
NASA-CR-19928*

August 1995 UILU-ENG-95-2230
CRHC-95-19

Center for Reliable and High Performance Computing

Acceleration Techniques for
Dependability Simulation

James David Barnette

(NASA-CR-19928^) ACCELERATION
TECHNIQUES FOR DEPENDABILITY
SIMULATION M.S. Thesis (Illinois
Univ. at Urbana-Champaiqn) 62 p

N96-14502

Unclas

G3/60 0065034

Coordinated Science Laboratory
College of Engineering
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Approved for Public Release. Distribution Unlimited.

https://ntrs.nasa.gov/search.jsp?R=19960007337 2020-06-16T05:18:29+00:00Z

UNCLASSIFIED , _
OP THIS PAQ6

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION

Unclassified
2a, SECURITY CLASSIFICATION AUTHORITY

2b. OECLASSIFICATION / DOWNGRADING SCHEDULE

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

UILU-ENG-95-2230 (CRHC-95-19)

6a NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL
' Coordinated Science Lab f" «PP«"o/e)
University of Illinois N/A

ib. RESTRICTIVE MARKINGS

None
3 . DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release;
distribution unlimited

5. MONITORING ORGANIZATION REPORT NUMBER(S)

7a. NAME OF MONITORING ORGANIZATION

Office of Naval Research, Comp.
National Aeronautics and Space

Sci. Corp. ,
Administration

6c ADDRESS (Cty, State, and Z/PCode)

1308 W. Main St.
Urbana, IL 61801

7b. ADDRESS (Oty, State, and ZH»Code)

Arlington, VA San Diego, CA
Hampton, VA

8a.

8c

NAME OF FUNDING /SPONSORING
ORGANIZATION

7a
ADDRESS (City. Statt. and ZIP Code)
7b "

8b. OFFICE SYMBOL
(If applictbit)

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

10. SOURCE OF FUNDING NUMBERS

PROGRAM
ELEMENT NO.

PROJECT
NO.

TASK
NO.

WORK UNIT
ACCESSION NO.

11. TITLE (Include Security Clauificttion)
Acceleration Techniques for Dependability Simulation

12. PERSONAL AUTHOR(S) _ ., _ _„ -
James David Barnette

13a. TYPE OF REPORT

Technical
13b. TIME COVERED

FROM TO
14. DATP OF RFPQRT {Ve*r, Afontn, Day)

August 1995
15. PAGE COUNT

60

16. SUPPLEMENTARY NOTATION

17. COSATI CODES
FIELD GROUP SUB-GROUP

18. SUBJECT TERMS (Continue on reverse if nttesury and identify by block number)
simulation, simulation model, discrete-event simulation

19. ABSTRACT (Continue on reverre if neceiury and identify by Woe* number)

As computer systems increase in complexity, the need to project system
performance from the earliest design and development stages increases.
We-have to employ simulation for detailed dependability studies of large
systems. However, as the complexity of the simulation
model increases, the time required to obtain statistically significant
results also increases. This paper discusses an approach that is
application independent and can be readily applied to any process-based
simulation model. Topics include background on classical discrete event
simulation and techniques for random variate generation and statistics
gathering to support simulation.

20. DISTRIBUTION /AVAILABILITY OF ABSTRACT

S UNCLASSIFIED/UNLIMITED O SAME AS RPT Q OTIC USERS

22a NAME OF RESPONSIBLE INDIVIDUAL

21. ABSTRACT SECURITY CLASSIFICATION

Unclassified
22b. TELEPHONE (Include Arts Cod*) 22c. OFFICE SYMBOL

DO FORM 1473,84 MAR 83 APR edition may b« used until exhausted.
All othtr edition* are obsolete.

SECURITY CLASSIFICATION OF THIS PAGE

ACCELERATION TECHNIQUES FOR DEPENDABILITY SIMULATION

BY

JAMES DAVID BARNETTE

B.S., Oklahoma State University, 1991

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Electrical Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 1994

Urbana, Illinois

Ill

ACKNOWLEDGEMENTS

I would like to express my appreciation to my thesis advisor, Professor Ravi K. Iyer, for all of

his assistance and guidance throughout this thesis work. I would also like to thank my friends at

the Center for Reliable and High-Performance Computing for their help. In particular, I would

like to recognize Kumar Goswami, who developed the original version of DEPEND and spent

many hours discussing its future direction, and Darren Sawyer, who provided many valuable

real world suggestions to improve the tool. Additionally, I would like to thank my friends at

InterVarsity Christian Fellowship for much needed support and encouragement during these

past two years. Finally, I would like to thank my family for their encouragement throughout

my college years.

