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ABSTRACT

The fundamentals of the thermodynamic theory of mixtures and

continuum thermochemistry are reviewed for a mixture of condensed water

and polymer. A specific mixture which is mechanically elastic with

temperature and water concentration gradients present is considered. An

expression for the partial pressure of water in the mixture is obtained based

on certain assumptions regarding the thermodynamic state of the water in the

mixture. Along with a simple diffusion equation, this partial pressure

expression may be used to simulate the thermostructural behavior of polymer

composite materials due to water in the free volumes of the polymer. These

equations are applied to a specific polymer composite material during

isothermal heating conditions. The thermal stresses obtained by the

application of the theory are compared to measured results to verify the

accuracy of the approach.
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INTRODUCTION

In their application as thermal protection barriers, polymer composite

materials are subjected to severe heating conditions. The success of these

materials as thermal protectants is contingent upon a thorough understanding

of the thermostructural behavior so that sound design practices may be

employed. Water and other volatiles may be entrapped in the polymer during

curing or they may be adsorbed from the surroundings prior to their use.

Since it is common for these volatiles to be present in the polymer, it is also

essential to characterize how they will alter the thermostructural response of

polymer composite materials.

Over the past few years, there have been many attempts to model, in an

explicit manner, the thermostructural response of phenolic resin composites

as they are heated to high temperatures*. These attempts have been based on

and derived from the porous media theory. Although some have included the

effect of water on the thermomechanical response, the primary emphasis has

been to simulate the effect of thermal decomposition of the polymer on the

structural behavior of the composite. These attempts have been successful in

the sense that they have demonstrated the direct dependence of the transient

* These works are too numerous to list all the important contributions. For a fairly

comprehensive list see the works of Sullivan and Salamon (1992), McManus (1990) and Wu

and Katsube (1994).



thermomechanical response on the diffusion process. The shortcoming with

the porous media approach is the inability to accurately relate the stresses in

the polymer chains to the chemical state of the volatile species.

The present effort approaches this problem from the perspective that

the polymer and the water in its free volumes constitute a miscible mixture. In

this study, we will review the principles of the thermodynamic theory of

mixtures as discussed in the works by Bowen (1967), deGroot (1963) and

Prigogine (1955). Specifically, we are interested in how these principles apply

to a binary mixture of polymer and water where both temperature and water

mass concentration gradients are present. We will restrict our attention to a

mixture where the deformation states are assumed to remain infinitesimal and

we will assume that no chemical reactions occur which would cause the

generation or consumption of any of the chemical species. From this review

and under the assumption of an isothermal body, a simple diffusion equation is

obtained which can be used to calculate the diffusion of water through the

polymer.

Using very simple mechanical considerations, the expression for the

total stress for an elastic mixture may be written as the sum of the partial

stresses. The expression for the partial pressure of water in the mixture is

developed from thermodynamic considerations under the assumption of

constant composition. We approximate the partial entropy of water in the

mixture using the specific entropy of pure, condensed water. The resulting

expression for the partial pressure of water in the mixture is a function of the

partial density of water and the temperature.



In the final section, the diffusion equation and the partial pressure

expression are employed to model the thermal stress response of carbon

phenolic composite specimens under uniform heating conditions. The

diffusion equation is used to determine the local partial density of water in the

specimen as a function of spatial location and temperature. From these results,

the volume average partial density in the specimens is determined for each

temperature. Using the volume average partial density and the expression for

the partial stress, the volume average partial stress of water is calculated.

Comparisons are made between the calculated thermal stresses and measured

stresses in order to exercise the theory and determine its accuracy. This work

is an extension of the work originally published in Sullivan (1994).

REVIEW OF THERMOCHEMISTRY AND FORMULATION OF THE THEORY

Preliminaries and Basic Assumptions

Figure 1 illustrates the architecture of a reinforced polymer composite.

The sketch shows the reinforcing fiber bundles embedded in the polymeric

resin, the polymer free volumes and the polymer network crosslink juctions.

The enlarged view illustrates the relation between polymer free volumes and

occupied volumes. The volume which the water occupies is only a fraction of

the total polymer free volume. The occupied volume fraction may be defined as



where V00 is the volume occupied by water molecules and V1 is the total volume

which is the sum of the volume occupied by polymer, the volume occupied by

water and the volume which is unoccupied.

