
N96- 12958

_ 2 /

/
," =.¢

Building an Intelligent Tutoring System for Procedural Domains

By Andrew Warinner, Diann Barbee, Larry Brandt, Tom Chert, and John Maguire
Global Information Systems Technology, Inc.

1800 Woodfield Drive,

Savoy, Illinois 61874

Introduction

Jobs that require complex skills that are too
expensive or dangerous to develop often use
simulators in training. The strength of a
simulator is its ability to mimic the "real
world", allowing students to explore and
experiment. A good simulation helps the
student develop a "mental model" of the real
world. The closer the simulation is to "real

life", the less difficulties there are transferring
skills and mental models developed on the
simulator to the real job. As graphics
workstations increase in power and become
more affordable they become attractive
candidates for developing computer-based
simulations for use in training. Computer-
based simulations can make training more
interesting and accessible to the student.

Unfortunately, good simulations do not
necessarily make good trainers. One of the
main tenets of most current learning theory is
that the development of new knowledge is
greatly constrained by what an individual

already knows 1. Simulations may require

complex skills that are difficult to develop
individually in sophisticated simulation. The
student may not be able to use the simulation
until the prerequisite knowledge and skills
have been learned. Computer simulations are
more flexible than dedicated, "task specific"
simulations since they can simulate situations
that are not strictly "realistic" but can reduce
the complexity of the simulation in order to
develop basic skills and concepts.

Although a simulation is a learning
environment, it offers the learner no
instructional assistance.. We believe learning
is greatly enhanced when instructional
techniques are added to a simulation. For the
past three years we have been exploring the
challenges of incorporating "intelligent
tutoring systems" (ITS) into computer-based
simulations. Developing an intelligent
tutoring system for a simulation really
requires the development of two cooperating
expert systems: a domain expert system that
serves as a basis for evaluation of the student

and an instructional expert system that can
compare the student to the domain expert and
prescribe training.

881

https://ntrs.nasa.gov/search.jsp?R=19960002949 2020-06-16T05:30:42+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42779607?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

z

y pitch _

yaw

axis

Tr pitch

axis
Y

anslational Hand roll
X V Conn'oller (RHC) axis

Z

Rotational Hand

Controller CHIC)

k',,.__d

Figure 1. Controlling the RaMS is Orbiter Unloaded Mode

The Domain: The RMS

The Remote Manipulator System (RMS) is
the mechanical arm of the Payload
Deployment and Retrieval System (PDRS) of
the Shuttle. It is used to grapple a payload
stowed in the Shuttle's cargo bay and lift it
into orbit or grapple a payload in orbit and
berth it in the cargo bay. Like a human arm,
the RMS has three joints, a shoulder, elbow,
and wrist, each with varying degrees of
freedom (possible directions of movement).
The arm is attached at the shoulder to the

longcron of the Shuttle bay and is over Fifty
feet in length. At the end of the RMS is "end

effector". The end effector used to grasp and
hold the payload. Like a human arm, the
RMS has physical limits on the roll, pitch and
yaw of each joint. The RMS has movement
limits imposed by a computer that monitors

the RMS to reduce the possibility of damage.
The RMS can be moved into positions where
it loses one of its degrees of freedom (i.e.
when movement of a joint in a specific
direction L_.=omes impossible). These
configurationsare called"singularities". The
operator must rcposition the RMS when it is

in a singularity to regain its freedom of
movement.

The RMS operator controls the the arm from
the rear of the Shuttle cockpit. It is controlled
with two hand controllers: a "translation
hand controller" (THC) and a "rotational
hand controller" (RHC). The operator can
view the payload and RMS from windows or
on a closed circuit TV (CCTV) from several
cameras positioned about the Shuttle.

The RMS has several modes of operation.
The RMS can be entirely controlled by the
Shuttle's general purpose computer (GPC).
The GPC can assist the shuttle operator in
operating the arm or the operator can control
the arm without computer assistance. These
different modes of operation use different

coordinate systems to describe the position of
the RMS, the Shuttle, and the payload. The
different modes also change the effects of the
hand controllers on the position of the RMS
(seeFigure I).

