
NASA-TM-107022 19960003335

NASA Technical Memorandum 107022

An Open Simulation System Model
for Scientific Applications

Anthony D. Williams
Lewis Research Center
Cleveland, Ohio

September1995

!

I _;T iI:-_:5 !
r

NationalAeronauticsand
SpaceAdministration I • i'_ lz',' _c,,Ct_ _l.,_:.':?_i': -"-:.

https://ntrs.nasa.gov/search.jsp?R=19960003335 2020-06-16T05:40:06+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42779507?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

NASA Technical

3 117601422 9315

AN OPEN SIMULATIONSYSTEM MODEL FOR SCIENTIFIC
APPLICATIONS

m

Anthony D. Williams
National Aeronauticsand Space Administration

• Lewis Research Center
Cleveland, Ohio 44135

SUMMARY

A model for a generic and open environment for runningmulticode or multiapplicationsimulations---calledthe
open Simulation System Model (OSSM)---is proposed and defined. This model attempts tomeet the requirements of
complex systems like the Numerical Propulsion Simulator System (NPSS). OSSM places no restrictions on the
types of applications that can be integrated at any stage of its evolution. This includes applications of different disci-
plines, fidelities, etc. An implementation strategy is proposed that starts witha basic prototype, and evolves over
time to accommodate an increasing number of applications.Potential (standard) software is also identified which
may aid in the design and implementation of the system.

INTRODUCTION

The traditional engine analysis and design processrequires separateanalyses for each engine component. These
are typically performed using specialized codes that operate within specific domains. The results of the individual
analysesmust then be (manually) combined to understand the entire system. Several iterations of this process must
occur before meaningful results can be obtained. The complexityof this processgrows with that of the engine de-
sign, resulting in costly design cycles.

To improve this process, engine researchers and designersneed the ability to perform (integrated) multi-
disciplinary, multifidelity, and multicomponent analyses. This would provide them withmore accurate and com-
plete results in less time. It requires both new codes, and the ability to simultaneously access and use the capabilities
of existing ones. Various groups are presently investigating methods for accomplishing these tasks (refs. 1 to 4).
An example is the Numerical Propulsion System Simulator (NPSS) Project at the NASA Lewis Research Center
(refs. 1 to 2).

NPSS is a proposed engine simulator for conducting multidisciplinary analyses, beingjointly designed and devel-
oped by NASA, industry, and academia. Several key dements have been identified for enabling this capability: (1)
standard interfaces for data exchange; (2) modular and flexible programs constructed using object-orientedprogram-
ming techniques; (3) integrated multidisciplinary and multifiddity techniques for modeling engine systems; and (4)
high-performanceparallel and distributed computing systems.

New procedures and methodologiesare required for integrating and runningthe resulting simulations. The defini-
tion (and enforcement) of data, programming,and communicationsstandardsare a major part of this effort. A soft-
ware environment for running these simulations will also have to be developed, that allowsusers to:

(1) Define and create complex simulations from disparate codes (and assist users when necessary)
(2) Access the wealth of expert knowledgeavailable about these codes and simulations
(3) Control (start, stop, resume), monitor, and debug simulations
(4) Distribute simulations among heterogeneouscomputers at potentiallydifferent sites
(5) Perform these operations quickly, easily, and efficiently

The ideal system would accommodate numerous types of codes, and be usable by (and made available to) many
different organizations.Each group should be able to customize the systemfor their own specific needs. To facilitate
this, it must also be:

(1) Constructed using modular programmingtechniques
(2) Constructed using existing standards (wherever possible)
(3) Free or inexpensive to acquire and use

This paper proposes a generic environment for running multicode (or multiapplication)simulations, called the
Open Simulation System Model (OSSM). This model attempts to meet the requirements of an NPSS-type operating
environment as described above. An implementationstrategy is proposed that starts with a basic prototype, and
evolves over time to accommodate an increasing number of applications.The OSSM model places no restrictions on
the types of applications that can be integratedat any stage of its evolution. This includes applications of different
disciplines, fidelities, etc., as long as they meet the requirementsfor OSSM compliance.

Several key issues, both generic and domain-specific,must be addressed in order to successfully implement such
an environment. The generic issues deal with software implementationand integration requirements common to
most large distributed systems. These include the need to adopt standard programming languages and paradigms,
tools, data formats, interfaces, and communicationsprotocols. The domain-specific issues deal with problems
unique to the integration of scientific applications.These are determinedby the capabilities, domain, algorithms,
accuracy, and other specifications of the codes (and other applications) being used.

Put another way, the generic constraints determine a code's ability to communicatewith other applications, and
the mechanisms for doing so. The domain constraints determine the practicality or validity of the integration. This
paper focuses on the generic aspects of applicationintegration. The domain-specificissues are left to the experts
currently working those problems, and are beyond the scope of this paper. They are only briefly mentioned where
appropriate. Once solved, the resultinginformation canbe integrated with the rest of the system as appropriate
(though this may require some minor systemredesign).

Numerous systems already posess many of the OSSM features.Most of these were developed for specific applica-
tions, and consequently, have unique design goals and methodologies. Althoughnone of them has all of the features
listed above, much can be gained by studyingtheir designs and reusing software and ideas as appropriate. Thus, the
capabilities of several Lewis-based projects are briefly described later, highlighting the features that are relevant to
the OSSM design.

This paper represents the first attemptat defining the OSSM model and its requirements. It identifies the major
(software) issues that need to be resolved before building such a system, and some of the work currently being done
to address those issues. It also identifies potential software (commercial and other) for the OSSM implementation.
Because of the size and complexity of the system, the OSSM design is expected to undergo many changes (due in
part, to the comments, suggestions, and criticisms of others) before an implementation is attempted. Teams should
be formed to identify (and address) any key areas which have not been properlyaddressed here, and the model re-
vised to reflect that new information. The rest of this paper discusses the first OSSM model and possible implemen-
tation strategies for it.

THE OSSM MODEL

Overview

The OSSM model defines an environment for easily integrating scientific codes and applications into complex
simulations. These (applications) may use different languages, data formats, algorithms,fidelities, disciplines, etc.
The model consists of four distinctcomponents or software types: the Application DevelopmentTools and Librar-
ies, the Application Libraries, the InformationBase, and the Application Executive (fig. 1).

The Application Development Tools and Libraries are used to create and administer other software. The Applica-
tion Libraries contain the code modules and programsused to build simulations, and to process information stored in
the Information Base. These three OSSM components (the Application DevelopmentTools and Libraries, the Appli-
cation Libraries, and the Information Base)are logical entities comprised of numerous software modules---each with
a specific functionality or use. They may, thus, be distributedacross many different hosts (andsites) and accessed
via network as needed.The Application Executive is a distinct piece of software that resides at each site where the
OSSM environment is to run. It directs the simulation process by integrating and then executing Application Library
modules. Each of the OSSM components is described in detail in the followingsections.

Application Libraries

An OSSM application is anything that processes (reads,writes, displays, analyzes,etc.) information (fig. 2). The
primary applications are the scientific codes and subroutines used to model the various engine components. The
current OSSM model also defines as applications, the utilities used to monitor, edit, or analyze simulations at
runtime. Examples of these include informationmanagers, graphicsand analysisprograms, and expert systems. A
complete description of each application,along with its input and output data requirements, is stored in the Informa-

° tion Base. A generic template for this information is shown in figure3.
Some applications are standaloneprograms which can be run independently,while others are software modules or

subroutines which have to be run with other programs.A simulationdescription specifies how applications are com-
bined to perform more complex (e.g., multidisciplinary)analyses. A valid simulationshould contain at least one of
the primary applications mentioned above. Examples of a graphicaland textualdescription of a simulation contain-
ing two scientific codes and a graphics programare shownin figure4.

Applications are grouped into Application Libraries. This grouping can be by type (see fig. 2), physical location,
or a combination of these and/or other characteristics.For simplicity,it is assumed that the contents of each Applica-
tion Library are contained on the same physical device (or computer), though this need not be the case. Multiple
libraries can be stored on the same device or distributedamong many different computers on a network (fig. 5). This
concept will be further discussed later.

The major goal of the OSSM model is the integrationof disparatecodes and other applications. Specifications
will be required to define the kinds of applicationsthat the system can handle (i.e., the system scope) at various
stages in its development. At a minimum, standardsneed to be defined, and tools and libraries selected, for (1)
building consistent and compatible user interfaces,(2) accessing and managing information, (3) representing and
exchanging program and graphical data, and (4) communicatingbetween different applications.These are discussed
in the next section.Applications meeting these general specificationswill be considered OSSM-compliant.

The OSSM environment can simultaneously support applicationsconstructedwith different algorithms, program-
ming methodologies and languages, user interfaces, data formats,communicationprotocols, etc. Though OSSM-
compliant, these may still not be compatible witheach other.More informationis needed to determine application
interoperability (ref. 5). The primary determinants for this are based on the capabilities of the code(s) used and the
requirements of the simulationto be run. Domain specific constraintslike these must be worked outby the simula-
tion experts, and are beyond the scope of this paper.

Other constraints are based on the (software)implementationdetails. For example, codes that use the same data
format(s) will be easier to integrate than codes that do not. For the latter, an attempt must first be made to convert
the data. If this cannot be done, the applications are considered to be incompatible,and thus, cannot be integrated.
The same is true for communications protocols, grid specifications,etc. The Application Executive consults the In-
formation Base to determine whether applications are compatible,and if so, the best way to integrate them. This
process is discussed more in the following sections.

ApplicationDevelopmentTools and Libraries

The Application DevelopmentTools and Libraries are used to create OSSM-compliantapplications (fig. 6). The
Application Development Libraries (ADLs) are the building blocks of the codes and programs stored in the Applica-
tion Libraries and parts of the Application Executive.They contain standard functionsand routines that perform
basic operations for all applications. Thesemake for more efficientand compatible designs. Examples include func-
tions for reading, writing, and searching for data, numerical computations,processcommunications, and information
display.

The Application DevelopmentTools (ADTs) are the mechanisms by which users create and maintain applications
with the above libraries. They produce software that meets the standards and specificationsrequired for OSSM com-
pliance. Their use promotes a uniform and consistentapproach to developing applications, and minimizes the effort
required to integrate new applications into the OSSM environment.Examplesinclude computer aided software engi-
neering (CASE) tools, graphical user interface (GUI)builders, and program development environments.

Interoperability is as important for the ADTs and ADLs as it is for the applicationprograms. A reasonable appli-
cation could contain functions from a user interface library, a data access library, and a communications library (see

fig. 6). These must all work together to be useful. Program development and/or CASE tools used to create other
OSSM program modules should be compatible with them as well. The tools should also be able to share and ex-
change information with each other as necessary.

There are several ways of achieving this interoperability (refs. 6 to 9). The easiest is to pick products that have a
common interface or framework for information exchange. This provides interoperability with minimum effort. The
drawback is that the selection of tools and their capabilities may be limited. An example of this kind of interface is
HP's SoftBench (ref. 9). SoftBench is a unix-based integration framework for CASE tools that currently supports
over 70 different products spanning the entire software development cycle.

A more difficult approach would be to select the tools first, and then build the required interfaces (or a frame-
work) for them. This would allow selection of the best or most appropriate tools for each desired function. However,
the integration of these tools could require substantial effort (ref. 7). Perhaps the most difficult approach would be to
build the entire system--integration framework and tools--from scratch. This method could produce the most so-
phisticated systems. However, the level of effort required makes it appropriate only for the most demanding needs.

Application development tools, libraries, and standardsneed to be evaluated for the OSSM programming lan-
guage and environment; the user interface; information storage, access and management; interprocess communica-
tions; etc. A brief description of these follows.

Programming Language & Environment.mA "preferred" programming language should be selected for new
application development. Although other languages would also be supported, this one would produce the most com-
patible programs. The best choice for this is currently C/C++ (ref. 10).Fortran remains important because of its
large installed base in the scientific community; but it does not support truly modular or object-oriented program-
ming (more on this later). As cross-language compilers and linkers become more robust, the significance of this
decision may decrease.

An integrated programming/developmentenvironment and appropriate tools should also be selected for the design
and analysis, integration,and implementation of application software.Examples of this include NeXT's NextStep
and SunSoft's Solads--both based on the NeXT OpenStep API (refs. 11to 12).

User Interface.mStandards should be set for the general style and appearance of all user interfaces. Then, the
appropriate libraries and development tools can be selected for implementing them. The large and increasing support
for X make it a good choice for the graphics (i.e., windowing) interface, as it is already supported on most unix
workstations (ref. 13).Open-GL (ref. 14) is another potential candidate.

High-level libraries can be used to create application interfaces that port to a number of operating systems,
windowing environments, and hardware platforms (ref. 15).GUI development environments can also be obtained
which facilitate the creation of interactive screens and displays. Several of these also use high-level libraries to cre-
ate portable applications. Example GUI builders include Neuron Dam's Open Interface, NASA's TAE, and
TeleSoft's Teleuse (refs. 16 to 18).

Information Storage, Access & Management.mInformation storage is discussed in detail in the next section.
However, it is worth noting here that standard libraries canbe used to access most OSSM information. These serve
as interfaces between an application and data stored in the InformationBase. This is particularly useful when the
data formats are different, or the data is being used by more than one application. Libraries and standards should be
chosen that maximize portability (refs. 19to 20). Tools are also needed to facilitate the design and maintenance of
the information storage and management system (i.e.., the Information Base).

Interprocess Communications.mStandards are needed to define the procedures for communicating between dif-
ferent applications. These same (or similar) standards should apply to the individual processes of a single application
in a parallel environment. Functions are required that can accommodate multiprocess execution in both single and
multiple computer environments, including distributed and/or heterogeneoussystems. Potential libraries include
PVM (the Portable Virtual Machine_ref. 21), APPL (the Application Portable Parallel Library ref. 22), and MPI
(Message Passing Interface--ref. 23).

In order to realize the true benefits of such libraries, sophisticated tools are also needed to assist users in the intel-
ligent decomposition of single and integration of multiple applications (refs. 24 to 25).

4

Special Software.rain addition to the generic software discussedabove, other tools and libraries may have to be
developed specifically for the OSSM environment. This includes tools for browsing, editing, and integrating OSSM
applications. The browsing tools enable a user to access and search through the Application Libraries distributed
among the OSSM sites. The editing tools allow users to edit these applications (or copies of them), and to modify

' the contents of the Information Base. The integration tools are used to combine applications into complex simula-
tions to be run by the Application Executive (discussed later).

Dependingon the implementationdetails, it may be possible to use existing products for some or all of these
• tools. For example, a generic C++ class browser may be able to serve as the OSSM object/schema browser. This

requires that (1) the OSSMinformation be stored in a C++ format; and (2) the browser be able to access information
distributed across a network. A high degree of interoperability is essential for optimum use of these tools. Further
decisions regarding the requirements and implementationof special software can be made when other OSSM details
are more finalized.

The InformationBase

The InformationBase (rB) stores all of the information (data, knowledge, etc.) used and generatedby the system,
and is constantly evolving in both content and structure (fig. 7).This makes it the largest and most complex part of
the OSSM model. The IB contains detailed descriptions of the Application Libraries, ADTs, and ADLs. It also con-
rains generic information about the simulations, experiments, engine models, and computers used in the OSSM envi-
ronment. This informationmay be stored as text files, binary files, data base files, etc., in an infinite number of data
formats.

The rB must specify what applications exist; what their capabilities,specifications, and requirements are; where
they are located; and who has access to them to ensure correct OSSM operation.Appropriate data structures need to
be developed to store this information. A typical code entry might describe its use, valid operating conditions, input
and output parameters, and recognized data formats.Figure 3 shows a generic template for such an entry. The values
for the listed attributes may be single- or multivalued text, numbers,or other more complex data types depending on
the item. Other information specific to scientificcodes wouldhave to be added to this template. This would include:
a description of the code's algorithm(s) and computational methods; a history of the data generated by previous
runs; and bothexpert-provided and system-derivedknowledgeabout the data.

Similar data structures are needed for the rest of the IB contents as well. Much of the knowledge required to do
this is still being learned. For example, very little is known about the interactions between various disciplines, codes,
and algorithms. More informationabout computer system architecturesand configurations, operating system
intrinsics, parallel and distributed applicationsmanagement, and methodsfor handling secure data is also needed to
effectively take advantage of heterogenousand/or distributedcomputing environments.

All of this information must be stored (and made accessible) in multiple levels of fidelity. This requires a power-
ful and flexible data representation paradigmthat can model diverse types of information and their interrelation-
ships. The most flexible one todate is the object-oriented (OO)paradigm (refs. 26 to 27). OO designmethodologies
make it easy to create and manipulate real worldmodels, by describing things in terms of their structure, relation-
ships, and behavior.

Scientificdata is typicallyaccessedusing implementation-specificprocedures(or data interfaces)hard-codedinto an
application(fig.8(a)).Whenmore than one applicationsharesdata,these proceduresmustbe duplicatedand simulta-
neouslymaintained(fig. 8(b)).Sinceeach applicationhas directaccess to the data,it is difficult(if not impossible)to
enforcedata integrityor securitybeyond thatprovidedby the operatingsystem.In object-orientedsystems,these proce-
dures aremoved from the applicationsto the data (fig.9).This is known as encapsulation.Programs(or applications)
access data by sendingmessagesto the encapsulatingprocedures(knownas methods), whichthen performthe desired

• actions and return the appropriateresults.This "protects"the data from undesiredresults.
A distributed OO Information Base (0ORB)could be implemented in a similarway. Procedures could be written

for each data element (or data group), to control access to it and hide its implementation details (fig. 10).Applica-
• tions would then use these procedures instead of directly manipulating the data files themselves. Code could also be

added (if desired) to perform data integrity and security checks, etc., though this may require a substantial amount of
additional programming.

It would be fairly easy to design new applications to work in this manner. Existing ones, however, would have to
be modified (or augmented) to do so. This could be a major task, but still not as big as recoding the applications
entirely. Left unmodified, they could produce the same data integrity andconsistencyproblems discussedabove.
Software for managing the information distributed throughout the system would also have to be developed. This
Information Manager (IM) should be able to determinewhat informationexists globally and where it is stored, to
direct requesting applications to the correct location (fig. 11).

Several groups are currently working to define standards for object models and interfaces for integrated, large-
scale, distributed information systems like this one (refs.28 to 31). One such group, the Object Management Group
(OMG), is defining the Common Object Request BrokerArchitecture (CORBA,refs. 30 to 31). CORBA is a specifi-
cation aimed at ensuring compatibility between different commercial object-orientedenvironments. Its rising sup-
port and popularity increases the potential for compatibility with a large number of software products in the future.

The above implementation distributes the control for each data element with the data itself. Consequently, each
becomes an independent entity with its own unique behavior (data format(s), access protocols, etc.). Application
queries involving multiple data elements (and thus multiple sources) must thus be aware of the implementation spe-
cifics for each of them. An alternate implementationmoves the functionalityof the individual data access proce-
dures to the IM, expanding its role to include access and control of the distributed data (fig. 12).This new IM would
be able to process local, remote, and distributeddata requests, while enforcing any restrictions applied to that data
(e.g., write protection) by its owner. It would also provide a consistent view and access mechanism for this data,
regardless of its type or format (fig. 13).

This kind of IM can be implemented using an object-orienteddata base management system (ODBMS, ref. 32).
Several commercial systems are available that could effectivelyhandle this task (refs. 33 to 34).Although a custom
system could be developed using an OO programming languagelike C++, this costly endeavor would merely dupli-
cate the efforts already made by these companies.Also, the complex requirements associated with this system are
best met by an already tested and mature product.

Commercial ODBMS systems combine the flexibility to store complex data objects with the power of traditional
database management systems. Standard database features include persistence, secondary storage management,
concurrency, backup and recovery, security, and ad hoe querying capabilities. Other features particular to ODBMSs
include object identity, encapsulation, inheritance, polymorphism,and change management. Most are designed to
work directly with an OO programming language like C++ or Smalltalk,and haveprovisions for interfacing to other
(standard) languages like C and Fortran.

Any ODBMS acquired for the Information Base should:

(1) allow easy schema and database evolution, to accommodate the constant changes expected in the IB's content
and structure;

(2) support distributed databases and client/server operations over a network in a heterogeous environment;
(3) provide access to data stored in other data base formats (includinguser-defined) in addition to its own
(4) have available appropriate development, browsing, querying,and debugging tools.

Candidates for this software include Objectivity/DB,ObjectStore, Ontos, and Versant (refs. 33 to 34). An evalua-
tion of the use of these products for this purpose is given in ref. 35. If desired, several ODBMSs (or ODBMS
servers) could be connected together to create a distributed IM and to improve overall throughput (fig. 14).These
could even be different products, as long as they shareda common interface protocol.This is required for inter-DB
communications, and to enable global information access and management. As above, a standard like CORBA could
be used to accomplish this. Several ODBMS vendors are currently working on adding CORBA compatibility to their
products. The OSSM implementation team should closely follow the progress of CORBA and related standards, and
eventually choose one (or more) for the OSSM implementation.

A centralized IM that processes all data requests can decrease the likelihood of data integrity problems when the
information is shared by multiple applications.On the other hand, it also decreases performance. In many cases this
is intolerable. Much thought (and research) needs to go into finding the right solution for this problem. The actual
IB/IM implementation may consist of some combinationof the two methods discussed above and possibly others.

For example, local environments could exist outsideof the OSSM domain that used whatever implementations
were appropriate for that installation. This includes choice of code(s), tools, data formats, etc. Information to be
added to the IB would have to first be converted to the correct format using various OSSM tools. It could then be

6

transferred using a "checkin" mechanism like that provided by many commercial database products. This would
check the data for problems or inconsistencies,and notify the user if any were detected. Otherwise, the information
would be added to the IB.

