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Abstract

The overhead of interprocessor communication is a major factor in

limiting the performance of parallel computer systems. The complete

exchange is the severest communication pattern in that it requires each

processor to send a distinct message to every other processor. This

pattern is at the heart of many important parallel applications. On

hypercubes, multiphase complete exchange has been developed and

shown to provide optimal performance over varying message sizes.

Most commercial multicomputer systems do not have a hypercube

interconnect. However they use special purpose hardware and ded-

icated communication processors to achieve very high performance

communication and can be made to emulate the hypercube quite well.

Multiphase complete exchange has been implemented on three con-

temporary parallel architectures: the Intel Paragon, IBM SP2 and

Meiko CS-2. The essential features of these machines are described

and their basic interprocessor communication overheads are discussed.

The performance of multiphase complete exchange is evaluated on

each machine. It is shown that the theoretical ideas developed for

hypercubes are also applicable in practice to these machines and that

multiphase complete exchange can lead to major savings in execution

time over traditional solutions.
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1 Introduction

Interprocessor communication overhead is one of the key factors that limit

the performance of massively parallel systems. Considerable e�ort is re-

quired to minimize this overhead and no general solutions are as yet in sight.

No amount of special hardware or software can eliminate communication

overhead. This paper concentrates on the complete exchange or all{to{all

personalized communication pattern. This pattern requires each of a col-

lection of n processors to send a unique message to each of the remaining

n � 1 processors. Complete exchange is required in many important paral-

lel algorithms, such as Fast Fourier Transforms, matrix{vector multiply, the
alternating directions implicit (ADI) method for solving partial di�erential
equations, and so on. This is the severest communication requirement that
can be imposed on an interprocessor communication network and serves as
a useful benchmark of the performance of a parallel computer system.

Prior work on the complete exchange has largely focused on hypercube

architectures. Most current commercial multiprocessors are not hypercubes.
However, modern machines have powerful interconnection hardware and can
be made to emulate hypercubes with fair success. We describe the perfor-
mance of multiphase complete exchange, a family of algorithms originally de-
signed for hypercubes, on three contemporary machines: the Intel Paragon,

the IBM SP2 and the Meiko CS-2. We discuss the architectures of these ma-
chines, present their basic performance parameters and then describe how
the multiphase algorithm performs on all three.

2 The Complete Exchange

The complete exchange is a communication pattern that is required in

many important applications such as matrix transposition, matrixvectormul-
tiply, Fast Fourier Transforms and the Alternating Directions Implicit (ADI)
method for solving partial di�erential equations. To understand the data

movement required by this pattern refer to Figure 1 which shows a 4 � 4

block matrix stored on 4 processors. In part (a) of this Figure the matrix
is stored in column order. In part (c) the layout has been changed to row

order. It is clear that to change from (a) to (c), each processor must transmit
a block of data to every other processor. This is shown in part (b) which is
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Figure 1: Complete Exchange on 4 Processors. To change storage of blocks from

column order (a) to row order (c), each processor must send a distinct message to

every other processor (b).

a complete directed graph of four nodes. In general, complete exchange on

n processors can be represented by a complete directed graph of n nodes.
Most of the work to date on algorithms for the complete exchange has

addressed hypercube architectures. Figure 2 shows a hypercube of dimension
d = 4 with n = 2d = 16 processors. Each processor is given a binary label and
two processors are connected with a communication link if and only if their

labels di�er in exactly one bit. Each processor in a hypercube is connected to

d� 1 other processors. As we increase the size of the hypercube, the number
of communication links leaving a processor increases logarithmically with the
number of nodes. This is the main reason for the di�culty of constructing

hypercubes. Nevertheless, hypercubes have enjoyed success since their rich

and recursively de�nable interconnection permits the development of elegant
algorithms for communication. The Intel iPSC-2 & 860 and the nCube2 &

3 are examples of commercially produced hypercubes.
Almost all hypercubes use the \e-cube" routing algorithm for moving

data between processors. In essence this algorithm moves the message from
processor to processor by moving in a direction that successively increases
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Figure 2: A hypercube of dimension d = 4 and size n = 2d = 16. Each node is

labeled in binary. Two nodes are connected if their binary labels di�er in exactly

one bit position.
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the match between current processor and the destination. Thus to travel

from processor 0010 to 1001, the path taken would be: 0010 ! 0011 !
0001! 1001. On modern hypercubes, this message transmission is handled

by special communications hardware and does not disturb the computations

being carried out at intermediate nodes.