Successful operation of the RMS requires
motor skills,complex cognitive skills,and
knowledge of the mechanics of theRMS. To

master the R.MS the operatormust learnthe

882

limits of the RMS and how to control its

differentmodes. An understanding of the
differentcoordinatesystems and theabilityto

visualizearm and payload movements in

spacerelativetotheShuttlearcalsoimportant

forsuccessfulRMS control.Operatorsmust

learnto manipulate the arm efficientlyand
safely.

Over the past three years, NASA has
developed a computer-based simulation of the
RMS called the Prototype Part Task Trainer
(P2T2). Running on a color graphics
workstation, P2T2 simulates the RMS and

its different modes of operation using the
same algorithms as the GPC. P2T2
simulates the different camera views available
from the CCTV as well as the R.MS control

panels. P2T2's hand controllers are exact
replicas of the THC and the RHC on the
Shuttle.

intelligent tutoring system contains a student
model, a computer-based training lesson does
not.

The instructional expert uses the student
model to gauge the student's progress and
prescribe instruction. The domain expert
compares the student to the "correct"
performance it generates and provides the
results to the student model. Since the

student model is the used by both the
instructional expert and the domain expert,
the student model must have a representation
that is accessible to both experts. Figure 2
illustrates how the two expert systems in the
ITS act on the student model.

III

Performance

Our goal is to embed an intelligent tutoring
system into P2T2 to make it a more effective
training device. The ITS/P2T2 will be a
stand-alone trainer capable of teaching the
domain of RMS operation. We will use
CLIPS as the inference engine of of the ITS.
CLIPS has several advantages over other
inference engines:

- ability to be embedded in other
applications, P2T2 in our case

- CLIPS is written in C and runs under
UNIX@, P2T2 is written in C and runs
under a variant of UNIX

- source code is provided, allowing us to
make special modifications

Since we must build our ITS into P2T2,
CLIPS ability to be embedded is important.
Performance is another critical concern. Our

ITS needs real-time performance in order to
monitor and instruct the student.

Intelligent Tutoring Systems

The primary difference between intelligent
tutoring systems and more traditional
computer-based training is the "student
model", a representation of the skills and
knowledge possessed by the student. An

Figure 2. The Student Model, the Domain

Expert and the Instructional Expert

We have chosen to represent the student
model as a hierarchicalnetwork of skillsand

conceptsnecessarytomasterthe R.MS. Each

skillor conceptcan have supportingsubskiUs

and subconcepts. A subskillor subconcept
may support severalsl_illsor concepts. We

883

The DomainHierarchy

IndividualStudentModels
withHistoricalInformation

Figure 3. The Domain Hierarchy and the Student Models

call this taxonomy of the RMS domain the

"domain hierarchy". Each skill or concept is
represented by a node in the domain

hierarchy. The student model is a copy of the
domain hierarchy that stores information
about the student's mastery or misuse of each
skillor concept. Figure 3 illustratesthe
domain hi_archy and the studentmodel.

The domain hierarchy/studentmodel is a

good representationfor both diagnosis and
instruction. Part-tasktrainingcan use the
hierarchical taxonomy of the domain to

organize instruction. Diagnostically, the
studentmodel functionsas a decisiontreeto

which we apply algorithms drawn from

electronicfaultisolation.The diag_,::sticand
instructionalfunctionsof the studentmodel

willbe explainedinmore detail.

The Domain Expert

The domain expert provides the means to
analyze the student. It must "understand" its

domain. The domain expert must solve
problems as an expert as weLl as be able to

understand the student's actions and compare
them to its solution. We have found the best

representationfor the domain expert is the
"procedural network". Procedural networks

have been used beforein intelligenttutoring
systems, for example, the "BUGGY" ITS

developed by Brown and Burton 2. The

procedural network is a powerful
representationof how the skillsand tasksof
thedomain are related.Proceduralnetworks

are a good representationfor an ITS that

tutorsa proceduralor task-orienteddomain 3.