Treating the polymer and water in the free volumes as a mixture, the

density of this mixture p is the sum of the partial densities of the individual

constituents, namely

P = Pw + PP (2)

where pw and pp represent the partial density of water and polymer,

respectively. In this study, we will assume that only the water constituent is

volatile, that no chemical reactions occur which would cause the generation

or consumption of either of the chemical species and that the deformations

states remain infinitesimal. Therefore, the density of the polymer pp remains

constant and the density of the mixture varies only with the partial density of

water in the mixture p^ The partial density of water is given by

(3)

where p^f is the density of water inside the occupied volume which we shall

refer to as the occupational density of the water.



We will assume, as our primary postulate, that the thermodynamic state

of water in the free volumes can be approximated by the thermodynamic state

of pure condensed water. This assumption is based on the notion that the

motion of the water molecules upon heating will be restricted by the presence

of the polymer segments in the same manner that the motion of water

molecules in pure condensed water are restricted by their neighboring water

molecules*. We may therefore approximate the partial entropy of water in the

mixture by the specific entropy of pure, condensed water. The occupational

density of water in the free volumes will be assumed to be equal to the density

of pure, condensed water under the same temperature and pressure conditions.

The occupied volume fraction depends upon the frequency of water

molecules in the polymer. This will be a function of the affinity for storage of

water in the polymer, the relative humidity of the surroundings and the

temperature of the surroundings. For nonequilibrium or transient conditions,

the occupied volume fraction is tied directly to the diffusion process and in

this case it is also a function of time. For this reason, a diffusion equation is

included as part of the theoretical formulation.

* In the case of water in phenolic polymers, the forces between the polymer molecules-and

the water molecules are of the same nature as the forces between adjacent water molecules

in pure, condensed water. In pure condensed water, the forces are dipole-dipole forces

between adjacent water molecules and, in the case of water and phenolic polymer, the

forces are dipole-dipole forces between the water molecules and the hydroxyl group in

each polymer repeating unit.



Conservation Laws for a Binary Mixture in a Continuous System

Let us consider a miscible mixture of polymer and condensed water

occupying some arbitrary volume Q. Within this volume, the temperature,

stress and partial density of the water may be continuous functions of the

spatial coordinates Xj and the time variable t. The conservation laws which

govern the variation of the temperature, stress and partial density inside this

mixture are the conservation of energy, momentum and water mass,

respectively. Following the usual approach in continuum mechanics, the

conservation laws are written for the entire volume in the form of volume

integrals using Gauss' theorem (Chung, 1988 and Fung, 1965). The local form of

these laws are then extracted from the volume integrals.

For the binary mixture of polymer and water with water concentration

and temperature gradients present, the local form of the conservation laws are

written

Conservation of Water Mass: pw + div Jw = 0 (4)

Conserva tion of Linear Momen turn: div & = 0 (5 )-

Conservation of Energy. p u = tr (8 £) - div Jq + p r (6)

where pw is the local time derivative of the partial density of water, 8 is the

Cauchy stress tensor for the mixture, u is the time derivative of the specific



internal energy, 5 is the time derivative of the infinitesimal strain tensor and

r is the heat supplied per unit mass. The vectors Jw and Jq are the water mass

flux and heat flux vectors, respectively. In equations (4) to (6), div denotes the

divergence operator. Also, in equation (5), body forces have been ignored.

The local entropy balance equation is

p s+div Js = a + ljr- (7)
^a

where s is the local time derivative of the entropy of the mixture per unit

mass, Js is the entropy flux vector, a is the local rate of entropy production and

Ta is the absolute temperature. For the present case, the entropy flow vector Js

may be written in terms of the heat and mass fluxes as

J
S =

and the local entropy production rate a is given by (Katchalsky and Curran,

1965)

O~ = T- J • X 4- 7- Jw • Xw. (8b)w w

a

In equation (8a), |iw is the chemical potential of the water in the mixture. The

vectors Xq and Xw are the forces responsible for the heat and mass fluxes,

respectively. Mathematically, they are written Xq = - grad T and Xw = - grad ^iw

where grad denotes the spatial gradient operator.