The time required to transmit a message from one node to another (as-

suming no contention for communication links) is modeled by the expression

t = �+ �m, where m is the message size in bytes, � the time per byte (which

is the inverse of the communication bandwidth) and � is the startup over-

head, which is due largely to operating system activities required to launch
the message. This expression applies equally well to the non-hypercube ar-
chitectures discussed later in this paper. Over the past decade, improvements
in technology have made � improve from about 0:1�sec to less than 0:01�sec.

However, the startup time has remained in the 50 � 100�sec range.

2.1 Standard Exchange

The standard exchange algorithm was developed by Johnsson & Ho [7].

The following pseudo-code executes on each processor while running this
algorithm. mynumber is the label on each processor, as described in Figure
2. The symbol � stands for bitwise exclusive-or.

Standard exchangef
for j= d� 1 downto 0 dof

if (bit j of mynumber = 0)
message=blocks n=2 to n� 1

else

message=blocks 0 to n=2 � 1
send message to processor((mynumber)� (2j))
shu�e blocks;

g
g

Figure 3 clari�es the operation of this algorithm, which requires a total of

log n transmissions of n=2 blocks each. Blocks of data must be permuted

between each communication step in order to correctly route them to their
destinations. The logarithmic number of transmissions of this algorithm
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Figure 3: The standard exchange algorithm takes d steps. During the jth step,

nodes that di�er in bit position j interchange data (indicated by double headed

arrows in the �gure). The �gure shows the entire algorithm with each double

headed arrow standing for an interchange of messages between the processors at its

endpoints. The label on each arrow is the step in which the exchange is carried out.

Since every possible pair of processors does not interchange messages it is clear

that messages must be forwarded through intermediate nodes to their ultimate

destinations. Shu�ing of the blocks is required to route correctly blocks to their

destinations.
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Figure 4: The direct exchange algorithm takes n � 1 steps. During step i, node

j sends a block to processor i � j. The �gure shows data movement for step

i = 0101. No data permutation is required in this algorithm as each message block

is transmitted directly to its ultimate destination.

reduces the impact of startup time � (discussed above) and leads to very
good performance when message sizes are small.

2.2 Direct Exchange

This algorithm transmits each block directly to its ultimate destination

(Figure 4). It was originally published by Take [10]. Subsequent work on

implementing it on the Intel iPSC-860 hypercubes was carried out by Seidel

[9] and Bokhari [4].

Direct exchangef
for i= 1 to n� 1 do

send block to processor((mynumber)� (i))

g
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This algorithm is asymptotically optimal in that it requires exactly n� 1

messages of one block each to achieve the complete exchange. It is always the

best algorithm to use for very large message sizes. The deceptively simple

exclusive-or schedule guarantees that there is no contention for communi-

cation links under the \e-cube" routing strategy. The fact that each block

is transmitted directly to its destination means that there is no shu�ing

overhead.

2.3 Multiphase Complete Exchange

Multiphase complete exchange is a family of algorithms that compromises
between the starting overhead of direct exchange and the shu�ing and data
transmission overhead of standard exchange. It was developed by Ho &

Raghunath [6] and subsequently investigated by Bokhari [2]. Figure 5 de-
scribes the operation of this algorithm.

A detailed exposition and analysis appears in [3, 8], where it is shown that
each partition of the integer d (the dimension of the hypercube) leads to a
multiphase algorithm for complete exchange. For example, for d = 5 the par-

titions are f1; 1; 1; 1; 1g, f1; 1; 1; 2g, f1; 2; 2g, f1; 1; 3g, f1; 4g, f2; 3g and f5g.
In this set of partitions, f1; 1; 1; 1; 1g corresponds to standard exchange and
f5g to direct exchange. Theory developed in [3, 8] shows that of the set of
partitions of d only equipartitions (partitions in which the largest and smallest
element di�er by at most 1) can ever be optimal. Thus, for d = 5 the optimal

multiphase algorithms are those corresponding to f1; 1; 1; 1; 1g,f1; 2; 2g,f2; 3g
and f5g. It can be proved that the number of these optimal partitions is no
more than 2

p
d. This is a very small number since d, the dimension of the

hypercube, equals log n, where n is the number of nodes. Figure 6 shows the
run times of the family of multiphase algorithms plotted against message size

for a hypothetical hypercube of dimension d = 5. Some algorithms have run

times that are never optimal and are of no interest to us. The three algo-
rithms of interest are the ones corresponding to the partitions f1; 1; 1; 1; 1g,
f2; 3g and f5g because these are the ones that are optimal.
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Figure 5: A multiphase algorithm on a 16 node hypercube. (a) Shows direct

exchanges being carried out separately on two 8 node subcubes. This is followed

(b) by direct exchanges on 8 two node hypercubes. A data permutation step is

required between (a) and (b) to correctly route the data.
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Figure 6: Only multiphase algorithms corresponding to equipartitions can ever

be optimal. The �gure shows what can happen when d = 5.
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Figure 7: The mesh interconnect of a 4�4 Paragon. The circles represent compute

nodes while the squares show special purpose hardware for communication. Mes-

sage routing is done via the \row{column" algorithm explained in the text. The

�gure shows two pairs of processors communicating and contending for a single

edge. Such edge contention can lead to substantial overhead.

3 The Architectures

The machines on which we evaluated the multiphase complete exchange are
the Intel Paragon, IBM SP2 and Meiko CS-2. All three machines are in

commercial production and incorporate special purpose hardware for inter-

processor communication.

3.1 Intel Paragon

The Intel Paragon on which the experiments described in this report
were carried out is located at the Center for Advanced Computing Research
at Caltech. It is a mesh-connected machine with 512 processors arranged in

a 32 � 16 rectangle. Each processor is connected to four neighbors through

special purpose hardware (Figure 7). Each node on this machine has two
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Figure 8: A multistage interconnect of the type used in the SP2 or CS-2. Each

square represents a 4� 4 bidirectional crossbar switch. Any two processors can be

connected to each other by suitably setting the switches. Most of the connections

leading into the topmost layer have been omitted to avoid a congested diagram.

Intel i860 processors (one for computation and one for communication) and

32 MBytes of memory. The i860s run at 50MHz and are capable of 75 MFlops
each. Programming on this machine was done in C augmented with the nx

message passing library. This library permits programs to send and receive
messages from other processors, carry out global synchronization, compute
global sums, etc., via calls to C functions. Message routing on this machine is
done using the \row{column" rule. A message �rst travels along a row until

it reaches the column on which the destination lies. It then travels along the
column until it reaches the destination.

3.2 IBM SP2

The Cornell Theory Center's 512 node IBM SP2 multicomputer was used
for these experiments. The processors on this machine are interconnected
through a multistage switch (Figure 8). Each square box in this �gure rep-

resents a bidirectional 4� 4 switch. In theory each processor can talk to any

other without contention for switches or links. In practice the setting up of

such connections is di�cult to implement on the y and signi�cant degra-

dation due to contention is seen. Each computational node (not shown in
Figure 8) has a POWER2 architecture RS/6000 processor that runs at 66.7
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MHz, has at least 128 MBytes of memory, and is capable of 266 MFlops.

This machine was programmed in C using the MPI message passing library

[5]. MPI provides roughly the same functions on the SP2 as the nx library

does on the Paragon.

3.3 Meiko CS-2

The Vienna Center for Parallel Computing has recently installed a Meiko

CS-2. This is a 128 processor machine interconnected through a multistage

switch similar to that of the SP2 (Figure 8). Each node is a SuperSPARC
running at 50MHz, with 64 MBytes of memory and capable of 100 MFlops.
This machine was programmed in C using the mpsc library which is designed
to be fully compatible with the nx library on the Intel hypercubes and the

Paragon.
While all three machines incorporate powerful interprocessor communica-

tion mechanisms, the programmer still has to take many factors into account
in order to implement e�cient parallel algorithms. These issues are discussed
in detail by Bokhari [1].

4 Performance Measurements

There are 3 key performance �gures of a parallel machine that determine its

success at executing multiphase complete exchange. These are

Communication time: the time required to send a message of m bytes
from one processor to another.

Synchronization time: the time for the machine to execute a barrier (that

is, to ensure that all processors have reached a speci�ed point in the

parallel program.) This is important because multiphase complete ex-
change requires data transfers to be carefully scheduled for correct op-
eration.

Memory copy time: Excluding the purely direct algorithm, all multiphase
algorithms require some amount of data permutation within a single

processor in order to route data blocks to their correct destination.
Thus, memory-to-memory transfer time within the same processor is

an important measure of performance.
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Figure 9: Communication time on the Paragon, SP2 and CS-2.

