
ICASE

NASA Contractor Report 198211

ICASE Interim Report No. 28

NASA Contract No. NAS1-19480
September 1995

Institute for Computer Applicationsin Science and Engineering
NASA Langley Research Center
Hampton, VA 23681-0001

Operated by Universities Space Research Association

COMMUNICATION OVERHEAD ON THE
INTEL PARAGON, IBM SP2 & MEIKO CS-2

National Aeronautics and

Shahid H. Bokhari

Space Administration

Langley Research Center
Hampton, Virginia 23681-0001

https://ntrs.nasa.gov/search.jsp?R=19960004071 2020-06-16T05:18:37+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42779373?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Communication Overhead on the

Intel Paragon, IBM SP2 & Meiko CS-2

Shahid H. Bokhari

Department of Electrical Engineering

University of Engineering & Technology, Lahore, Pakistan

Abstract

Interprocessor communication overhead is a crucial measure of the

power of parallel computing systems|its impact can severely limit the

performance of parallel programs. This report presents measurements

of communication overhead on three contemporary commercial mul-

ticomputer systems: the Intel Paragon, the IBM SP2 and the Meiko

CS-2. In each case the time to communicate between processors is

presented as a function of message length. The time for global syn-

chronization and memory access is discussed. The performance of

these machines in emulating hypercubes and executing random pair-

wise exchanges is also investigated.

It is shown that the interprocessor communication time depends

heavily on the speci�c communication pattern required. These obser-

vations contradict the commonly held belief that communication over-

head on contemporary machines is independent of the placement of

tasks on processors. The information presented in this report permits

the evaluation of the e�ciency of parallel algorithm implementations

against standard baselines.

Research supported by the National Aeronautics and Space Administration under

NASA contract NAS1-19480 while the author was in residence at the Institute for Com-

puter Applications in Science & Engineering, Mail Stop 132C, NASA Langley Research

Center, Hampton, VA 23681-0001.

Work on the Intel Paragon was performed using the CACR parallel computer system

operated by Caltech on behalf of the Center for Advanced Computing Research. Access

to this facility was provided by NASA.

Work on the IBM-SP2 was performed using the resources of the Cornell Theory Cen-

ter, which receives major funding from the National Science Foundation and New York

State with additional support from the Advanced Research Projects Agency, the National

Center for Research Resources at the National Institutes of Health, IBM Corporation, and

members of the Corporate Research Institute.

Work on the Meiko CS-2 was carried out using the resources of the Vienna Center

for Parallel Computing, funded as part of the European ESPRIT project PPPE, and was

supported by the Institute for Software Technology and Parallel Systems of the University

of Vienna.

i

1 Introduction

Interprocessor communication is a key issue in parallel computing. The im-

pact of communication overhead can severely limit the performance of par-

allel algorithms on massively parallel processors. Considerable e�ort is re-

quired to minimize the overhead of interprocessor communications. In this

report we investigate the communication performance of three contempo-

rary commercial multicomputer systems: the Intel Paragon, IBM SP2 and

Meiko CS-2. All three machines incorporate powerful interprocessor commu-

nication mechanisms. They each have special purpose hardware dedicated to

interprocessor communications as well as very powerful computational nodes.
The Paragon has a mesh interconnect while the SP2 and CS-2 use multistage

networks.
We investigate the time required to communicate between processors, the

time to execute barrier synchronization, and the time to move bytes within a
processor's memory. These are the central operations required in interproces-

sor communications. We also explore how these machines behave when they
are made to emulate hypercubes and when they execute random pairwise
exchanges. Contrary to the commonly held belief that in modern multicom-

puters the physical locations of the tasks comprising a parallel computation

are unimportant for performance, we demonstrate that nearly 100% degra-

dation can be experienced when tasks are poorly mapped.