Briefly, the advantages of a procedural
network are:

-goal-basedrepresentationof thetaskor
procedureallowsfora flexibleevaluation

of studentperformance

- real time evaluationof the procedure

- multiple levels of abstraction in the
procedure

.-mechanisms forrepresentingthepartial
orderingof procedures

- a representation of the "world" as it
relates to the procedure

Procedural networks can be constructed

dynamically. Our ITS will not dynamically
construct its procedural network for two
reasons. First, we have chosen to restrict

.knowledge acquisition to a small set of tasks

m the RMS domain. Second. the dynamic
construction of procedural networks uses

884

difficult techniquessuchasplancriticismand
planoptimization. Dynamically constructed
procedural networks might contain flaws that
would limit their usefulness during student
evaluation. Our architecture does not

preclude the dynamic construction of
procedural networks if they arc needed in the
future.

Hierarchical Reasoning in Procedural
Networks

The hierarchical nature of procedural nets

makes them ideal for reasoning about the
procedure at different levels. Student
diagnosiscan measure skillsand performance
at differentlevels of the procedure. For

example, wc might want to measure an

overallquantity likethe time to perform a
sectionof the procedure. The hierarchical

natureof theproceduralnetwork allowsus to
measure skillsat differentlevels in the

procedural network without examining and
interpreting the individual actions that
accomplish thatsectionof theprocedure.

For example, suppose a section of the
procedural network contains this procedure
of independent tasks:

1. Reset the widget A (press button 1)
2. Turn on widget B (turn knob 1 to
"on")

3. Prepare widget C (accomplished by
subprocedure)

3.I.Set gizmo I (turnknob 2 to "5")

3.2.Turn offgizmo 2 (turnswitch 1
to "off")

Suppose that the widgets and gizmos are
independent mechanisms: manipulating one
widget does not affect the operation of any of
the others. If the procedure was executed in
strict sequence it would result in the
following sequence of actions:

1. press button 1
2. turn knob 1 to on
3. turn knob 2 to 5
4. set switch 1 to off

Flexible Framework for Plan

Recognition
But suppose the student executes the actions
in this order:

One of the most difficult tasks in procedure
evaluation is understanding the student's
progress through the procedure. Often
procedures contain some flexibility in the
order of steps or tasks performed.
Procedures can offer opportunities for the
student to correct his or her mistakes and

continue. A step-by-step comparison of the
student and the expert's solution is too
rigorous. If the procedure contains tasks that
can be performed in any order, we can't rely
on a step-by-step
ordering of the
student's actions for
evaluation. The

procedural
nctwork's orsplit
nodes are a good
representation for
such flexible plans.
The procedural
network's andsplit
nodes can represent
the strict ordering of
procedure steps.

ResetwidgetA

1. set switch 1 to off

2. press button 1
3. turn knob 2 to 5
4. turn knob 1 to on

The procedural network can interpret this
sequence of actions as accomplishing the
procedure even though the actions arc not in
strict order. See Figure 4 for an illustration.
of this procedure.

Turn on Pm_.

widget B

gizmo 1 gizmo 2

Figure 4. A procedural network example

Procedural
Networks and
Real-Time
Evaluation

Another advantage
in using procedural
networks as a

representation is that
they can be used to
evaluate the

procedure as it is
performed. Real-
time evaluation is

885

needed if some kind of coaching feedback is
provided to the student. Student evaluation

becomes a process of parsing the student's
actions and comparing them to the procedural
network. This can be done in a top-down
fashion to the necessary level of detail. The

state of the procedural network at any point in
time is a complete description of the state of
the world as well as the state of the

procedure. As the student moves through the
procedure, the interpretation of his or her
actions is based on how they changed the
state of the world.