IV

TABLE OF CONTENTS

Page

1. INTRODUCTION 1

2. CLASSICAL DISCRETE EVENT SIMULATION 3
2.1 Event-Scheduling Strategy 6
2.2 Activity-Scanning Strategy 9
2.3 Process-Interaction Strategy 13

3. RANDOM VARIATE GENERATION AND STATISTICS GATHERING 18
3.1 Uniform Random Number Generation 18

3.1.1 Properties of good random number generators 20
3.1.2 Linear congruential generators 20
3.1.3 Tausworthe generators 22
3.1.4 Inversive congruential generators 23

3.2 Random Variate Generation 24
3.2.1 In verse-transform method 24
3.2.2 Acceptance-rejection method 25
3.2.3 Composition 26
3.2.4 Convolution 27

3.3 Statistics Gathering and Reporting 27

4. MOTIVATION 28

5. COMPILER-BASED PROCESS-INTERACTION STRATEGY 30
5.1 CPU/Disk Model 32
5.2 Source of Speedup over Process-Interaction Simulation 36

6. DETAILED DESCRIPTION OF OUR SIMULATION TECHNIQUE 38
6.1 Extended C++Precompiler 40
6.2 Optimization Techniques 43
6.3 Parallelization Techniques 46

7. CASE STUDY 49

8. CONCLUSIONS 51

REFERENCES 52

VI

LIST OF TABLES

Table Page

3.1: CDFs and their inverses for several common distributions 24
4.1: Register counts for several recent microprocessors 29
7.1: Simulation results for the four-processor ring system 50

Vll

LIST OF FIGURES

Figure Page

2.1: Relationship between the simulation strategies 4
2.2: CPU/Disk system model 5
2.3: Event-scheduling simulation run-time environment 6
2.4: Event-scheduling pseudocode for the CPU/disk model 7
2.5: Activity-scanning simulation run-time environment 10
2.6: Activity-scanning pseudocode for the CPU/disk model 11
2.7: Process-interaction simulation run-time environment . . 13
2.8: Process-interaction pseudocode for the CPU/disk model 15
3.1: Cycle length, tail length, and period of a random-number generator 19
3.2: Feedback shift register implementation of a random-number generator 22
3.3: Feedback shift register implementation of :c7 + x + 1 23
3.4: Acceptance-rejection method for generating a beta distribution 26
5.1: DEPEND simulation-based environment 31
5.2: Compiler-based process-interaction run-time environment 31
5.3: Process-interaction pseudocode for the CPU/disk model 32
5.4: Event pseudocode for the RequestGenerator process after transformation ... 33
5.5: Event pseudocode for the DiskServer process after transformation 34
6.1: The main event list data structures 39
6.2: Example source code illustrating keywords 41
6.3: Control flow graph for the memory scrubbing process 42
6.4: Activation record for memory scrubbing coroutine 43
6.5: Coroutine creation and event functions for the memory scrubbing process . . 44
6.6: Optimized control flow graph for the memory scrubbing process 45
6.7: Example to illustrate time-advancement optimization 46
6.8: Time-advancement optimized code 46
6.9: Network of pods interconnected by ports 48
7.1: Four processor, bus-connected ring 49

1. INTRODUCTION

As computer systems increase in complexity, the need to project system performance from

the earliest design and development stages increases. We have to employ simulation for detailed

dependability studies of large systems, as analytical models do not provide an understanding of

the component interactions. The component models can incorporate such details as the actual

communication protocols, operating system algorithms, and on-line diagnostic and maintenance

procedures used in the simulated system.

Unfortunately, as the complexity of the simulation model increases, the time required to

obtain statistically significant results also increases. This is a particularly difficult problem for

dependability analysis, because faults are rare events. When the system is being modeled in

detail, the issue may be less with the rarity of the fault, but more with the overall time needed

to model the system behavior occurring before, during, and after each fault.