The local form of the second law of thermodynamics is known as the

Claussius-Duhem inequality and it states that the local rate of entropy

production for any admissible thermodynamic process must be nonnegative

(Coleman and Gurtin, 1967). Therefore, for the two simultaneous processes,

there is the restriction that

Jq • Aq + Jw • Aw £ 0.

The Flow Equations in a Continuous System

For a continuous system where heat and mass fluxes occur

simultaneously, the simplest relation between the flux vectors 3q and Jw and

their corresponding force vectors Xq and Xw are the linear relations

Jq = Lqq Xq + Lqw Xw

(9)

Jw — Lwq Aq + L>ww Aw

where L^ is the set of arbitrary constitutive coefficients known as .the

phenomenological coefficients (Katchalsky and Curran, 1965). The Claussius-

Duhem inequality imposes the restriction on the matrix of constitutive

coefficients Ljj that the determinant must be nonnegative, |Ly|>0.

Furthermore, Onsager (1931) established that 1^ = 1^, i*j, giving for the

present case that Lqq Lww > Lqw.
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Under isothermal conditions, the second expression in equations (9)

reduces to

Jw=-Lwwgraduw . (10)

Choosing the variables S, T and pw as independent, the chemical potential may

be written as a function of these variables, namely |iw = |iw (S, T, pw). However,

if the strain tensor has a negligible effect on the chemical potential, then, for

an isothermal body, equation (10) takes a form similar to Pick's law. This is

commonly written as

Jw=-Dgradpw (11)

where D is the diffusivity coefficient which is a function of temperature. For

isothermal bodies with water mass fluxes, the Claussius-Duhem inequality

imposes the restriction that the diffusivity coefficient must be nonnegative.

Substituting equation (11) into equation (4), we obtain the familiar

equation for the diffusion of moisture through an isothermal body which is

nondeformable or one where the deformation states do not effect the chemical

state. This is

pw-div(Dgradpw)=0. (12)
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A Simple Thermomechanical Model

In order to develop an expression for the total stress at each spatial

location in the mixture, we consider the mechanical analog shown in Fig. 2

which consists of a spring in a parallel arrangement with a piston and

cylinder device. The spring represents the collective stiffness of the polymer

network as well as any additional stiffness provided by reinforcing fibers. The

cylinder contains pure, condensed water.

Since we have assumed a miscible mixture, the force in the piston and

the force in the spring act over the same area*. The total stress of the mixture

is therefore the sum of these forces divided by the infinitesimal area.

Mathematically, this is simply

d = 9p + dw (13)

where 5P is the partial stress tensor of the polymer and 8W is the partial stress

* We follow the traditional approach in solid mechanics where the Cauchy stresses are

defined as the internal forces acting over an infinitesimal area. This area is assumed much

larger than the atomic dimensions, so the forces in the lattice network are assumed to be

evenly distributed over the infinitesimal area. Therefore, in the present case, the partial

stress of the polymer is the force in the polymer network evenly distributed over the total

or bulk area of the mixture and the partial stress of the water is the force exerted by the

water in the free volumes evenly distributed over the bulk area.
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tensor for the water, given by <JW =-1 Pw where I is the identity matrix and Pw

is the partial pressure of water in the mixture.

The differential of the partial stress of the polymer can be expanded in

terms of the independent variables 5, T and pw as

where the subscripts on the brackets indicate differentiation with those

variables held constant. In the model of Fig. 2, the force in the spring is

independent of the density of water in the cylinder when temperature and

strain are held constant. Thus, the expression for the polymer partial stress

increment, equation (14), reduces to

dT-T,Pw < ; « , ? „

Recognizing the first term in brackets as the fourth-order stiffness tensor Cp

and the second term as the negative product of the stiffness tensor and the

tensor of thermal expansion coefficients JF, equation (15) may be written -

(16)

Substituting equation (16) into the differential form of equation (13) and

employing dftw = - 1 dPw leads to
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(17)

An Expression for the Partial Pressure of Water in the Mixture

We are now left with the task of determining the variation of the partial

pressure of water with temperature. To this end, let us now consider a

homogeneous mass of pure condensed water as shown in Fig. 3 which is heated

through a continuous series of equilibrium states. As heat is applied and the

temperature increases, we will simultaneously apply a pressure such that the

water molecules may not leave the condensed phase and enter the vapor

phase. The expression for the chemical potential in terms of pressure and

temperature for such a mass is

d|iw = vwdP-swdT (18)

where vw is the specific volume of pure water and sw is the specific entropy.