Representing the World State

As mentioned above, the procedural network
is not only a representation that describes the
procedure but also the state of the world.
The procedural network describes how each
step of the procedure affects the state of the

world. This description of the procedure
allows reasoning by the modules of the ITS

on the effects and relationship of parts of the
procedural network.

Procedural Networks

Procedural networks were first characterized

by Sacerdoti 4. They are closely related to
augmented transition networks and
generalized and-or graphs. The procedural
network is ordered by its links to among
nodes. Nodes may have predecessors,
successors, a parent and children. The
successor and predecessor links order the
procedure. The parent and child links denote
"subprocedures that must be executed to

achieve the effects of the parent procedure.
The parent and child links allow the
procedural network to be ordered
hierarchically. The procedural network is
composed of four basic classes of nodes
described below.

Procedure start and procedure end

nodes are delimiters of the procedure. They
are used for both procedures and
subprocedures.

Goal nodes and subprocedures

organize the procedural nets hierarchically.
Goal nodes are accomplished by

subprocedures that are linked as children. In

the example illustrated in Figure 4 the node
"Prep widget C" is a goal node that is
accomplished by the subprocedure "Set
gizmo 1" and "Gizmo 2 off" (note: the
procedure start and procedure end nodes have
been eliminated from the figure).

Andsplit and andjoin nodes delimit a
collections of steps which may be performed
independently. The andsplit and andjoin
nodes themselves delimit the independent
steps.

Orsplit and orjoin nodes are similar to
the andsplit/andjoin nodes. They delimit a set
of steps only one of which must be

performed successfully. The orsplit and
orjoin nodes delimit the steps.

Node effects are lists of effects on the

world state. They represent the changes
caused .by completing the procedure step.
The node effects will change machine values,
positions, and other world state information.

Link predicates are used to control
branches of the procedural network based on

the state of the world. Since the procedural
network is not constructed dynamically, link
predicates enable or disable branches of the

procedural network. For example, a branch
for an error correction procedure may be
enabled or disabled depending on the state of
the equipment.

Procedural ordering links are used to
represent ordering information not captured
by the successor and predecessor links. The

procedural ordering links are used to express
ordering of the procedure not required by the
machine states. The procedural ordering
information is kept separate from the world
state representation.

Comparing the Expert and the Student

As the student performs the procedure, the
domain expert monitors his or her progress
with the procedural network. When the
student has finished the procedure or the
instructional expert has intervened, the
domain expert can refer to the procedural
network to see what portions of the

v

886

procedure were completed correctly and what
portions were not completed correctly. The
domain expert must now assess the causes of
the student error and update the appropriate
skills and concepts in the student model.

The domain expert must now translate the
results of the procedural network into

information about specific skills and concepts
in the student model. The procedural
network lends itself to a classification of

student errors 5. This classification uses the
structural and world state information

represented in the procedural network.
Student errors fall into four classes:

- problem violations

- irrelevant procedures

- incorrect procedures

- orderingviolations

Invalid action - This is an action that the

student has taken that is not valid anywhere
in the procedural network. Since the

procedural network characterizes all possible
paths through the network and all the
possible actions that might be taken
somewhere in the procedure, the domain
expert can detect any action that does not fall
on a path.

Problem violation - A student may take
actions that are appropriate to achieve a goal
but are inappropriate for the initial state of the
world.

For example, suppose we have a procedure:

1. Power up the widget (goal)

(if widget is type A)
1.1 Set power switch to "on"
1.2 Press widget reset button

(if widget is type B)
1.3 Set widget dial to "0"
1.4 Set power switchto "start"

1.5 Press widget reset button
1.6 Set power switch to "on"

If we told the student that the widget is type
A and he performs any of the steps 1.3 - 1.5
he has made a "problem violation".