Fortunately, several approaches exist for reducing this simulation time explosion. These

include distributed simulation [1, 2, 3], importance sampling [4, 5] and hybrid/hierarchical

simulation [6] among others. All of these approaches may be categorized as somewhat "ap-

plication dependent." For example, many importance sampling techniques require that fault

arrivals be exponentially distributed. Such techniques cannot be applied to a system where

the effects of latent faults and on-line diagnostics are modeled. Even distributed simulation

requires intelligent model partitioning and scheduling to achieve reasonable speedup [7, 8].

Our approach, on the other hand, is "application independent" and can be readily applied to

any process-based simulation model. We use compiler-based techniques to translate, optimize,

and parallelize a process-based model into a hybrid process-based/event-driven model. This

hybrid model performs much better because we avoid context-switching and certain scheduling

overheads that are inherent in process-based run-time systems. Through the use of these

techniques, we have obtained up to a 60 times speedup on some models.

This acceleration approach grew out of our need to develop an extremely fast, yet practically

useful simulation tool for system dependability analysis. Here the issues were twofold, to

provide an environment that facilitates modeling (e.g., object-oriented paradigm, process-

based specification) and yet provide the speed of simpler simulation tools. The first generation

of this tool was named DEPEND and has proven quite useful in computer system dependability

studies [9, 10, 11,28].

Chapter 2 provides background on classical discrete event simulation including the three

classical simulation world views: event-scheduling, activity-scanning, and process-interaction.

Chapter 3 describes techniques for random variate generation and statistics gathering to support

simulation. Then, Chapters 4 and 5 motivate the need for and describe the key technique

presented in this thesis. Chapter 6 provides a more detailed description of the simulation

environment and the compiler-based techniques that we employed. Chapter 7 provides a

preliminary evaluation of this approach with a simple case study. Finally, Chapter 8 contains

the conclusion and discusses possible future work.

2. CLASSICAL DISCRETE EVENT SIMULATION

In this chapter, we describe discrete event simulation including the three classical simulation

strategies or world views. Discrete event simulation concerns the modeling on a computer of

a system in which state changes can he represented by a collection of discrete events. These

events can occur at regular or varying intervals of time. If the system can be adequately

described as having events all of which occur at constant intervals, then a simpler approach

may be used which avoids the overhead associated with the maintenance of an event list. Here,

we concern ourselves with systems which can be described by events occurring at irregular

or varying time intervals. Zeigler offers a theoretical formalism for discrete event simulation

in [12, 13].

In a discrete event system, change takes place as each event occurs. No state changes

occur to entities during the time between event occurrences. Thus, there is no need to simulate

this time in our models; it can be skipped over. As a result, all modern computer simulation

environments use the event driven approach to time advancement. After each event has executed

(changing the state of the system), time is advanced to the time of the next event, where required

state changes are made again. In this way, a simulation is able to skip over the inactive time

whose passage must be endured in the real world. Thus, the event list becomes the central

element of any discrete event simulation environment.

In modeling a system for computer simulation, there are two kinds of intercomponent

relationships: mathematical and logical. Mathematical relationships exist between variables

Process

A

Event 1
print
program
executed

* Activity

\

i

Event 2 Event 3
disk printing
reading begun
begun

'

Event 4
disk
reading
completed (EOF)

Event 5
printing
completed

time

Figure 2.1: Relationship between the simulation strategies

associated with system components. For example, if D is the number of waiting requests for

a disk drive in a computer system, then D is incremented when a new request arrives and

decremented when the requested read/write operation is completed. Logical relationships, on

the other hand, describe a condition that must hold before a particular event occurs. Consider

the disk example again. When a disk request is completed, the disk becomes idle, if no requests

are still pending; otherwise, the disk remains busy and begins serving the next request. The

expression of mathematical and logical intercomponent relationships differs between the three

classical simulation strategies, but before we describe the strategies, we need to first define

some basic concepts.

The concepts of event, activity, and process are important when building a model of a

system. As already defined, an event signifies a change in state of an entity. An activity is a

collection of operations that transform the state of an entity. And, a process is a sequence of

time-ordered events. To illustrate the relationships among these concepts, consider a computer

system with a disk and a printer. A program to print a file is executed which repeatedly reads

from the disk and writes to the printer until the file has been completely printed on the printer.

