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Abstract 
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Applications of Direct Numerical Simulation 
of Turbulence in Second Order Closures 

Tsan-Hsing Shih 
Center for Modeling of Thrbulence and Transition 

Institute for Computational Mechanics in Propulsion 
NASA LewIs Research Center, Cleveland, Ohio 44135 

John L. Lumley 
Cornell University, Ithaca, New York 

This paper discusses two methods of developing models for the rapid pressure-strain correlation 
term in the Reynolds stress transport equation using direct numerical simulation (DNS) data. One 
is a perturbation about isotropic turbulence, the other is a perturbation about two-component 
turbulence - an extremely anisotropic turbulence. A model based on the latter method is proposed 
and is found to be very promising when compared with DNS data and other models. 

1. Introduction 
Transport equation models for second moments such as the Reynolds stresses are gradually 

being accepted as advanced tools for studying complex turbulent flows. This is due to the fact 
that important turbulent physics can be represented by the terms in the second moment equations, 
e.g., the pressure-strain correlation tensor, the dissipation rate tensor, etc. The correct modeling 
of these terms will enable us to capture important turbulent physics and to improve the prediction 
of complex turbulent flows. 

Over the past several years, considerable attentionl - 7 has been directed towards the develop­
ment of models for the pressure-strain correlation term which is considered to be one of the most 
important terms in the second moment equations. Many attractive models have been developed 
by using a variety of theories and principles, such as invariant theory, rapid distortion theory and 
realizability, etc. The present paper will concentrate on the rapid part of the pressure-strain corre­
lation term. We will first describe some of these models and related theories. Then we will explore 
whether or not the intended behavior of the models is possible by examining the results of direct 
numerical simulations (DNS) of homogeneous turbulenceS. By analysing these models using DNS 
data, we are able to identify the deficiencies of the models and the sources of the deficiencies. We 
are also able to identify the applicable range of flows for each model and provide the direction for 
improving the model's performance. For example, in the Launder, Reece and Rodi model!, we 
are able to suggest a function form for their model coefficient q which leads to good agreement 
with the most important shear component for all available DNS shear flows. In this paper, a rapid 
pressure-strain correlation model based on Shih and Lumley's methocf3 has been developed using 
a perturbation series about a two-component turbulence state. 

2. Modeling of the pressure-strain correlation 
The Reynolds stress equation for homogeneous turbulence in terms of the anisotropy tensor 

bt3 can be written as 

(1) 
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where b~J = U t uJ /2k - o~J /3 is the anisotropy tensor, U~,J is the mean velocity gradient, k and c are 
the turbulent kinetic energy and its dissipation rate. ~J and c~, are the pressure-strain correlation 
tensor and the dissipation rate tensor, respectively. The latter are the new unknown terms in the 
Reynolds stress equation and must be modeled. In this paper we only consider the rapid part of 
the pressure-stain correlation term ~:). Its exact expression is 

(2) 

where 

(3) 

2.1 Phenomenological modeling of the rapid pressure-strain correlation 
Equation (1) indicates that the relationship between the pressure-strain correlation~, and the 

anisotropy tensor b~, should in general be nonlinear due the nonlinear term 2~,bpqUp,q. Equation 
(2) reveals that modeling of the rapid pressure-strain correlation requires a model of the fourth 
order rank tensor XpJq~. In the literature, Xp,q~ is assumed to be a function of b~r However, 
Eq. (1) indicates that Xp,q~ should at least be a functional of b~" i.e., it should depend on the 
history of b~J in the whole flow field. Therefore, the real problem is quite complicated. Here, 
as an engineering approximation, we will assume, like most other researchers, that .x;"q~ is only 
a function of b~, at local point in space and time. We notice that this assumption will at least 
lose the effect of dimensionality on Xp,q~ and may cause the problem in modeling of rapid rotating 
turbulence as pointed out by Reynoldsg