Irrelevant procedure - Since we are not

dynamically constructing the procedural
network, we will use link predicates to
disable unnecessary parts of the procedural
network. Domain expert can detect if the
student attempts to execute these disabled
branches and report them as "irrelevant
plans".

For example, suppose we have the following
procedure:

I.Prepare gizmo (goal)

(if gizmo status is "error")
1.1 Set gizmo power button to "off"
1.2 Set gizmo power button to "on"
1.3 Press gizmo reset button

(ifgizmo statusis"ok")

1.4 Press gizmo button I

1.5Pressgizmo button2
1.6Set gizmo switch to"on"

The "if" statements represent link predicates
that enable or disable branches in the

procedural network. If the student attempts
to perform the steps of the error
subprocedure, the domain expert will
recognize them as "irrelevant plans".

Incorrect procedure - If the student omits

a stepin a procedure,thedomain expertcan
detect this as an unsatisfiednode in the

procedural network. Domain expert will
classify the missed step as an "incorrect

procodure".

Ordering violation . We have added the
procedural ordering links to the procedural
network to represent ordering of the
procedure not required by the world state.
Domain expert will use these procedural
ordering links to detect violations in the

ordering of actions that are not mandated by
node effects.

887

For example, suppose we have the following
procedure:

1. Prepare the widget (goal)
1.1 Set switch to "A"
1.2 Press button 1

1.3 Turn dial to "3"

-"skill" nodes that represent the
satisfactory performance of the procedure
step

- "effects" nodes that represent the effect
of the procedure step on the state of the
world

Suppose the switch, button, and dial are
independent of each other; the operation of
one does not affect the others. This would be

represented in the procedural network as an
andsplit/andjoin branch. We can add

procedural ordering links to represent the fact
that we want the steps 1.1, 1.2, and 1.3
performed in strict order. Suppose the
student performed the actions in this order:

1. Pressed button 1
2. Turned dial to "5"
3. Set switch to "A"

Domain expert can diagnose this as a
ordering violation error but h will not classify
it as an incorrect procedure error since the
student has not violated the andsplit/andjoin
construct in the procedural network.

Error Evaluation

After the domain expert has classified the
errors observed in the procedural network,
those errors must be mapped to
corresponding skills and concepts in the
student model. Each step in the procedural
network has pointers to skills and concepts
necessary to successfully perform that step in
the procedure. As we noted before, the error

classifications can help interpret the mistakes
observed in the procedural network. In
addition, we can use the historical
information in the student model to assist in

the diagnosis. Each step in the procedural
network has links to several skills and

concepts in the domain hierarchy:

- "knowledge" nodes that represent that
the student is aware of the procedure steep

- "condition" nodes that represent the
student's knowledge of the conditions

when the procedure step should be
performed

For example, suppose the domain expert
detected a "problem violation" error. There

are several plausible explanations for this
error:

- the student is not aware of the

conditions under which the procedure
step should be performed

- it was a transient error; the student
ignored or misinterpreted the conditions

- the student is ignorant of the effects of
the procedure step on the state of the
world

Each of these plausible explanations are
represented by nodes in the domain
hierarchy. To some extent the explanations
are mutually exclusive. How does the
domain expert choose between them? The
domain expert can use the historical
information from the student model.

Continuing our example, suppose the student
model shows that the student has never been

exposed to concepts that represent
"knowledge" of the procedure step, the
domain expert can rule out the possibility that
it was a transient error. On the other hand, if
the student model shows that the student was

familiar with the procedure step but has not
used the procedure step in some time. The
domain expert will favor the explanation that
it was a transient error.

We have found that an analysis of the
procedural network can provide information
about only a subset of the skills and concepts
in the student model. The domain expert can
only infer information by observing the
student. But the student model contains
high-level abstractions and low-level skills
and whose use cannot be observed directly.

For example, a higli level concept lille
"safety" cannot be associated with a single

888

procedure step. An abstract concept

"knowledge of RMS coordinate systems"

would bc difficultto deduce from simply

observing the student. In general, the

domain expert is able to draw conclusions

about intermediateskillsand concepts in the

studentmodel 6.