Figure 2.1 shows the relationships between these three concepts [14, page 24].

These three concepts lead to the three classical simulation strategies or world views. The

event-scheduling strategy emphasizes a detailed description of the steps that occur when each

"S

CPU

Disk Reque
Queue

Request

Generator

st

Disk
Disk request
completed

Figure 2.2: CPU/Disk system model

event occurs. In this strategy, both mathematical and logical relationships are explicitly spec-

ified. In the case of logical relationships, this results in checking the condition at every point

where the dependent event may be triggered.

The activity-scanning strategy emphasizes the review of activities to be initiated or ter-

minated each time an event occurs. Only those activities with logical relationships to other

system components need be reviewed. In this strategy, mathematical relationships are explicitly

specified as in the event-scheduling strategy.

The process-interaction strategy emphasizes the progress of an entity from its arrival

event through its departure event. Here, both mathematical and logical relationships are

handled implicitly by the simulation environment. For example, first-come/first-serve queues

automatically block the invoking process until it reaches the head of the queue.

More recently Evans developed the engagement strategy as a combination of the process-

interaction and activity-scanning strategies [15].

We will use a simple model of a CPU and disk subsystem to demonstrate each of the

simulation strategies (see Figure 2.2). Here the CPU is modeled by a random disk access (read

or write) request generator, and the disk is modeled as having a certain average seek time,

rotational latency, and transfer rate. The events using the event-scheduling strategy for such a

model might be the generation of a new disk request, the initiation of service of a disk request,

and the completion of service for a disk request.

In order to generate the disk requests and the components of the disk access time, vari-

ous random variate generators have to be employed. The random variates include uniform,

exponential, and normal distributions among others. In a deterministic computer system, it is

not possible to generate a truly random stream of numbers, rather, the computer uses various

Simulation Engine

Main Event List

Time

. . .

Event

. . .
_ - -

User-defined
Event subroutines

Queues with
Statistics Gathering

Report Data
Collection and
Generation

Random Variate
Generators

Report

Figure 2.3: Event-scheduling simulation run-time environment

numerical techniques to generate a sequence of numbers that have good statistically random

properties. These streams inevitably depend on an initial "seed" value which determines the

sequence of numbers to be generated. Generally nonuniform random variates are generated by

drawing one or more uniform pseudorandom numbers. These techniques will be discussed in

Chapter 3.

We will now illustrate each of the three world views using a simple CPU/disk model as a

demonstration vehicle.

2,1 Event-Scheduling Strategy

The event-scheduling strategy represents a straightforward implementation of event-driven

simulation. As in all of the simulation strategies, the event list is at the heart of the simulation

providing a time ordering of events as the simulation progresses. A simplified diagram of the

simulation run-time environment for the event-scheduling strategy is given in Figure 2.3.

A model such as this CPU/disk system could be used to determine the distribution of

service times (time from request to completion) or the distribution of waiting times in the

queue. Various request generation patterns could be tried to determine their effect on the above.

Or, the disk parameters could he modified to determine the sensitivity of the model to small

changes in disk system performance. The pseudocode for this model appears in Figure 2.4.

GenerateNewRequest:

1. Draw number of sectors to access from an exponential distribution rounding to
the nearest integer

2. Enqueue the request onto the disk request queue

3. If the disk is not busy, then schedule a BeginService event to execute at the
present simulation time

4. Draw an interarrival time from an exponential distribution

5. Schedule a GenerateNewRequest event for the current time + interarrival time

BeginService:

1. Take next request from the head of the disk request queue

2. Compute service time as the sum of the seek, rotational latency, and transfer
times

3. Schedule a CompleteService event for the current time + service time

CompleteService:

1. Mark the service as completed and log waiting time and service time

2. If the queue is not empty, schedule a BeginService event to execute at the present
simulation time

Figure 2.4: Event-scheduling pseudocode for the CPU/disk model

8

After this model has been executing for awhile and just after a BeginService event was

executed, the event list could contain the following.