• However, in practice, this assumption is quite appropriate 
for many turbulent shear flows. Furthermore, we expect that .x;"q~ should at least be a quadratic 
function of b~J because of the nonlinearity between~, and b'J. In fact, from a method of invariant 
theory of rational mechanics we may find that the most general tensorial function form for .x;,Jq~ 
in terms of b" is3 ,6 

X;~q~ = al0q~Op, + a2(opqo" + Oq,Op,) + a3 0q,bp, + a4op,bq~ 
+ as (opqb" + o~,bpq + o,qbp~ + op,bq,) + a6oq~b;, + a7op,b~~ 
+ as (opqb;, + o"b;q + 8,qb;~ + 8p,b~,) + O!gbq,bpJ 

+ O!lO(bpqb" + bq,bp~) + O!ubq,b;, + 0!12bp,b~~ 
+ 0!13(bpqb;, + bt,b;q + bq,b;, + bp~b~,) 
+ a14b~,b;, + als(b;qb;, + b~,b;t) (4) 

Equation (4) already satisfies the symmetry properties of .x;,Jqt = XJpq~ and XPJq~ = XpJ,q required 
by Eq. (3). The number of coefficients in Eq. (4) can be reduced to nine by the following basic 
mathematical properties required also by Eq. (3): 

(5) 

When the term (XPJq~ + Xp,q,)Up,q is formed, the coefficients will be further reduced to seven as 
shown by Johansson and Hallback7 because of the following tensorial identity relations>,7: 

(6.1) 
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( b;pbJq + b;pbtq - btJb;q - b;Jbpq + ~III8tPOJq )8pq = 0 

[ b;qb;p + b;qb;p - 2b;Jb;q - II(btJbpq - btqbJp ) 
2 + 3III(btPoJq + bJpotq - bpqotJ ) ]8pq = 0 

2.2 Truncated anisotropy power series models 

(6.2) 

(6.3) 

The seven undetermined coefficients in Eq. (4) are in general functions of the invariants of 
btJ : II = -btJ bJt /2 and III = btJbJkbkt/3. Because the absolute values of II and III are always 
less than unity, one may expand the coefficients in a power series of I I and 11]£,7: 

a = 0<1) + C(2) II + C(3) III + 0<4) 112 
t t t t t 

+ G~S) II III + ~6) 1II2 +... (i = 1,15) (7) 

The coefficients in Eq. (7) are independent of II and III hence are considered to be constant. 
Therefore, if their values are determined by using a particular flow, then the values should be valid 
for other flows as well. That is, Eq. (7) (with an infinite number of terms) will provide us with 
a universal rapid pressure-strain correlation model. However, in practice, we must truncate the 
series to a certain power of II and III and use certain flows and constraints (such as homogeneous 
flows and realizability) to determine the coefficients in Eq. (7). Having done that, we then must 
verify if such determined coefficients are constant and are valid for other flows as well. 

A first order power truncation model - LRR model 
If we decide to only keep the terms in Eq. (4) which are of up to order O(b) (the norm of ~,) 

and note that II = O(~) and III = O(b3), then the coefficients a6,···, a1S must be set to zero 
and in Eq. (7) we only need to keep the first term ~1) (i = 1,5) which are constant. In this case, 
Eq. (4) becomes 

X;~qt = a10qtOp, + a2(opqOt, + Oq,Opt) + a30q,bp, + a4op,bqt 

+ as (opqbt, + ot,bpq + o,qbpt + Optbq,) 

Using the properties in Eq. (5), there will be only one undetermined coefficient left and the 
corresponding rapid pressure-strain correlation model Eq. (2) becomes 

n(1) t, 9G2 + 6 ( 2) TI = 0.28t , + 22 btk8,k + b,k8tk - 3 o'J bk!8k! 

10 -7G2 + 22 (b,kO,k + b,kOtk) 

(8) 

where 8" = HUt" + UJ,t) and nt, = HUt" - U"t). Equation (8) is the Launder, Reece and Rodi 
(LRR) modell . The undetermined coefficient ~ is taken to be constant and was set at a value of 
0.4. 