Since there is no water mass transferred between phases, the chemical

potential of the water does not vary as it is heated, d(iw = 0. Imposing this

restriction on equation (18) leads to

fp fT

v w dP= swdT (19)
JPo JTa

where P is the pressure which is required such that no evaporation of the

water occurs during the increase in temperature.
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For a condensed .phase, the specific entropy may be regarded as being

independent of the pressure (Prigogine and Defay, 1954). This is evident by

examining the thermodynamic surface of equilibrium states in the condensed

region. For example, in the temperature versus specific entropy diagram, the

lines of constant pressure collapse to one curve in the condensed region.

Therefore, in the purely condensed phase, the specific entropy is only a

function of the temperature (Kestin, 1966) and equation (19) can be written

f vwdP= f swdT = f(T). (20)
Jpn JT.

We now return our attention to the condensed mixture of polymer and

water and consider the case where this mixture is heated under constant

composition conditions. In this case, the expression for the chemical potential

of water in the mixture is (Guggenheim, 1933)

duw = VwdP-SwdT (21)

where Vw is the partial volume of water in the mixture and Sw is the partial

entropy. Under the same restriction that d(iw = 0, we now have

f Vw dPw = f Sw dT. (22)
JPO JTO

If the partial entropy of water in the mixture is approximated by the specific

entropy of pure condensed water, equation (22) may be written as
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f VwdPw= f swdT = f(T). (23)
JPO JTO

Performing the integration of the left hand side of equation (23) with

Vw independent of pressure leads to an expression for the partial pressure of

water which is

Pw = P* + pw f SwdT (24)

where P^ is the partial pressure at T0 and where we have made the

substitution Vw = I/ pw.

The assumption that Vw is independent of the pressure follows from the

previous assumption that the thermodynamic state of the water is equal to the

thermodynamic state of pure, condensed water and by our choice of equation

(12) as the diffusion equation. The partial density, by equation (3), is the

product of the occupational density and occupied volume fraction. If we

consider that for condensed water, any variation in the specific volume

requires large increments in the applied pressure and if we assume that the

partial pressure variations are not large enough to cause significant changes

in the occupational density, then we may assume that the occupational density

does not vary with partial pressure. Furthermore, since the occupied volume

fraction is governed by equation (12) and since equation (12) is independent

of pressure, the occupied volume fraction will be independent of the partial
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pressure. These considerations justify the assumption that the partial density

and therefore the partial volume is independent of the partial pressure.

Integrating equation (17) and substituting equation (24) for the partial

pressure, the total stress expression is

- f T e p p < p dT- Ip w fTsw
JTO JTO

dT (25)

where 30 is the initial total stress at temperature T0 and strain state e0.

DEMONSTRATION AND VERIFICATION OF THE THEORY

Test Description

We will now apply the principles and equations which have been

established in the previous section to simulate the thermomechanical response

of a specific polymer composite material under a specific set of heating

conditions. The material which is chosen for this simulation is carbon

phenolic. Carbon phenolic is a general class of laminated, composite materials

which are constructed with carbon fabric which has been impregnated with a

phenolic resin.

We will simulate the conditions imposed during the tests reported in

Hubbert (1989) where cylindrical specimens made of FM5055 carbon phenolic



17

were heated uniformily at a constant rate of 5.5 °C/sec. The specimens were

1.27 cm in diameter and 2.54 cm in length and were fabricated such that the

direction transverse to the fabric plane was aligned with the axial direction of

the specimen (Fig. 4). As the specimens were heated, the stress required to

maintain zero strain in the axial direction was measured as a function of

temperature. The oven chamber in which the specimens were heated was

maintained at zero percent relative humidity.

In Fig. 5, the measured restraining stress is plotted versus temperature.