On the Intel Paragon, whose mesh architecture permits us easily to con-

trive very stressful communication patterns, we can show a degradation of
a factor of 3 due to link contention. On the SP2, contention for switches
because of jobs other than the test job can cause very large variations in

communication time that make it di�cult for the programmer to gauge the

e�ciency of an algorithm's implementation.
We conclude this report by commenting on the di�culties encountered

in programming these systems. These comments are designed to highlight

areas where improvements could be made by vendors to make the onerous

task of parallel programming less burdensome for the user.

1

1.1 The Intel Paragon

The Intel Paragon1 on which the experiments described in this report were
carried out is located at the Center for Advanced Computing Research at
Caltech2. It is made up of 512 compute nodes organized in a 16 � 32 array.
Each node is composed of two Intel i860 processors. One serves as a compute
processor and the other as a communication processor. In addition there is
special hardware for interfacing with the intercommunication network. The
interprocessor communication network is a mesh with \row{column" routing.
That is, a message from processor x1; y1 to processor x2; y2 �rst travels along
a row to x2; y1 and then along a column to x2; y2. This routing algorithm
is �xed and cannot be modi�ed by the user. A message passing through a
node en route to its destination does not impact the computation occuring
at that node as the routing is carried out by special routing hardware. The
i860s run at 50 MHz and are capable of 75 MFlops.

This machine has 32 Megabytes of memory per node of which about 24
Megabytes are available for user programs. It also supports virtual mem-
ory, which complicates measurements of communication overhead, since the
overhead of paging in data through the communication network interferes
with the experiments being conducted on the network. For this reason it is
important to run all programs with the -plk (process lock) option, which
locks all pages in memory. Even with this option there is some paging when
a program is started. The perturbation caused by this can only be circum-
vented by performing an experiment twice and discarding the timings for the
�rst run.

Each node of the Paragon runs the OSF/1 operating system. This is
a full
edged Unix-like operating system in which there are many system
activities going on at the same time that a user program is running. In
particular there are four types of interrupts that occur periodically for various
operating system functions. These complicate the measurement and control
of communication on this machine. Shirley et al. [7] discuss this issue in
detail.

The nx message passing library was used for the experiments described in
this report. This library has its origins in the iPSC-860 hypercube which has
two types of messages: FORCED and UNFORCED. FORCED messages are trans-

1http://www.ssd.intel.com/paragon.html
2http://www.ccsf.caltech.edu

2

mitted from source to destination under the assumption that a receive has
already been posted (i.e. bu�er space for reception speci�ed) at the destina-
tion. If an arriving message does not �nd a receive posted, it is discarded.
UNFORCEDmessages do not require a receive to be posted beforehand. Before
an UNFORCEDmessage is transmitted there is an exchange of control messages
between source and destination to allocate operating system bu�er space for
the message. This leads to additional overhead in communication (because
of the control messages), extra memory requirements, and the penalty of
copying from operating system bu�ers to user areas [1].

On the Paragon, FORCED and UNFORCED messages are supposed to per-
form identically. It has been our experience that operating system space is
allocated for all possible arriving messages in addition to any user memory
locations that may be set aside by explicitly posted receives. The user can
specify the amount of memory bu�ers that the operating system is to set
aside for this purpose using the -mbf run option. Despite this, when large
numbers of large-sized messages are expected, the operating system can run
out of resources thereby causing the machine to hang (even if adequate mem-
ory has been set aside with the -mbf option.) In our experience, a 16 � 16
submesh of the Caltech Paragon cannot handle 255 receives of 1792 or more
bytes each.

Needless to say, FORCED messages should only be used if the communi-
cation requirements are well understood and receives can be posted before
any messages are launched. Deadlocks can develop if this requirement is not
satis�ed.

Disk I/O on the Paragon tales place through the same network that is
used for interprocessor communication. All disks are attached to separate
I/O processors on the left and right-hand boundaries of the machine. Should
user A's jobs be running on processors located between user B's job and B's
disk(s), A will su�er considerable overhead. This interference is easy to spot
in a series of timing measurements as it shows up as a sharp spike on an
otherwise smooth plot. It can be avoided by placing a job judiciously on the
mesh or running in dedicated mode. A very useful utility called xpartinfo

provides a visual representation of the jobs on the machine for this purpose.
Memory access and thus data communication on the Paragon is heavily

a�ected by the starting address of a transfer. In our experiments we have
aligned all arrays to 4k boundaries (the page size of the machine) to minimize
this impact.

3

1.2 The IBM SP2

The Cornell Theory Center3 has a 512 node IBM SP24 multicomputer that
was used for these experiments. Each node on this machine is made up of
POWER2 architecture RS/6000 processors running at 66.7 MHZwith at least
128 MBytes of memory each. All nodes run AIX, which is IBM's version of
Unix. Each machine is theoretically capable of 266 MFlops. The machines
are interconnected with a multistage switch made up of bidirectional 4 �
4 crossbars. Special hardware interfaces the compute processors with the
interconnection network [3].

The MPI-F message passing library [5], a version of MPI [4, 6] for the IBM
SP2, was used to implement the programs. SP2 interprocessor communi-
cation can be subdivided into two types, roughly analogous to FORCED and
UNFORCED messages on the Intel iPSC860, which were discussed in Section
1.1. Messages shorter than a prede�ned limit m are sent directly to their
destinations. Messages larger than this require an exchange of control mes-
sages prior to actual transmission. The control messages can have signi�cant
overhead, especially for small message sizes. The default value of m is 4096
bytes. This can be overridden using the -mpiSm runtime
ag which sets to
m the threshold at which control messages start being used. m is limited to
16384.

The MPI wclock() routine that is supplied with MPI-F has poor reso-
lution. We found that the Fortran real time clock rtc() routine could be
linked in and provided satisfactory resolution.

When a large parallel application is run on the SP2, the processors allo-
cated to the application are scattered all over the machine. There may be
contention at the switches caused by other jobs. The impact is quite signi�-
cant and is unavoidable as there is no way for the user to control where a job
is placed. Operating system events on the processors themselves also cause
some perturbation.

3http://www.tc.cornell.edu
4http://ibm.tc.cornell.edu/ibm/pps/sp2/

4

1.3 The Meiko CS-2

The Meiko CS-25 at the Vienna Center for Parallel Computing6 is made

up of 128 SuperSPARC processors running at 50 MHz. Each processor has

64 MBytes of memory, runs the Solaris operating system, and is capable of

100MFlops. Special purpose hardware connects each processor to a multi-

stage switch which is made up of bidirectional 4� 4 crossbars.

Several programming systems are available on the CS-2. We have used

the mpsc library which permits nx programs written for the Intel hypercubes,

Touchstone-Delta or Paragon to be executed virtually without change. Like

the SP2 MPI-F, the CS-2 mpsc library su�ers from a poor resolution clock

routine. We were, however, able to access the high resolution elan clock

from within our programs. The CS-2 is the newest of the 3 machines tested

and was thus lightly loaded. It was easy to avoid the impact of other users'

communications on our experiments. We anticipate that, as the use of this

machine increases, this impact will become more noticeable.

The speci�c CS-2 at Vienna does not have a full complement of switches

at the higher levels of its multistage connect. As a result it su�ers from

discontinuities in performance as we move from 32 to 64 processors. Because

of hardware problems, we were unable to experiment with more than 64

nodes on this machine. Of the 3 machines evaluated in this report, the CS-2

has the distinction of having the most linear communication times and the

best barrier synchronization time.

2 Communication Overhead

Communication overhead was measured on all three machines for messages

varying in length from 0 to 16000 bytes in steps of 64 bytes. The general

strategy for these experiments is to exchange messages between two nodes

ITERS times and then divide the total elapsed time by 2�ITERS. It is neces-

sary to have ITERS set to a value large enough to reduce the impact of the

perturbation caused by the overhead of clock reading as well as to reduce the

statistical variance caused by interference from messages due to other users

or from operating system events.

5http://www.meiko.com/
6http://www.vcpc.univie.ac.at/vcpc.html

5

0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

0.0008

0.0009

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

tim
e

(s
ec

)

message size (bytes)

Paragon

CS-2

SP2

Paragon

CS-2

SP2

Figure 1: Communication times on the Paragon, SP2 and CS-2.

Each of the two processors involved was made to post ITERS receives,

which was followed by a barrier synchronization. The two processors then ex-

changed ITERSmessages and then synchronized again. The total time, which

included the time to execute two barriers, was divided by 2�ITERS. The con-

tribution to the total time by the barriers is negligible because ITERS � 200

in all cases. On the Paragon and CS-2 we used ITERS = 200. On the SP2

it was necessary to go to ITERS = 1000 to reduce the impact of
uctuations

caused by other jobs.

Non blocking sends and receives were used so as to exploit the parallelism

that is possible in machines that have a separate processor for communica-

tion. The use of blocking sends is speci�cally recommended in the docu-

mentation of the SP2. However we found no di�erence in blocking and non

blocking sends on that machine.

6

0

5e-05

0.0001

0.00015

0.0002

0 500 1000 1500 2000

tim
e

(s
ec

)

message size (bytes)

Paragon

CS-2

SP2

Figure 2: Communication times for messages smaller than 2000 bytes.

Figure 1 shows the run times for the three machines for message sizes
varying from 0 to 16000 bytes in increments of 64 bytes. Figure 2 shows
a more detailed plot for message sizes from 0 to 2000 bytes in increments
of 16 bytes. The steps in the Paragon plots are caused by packetization
overhead. On the SP2 and CS-2 plots there are spikes on the plots caused
by interference from other users' messages or from operating system events.
Expressions for communication time are given in Table 1. For each machine
we give the time for zero byte, short and long messages. The performance
of all three machines for zero byte messages is signi�cantly better than the
performance predicted by the short message expressions. We have included
this information because zero byte messages can be employed to send useful
information (through message type tags). The dividing point between short
and long messages is 8640 bytes for the Paragon and 10000 bytes for the SP2.

7

Mem. copy Barrier (�sec) Communication (�sec per byte)
(�sec/byte) 2d procs. zero small large

Paragon 0.0140 126d� 113 58 75 + 0:011m 135 + 0:011m

SP2 0.0043 72d� 52 48 70 + 0:043m �50 + 0:056m

CS-2 0.0153 17d� 5:6 103 105 + 0:025m 105 + 0:025m

Table 1: Summary of performance �gures

In Table 1 we have supplied linear curve �ts from Figure 1 for these ranges.
The communication times for the SP2 have a distinct upward curve that we
have approximated with two straight line �ts. The expression �50+0:056m
only applies to large (> 10000 byte) messages.

3 Synchronization Time

Barrier synchronization is an important operation in parallel programming.
The time required for this operation was measured on the Paragon and CS-
2 using a simple loop that executed gsync() one hundred times. On the
Paragon, the measurements were for square meshes of size 2�2, 2�4, 4�4,
. . . , 8� 16, 16 � 16. On the SP2 and CS-2 we measured on processor pools
of 2; 4; . . . ; 64 processors.

On the SP2 there is a great deal of spread in the timings for MPI Barrier

due to interference from other messages. For this machine scatter plots were
obtained and a line �tted through the minimum time for each machine size.
Although this gives the bene�t of the doubt to the machine and leads to a
clean expression, it is not an accurate prediction of the synchronization time
that will be encountered by the average user.

For all three machines the time for synchronization is logarithmic in the
number of processors and is summarized in Table 1.

4 Memory Access Time

Many communication operations are organized as sequences of message trans-
missions alternating with data permutation. The multiphase complete ex-
change is one example [2]. For such communication operations the time

8

required to move blocks of data from one part of memory to another on the

same processor can heavily in
uence the total time required.
The best way to move large blocks of data in memory is to use the C

memcpy() routine. Using this routine we have measured the memory to
memory transfer times (in nanoseconds) on the three machines to be 14 for
the Paragon, 15.3 for the CS-2, and 4.3 for the SP2. The timings on the
Paragon are particularly sensitive to the starting address of the transfer: the
14 nanosec. �gure is for the case where the starting address is a multiple of
16. Failing this, the time per byte can go up by an order of magnitude. The
CS-2 and SP2 do not su�er from such problems.

5 Emulating the hypercube

Much of the early parallel algorithm research work was targeted for hy-
percubes. None of the three machines being considered in this report is a
hypercube, although they do have high bandwidth interconnects. It is inter-
esting to investigate how well these machines do when emulating hypercubes.
To this end we wrote an emulation program to make each machine assume
that it was a hypercube of dimension d and then successively communicate
over all d dimensions7. Since these machines do not, of course, include the
hypercube interconnect as a subset of their connections, we would expect to
see poorer performance than if we were communicating between pairs of iso-
lated processors. However we argue that if there is a linear increase in time
as the dimension of the emulated hypercube increases, we can conclude that
the emulation is a success, since the time to communicate over all dimensions
in a true hypercube is linear in the number of dimensions.

The results of this experiment are given in Figure 3. It can be seen that
the Paragon and SP2 satisfy the linearity requirement reasonably well. On
the Paragon there is a discontinuity in most plots at slightly over 8000 bytes,
but this mirrors the discontinuity in simple communication timings (Figure
1) and should be expected. On the SP2 the plots for dimension 6 and 7
appear to be corrupted by contention at the switch, but the underlying plots
are nevertheless uniformly spaced.

On the CS-2 we have uniformly spaced plots for d = 1; . . . ; 4 but there
are discontinuities going from 4 to 5 and then from 5 to 6. This is because

7for i = 0 to d� 1, j communicates with j � 2i, 0 � j < d

9

0

0.002

0.004

0.006

0.008

0.01

0.012

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

tim
e

(s
ec

)

d=1
2

3

4
5

6

7

8

PARAGON

0

0.002

0.004

0.006

0.008

0.01

0.012

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

tim
e

(s
ec

)

d=1

2

3

4

5

6

7
SP2

0

0.002

0.004

0.006

0.008

0.01

0.012

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

tim
e

(s
ec

)

message size (bytes)

d=1

2
3

4

5

6

CS-2

Figure 3: Hypercube emulation.

10

the Vienna CS-2 does not have a full complement of switches at the higher
levels of the multistage network, leading to contention for switches and com-
munication links.

These results, although welcome, should be interpreted with great care.
We have only shown how these machines perform when communicating across
dimensions. A real hypercube with circuit switched or wormhole routed com-
munications is capable of very powerful communication steps across several
dimensions at a time. The results of our experiment do not necessarily imply
that the Paragon, SP2 and CS-2 can emulate the hypercube in this respect.

When carrying out this experiment on the Paragon, no attempt was made
to map hypercube nodes onto mesh nodes so as to minimize edge contention,
as suggested for the iWarp by Stricker [8]. We do not know of corresponding
mappings for the SP2 and CS-2 and thus the Paragon would have had an
unfair advantage. However, we can see in Figure 3 that the Paragon is doing
quite well, even without an intelligent mapping scheme.

6 Random Permutations

It is often argued that the high speed interconnect of contemporary mul-
ticomputers, coupled with their use of dedicated communication hardware,
frees the programmer from having to be concerned about the mapping of
tasks to processors. According to this line of reasoning the programmer only
has to be concerned about local and non-local accesses, since the high per-
formance interconnect makes communication between a given processor and
all remaining processors equal in cost.

To illustrate the falsity of this argument we measured the time required
to communicate over the edges of random matchings of 64 nodes. This
experiment was carried out on 8� 8 submeshes on the Paragon and 64 node
processor pools on the SP2 and CS-2. 32 pairs of nodes were randomly
selected and made to exchange messages (200 each for the Paragon and CS-
2, 1000 for the SP-2). For each permutation the message size was varied from
0 to 16384 bytes in steps of 1024 bytes. This process was repeated for a total
of 256 random matchings.

If the time required to communicate were indeed independent of the map-
ping, we would expect to see the run times closely clustered together. In
actual fact Figure 4 shows there to be very wide variation. For the Paragon

11

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

tim
e

(s
ec

.)

PARAGON

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

tim
e

(s
ec

.)

SP2

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

tim
e

(s
ec

.)

message size (bytes)

CS-2

Figure 4: 256 random matchings mapped on 64 processors.

12

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

tim
e

(s
ec

)

message size (bytes)

1
2
3
4
5

6
7

8

9

10

11
12

13

14

15

16

Figure 5: Contention on the Paragon.

the variation is about 60% and for the CS-2 about 25%. On the SP-2 the

variation can exceed 100%. In this �gure the individual plots for each of the

256 mappings are not monotonic. It would therefore be meaningless to join
the points with lines.

This experiment illustrates the impact of link and switch contention when

executing matchings, which are the simplest permutations possible. In ac-
tual practice much more complex permutations need to be executed and the

spread of times is likely to be even greater.

7 Contention Overhead on the Paragon

The Paragon has a mesh interconnect and a simple row{column routing

strategy. On this machine it is easy to contrive communication patterns

13

which give rise to link contention, i.e., where a communication link is required
for the transmission of 2, 3, 4 and more messages. A simple way of doing this
is to select a chain of size n, with processors numbered 0; 1; . . . ; n�1, and to
make processor i exchange messages with processor n � i, for 0 � i < n=2.
In this experiment the maximum contention (in the link joining processors
n=2 � 1 and n=2) is n=2. For the case n = 2 only one pair of processors
contends for a link and the contention is 1. For n = 32 processors (the
longest chain possible in the Caltech Paragon) the contention is 16. Figure
5 shows the result of this experiment. As the contention level increases,
the time required goes up steadily. At maximum contention, the time to
communicate increases by a factor of almost 3. The \staircase" in these
plots is due to packetization of messages and each step occurs at the packet
size of 1792 bytes.

At this point in time the routing algorithms for the SP2 and CS-2 are not
well known, nor is there any control over task placement. Thus we are unable
to contrive similar extreme contention experiments. However the results of
Section 6 show that the SP2 and CS-2 also exhibit considerable sensitivity
to communication patterns.

8 Discussion

We have presented the results of several experiments that measure key as-
pects of interprocessor communications on the Intel Paragon, IBM SP2 and
Meiko CS-2. Parallel computers such as these continually evolve as oper-
ating systems mature and hardware is upgraded. Thus the speci�c �gures
presented in this report may soon be superseded. However this research does
bring out several important problems that are not commonly acknowledged.

Firstly, the overhead of interprocessor communication is substantial and
very sensitive to the placement of tasks on processors. Secondly, the e�ects of
contention for communication links and/or switches can be quite severe. This
contention may be caused by the messages of the job itself as well as by inter-
ference from other users' messages. These observations contradict commonly
held beliefs popularized by vendors and parallel computing enthusiasts.

Among other issues that were faced during the course of this work are
the following.

1. The IBM SP2 (under MPI-F) and the the Meiko CS-2 (under mpsc)

14

lack access to a high resolution clock. The user has to go through a

convoluted e�ort to �nd out about this and then link in a clock from

another package. Given that millions of dollars are spent on each of

these machines, and given that the purpose of supercomputers is to

deliver high performance, it is inexcusable for manufacturers to omit

so essential a feature as access to a high resolution clock.

2. On machines that use paging and caching, performance is heavily in-

uenced by the overhead of paging in data blocks and by the speci�c

memory addresses where data transfers originate. These idiosyncrasies

need to be more widely known to programmers who need better tools

to help gauge their e�ects.

3. All three machines evaluated run full
edged operating systems on their

compute nodes. Timer interrupts due to operating systems activity

may disrupt data transfers and make the task of predicting performance

very di�cult.