Now, we may use DNS data ofturbulent shear flowsB to examine the coefficient ~ in Eq. (8). 
For homogeneous turbulent shear flows, there are only three independent components IIll , II22 
and IIl2 • From Eq. (8), each component of~J can be used for determining~. Figure 1 shows the 
values of G2 deduced from the DNS data of IIll , II22 and II12 for the case of C128W. Apparently, 
C2 is not a constant. Different component gives a different value of~. This situation is also ture 
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for other flows (C128U, C128V, and C128X). The above result indicates that the first order power 
truncation model can not be expected to work for all the turbulent components. However, Figure 
1 shows that for the 1-2 component, ~ = 0.4 is indeed a good approximation. This mdicates that 
LRR model is probably good for two dimensional turbulent shear flows since the 1-2 component 
dominates the flow. However, if the flow is dominated by normal components, then we cannot in 
general expect LRR model to give a good prediction. 

In order to improve the model performance, a natural way is to pursue a higher order power 
truncation. 

A fourth order power truncation model - JH model 
Now if the terms in Eq. (4) are retained up to order (b4 ), then it will require the following 

truncated power series in Eq. (7): 

a, = C~l) + C~2) II + C~3) III + C~4) 112 (2 = 1,2) 

a = d 1) +C(2) II+C(3) III (i =3 4 5) , , 't , , 
C(l) C(2) II (. 6 7 8 9 ) at = , + t 2 = , , , ,10 

at = C;l) (i = 11,12,13,14,15) 

In this truncatIon form, there are 32 "constants" q:1), C;2), ... ,C;4) need to be determined. Using 
the constraints in Eq. (5) and (6), and the condition of realizability'3: 

Up,qXpaqa = 0 if u~ = 0, (9) 

Johansson and Hallback7 found that there are only four undetermined constants left and the rapid 
pressure-strain correlation model becomes 

where 

n(1) 
tJ Q1 Q2 ( 2) IT = TStJ + 2"" btkSJk + bJkStk - "30tJbkISkl 

+ Q3 bkz Skl btJ + Q4(bkJbztSk! - ~b%ISkI8'J) 

+ 2 QSb%ISklb'J + (2QsbklSkl + 4Q6b%ISkl)(b;J + ~II8t3) 

+ ~7 (btkOk; + b;kOkt) + QS(b;k0kt + b;kOk;) 

+ 2Qg(b;kbtIOkl + b;kb;IOkl) 

4 16 48 304 2 
Q1 = 5" + "5 (4B2 + 15B3) II - -SBs III - 55 B6 II 

Q2 = -12B1 + 4Bs II -12B6 III 
28 

Q3 = -8B2 + 36B3 - 11 B6 II 

28 
Q4 = 96B2 - 36B3 + 11 B6 II 

4 28 4 
Q7 = -3" - 3"B1 - 3"(2B4 - Bs) II - 4B6 III 

12 
Qs = -16B2 + 28B3 - 11 B6 II 

Qs = B s, Q6 = B 6 , Q9 = B4 

4 

(10) 



and 
BI = {3I - 8{34 I1 + 24{37III, B2 = {32 - 8{3sI1 

B3 = {33 - 8/3911, B4 = {35, B5 = {36, B6 = {310 

and 
3 3 2 

/34 = -160 (3 + 60/31 + 48/32 - 40{33), {35 = -2 -132/32 + a/3l0 

3 9 9 
/36 = 2 + 60(/32 + {33), {37 = S/3I - 4"(/32 + {33) 

3 3 1 9 3 
/3s = - 88 (S + 21{32 + 10{33 + 18 {3I0) , {39 = - 220 ( S + 21/32 + 1O{33) 

The coefficients /31, /32, {33 and {310 are undetermined constants. To determine these constants, 
Johansson and Hallback7 used rapid distortion theory to analyze an irrotational strain imposed 
on initially isotropic turbulence and a pure rotation imposed on anisotropic turbulence. They 
suggested that 

1 
{3I = -;;, /32 = 0.0295, /33 = -0.0484, /310 = 14 

This fourth order power truncation model Eq. (10) was shown to be in excellent agreement with 
irrotational RDT results. The result indicates that for the RDT irrotational flows, the fourth 
order power truncation is appropriate and the truncation error is quite small. This model is also 
in excellent agreement with DNS data of axisymmetric contraction flows shown in Figure 8. 