The StudentModel

.... Region acc_ible to the Domain Expert

Figure5. Regions availabletotheDomain

Expert'sdiagnosis

The Instructional Expert

So far we have discussed the diagnostic
aspectsof an intelligenttutoringsystem. The

diagnostic functionalityis only half of an

ITS, the other half is its tutoring
functionality.An ITS can bc viewed as a
expert system compares the "expert model"
of the domain to the "student .model" that

representsa novice student. The ITS then

determines "operations"thatwilltransform

the studentmodel tomatch theexpertmodel.

Once the domain expert has updated the
student model based on the result of its

diagnosis, the instructional expert takes over.
The instructional expert must examine the
state of the student and apply remediation to
the weaknesses it finds them.

We have chosen to provide tutoring to the
student by means of part task training. Part
task training is based on a systematic analysis
of the instructional domain. The analysis

identifies the skills, strategies, and
knowledge necessary for expert performance.
It also identifies the hierarchical relationships
among the skills and knowledge. As an
example of this, Figure 6 illustrates a part-
task analysis of the R.MS domain. The skill
"Payload Deployment" is composed of the
skills "Payload Release", "'Payload
Unberthing", "Move to Grapple Position",
"Grappling the Payload", and "Ungrappling
the Payload". The skill "Payload
Deployment" is an "integration" skill. It
requires mastery or "integration" of some
subskills. The subskills may themselves be
decomposed into other skills.

Once an analysis of domain is complete,
training is designed to develop proficiency in
the skills and concepts found in the domain
hierarchy. A part task is designed to teach
exactly that skill or strategy. When the
student is proficient in all the subskills of an
integration skill then the student can be

trained in the integration skill 7.

Both the diagnostic functionality and the
instructional functionality can exploit the
hierarchical organization of the expert
domain. The hierarchicalorganizationcan be

Payload]

Deployment]

Release Unberthing[Grapple Grappling13osition the Payload [the Payload [

Figure 6. Sample Part-Task Analysis of the RMS Domain

889

used as a sort of "decision tree" using the
historical information in the student model.
The hierarchical structure of the student

model is used to organize and relate the skills
and knowledge of the domain for the
instructional expert.

Final Diagnosis and Instruction

At any given time, the student may have

some misconceptions or lack proficiency in
skills in the domain. How does the
instructional expert decide when and what
can be tutored? The question of when the

student should be tutored can be answered by
the historical information stored in the student

model. We have adapted algorithms from
electronic circuit fault diagnosis to answer the
questions of what should be tutored and
when it should be tutored.

The fault isolationalgorithms utilizethe
hierarchical structure of the student

model/domain hierarchy. There isa certain

amount of "overlap" in the hierarchical
structure of the student model. Some

subskillsare required by severalskills.The
fault isolation algorithms can use these

interrelationships to help us distinguish the
"source" of error from its "symptoms" in the
student model. Suppose we know that skill

A 1 and A 2 have the subskills B], C 1, and C 2

in common and the domain expert has
determined that student has misused them

(see Figure 7). The problem may be in the

skills A] and A 2 or in their supporting
subskills. Our fault isolationalgorithms

attempttoexplainthedeficienciesby looking
for areas that the deficiencies have in

common. These common areasmight be the
real cause of the deficiencies. In our

example, the faultisolationalgorithm would

considerthe skillsB I,C I,and C 2 as the rcal

source of the student'smisconceptions and

the skillsA land A 2 as symptoms. The fault

isolationalgorithms attempts to find the
simplest explanation thataccounts for thc
most errors in the student model.

Furthermore, they can recommend a skillto

be tested that will eliminate the most

uncertaintyabout where the real source of
errorliesinthe studentmodel.

_:: - suspect region from A 1
,..:.