Figure 9 shows the communication time for all three machines, measured
over the range 0 to 16000 bytes in increments of 64 bytes. The discontinuities
in the Paragon plots are caused by packetization overhead. The spikes on

the plots for the SP2 and CS-2 are caused by interference from other jobs

or by operating system events. Table 1 summarizes this information and
also includes measurements of synchronization and memory copy time. The
expressions for run times are for messages smaller than 8000 bytes, as this

is the range of interest to us as far as the multiphase complete exchange is

concerned.

5 Experimental Measurements

Figures 10 and 11 show the performance of the multiphase complete ex-
change on 32 and 64 processor pools on the three machines under study. On
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Figure 10: Performance of multiphase complete exchange on 32 processors.
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Mem. copy Barrier (�sec) Communication

(�sec/byte) 2d procs. (�sec per byte)

Paragon 0.0140 126d � 113 75 + 0:011m

SP2 0.0043 72d � 52 70 + 0:043m

CS-2 0.0153 17d � 5:6 105 + 0:025m

Table 1: Summary of performance �gures

the Paragon we use 4�8 and 8�8 submeshes while on the SP2 the allocation
of processors is beyond our control. On the CS-2 we obtained measurements

over contiguously numbered sets of processors.
The plots obtained have the general shape predicted by the theory of

[3, 8]. The direct algorithms f5g and f6g are optimal for large message sizes.
The standard algorithms f1; 1; 1; 1; 1g and f1; 1; 1; 1; 1; 1g tend to have good
performance for very small message sizes. The algorithms corresponding to

equipartitions of cardinality 2, that is f2; 3g and f3; 3g are always optimal for
small message sizes. This is very similar to the results for the Intel iPSC-860
hypercube given in [2].

In Figures 10 and 11 we have also plotted the predicted run time of the
two best algorithms based on the performance �gures given in Table 1 and

the formulae in [3]. The agreement here is very poor and the predicted plots
serve only to give a qualitative idea of the shape of the measured plots.
This is because the predicted curves assume a hypercube interconnect which
can execute the multiphase algorithm without any contention for commu-
nication links. Our machines are not hypercubes and su�er from link and
switch contention. Nevertheless these plots show the bene�ts of adopting the

multiphase approach.

The noise or uctuation in the plots for the SP2 are particularly note-
worthy. We believe this to be caused by contention for switches by jobs

other than our own job. Very wide uctuations are encountered on the SP2,
making the task of predicting performance very di�cult.

The intensity of the complete exchange communication pattern stresses

communication hardware and software very severely. On the SP2 we were
unable to run successfully beyond 64 processors because of switch problems
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presumably caused by intense communication. On the Paragon, although we

were able to run on submeshes as large as 16�16, the operating system could

not accommodate the 255 message receives required by the direct algorithm

f8g for the entire range of message sizes. The plot for this algorithm in

Figure 12 stops abruptly at 1728 bytes for this reason.

These experiences, though unpleasant, underline the utility of multiphase

complete exchange as a \stress test" of communication hardware and soft-

ware. We are con�dent that the problems encountered will be resolved by

the respective manufacturers in due course.

6 Conclusions

Interprocessor communication is what makes parallel programming challeng-
ing. This paper has explored the performance of three contemporary parallel
machines when carrying out the complete exchange{the densest communica-
tion pattern possible. We have shown that the multiphase complete exchange
family of algorithms, which were originally developed for hypercubes, per-

form well on modern non-hypercube machines.
The performance of multiphase exchange on these machines does not

match well the �gures predicted from basic performance parameters. This is
because there are complex e�ects of link contention, switch contention, pag-
ing disturbance and overheads due to operating system timer interrupts on

these machines that are not captured by the basic parameters. Furthermore,
although these machines can execute hypercube algorithms with good per-
formance, they are really not hypercubes and thus su�er from a mismatch of

the algorithm to the architecture. This observation demonstrates the falsity
of the commonly held belief that, in modern parallel machines, the matching
of algorithm to architecture is irrelevant. If that had been the case, these

machines would have given us predictable performance, as is the case with

hypercube implementations of the same algorithms [2].
The complete exchange problem is severe enough to have uncovered sev-

eral problems with the communication hardware and software of two of the
machines studied. This points out the utility of using it as an extremely

stressful test of parallel architectures.

Future work in this area should address the problem of designing exchange
algorithms that take the speci�c architectures of these and other modern
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machines into account. It would also be useful to study the Paragon, SP2

and CS-2 in greater detail, so that a more precise performance model can

be developed. Such a model will be invaluable in permitting practitioners to

evaluate the e�ciency of their parallel algorithm implementations.
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