Now let us use DNS data of turbulent shear flowsB to examine the "constants" of {3b/32,/33 
and {31O' Since only three components of ~J are independent, Eq. (10) can determine only three 
coefficients. We set /31 = -1/7 and use the DNS data ofIIn , II22 and II12 to deduce the coefficients 
/32, /33 and /310, Figures 2 shows the values of f32, /33 and {310 deduced from the DNS flows of C128U, 
C128V, C128W and C128X. Apparently, these coefficients are still not constant. If we believe that 
the DNS data are realistic and that the formulation of Eq. (10) is correct, then the above result 
indicates that the fourth order power truncation still have too large of a truncation error for the 
flows considered above. No constant values of these coefficients can ensure that the model will 
have good performance. To overcome this problem a much higher order truncation then must be 
retained to reduce the truncation error. However, at the present time, it is not clear what order of 
truncation is needed for a realistic turbulent flow. In addition, it is noticed that the values of /3;.,/33 
and {310 deduced from RDT results7 are very different from those deduced from DNS flowsB. This 
inconsistency raises a question as to which of these flows are more realistic and can be considered 
as benchmark for turbulence model development? 

2.3 Truncated F power series model 
Here we discuss another truncation method which is a perturbation about the two-component 

(2-C) turbulence state. The deviation from the 2-C state can be measured by a parameter F which 
was introduced by Lumler: 

F = 1 + 9 11+ 27 I I I (10) 

From the definition, F will vanish if turbulence is 2-C (in which the turbulence becomes extremely 
anisotropic) and F will equal unity if the turbulence is isotropic For a realizable turbulence, F is 
always positive and varies between zero and one. 

In modeling the rapid pressure-strain correlation term, the focus should be directed towards sit­
uations where the turbulence anisotropy is strong (F « 1) rather than cases where the anisotropy 
is weak. This is because the Reynolds stress transport equation mainly emphasizes the effect of 
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anisotropy. For a flow with strong shear, F could be driven to zero whIle b is about 1/3. Based on 
the above consideration, we propose to expand the coefficients in Eq. (4) in a power series of F: 

(12) 

where the coefficients c~O), C~l) , C~2) , ••• are functions of the third invariant III of btJ and they can 
be expanded in a power series of III: 

(12a) 

For small III, as a first order approximation they can be considered as constant. We will examine 
the behavior of the corresponding rapid pressure-strain model. 

Let us now start with the most general form, Eq. (4). Using the conditions in Eq. (5) we may 
obtain six relations between the fifteen coefficients which will reduce the number of coefficients to 
nine. As a result, we obtain 

(13) 

Equation (13) will ensure the rapid pressure-strain correlation model to satisfy the basic mathe­
matical conditions in Eq. (5) while the values of the nine coefficients: as, a6, as, alQ, au, a12, 
a13, a14 and al5 can be arbitrary. In addition, the realIzability condition of Eq. (9) will provide 
three additional relations for the cis at the 2-C state, i.e., F = o. They lead to 

1 1 
a5 = -10 + 30 (au + a12 + 4al3 - lOaI5/9) 

II + 10 (3au + 3al2 + 8al3 - 2al5 - 6(6) 

1 1 
as = 3"a13 - gal5 

3 1 
alQ = -10 + 90 (9au + 9al2 + 66al3 - lOal5) 

II + 10 (9all + 9al2 + 24al3 - 6al5 - 18(6) (14) 