- suspect region from A 2

.= most suspect region

Figure 7. Applying fault isolation techniques to ,,,
the Student Model

89O

The fault isolation algorithms provide:

The Student Model

- a skill or concept that it has isolated asthe source of the student's i
misunderstanding:::

- or a region in the domain hierarchy I iiii_iii!ii_iiiii_i_i_iiii!!iliii! i

where errors are located and a specific
skill or concept that is the mostly Likely
source of error

The instructional expert must now
determine which part-task training will
remedy the deficiencies observed in the
student. One of the functions of the

domain hierarchy is to serve as a map to the
part-tasks. Given a set of skills and
concepts misused by the student, the
instructional expert can find a set of part
tasks that will instruct the student.

The instructional expert must organize the
part-task training it presents to the student.
The instructional expert uses the structure
of the domain to sequence the presentation of
part-task training. For example, suppose the
instructional expert must teach a region of the
domain hierarchy as in Figure 7. The
instructional expert has determined that it
must teach the skills B 1, C 1, and C 2. Our

part-task training philosophy dictates that
subskills should be trained before the skills

they support. The instructional expert then

chooses to tutor C I and C 2 before tutoring

the integration skill B t. The part tasks arc
sequenced from the subskills to the parent
skills, and so on, up the domain hierarchy.

As we pointed out before, the procedural
network and the analysis of the domain
expert can only provide information about a
subset of elements of the student model.

Instruction is a valuable source of diagnostic
information about the regions of the student
model that are inaccessible to the procedural
network/domain expert (as in Figure 8).
Part-task training can be designed to elicit
information about the inaccessible areas of

student model: "Avoid guessing - get the

student to tell you what you need to know ''g.
This diagnostic information is all the more

= Region aceesible to the Domain Expert

............................ Region aceesible to the Instructional Expert

Figure 8. Regions accessible to the Domain Expert's
and the Instructional Expert's diagnosis

.valuable since it is directly solicited and not
deduced with possibly error-prone analysis.

Conclusions

The two expert systems in our ITS use a
common representation of the student. The
domain expert can observe and understand
the student's actions with a procedural
network. The procedural network lends itself
to an initial classification of observed errors.
The classified student errors can then be

interpreted for information about specific
skills and concepts in the student model. The
student model can further refine the possible
causes of the student errors. Our ITS
exploits the hierarchical structure of the
student model for both further diagnosis of
the student and remediation of the student.

The hierarchical representation of the student
model is a sound representation for
instruction, specifically part-task training, as
well as diagnosis of student deficiencies.
Fault isolation algorithms can use the
hierarchical student model as a decision tree.

The instructional expert uses the hierarchical
structure of the student model to control the

sequence of training.

agi

References

]Spiro, R. J., Vispoel, W., Schmitz, J.,
Samarapungavan, A., and Boerger, A.,
Knowledge Acquisition for Application:
Cognitive Flexibility and Transfer in
Complex Content Domain, in Executive

Control Processes (ed. B. C. Britton),

Erlbaum, Hillsdale, New Jersey, 1987, pp.
177- 199.

2Brown, J. S., and Burton, R. R., A

Parach'gmatic E.rample of an Artificially
Intelligent Instructional System, International
Journal of Man-Machine Studies, vol. 10,
pp. 323 - 339.

3Rickel, J., An Intelligent Tutoring
Framework for To_k-Oriented Domains,
Proceedings of ITS-88, Montreal, 1988, pp.
109 - 115

4Sacerdoti, x=. D., A Structure for Plans and
Behavior, E£sevier-North Holland, New
York, 1977

5Rickel, J., ibid.

6Self, J. A., Bypassing the Intractable

Problem of Student Modelling, Proceedings
of ITS-88, Monlx_.al, 1988, pp. I8 - 24.

7prederiksen, J. R., and White, B. Y., An

Approach to Training Based Upon Principled
Task Decomposition, Acta Pyschologica 71
(1989), pp. 89- 146.

8Self, J. A., ibid.

89_