4. Vendor engineers and programmers often lack understanding of basic

concepts of interprocessor communications. When hardware or soft-

ware problems were uncovered, the author had to spend a great deal

of his time explaining why he was carrying out these experiments.

5. The Paragon and SP2 are run in \glass{house" queuing environments

reminiscent of the 1960's. In some cases this isolates the user from the

machine to the extent that he cannot react rapidly to the output of an

experiment. The Caltech Paragon splits the day into interactive time

and queuing time and alleviates this problem to a great extent.

6. Visualizing the load on a system is important for the experimenter.

The xpartinfo utility on the Caltech Paragon permits a user to see

who is running where. There is no comparable facility on the Cornell

SP2: a request for queue information returns several pagefuls of data

that are di�cult to interpret.

The above critique is designed to highlight areas where improvements can

be made by vendors and computer center administrators. Such improvements

will boost the development of parallel computing by making the onerous task

of parallel programming less burdensome for the user.

15

Acknowledgments

I am grateful to Yousu� Hussaini at ICASE for his encouragement of this

research. I have received valuable assistance and advice from Tom Crock-

ett, David Keyes, Piyush Mehrotra, David Nicol and John van Rosendale.

Discussions with Steve Seidel, Paul Fischer and Xian-He Sun have also been

very helpful.

I wish to thank Hans Zima and Barbara Chapman of the University of

Vienna for hosting my stay in Vienna and for the use of the Meiko CS-2.

Vestica Aleksandar, Thomas Fahringer, Ian Glendenning, and Hans Mortisch

provided generous assistance in Vienna. James Cownie of Meiko was very

helpful in providing information on the high resolution clock on the CS-2.

Access to the supercomputers at Caltech was arranged by Paul Messina.

I wish to thank him and his able sta�: Walker Aumann, Clark Chang, Shay

Chinn, Alex Leung, Jan Lindheim, Heidi Lorenz-Wirzba, Julie Murphy, Mark

L. Neidengard, Gary Dell'Osso, and Elsa Villate, for their alacrity in answer-

ing my queries and patiently tolerating the numerous crashes I caused on their

machines. Thanh Phung, Al Bessey and Ellen Deleganes of Intel helped me

with various problems on the Paragon.

Peter M. Siegel kindly allocated an account on the IBM SP2 at Cornell.

Pat Colasurdo, Cindy Harwzinske, Marcia Pottle, Nikki Reynolds, Rachel

Smith, Daniel Sverdlik and Carol Webster were very helpful during my work

on the SP2.

References

[1] S. H. Bokhari. Communication overheads on the Intel iPSC-860 hypercube.

ICASE Interim Report 10, May 1990.

[2] S. H. Bokhari. Multiphase complete exchange on Paragon, SP2 and CS-2.
Technical Report 95-61, ICASE, September 1995.

[3] Craig Stunkel et al. The SP2 communication subsystem. Technical report,
IBM T. J. Watson Research Center, August 22, 1994.

[4] Message Passing Interface Forum. MPI: A message passing interface standard.

Technical report, University of Tennessee, Knoxville, June 12, 1995.

16

[5] Hubertus Franke. MPI-F: An MPI implementation for IBM SP-1/SP-2. Tech-

nical report, IBM T. J. Watson Research Center, May 1995.

[6] William Gropp, Ewing Lusk, and Anthony Skjellum. Using MPI: Portable

Parallel Programming with the Message{Passing Interface. MIT Press, Cam-
bridge, Massachusetts, 1994.

[7] Hazel Shirley, Robert Reynolds, and Steve R. Seidel. Communication on the

Intel Paragon. Technical Report CS-TR-95-07, Dept. of Computer Science,
Michigan Tech. Univ., July 17, 1995.

[8] Thomas M. Stricker. Supporting the hypercube programming model on mesh
architectures. In Proceedings of the ACM Symposium on Parallel Algorithms

and Architectures, 1992.

17