Event list

Time
43
47

Event
GenerateNewRequest
Com pie teS ervice

The event list enforces causality by executing events in time order. In this case, the simu-

lation would proceed by setting the current time to 43 and executing the GenerateNewRequest

event which would add a new request to the disk request queue and schedule a new Generate-

NewRequest event at some future time > 43. If we assume 50, then the event list after the

execution of the event at 43 is as follows:

Event list

Time
47
50

Event
CompleteService
GenerateNewRequest

The simulation would proceed by setting the current time to 47 and executing the Complete-

Service event. Since the disk request queue was not empty, it would immediately schedule a

BeginService event at time 47. Thus, the event list would appear as follows after the execution

of this CompleteService event:

Event list
Time

47
50

Event
BeginService
GenerateNewRequest

Simulation would proceed by setting the current simulation time to 47 and executing the

BeginService event. This event would schedule a CompleteService event for some future time

(could be before or after 50). If the event is scheduled to complete after time 50, then the

sequence of events is the same as it was at time 43 and the simulation will proceed in a similar

pattern until completion.

As can be seen in this example, the event list and event dispatcher are central to the

simulation. As models increase in complexity, the number of events simultaneously scheduled

can increase dramatically, although some complex models are structured in such a way that

only a few events are scheduled on the event list at a given time. For these models, a simple

linked-list is adequate to maintain time ordering; however, where many events are on the event

list at a time, a more complex data structure such as a heap or some indexing scheme should

be employed. A good simulation environment should permit the simulation user to select the

appropriate data structure. Of course, the event dispatcher must also be efficient since it too is

in the critical path between each event.

2.2 Activity-Scanning Strategy

Conceptually, the activity-scanning strategy classifies events according to two categories,

B- and C-activities. B-activities are those which are bound to occur at some future point in time;

they correspond to mathematical relationships in the system being modeled. As such, these

are placed on the event list as in the event-scheduling approach. C-activities are those which

occur as a consequence of another activity and correspond to logical relationships in the system

being modeled. Unlike the event-scheduling approach, in the activity-scanning strategy, these

events are placed on a special conditional event list which is scanned after each B-activity is

executed, A given C-activity will only be executed when its associated condition evaluates to

true (e.g., if condition, then execute the C-activity).

The event scheduler maintains a list of B-activities and the time at which they occur. Time

advances to the first scheduled B-activity, which is executed by invoking the associated event-

handling subroutine. This subroutine may change state such that one or more C-activities

are activated. Upon return, the simulator scans all C-activities and executes those that were

activated. When all activated C-activities have been executed, the system then advances time to

the next B-activity and repeats the above procedure. Simulation proceeds until there are no more

B-activities to execute. A simplified diagram of the activity-scanning run-time environment is

given in Figure 2.5.

10

Simulation Engine

Bound Activity List

Time Activity

Conditiona
Condition

»

»

1 Activity List

Activity
i.z- ------

User-defined Condition
& Activity Subroutines

Condition
niJ..-*>

.nil ..-•>

Activity Queues with
Statistics Gathering

Report Data
Collection and
Generation

Random Variate
Generators

Report

Figure 2.5: Activity-scanning simulation run-time environment

In our CPU/disk model, the B-activities are request generation and end service and the only

C-activity is begin service. The pseudocode for the CPU/disk model using the activity-scanning

strategy appears in Figure 2.6.

For this model, the conditional event list would contain a single entry for the BeginSer-

viceActivity event. After this model has been executing for awhile and just after a BeginSer-

viceActivity event was executed (i.e., the disk is busy), the bound event list could contain the

following.

Event list

Time
43
47

Event
GenerateRequest
EndServiceActivity

The event list enforces causality by executing bound events in time order. In this case, the

simulation would proceed by setting the current time to 43 and executing the GenerateRequest

event which would add a new request to the disk request queue and schedule a new Gener-

ateRequest event at some future time, say 50. After executing the GenerateRequest event, the

simulator engine would scan each conditional activity and check if the associated condition

evaluated to true, and, if so, execute that conditional event. Since the disk is currently busy, the

11

GenerateRequest: Bound activity

1. Draw number of sectors to access from an exponential distribution rounding to
the nearest integer

2. Enqueue the request onto the disk request queue

3. Draw an interarrival time from an exponential distribution

4. Schedule a GenerateRequest event for the current time + interarrival time

BeginServiceActivity: Activate if disk request queue not empty and disk not busy

1. Take next request from the head of the disk request queue

2. Compute service time as the sum of the seek, rotational latency, and transfer
times

3. Schedule an EndServiceActivity event for the current time + service time

4. