below.

758



Valve Group Specialization Now that the individua] component de-

scriptions have been assembled into the composite facts, collections

of these component facts can be specialized into configuration facts.

The valve groups structure provides the unifying information. For

example, assume that the fact

(actual frcs tank-isol-12 sp-op vp-op)

(actual frcs tank-isol-345 sp-op vp-op)

were generated by the reasoning sequence described above. Given the

valve groups fact

(valve-group gank-isols ¢ank-isol-12 tank-isol-345)

then the specialize group rule can make the specialization

(actual frcs tank-isols sp-op vp-op).

Regulator Operation Specialization The most unusual configuration

specialization is that of describing the regulator configurations. The

propellant tanks have two pairs of regulators each, and can be oper-

ated from both, one or none of the individual pairs. Moreover. the

switches controlling the plumbing path to these regulators can be in

manual or automatic positions. The approach to solving this problem

involves the regulator descriptions from reg desc Cable. and steps

analogous to those used forother valve components. The rule reg

check attempts to match associated regulators, A and B, with an

entry in this table. If we add the fact

(expect Ircs he-press-b sp-cl vp-cl)

to the facts considered above, then this fact and the associated one

for the A regulator will be matched with the table entry

(reg-config sp-cl vp-cl sp-cl vp-cl man regs-O)

to create tile specialization

(expect ircs reg-config ma_ regs-O)

759



which contains a lot of meaningful intuitive information 6.

Configuration Specialization Now that pieces of each system have been

assembled into configurations, the configurations themselves can be

collected into even higher-level statements describing each individual

system. These specializations are rules only (due to the idiosyncracies

of each system), such as rcs feeding manual, active fres auto,

etc. For example, the res :_eeding manual rule states that if the

RCS tank isolation and crossfeed valves are all open. then one can

conclude that that RCS is providing crossfeed propellant to another

system. This terminology is derived from the actual operations lingo,

and is quite meaningful to OMS/RCS console operators. The facts

generated by this level of configuration specialization contain the key-

word config within the fact.

Meta-Configuration Specialization Once the individual system con-

figurations have been determined, it might be possible to assert a more

-general statement about the "big picture." The meta-configurations

are essentially configurations of configurationJ. They describe, in one

statement, the operational evaluation of all five propellant systems.

For input values representing no "problems," the classifier is able to

specialize all the way up to this level, deducing a statement such

as "Prelaunch configuration." This statement says something about

the whole orbiter, and from training flight controllers know that this

means the LOMS is feeding crossfeed, the ROMS is active, the RCS

systems are in their launch configurations, the OMS regulators are in

the auto-closed position, and the RCS regulators are in the manual-

open position. Pattern groups representing each of these configura-

tions appear in the rule prelaunch config. The effect of this process is

to reduce over 100 low-level facts into the one statement

(actual prelaunch config nominal nominal).

Furthermore, the host program interpreter parses this statement to

the declaration:

_At least to a flight controller.

760



Actual configuration: PRELAUNCH.

5 Enhancements

There are a number of areas for enhancement in the present system. A

few of the reasoning extensions are identified below. One obvious quality

extension is to change the configuration descriptions to reason about the

other orbiter subsystems, such as Data Processing, Life Support, or Electri-

cal Power. Flight controllers responsible for each of these subsystems must

monitor telemetry information similar to that monitored for OMS and RCS

operations.

5.1 Dynamic Reasoning

Comparing an actual signature with an expected signature can be inter-

preted as a matter of temporal persistence. If we can make assumptions

about the dynamic behavior of the measured system, then we can draw from

knowledge of the expected state to help make assumptions about the oct_tal

state. Often the behavioral assumptions refer to the deduction process.

where one might assume minimum inferential distance [Touretzky 1986].

Temporal considerations are typically categorized under the Frame Prob-

lem, as described by Minsky [1975], Hayes i1979], Shoham 11987". Hanks

and McDermott [1986]. and many others. An interesting enhancement to

this system might be found in predicting the nczt configuration signature

by incorporating knowledge of procedures and time [Georgeff and Lansky

198T.

5.2 Analog Information

Though the information provided as input to the classifier currently is dis-

crete (binary}, there is no reason why analog information may not be added.

For instance, some valves on the orbiter do not have discrete position in-

_v

761



dications, but rather "percentage open" indications: There are published

guidelines for interpreting "percentage flow" through these valves that could

be implemented as rules with thresholds on their left-hand sides. If a valve

is indicating 2 percent open, for example, the interpretation will probably

lead to considering this valve closed.

5.3 Instrumentation Failures

A variety of problems may be introduced into the classification process by

supplying nonrepresentative signatures as input. There are many orbiter

component failures that will cause an invalid signature to be relayed to

Mission Control. For example, failure of a computer, demultiplexer, signal

conditioner or transducer will cause all of the telemetry measurements as-

sociated with those components to be incorrect, without affecting operation

of the measured device. These conditions are detectable, however, and can

be provided as input to the classifier. When the classifier made aware an

instrumentation component failure, and it "knows" the measurements that

come from that component, then it can take this invalid information into

account when performing the classification. The heuristics for interpreting

the actual signature will likely involve minimum entropy, persistence and

default reaJonin 9.

6 Evaluation

This classifier performs extremely well for its intended purpose. There is

no apparent hindrance to extending the system to incorporate more input

or accomodate more configuration models. Adding this configuration eval-

uator to an existing program shows the capabilities of an add-on expert

system. This application derives most of the benefits for developing an

expert system outlined by Giarratano and Riley [1989] (the other bene-

fits are not applicable). For example, due to the declarative construction,

the system is able to accomodate changes in orbiter procedures without

restructuring the inference process. The application performs a complete

762



task, allowing flight .controllers to address their attention to other prob-

lems. Most importantly, the expert system is able to perform a mundane

task frequently, consistently, and cheaply, and considering the quantity of

input, at the level of an expert.

The certified program will be used during all phases of the Shuttle mission

to interpret hexadecimal and binary information and to provide a descrip-

tion of the onboard valve and switch configuration. All of the classifications

performed thus far in the development process have taken under 6 seconds

to complete. This is a highly acceptable amount of time for this activity.

As familiarity with this classifier increases, the users will likely conclude

that there are more statements that can be made about spacecraft config-

urations than have been included in the rule base. There are many subtle

descriptions about off-nominal configurations that may prove to be worth-

while in a robust system. The extensibility of the production system will

allow such additions to be made without changing the inferencing mecha-

nism or worrying about rule ordering.

References

[Besnard 891 Besnard, An Introduction to Default Logic, Springer-Verlag.

Berlin, 1989.

iEtherington 88] Etherington, Reasoning with Incomplete Information,

Morgan Kaufmann Pubhshers, Inc., Los Altos, CA. 1988.

[Georgeff and Lansky 87] Georgeff andLansky, "Procedural Knowledge."
SRI International Technical Note 411, Menlo Park. CA. 1987.

iGiarratano and Riley 89] Giarratano and Riley. Ezpert Systems: Princi-

ples and Programming, PWS-Kent Publishing Company. 1989.

[Ginsberg 871 Ginsberg, Readings in Nonmonotonic Reasoning. Morgan
Kaufrnann Publishers. Inc., Los Altos, CA. 1987.

[Hanks and McDermon 86' Hanks and McDermott, "Default Reasoning,

Nonmonotonic Logics, and the Frame Problem." in Proceedings

763



of the .Fifth National Conference on Artificial Intelligence, AAAI,

1986.

iHayes 79] Hayes, "The Logi c of Frames," in Frame Conceptions and Tezt

Understanding, Metzing (ed.), McGraw Hill, New York, 1979.

[Minsky 75] Minsky, "A Framework for Representing Knowledge." in The

Psychology of Computer Vision. Winston (ed.), McGraw Hill. New

York, 1975.

iReiter 78] Reiter, "On Closed-World Data Bases," in Logic and Data

Bases, Gallaire and Minker (eds.). Plenum Press, New York, 1978.

iReiter 80] Reiter, "A Logic for Default Reasoning," Artificial Intelligence

I3, North-Holland, 1980.

iReiter and Criseuolo 81] Reiter and Criscuolo, "On Interacting Defaults,"

Proceedings of the Seventh International Joint Conference on Ar-

tificial Intelligence, 1981.

iShoham 87] Shoham. "What is the Frame Problem?", in Reatonin9 About

Action_ and Plans: Proceedings of the 1987 Workshop. Georgeff

and Lansky (eds.), 1987.

iTouretzky 86] Touretzky. The Mathematics of Inheritance Systems. Mor-

gan Kaufmann Publishers, Inc., Los Altos, CA, 1986.

764