Equation (14) is valid only at the 2-C turbulence state and will ensure the rapid pressure-stram 
correlation model satisfies the necessary realizability conditIOn of Eq. (9). Therefore, we conclude 
that Eqs (13) and (14) will ensure the model satisfies the conditions in both Eq. (5) and Eq. 
(9) with arbitrary values of the six coefficients: OQ, all, a12, a13, a14 and al5 This will allow us 
to set any of these coefficients to zero in order to simplIfy the model while maintaining its basic 
properties described by Eqs (5) and (9) 
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Tensorially quadratic model 
Here we will set all the SIX undetermined coefficients 00,···, a15 to zero to obtain the most 

simplified model. The necessity of retaining these coefficients will be left for a future study. Under 
this consideration, Eq. (13) becomes 

2 2 II 1 3 II 1 11 
al = 15 - -5-as , a2 = - 30 + -5-as , a3 = -3' - ""3 a5 , 

1 4 
a4 = 3' - 3'a5, 

2 4 
a7 = -3'alO - 3'as, 

11 1 
ag = -""3as - 3'alO . (15) 

and Eq. (14) becomes 
1 3 

a5 = - 10' as = 0, alO = - 10 if F = 0 (16) 

For F =1= 0, the coefficients a5, as and alO could in general be a function of F and III. We propose 
to expand these coefficients in a power series of F and determine them by using DNS data of 
turbulent shear flowss. Figure 3 shows the values of the as, as and alO versus the parameter F 
corresponding to the DNS data The scatter is small that indicates that for the above turbulent 
shear flows the m is small such that the coefficients C~3) in Eq. (12) are approximately constant. 
Finally, the coefficients a5, as and alO can be approximately expressed by a truncated fourth order 
power series of F: 

a5 = -0.1 - 0.5 F + 1.57 F2 - 2.22 F3 + 1.07 p4 

as = -1.6 F + 4.69 F2 - 5.92 F3 + 2.62 p4 

3 ( 2 3 4) alO = -2 0.2 + 2.59 F -7.4 F + 8.86 F - 3.73 F 

Using Eq. (15) the rapid pressure-strain correlation model becomes 

(17) 

(18) 

Figures 4, 5, 6 and 7 show the direct comparisons between different rapid models and DNS data. 
As shown in figures, the models based on the truncated F power series are very encouraging. 
However, it should be pointed out that the model (18) with Eq. (17) is good for the cases where 
II I II is small. For the cases where II I II is not negligible, for example, a turbulence undergoes a 
rapid axisymmetric expansion, the coefficients in Eq. (17) must depend on the third invariant III. 
This explains the poor comparison between the model and DNS data10 for axisymmetric strain 
and plain strain turbulence shown In Figures 8, 9 and 10. 

Improvement of LRR model 
The Launder, Reece and Rodi's model, Eq. (8), is tensorially linear in ~3 which satisfies the 

basic conditions in Eq. (5), but does not satisfy the realizability condition in Eq. (9). In this 
model, there is only one undetermined coefficient ~ which is shown to be not a constant. We 
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may consider it to be a function of F and then use DNS data to determine its function form. For 
turbulent shear flows, the most important component is the 1-2 component. Therefore, we use 
DNS data of II12 to deduce the coefficient C2. A simple quadratic function is found as follows 

C2 = 0.38 - 0.6 F + 0.5 F2 

The LRR model with the new coefficient C2 leads to excellent agreement with all DNS data for 
the 1-2 component (see Figures 4, 5, 6, 7). However, other components are unable to be predicted 
very well. For comparison, another tensorially linear model in ~J proposed by Speziale, Sarkar 
and Gatskill (SSG) is also included in Figures 4-10. The behavior of the rapid part of SSG model 
is similar to LRR model. 
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FIgure 5 Direct comparison betwenn the rapid models and the DNS data of C128V. 
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Figure 6. Direct comparison betwenn the rapid models and the DNS data of C128W. 
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Figure 7. Direct comparison betwenn the rapid models and the DNS data of C128X. 
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Figure 9. Direct comparison betwenn the rapid models and 
the DNS data of the axisymmetric expansion flow EXO. 
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