The ApplicationExecutive

The Application Executive (AE) is the program that controls and monitors the execution of applications and their
resulting simulations in the OSSM environment (fig. 15).As such, it functions as an operating system, an intelligent
GUI, a data base manager, an expert system, etc. Unlike the other OSSMsoftware components,which are logical
groupings of physically distributed softwaremodules, the Application Executive is an actual executableprogram.
Copies (of it) can be distributed and run on multiple systems and sites to provide simultaneous access to global
information, tools, and libraries.

The Executive starts with a user generated simulationdescription that outlines which applications are to be used
and how they are interconnected (special ADTs may be used to create them). These descriptionsmay be graphical
or textual, as illustrated in figure 4. The Executive determines the validity of the resulting simulation using informa-
tion from the Information Base (see fig. 3). A valid simulation is one in which: (1) the corresponding applications
are compatible; (2) their integration is meaningful; and (3) the data requirements of each can be satisfied.

The actual codes and programs tobe integrated are stored in the ApplicationLibraries. These may be distributed
among various computers at various sites. Applications can either be transferred to a single computer and run there
(fig. 16(a)),or assembled and run in a distributed manner (fig. 16(b)).Combinationsof these methods are also al-
lowed. The Executive consults the IB when setting up the necessarycommunicationsprocedures. Special data trans-
lation routines (obtained from the ADLs) are used when needed to resolve incompatibilities.

Applications can communicate in several different ways. Direct communicationsoccur via sharedcomputer
memory, message passing, or similar methods(fig. 17(a)).These must usually be hard coded into the participating
applications. Indirect communicationsoccur through one or more files (fig. 17(b)). This can be done without either
application being aware of the other(s), and with minimum or no changes to existing software. If specialprocessing
is required, other applications or the Executive can becomepart of the communicationsinterface (fig. 17(c)). If nei-
ther of these options is viable, then the simulation is invalidand cannot be run.

Once a simulation has been defined and set up, the Executive should be able to start, stop, and monitor it. It
should also be able to perform some basic analyses and diagnosticson intermediate and final simulation results.
More complex analyses should be handled by programsdesigned specificallyfor that purpose. These would be inte-
grated into the simulation in a manner like that described above for other applications. It is reasonable toassume that
several standard and OSSM-compliant applications, like a data editor,various analysis tools, and an expert system,
may become part of a standard OSSM setup.

The Application Executive is a highly complex piece of software that must interact with many different kinds of
applications. No single software product is currently availablethat can perform all of its functions. It may be pos-
sible, however, to combine various products together to build it. Custom software can be added as needed to aug-
ment the capabilities of these products and integrate the various pieces together.

Much work has been done at Lewis and other organizations to study the potentialbenefits and various implemen-
tations of OSSM-like executives. An example is the Integrated CFD and Experiments (ICE) project (refs. 36 to 38).
This project is aimed at creating highspeed, interactivecomputing tools for propulsion systems development. Its
design philosophy is to provide a synergisticenvironment for integrating and analyzing computational fluid dynam-
ics (CFD) and flow physics experimental data. The ICE implementation features an OSSM-like executive that can
be used as a model in the OSSM design.

Many other systems less familiar to the author (including much of the NPSS-related work) could also be used as
• OSSM models. These should be sought out, studied, and used as appropriatebefore any final designs are proposed.

At a minimum, the Application Executivemust have: a system/user interface; a data base access and management
system; an application integration and operationmanager; and an expert system. Each of these is discussed below.
The capabilities and implementation of ICE and other systems are also presented where appropriate to illustrate vari-
ous design options.

System/User lnterface.--The ICE implementationconsists of various subsystems that perform different opera-
tions for the user. The interface toeach of these is built using functions from a GUI library (one of several ICE

libraries). This library contains functions for displaying and editing documents, data fields, graphics, etc. These can
be used in applications to create complex and functional user interfaces that have the same look and feel as the other
ICE processes. An example of a GUI building library for scientific applications that uses object-oriented concepts is
described in ref. 39.

Other systems take advantage of the capabilities of existing products for their user interface implementations.
References 40 and 41 describe two projects which run under the Application Visualization System (AVS). AVS
provides numerous tools for processing and displaying scientific data, and a Network Editor that allows users to
create, modify and save programs. Using these capabilities,developers have been able to construct systems which
allow users to graphically construct arbitrary engine configurations,select and control steady-state and transient
operation of the engine, and view results in a graphical form as the simulation is executing.

The ideal interface allows its users to intuitively navigate,identify, evaluate,modify, and share information
(ref. 42). This should be the goal of the OSSM Executive interface. At a minimum, it should allow users to easily
access, assemble, and run simulations. It should be consistent(both visually and functionally) throughout, and
hence, set the standard for other OSSM applications. It should also be easy to use; run on as many different hard-
ware platforms, operating systems, and windowingenvironments as possible; and be easy to modify and maintain.

Standard GUI development tools and libraries can be used todevelop this interface. Specialized (high-level)
libraries like the ones described above could also be used.The use of such tools facilitates the addition of future

software into the system by others. The selected tools and libraries should produce code that can run on as many
different hardware and software platforms as possible, and support various standards. The requirements for such
tools are discussed in the Application DevelopmentTools and Libraries section of this paper.

Data Base Access and Management.inMost of the systems discussed in this section use a centralized data base
(DB) or knowledge base (KB) to store information. The informationis then made available to any application that
needs it. The ICE design also supports multiple storage methods. It was initially set up to use unix and Oracle f'des
(through the Oracle Pro-C interface), and is currently being modified to work with a commercial ODBMS (the re-
suits of this effort will be published at a later time). ICE provides an extensive library of services which its processes
can use to access this information.

MIRIAD (Module Integrator and Rule-based IntelligentAnalytic Database) is a framework for integrating scien-
tific modules into a single application program (refs. 43 to 44). It uses a Data Dictionary to manage the flow of data
between modules. This set of instructionsdescribes the relationshipsbetween data and the procedures for deriving
new (updated) data. New code modules are added by describing their input/output characteristics to the Data Dictio-
nary. Design parameters, environmental conditions, and simulation results are stored in MIRIAD database files.

All OSSM information is stored in and managed by the Information Base and Information Manager. The Execu-
tive must be able to access all of this multifarious and distributed information (this is true for the other OSSM appli-
cations as well). This can be accomplished either: (1) directly through the IM (probably the easiest route, though it
assumes that the Executive and IM havecompatible interfaces); (2) through program code that interfaces with the
IM (i.e., using data access routines provided in the Application DevelopmentLibraries); or (3) through each of
the supported data formats (the most difficult and least feasiblesolution). Each of these methods is illustrated in
figure 18.

The Executive and IM share the responsibility for handling secure applications, data, and etc. This can be facili-
tated by the use of a commercial ODBMS as the IM, since most of these have built in security provisions. Further
protection can be added at the operating system or network levels,or programmed into specific applications as re-
quired. The details concerning what information and applications need to be protected, the level of security required
for them, and how this would be implemented across a globalmultiorganization network have yet to be worked out.
For more details on OSSM information management, see the InformationBase section of this paper.

Application Integration and Operation.--The primary functionof the systems discussedhere is the integration
and execution of disparate simulation codes and/or modules. The ICE design allows multiple applications (ICE pro-
cesses) to run and exchange data via shared memory. Processescan be started and stopped interactively by the user
to perform various operations. A standard interface (the ICE clipboard) is provided for ad hoe information exchange
between applications. Othermethods of communication can also be used that do not rely on ICE software for their
implementation.

MIRIAD creates a single executableprogram from individual code modules. It uses a data dictionary to generate
the necessary data transfer and translationroutines for intermodulecommunication. The AVS-based systems take

advantage of its integration capabilities to perform similar functions. AVS's graphicalenvironment allows them to
visually construct simulations on the screen. AVS also accommodatesmultiprocess operation, and helps users set up
required data transfer routines.

The OSSM Executive should have all of the above functionality. It should support the integration of standalone
° codes, code subroutines, and other applications, as long as their intended use is valid. This can be determined by

consulting the IB and IM. Users should be advised of invalid simulations, and assistedwhile debugging them. If
more than one code is involved, the appropriate communicationsproceduresmust be set up and any required data

• translations performed. If the applications are distributed,then that too must be accounted for. Tools to support this
entire process should be available to run with the Executive.

The implementation of these capabilities requires the use of many different technologies.An operating system-
like interface is needed to execute and control the variousapplications. It should have parallel and distributed appli-
cation management capabilities to accommodate multiprocess simulationsand distributedcomputing environments.
The software should be able to initialize and perform dynamic load balancingfor the various computers. A standard
communications protocol (like PVM or APPL) can be used in its implementation.A GUI interface would simplify
the simulation definition and integrationprocess. An expert system would assist users in all of these operations.
Many of these tools and technologies are discussed in other sections of this paper. All should be further investigated
for potential OSSM use.

Expert System.mSeveral Lewis-based systems were developed specificallyto investigatethe applicability of
Artificial Intelligence (AI) and Expert Systems (ES) technologies to the simulation process. One system, called
PROTAIS (ref. 45), began as an intelligent front-end to a 3-D Navier-Stokesflow-solver code named Proteus.
PROTAIS was designed to help novice users of the coderun as effectivelyas experts. Its features included the abil-
ity to: help users identify and use previously run eases with similar characteristics;check user defined parameters for
accuracy and consistency; and perform intelligent diagnosticsand pre- and post-processingof simulation data.

Another system, the Artificial Intelligence IntegrationSystem (AIIS--ref. 46), was started by the NPSS team to
study the use of AI for complex multidisciplinary simulations. Its goal was to prototype a systemthat would help
researchers configure, analyze, control, and diagnose these simulations. Unlike PROTAIS, which is a front-end,
the AIIS design integrates scientific (code) modules into the systemitself. Considerableeffort was placed on the
design of a robust object-oriented data structure, and an interface that wouldfacilitate access to and control of that
information.

The OSSM ES will provide the means to intelligently process OSSMinformation. As such, it should work in con-
junction with all of the other systemmodules previously discussed. It will be used to integrate application modules,
diagnose problems and discrepancies, and provide overall help and guidanceto users. Most expert systems store
domain specific information in a knowledgebase, along with rules that can be applied to that information. Since all
OSSM information will be managed by the IM, the selection criteria for the ES can concentrate solely on its use in
developing and processing rules.

The ES chosen must, thus, be able to access the IB/IM. Variousmethods for accomplishingthis are discussed in
the Data Base Access and Management section above (see fig. 18).Each of these requires the ES to be able to com-
municate with external programs and data bases. It should also have a robust rule development and processing sys-
tem, and an inference mechanism that can be adjusted for different kinds of applications.Tools should be available
for creating, browsing, and diagnosing rule structures, and for tracing decision processes.Examples of this type of
software include NASA's Clips, Neuron Dam's Nexpert Object,and Intellicorp's ProKappa (refs. 47 to 49).

IMPLEMENTATION STRATEGIES

• The ideal OSSM implementationwouldaccommodate many differentkinds of applications, tools,etc., andallow
users access to their favorite programs. Initially, however, the scope will have to be limited. Severalsystems have
been identified which may serve as models for the OSSM design and implementation.An attempt should be made to

, locate others, and to incorporate their best features into the OSSM design as appropriate.When this is completed, a
prototype can be built to test that design.

Suitable test cases (applications)must be identified and specificationswrittenfor the prototype. The relevant in-
formation to be stored and the procedures for interapplicationcommunicationscan then be determined. This will
require significant input from others, especially those currently exploringmethodsfor multidisciplinary application

interactions. Lessons learned from the prototype can be used to revise the design as necessary. New features and
information can be added to accommodate new applications.Successive iterations of this process will eventually
produce a functional system.

The OSSM implementation should utilize softwarebuilt on (recognized) standards wherever possible. This ap-
plies in particular, to the Information Base and InformationManager, the Application Development Tools and
Libraries, and any other software used for developmentpurposes. These should be judged by their overall capabili-
ties, flexibility, maintainability, and cost. Preferenceshould be given to public domain software,or freeware, when-
ever possible, to facilitate mass distributionand use of the system. Custom software will have to be developed when
no suitable alternatives exist.

A major issue yet to be addressed, is the support and maintenance requirements (both hardware and software) for
the system. An OSSM administrator groupwill be needed to: (1) update and maintain the OSSM software; (2) an-
swer technical questions about the applications, their capabilities and specifications; and (3) help new users navigate
through the system. A Steering Committee (or user group) will also be required to guide the development and use of
the system. This group would be responsible for selecting implementationstandards, prioritizing new features to be
added, and establishing rules and procedures for the system's use. The committee should contain members from the
different OSSM user organizations, and be chaired by a nonpartial (e.g., government) member. The system adminis-
trators would be responsible for implementing the decisions of the SteeringCommittee.

Numerous OSSM implementation strategiesare possible. The entire OSSM software could be stored on one or
more computers at one physical site (fig. 19).Anyone wishing to run a simulation wouldhave to do so at that site--
although remote access and control should be possible. This would require massive computer processing and storage
capabilities at that site--especially if more than one simulation is to be run at a time. This should, however, mini-
mize the overall hardware costs.

Centralization should also minimize the staff required to develop, maintain, and support the system software (al-
though a substantial size group would still be required), by minimizing communication and coordination bottle-
necks. This should allow them to operate in an efficientmanner. They would, however, have to learn about all of the
different OSSM applications, tools, and libraries availableon the system, to answer user questions concerning their
proper use.

The OSSM Steering Committee wouldbe responsible for determining a fair method for distributing the system
resources (hardware, software, and staffing) among the various user organizations, as well as the operational costs
of those resources. Ground rules would be needed for (1) selecting new hardware and software for the system;
(2) establishing run priorities to jobs, people, and organizations; and (3) handling shared and/or proprietary informa-
tion. Adequate security would have to be provided to prevent unauthorized access to proprietary information.

A more complex, but perhaps more practical implementation, would distribute the OSSM software across the
many different user sites (fig. 20). A main site couldbe established to hold global applications and information.
Other sites would contain software used or maintained by specific groups. This software could then be made avail-
able to local, global, or select users and groups as desired.This implementation gives OSSM users the most flexibil-
ity. It allows each organization to have its own customized environment,and to control to some extent the
applications in it.

In this scenario, each organization would be responsible for acquiring and maintaining its own hardware. Thus,
an organization's simulation capabilities may be directly related to how much hardware it can afford to purchase
(or borrow). Each organization would also be responsible for supporting its own administrators. Their job would be
to develop, maintain, and support the OSSM softwareat that site, while following the guidelines established by the
Steering Committee. This should include answeringany questionsabout that software, whether from on- or off-site
users.

The Committee and its administrators (if any) would then have to monitor and coordinate the activities of each of
these sites---each with different applications,hardwareconfigurations, and priorities. This would significantly in-
crease the communications and coordination requirementsfor them. It would also increase the chance for software
incompatibilities, access and security violations, and other problems to occur. However, the complexity of some of
their other duties as listed above should reduce. All of these issues must be further investigated before deciding on a
final OSSM implementation.

10

SUMMARY/CONCLUDINGREMARKS

A model for a genetic and open environmentfor running multicodeor multiapplieation simulations---called the
open Simulation System Model (OSSM)----hasbeen proposed and defined. This model attempts to meet the require-

t
ments of complex systems like the Numerical Propulsion SimulatorSystem (NPSS).The model emphasizes the use
of existing standards wherever possible. Several systems have been identifiedwhich may serve as models for the
OSSM design and implementation. Others need to be sought out and included as appropriate. Potential software

• (both public domain and commercial) has also been identified for the possible implementation.
More research is needed in the areas of multidisciplinary code integration and software interoperability (standards

and technologies). Someof these issues are currently being addressed.New efforts must be initiated to address
others. Suitable test codes and applicationsmust then be identified,and specifications written, for a prototype.
The design and development of such a prototype will require teams formedwith individuals from different back-
grounds, disciplines, and organizations. When completed,the OSSM design canbe tested, evaluated, and modified
as necessary.

REFERENCES

1. Claus, Russell W.; Evans, Austin L.; and Follen, Gregory J.: MultidisciplinaryPropulsion Simulation Using
NPSS. Interdisciplinary TechnologyOffice, NASA Lewis Research Center.

2. Afjeh, A.; and Reed, J.: Report on the NPSS-MOD0-ADPACCoupling:Zooming on EEE Fan Stage. Interdisci-
plinary Technology Office, NASA Lewis Research Center,August 1993.

3. Cole, Gary L.; Melcher, Kevin J.; Chicatelli, Amy K.; Hartley, Tom T.; and Chung, Joongkee: Computational
Methods for HSCT-Inlet ControlslCFD InterdisciplinaryResearch. NASATM-106618, ICOMP-94-10,
AIAA-94-3209, June 1994.

4. Myklebust, Arvid; and Gelhausen, Paul: Putting the ACSYNTon Aircraft Design.Aerospace America, Septem-
ber 1994, pp. 27-30.

5. Donovan, John W.; Nance, Barry; Fetterolf, Peter; Vaughan-Nichols,Steven J.; Anderson, David M.;
Sherwood, Bruce A.; Hubley, Mary;Rasmus, Daniel W.; and Ullman, Ellen: Interoperability (A Collection of
Articles on Interoperability).BYTE Magazine,Vol. 16,No. 12, November 1991, pp. 185-267.

6. Zarrella, Paul F.: CASE Tool Integrationand Standardization.Technical Report #SEI-90-TR-14, Software
Engineering Institute, Carnegie-Mellon University, December 1990.

7. Radar, Jock;, Brown, Alan W.; and Morris, Ed: An Investigation into the State of the Practice of CASE Tool
Integration. Technical Report #SEI-93-TR-15, SoftwareEngineeringInstitute, Carnegie-Mellon University,
August 1993.

8. Honeywell, Inc.: DOS Design/ApplicationTools. Final Technical Report #RADC-TR-90-203, Vol. 1-3, Rome
Air Development Center, Air Force SystemsCommand, September 1990.

9. Leach, Norvin: HP's SoftBench for CASE Gains MultivendorTool Support.PC Week, Vol. 10, No. 11,
March 22, 1993, pp. 61-63.

10. Atldnson, Lee; and Atldnson, Mark: Using C/C++.Que Corporation, 1993.
11. Semich, J. William: OpenStep (NEXTInc. and Sun MicrosystemsObject-OrientedOperating System).

Datamation, Vol. 40, No. 6, March 15, 1994,pp. 29(2).
12. O'Brien, Timothy: SunSoftLays Out the Road Map to "Distributed Objects Everywhere." Distributed Comput-

ing Monitor, Vol. 9, No. 5, May 1994, pp. 23(5).
13. Kaare, Christian: The X Window System: a Universal Graphical Interface.PC Magazine, Vol. 10, No. 10, May

28, 1991, p. 323.
14. Prosise, Jeff: Advanced 3-D Graphics for Windows NT 3.5: Introducing the OpenGL Interface, Part 1.

Microsoft Systems Journal, Vol. 9, No. 10, October 1994,p. 15(13).
15. Ga Cote, Raymond: Code on the Move. BYTE Magazine,Vol. 17, No. 7, July 1992, pp. 206-226.

11

16. Cunningham, Cara A.: Neuron Data Set to Ship Update for GUI Builder (Open Interface 2.0 program develop-
ment software). PC Week, Vol. 9, No. 19, May 11, 1992, p. 16.

17. Szczur, Martha R.: Transportable ApplicationsEnvironment (TAE) Plus, A User Interface Development and
Management System.ESA SP-308, October 1990.

18. PaUatto,John: TeleSoft's Tool Targets OSF/Motif GUI Design. PC Week, Vol. 8, No. 26, July 1, 1991, 0
pp. 45--46.

19. Sosinsky, Barrie: Graphically Speaking (A Guide to GraphicsFile Formats). MacUser, Vol. 10, No. 1,
Jan. 1994, p. 145(5).

20. Revenge of the NURBS (NonuniformRational B-Splines). AI Expert, Vol. 9, No. 6, June 1994, p. 54.
21. Sunderam, V. S.: PVM: A Framework for Parallel Distributed Computing. Concurrency: Practice & Experience,

Vol. 2, No. 4, December 1990.
22. Quealy, Angela; Cole, Gary L.; and Blech, Richard A.: Portable Programming on Parallel/Networked Comput-

ers Using the Application Portable Parallel Library. NASA TM-I06238, July 1993.
23. Message Passing Interface Forum: MPI: A Message-PassingInterface Standard.ARPA/NSF Grant No.

ASC-9310330, March 31, 1994.
24. Chang, Long-Chyr; and Smith, Brian T.: Classificationand Evaluationof Parallel Programming Tools.Techni-

cal Report #UNM-TR-CS90-22, Dept. of Computer Science, New Mexico University, 1990.
25. Murphy, C. G.: Literature Survey on Tools. Technical Document 1853, Science Applications International

Corp., July 1990.
26. Graham, Ian: Object Oriented Methodologies. Prentice Hall, 1990.
27. Byard, Cory: Object-Oriented Technology a Must for Complex Systems. Computer Technology Review, Fall

1990, pp. 15-19.
28. Nicol, John R.; Wilkes, C. Thomas; and Manola, Frank A."Object Orientation in Heterogenous Distributed

Computing Systems. IEE Computer, June 1993,pp. 57-67.
29. Wayner, Peter: Objects on the March. BYTE Magazine,January 1994,pp. 139-150.
30. Object Management Group: Object Management Architecture Guide, Revision 2.0. OMG TC Document

92.11.1, September 1992.
31. Object Management Group and X/Open: The CommonObject Broker Architecture and Specification, Revision

1.1.OMG TC Document 91.12.1, December 1991.

32. Khoshafian, Setrag: Modeling with Object-OrientedDatabases. AI Expert, October 1991,pp. 27-33.
33. Hurson, A. R.; Pakzad, Simin H.; and Cheng, Jia-bing: Object-Oriented Database Management Systems: Evolu-

tion and Performance Issues. IEEE Computer, February 1993, pp. 48-60.
34. Bryant, David, Datapro Information Services Group: An Overview of Object-Oriented Database Management

Software. McGraw-Hill, Inc., October 1992.
35. Williams, Anthony D.: An Evaluation of Object Oriented Data Base Management Systems for Scientific Appli-

cations. Computational Technologies Branch of the Internal Fluid Mechanics Division, NASA Lewis
Research Center.

36. Szuch,J. R.; Arpasi, D. J.; and Strazisar, A. J.: EnhancingAeropropulsion Research with High-Speed Interac-
tive Computing. NASA TM-104374, 1991.

37. Babrauckas, Theresa L.; and Arpasi, Dale J.: Integrated CFD and Experiments Real-Time Data Acquisition
Development. ASME Paper 93--GT-97,May 1993.

38. Stegeman, James D: User's Manual for Interactive Data Display System (IDDS). NASA TM-105572, 1992.
39. Curlett, Brian P.: An Adaptive Graphical User Interface Framework for Object Oriented System Simulations.

Interdisciplinary Technology Office,NASA Lewis Research Center.
40. Reed, John A.; Afjeh, Abdollah A.; Follen, Gregory; and Putt, Charles: A Summary of the Numerical Propul-

sion System Simulation Modl Graphical User Interface. InterdisciplinaryTechnology Office, NASA Lewis
Research Center.

41. Homer, P.T.; and Schlichting, R.D.: Using Schooner to Support Distribution and Heterogeneity in the Numeri-
cal Propulsion System Simulator Project. Concurrency: Practice and Experience, vol. 6(4), June 1994,
pp. 271-287.

42. Jacobson, Bob: The Ultimate User Interface. BYTE Magazine,Vol. 17,No. 4, April 1992,pp. 175-182.
43. Jongeward, Gary A.; Kuharski, Robert A.; Rankin, Thomas V.; Wilcox, Katherine G.; and Roche, James C."

The Environment Workbench: A design tool for Space Station Freedom. NASA Report #NAS3-25-347.

12

44. Lilley, John R.; and Greb, Agnes: A code for conducting systems-level survivability analysis of nuclear power
systems. Proceedingsof the 26th Intersociety Energy Conversion EngineeringConference (IECEC '91),
Aug. 1991, Paper #A92-50526 21-20.

45. Williams, Anthony D.: The Developmentof an Intelligent Interface to a ComputationalFluid Dynamics Flow-
Solver Code. NASA TM-100908, 1988.

46. Pimentel, Guillermo: Initial Operating Capability of the Artificial Intelligence IntegrationSystem for the Nu-
merical Propulsion Simulation System.Interdisciplinary TechnologyOffice, NASA Lewis Research Center,

' 1994.

47. Riley, G.: CLIPS 6.0---The C Language Integrated Production System,Version 6.0. Report #MSC-22429,
NASA Johnson Space Center.

48. Gevarter, William B." The Nature and Evaluation of Commercial Expert System Building Software Tools.
NASA TM-107914, 1987.

49. Bloor, Robin: New Intelligence: Expert Systems are Reemerging to SatisfyBroader Needs than their Predeces-
sors. DBMS, Vol. 6, No. 13,Dec. 1993,pp. 12(2).

13

i AppcatonOeveopment1Tools& Libraries •

Application (Information (Application"
Libmries_ _ \ExeoutivejLBase

r-'-- I
I Simulation I
I

Figure 1.--The OSSMmodel.

Application:

- Any program that
processesinformation

Examplesof applicationtypes:

- Sciencecodes/modules
- Informationmanagers
- Graphicsprograms
- Dataanalyzers

Information - Expertsystems
- Auto-gridgenerators
- Dataacquisitionprograms

Figure2.raTheapplicationmodel.

14

d

Appllc. ID: CODE1

• Name: MEGA-CODE

Type: 2-D NavierStokes

Description: This code caiculates...

Specs: To operatecorrectlyt...

Inputs:

Input1: I1
Type: INTEGER
Unit: N/__AA
DefaultValue:0
MinlmumValue: 0
MaxlmumValue: 100

Input2: I2
Type: INTEGER
Unit: N/_
DefaultValue:0
MinlmumValue: 0
MaxlmumValue: 50

Input3: I3
Type: REAL
Unit: DEGREESK
DefaultValue:288
MinlmumValue: 0
MaximumValue: 1000

Input4: I4
Type: REAL
Unit: KG
DefaultValue:0
MinimumValue:
MaxlmumValue:

Input5: I5
Type: REAL
Unit: M/SEC
DefaultValue:0
MinlmumValue: 0
MaxlmumValue: _000

• Figure3.--Simple exampleillust_tingthe in_rmationsto_d inthe
InformationBaseforeachapplication.Applicationspecific
inform_ion can beadded asneeded.

15

Outputs: 5

Output1: 01
Type: REAL
Unit: FT
Minimum Value:
MaximumValue:

Output2: 0_22
Type: REAL
Unit: FT/SEC
Minimum Value:
MaximumValue:

Output3: 03
Type: INTEGER
Unit: N/__AA
MinimumValue:0
MaximumValue: 100

Output4: 04
Type: REAL
Unit: PS___I
MinimumValue:
MaximumValue:

Output5: 05
Type: REAL
Unit: DEGREESK
MinlmumValue:
MaximumValue:

Slte/Location:NASA Lewis ResearchCentert Clevelandt Ohio

Host: app-server.lerc.nasa.qov

Contact(s): A. WILLIAMS (216)433-4000

Comments: This code does not work with ...

Figure3._Concluded.

]5

Simulation:SIM 1

CodeI Code2 Graphics1
program

Inputs Outputs Inputs Outputs Inputs (No outputs)

10 _ 11 01 _ 11 01 I2

10 _ 12 02 _ I2 02 _ I3

100 I3 03 ---_X'_| 10_ 13 03 _X 2_ I1

0 I4 04 50--=, I4 04

0 I5 05 _ I5 05

(a)

Figure 4.---(a) Example of a graphical simulation description containing 2 scientific codes
& 1 graphics program.

17

Simulation: SIM____I Output: 04
Type: EnqineSimulatlon Output: __O--5
Exec Host: ma_or.lerc.nasa.qov Stop Cond: N/___A
Mode: Interactive
No Apps: 3 Appllcation: GRAPHICS1
No Iterations:i000 Type: Analysis

Exec Host: private.lerc.nasa.qov
Application: CODE1 Input: I_ll "
Type: 2D Scientific InitialValue: 2
Exec Host: ma_or,lerc.nasa.qov UpdateValue: N/__AA
Input: I1 Input: I2
InitialValue: 10 InitialValue: CODE2::OI
Update Value: __N/A UpdateValue: CODE2::OI
Input: I2 Input: I3
InitialValue: 10 InitialValue: CODE2::O2
Update Value: N/___A UpdateValue: CODE2::O2
Input: I3
InitialValue: 100
Update Value: CODEI::O3
Input: Ij
InitialValue: 0
Update Value: CODE2::O4
Input: I5
InitialValue: 0
Update Value: CODE2::O5
Output: O1
Output: 02
Output: 03
Output: 04
Output: 05
Stop Cond: I2 > 50
Stop Cond: 03 • 100

Application: CODE2
Type: ID Scientific
Exec Host: colonel.csu.edu
Input: Ill
InitialValue:CODEI::O1
UpdateValue: CODEI::O1
Input: I2
Initial Value:CODEI::O2
UpdateValue: CODEI::O2
Input: I3
InitialValue: 10
Update Value: N/A
Input: 14
InitialValue: 50
Update Value: N/___A
Input: I5
InitialValue: CODE1::05
UpdateValue: CODE1::05
Output: Ol
Output: 0-2
Output: 03

Figure4._b) Exampleof a te_ual simulationdescriptioncontaining2scientificcodes & 1 g_phics program.

18

Network(LANorWAN)

•" T T T '
• Host I Host2 Host3

_'2ALI
(AJ(A)!

_-®
®®

AL ApplicationLibraries
A Applicationprograms

Figure5.--Distributionof ApplicationLibrades.

Application GUI Algorithm
Development development DBtools Communications development
Tools tools tools

Application DB
Development GUI access Communications Algorithm
Libraries libraries libraries libraries

Application App
code

Figure6.mADTs& ADLshelp createOSSM-compliantapplications.

]9

Informationbase

Other Development
Code application tools& libraries Experimental

descriptions descriptions info models

Simulation Engine
models models Algorithms Grids

Run Site Computer User
data info info info

Figure7._Contents of the InformationBase.

Application

Dataaccessfunctionsembedded
inapplicationcode

(a) I Data

Application Application

oloaoI
Figure8.--Embedded data accessfunctionsin (a)singleand (b)multiple

applicationsallowfree (uncoordinated)accessto data.

2O

J

Application Application

procedurecalls
embeddedinapplication

Data accessfunctions"encapsulate"data

Io ol
Figure9.--Data encapsulation controls access to data andprovides

consistentinterfaceto it,

InformationBase

DAP DAP DAP

DAP DAP DAP

Figure10.--A distributedOOIBimplementationthat usesdata accessprocedures(DAPs)to access
data elements.

21

I Network
InformationBase

(Logical)data network

_== ..= j

Figure11.--The InformationManager(IM)notifiesapplicationsof the existenceandlocationof requesteddata inthe
InformationBase.

InformationBase

IM

[oao11oaoI oaoI[oao11oaoILooo
Figure12.--An OOIBthat usesthe InformationManagerto accessdata. Thisdata may be

storedat multiplesitesinmultipleformats. +

22

Genericinterface

InformationBase

|

C--
I I I I

I I I I

Im _lementation specific interfaces (text, binary, DB, KB, ...)

Figure13.m The IM providesa (generic)consistentinterfaceto allOSSM data.

InformationBase

@@@ _ @Q@

o_oIIo_oIIoaoII°a°I
Site I Site2 Site 3

Figure14.--An OOIBimplementationthat usesmultipleinterconnectedODBMSs(orservers).

23

Figure15.--Applicationintegration& execution.

1 b
HostI Host2 Host3

ssss S

_ ¢€s •

s SHost_4 ;._-

Network _(_ _ _''"

Executing(a)

Figure16.--Applicationintegrationina distributedenvironment.(a)Applicationscan be transferredto a single
computerand runthere.

24

I I I
Host I Host2 Host3

, @ _ @

Exec...",'_ @ Exe_._.,,-_ @ Exec._',-_'_ _

Host4

Network

Executing'"(_0o)

Figure 16.---(b)Applicationscanalsobe integratedandrunremotely.

_ Messages ,__@

(a)

Figure17.--Methods of applicationcommunications.(a)Directcommunications.(b)Indirect
communications.(c)Assistedcommunications.

25

IB

IB

(c)

Figure 18.mMethodsof accessingthe lB. (a)Accessvia nativeIM calls.(b)Accessvialibraries
(ADLs)that interfaceapplicationto the IM calls. (c)Accessusingimplementation-specific
interfacesforeach dataelement.

26

--7 Single-siteLAN
QQO

Gateway]to other
networks Host I Host2

000 0000
Exec... _ Exec...

oo o
r_--lr_-7 r-_--1r-_--1
r_-7_-I _-7

Remotenetwork(s)
ooo

I I 1 1
Host Host Terminal Terminal

Figure19._OSSM softwareis stored& runat a singlesite;can be accessedby remotehosts&terminals.

27

---] OSSMmainsite
OO0

Host Host

©© •
Exec...

E OSSMsiteA I • • •

I

000 1
Exec...

OSSMsite B

1 I "'"
Host Host

Io I
Exec...

• 4

Figure 20.--OSSM sof_are is distributed &run at multiple sites.

28

Form Approved
REPORT DOCUMENTATION PAGE OMBNo.0704-0188

Public reportingbu_en for this colioctionof informationis estimatedto average 1 hourper response, inclucingthe time for reviewinginstructions,searching existing_ata sources,
gatheringand maintainingthe data needed, and cornpletingand reviewing the coflectionof information. Send comments r.egar.dingthis burdene..stimateor any other as__,l:_t of this
collectionof information,includingsuggestionsfor reducingthis burden, to WashingtonHeaDquarters:5ervices,uirectorate mr mTormmlonOperazlons.anDHepens,]:.']o Jenerson
Davis Highway. Suite 1204, Arlington,VA 22202_ and to the Offi_ of Managementand Budget,Paperwork ReductionProject (0704-0188), Washington,DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

September1995 TechnicalMemorandum
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

An OpenSimulationSystemModelforScientificApplications

6. AUTHOR(S) WU-505-62-52

AnthonyD.Williams

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORTNUMBER

NationalAeronauticsandSpaceAdministration
LewisResearchCenter E-9826
Cleveland,Ohio 44135-3191

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NationalAeronauticsandSpaceAdministration
Washington,D.C. 20546-0001 NASATM-107022

11. SUPPLEMENTARYNOTES

Responsibleperson,AnthonyD.Williams,organizationcode2620,(216)433-3611.

12a. DISTRIBUTION/AVAILABILri'Y STATEMENT 12b. DISTRIBUTION CODE

Unclassified-Unlimited
SubjectCategories05and62

This publication is available from the NASA Center for Aerospace Information, (301) 621--0390.
i 13. ABSTRACT (Maximum 200 words)

A modelfora genericandopenenvironmentfor runningmulti-codeor multi-applicationsimulations-- calledtheopen
SimulationSystemModel(OSSM)m is proposedanddef'med.Thismodelattemptsto meettherequirementsofcomplex
systemslikethe NumericalPropulsionSimulatorSystem(NPSS).OSSMplacesno restrictionsonthe typesof applica-
tionsthatcanbe integratedatanystageofits evolution.Thisincludesapplicationsof differentdisciplines,fidelities,etc.
Animplementationstrategyis proposedthat startswitha basicprototype,andevolvesovertime to accommodatean
increasingnumberof applications.Potential(standard)softwareis also identifiedwhichmayaid in the designand
implementationof the system.

14. SUBJECT TERMS 15. NUMBER OFPAGES

Computersimulationenvironment;NPSS;Multidisciplinaryanalysis;Engineanalysis 30
design;Computerstandards;OSSM 16.PRICECODEA03

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified Unclassified

NSN 7540-01-280o5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

National Aeronautics and
Space Administration
Lewis Research Center
21000 BrookparkRd.
Cleveland, OH 44135-3191

Official Business
Penalty for Private Use $300

POSTMASTER: If Undeliverable -- Do Not Return

L

_LO,

J_

E_ _---

_ {,€'j