The results are shown for specimens with three different initial moisture

contents. The amount of water in the specimens has two effects on the

measured thermal stresses. The most obvious effect is that the magnitude of the

restraining stress is proportional to the initial moisture content in the

specimen. In addition, water is known to lower the glass transition

temperature in glassy polymers (Meares, 1965). For carbon phenolic, this

effect is illustrated in Fig. 5 where we have identified the approximate glass

transition temperatures for the 0% and 4% moisture conditions. The glass

transition temperature for the 8% initial moisture specimen is more difficult

to identify since, in this case, the partial stress of water becomes more

significant and obscures the glass transition effect on the measured stress.

Analysis Approach

Since the specimens were heated uniformily, the temperature is

independent of the spatial coordinates. Furthermore, we will assume that the

response of the specimens is axisymmetric with symmetry about the r-z plane
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and that the diffusion of water occurs only in the radial direction (Fig. 4). The

variables & and pw are therefore independent of 9. We will also assume that

these variables are independent of z so that O = Q (r, t) and pw = pw (r, t).

The axisymmetric, one-dimensional form of equation (12), with

diffusion in only the radial direction, is

where Dr is the diffusivity of water in the radial direction. The boundary and

initial conditions which are imposed are

pw (a, t) = 0 and pw (r, 0) = p° ,

respectively where a is the radial dimension of the specimen and p° is the

initial partial density. The initial partial density is approximated as the product

of the initial moisture content and the dry density of the composite. In the case

of carbon phenolic, we'll approximate the dry density as 1.5 g/cc.

In Fig. 6, the diffusivity of FM5055 carbon phenolic in the direction

parallel to the fabric plane is plotted versus temperature. The hollow circles

represent measurements made by Stokes (1990). The solid line represents the

diffusivity versus temperature description which will be used for this

simulation. It was obtained by a linear fit through the measured data points.
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The diffusion equation is solved numerically under the imposed

boundary and initial conditions using the finite element method. The Galerkin

weighted residual method was used to cast the diffusion equation into a matrix

equation which is necessary for the numerical solution*. Linear, one-

dimensional elements were used to discretize the domain of the problem and to

implement the finite element method.

Results

Figures 7a and 7b are plots of the calculated partial density of water

versus radial location at various temperatures obtained from the numerical

solution of equation (26). Figure 7a shows the partial density for the 4%

moisture specimen and 7b shows the values for the 8% moisture specimen. In

both cases, the partial density is initially uniform. As time and temperature

increase, the diffusivity increases according to the model in Fig. 6. Driven by

the density gradient, the radial diffusion of water begins to occur to a

noticable extent at temperatures above 350 °C when the diffusivity has reached

a sufficient value. Diffusion continues until approximately 475 °C when, as the

numerical results indicate, there is very little water left in the specimens and

therefore the density gradients at all spatial locations approach zero.

* A detailed discussion of the method is given in Zienkiewicz (1982) and Segerlind (1984).

A discussion of its application to axisymmetric diffusion equations is given in Lee,

Salamon and Sullivan (1994).
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The volume average partial density of water may be determined as a

function of time by the relation

(27)

For this specific problem, where the partial density is only a function of time

and the radial coordinate and where the time variable is related to the

temperature variable by a constant, equation (27) may be written specifically

as

(28)

The volume average partial density in the specimen was calculated using

equation (28) and the numerical results of Figs. 7. The average densities are

plotted for the two initial moisture conditions in Fig. 8.

We may approximate the volume average partial pressure of water in

the specimen using the volume average densities of Fig. 8 and the expression

for the partial pressure given in equation (24). In Fig. 9, the average partial

pressure is plotted versus temperature for the two initial moisture conditions.

From room temperature to 350 °C, the partial pressure increases with

temperature since the partial density remains constant and since the specific

entropy is a positive function of the temperature. The increase in the partial

pressure with temperature is governed by the integral term in equation (24).

As the diffusion of water occurs above 350 °C, the partial pressure drops with
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the drop in partial density and falls to zero when the partial density falls to

zero. At all temperatures, the partial pressure of water for the 8% initial

moisture case is twice that of the 4% initial moisture case.

The present approach may be verified by comparing the total stress

given by equation (25) to the total stress measured by Hubbert for both the 4%

and 8% conditions. We may rewrite equation (25) as

swdT (29a)

where

9p = 9p + f Cpd5-| "Cp^pdT (29b)

and where 9P and 9* are the initial partial stress of the polymer and initial

partial stress of water, respectively. Setting 9* equal to zero, the total stress

component in the axial direction, according to equation (29a), is

sw dT. (30)

In equation (30), we have replaced the partial density with the volume

average partial density.

The measured restraining stress for the 0% condition shown in Fig. 6 is

a direct measurement of the polymer partial stress component o* .̂ The second

term on the right hand side of equation (30) is the volume average partial
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pressure which has been plotted in Fig. 9 for the two moisture conditions.

Superimposing the measured restraining stress profile for the 0% condition

with the two pressure profiles of Fig. 9, the total stress profiles for the 4% and

8% moisture conditions may be determined. These are plotted in Fig. 10 along

with the measured values.

There are slight discrepencies between the calculated and the measured

total stresses near the glass transition temperature. This results from simply

superimposing the two profiles together. The polymer partial stress profiles

have not been adjusted to account for the effect of moisture content on the

glass transition behavior of the polymer. In spite of these slight discrepencies,

the measured and calculated total stress profiles compare quite well for both

moisture conditions.

DISCUSSION AND CONCLUSIONS

From the framework of continuum thermochemistry and the

thermodynamics of mixtures, we have developed an analytical approach for

modeling the transient thermomechanical response of polymer composite

materials which are influenced by the diffusion of water through the

polymer. A diffusion equation and an equation for the partial pressure of

water are obtained and have been applied to model the time and temperature

dependent thermal stresses in carbon phenolic composite specimens under

isothermal heating conditions.
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In the application of this theory, we have not solved the momentum

equation, equation (4), explicitly. Rather, we relied on a volume average

approach and certain assumptions regarding the symmetry of the

thermostructural response. In spite of this, we have obtained a close

agreement between the measured thermal stresses and those obtained by the

numerical and analytical methods.

The diffusion model which was used for this simulation has been

extrapolated from measurements made at lower temperatures. The accuracy of

the diffusion model at higher temperatures can not be fully verified in this

problem since the specimens failed before the total stress measurements could

indicate when the exodus of moisture occurs. The diffusivity model is verified,

in part, since the exodus of moisture must occur at temperatures higher than

the failure point and since the partial pressures calculated with this

diffusivity model are consistent with this observation.
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Figure 1. Sketch showing the architecture of a polymer composite
material.

Figure 2. Sketch of the mechanical analog.

Figure 3. Sketch of a homogeneous mass of pure, condensed water
with applied pressure necessary to prevent evaporation.

Figure 4. Sketch of the carbon phenolic specimens and heating
conditions imposed during the tests by Hubbert (1989).

Figure 5. Plot of the measured restraining stresses versus
temperature for three different initial moisture
conditions.

Figure 6. Plot of the moisture diffusivity versus temperature in the
direction parallel to the fabric plane.

Figure 7. Partial density of water as a function of radial location for
various temperatures.

(a) 4% initial moisture condition
(b) 8% initial moisture condition

Figure 8. Volume average partial density of water as a function of
temperature for the two initial moisture conditons.

Figure 9. Volume average partial pressure of water as a function of
temperature for the two initial moisture conditons.

Figure 10. Measured and calculated restraining stress in the axial
direction plotted versus temperature for the two initial
moisture conditions.
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Figure 3. Sketch of a homogeneous mass of pure, condensed water
with applied pressure necessary to prevent evaporation.
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Figure 4. Sketch of the carbon phenolic specimens and heating
conditions imposed during the tests by Hubbert (1989).
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Figure 5. Plot of the measured restraining stresses versus
temperature for three different initial moisture
conditions.
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Figure 6. Plot of the moisture diffusivity versus temperature in the
direction parallel to the fabric plane.
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Figure 7. Partial density of water as a function of radial location for
various temperatures.



Heated at 5.5 C/sec

0.14

I
I
"o

&
1
Q

I

0.12-

0.10-

0.08-

0.06-

0.04-

0.02-

0.00
100 200 300 400 500 600

Temperature (C)

Figure 8. Volume average partial density of water as a function of
temperature for the two initial moisture conditons.
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Figure 9. Volume average partial pressure of water as a function of
temperature for the two initial moisture conditons.
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Figure 10. Measured and calculated restraining stress in the axial
direction plotted versus temperature for the two initial
moisture conditions.




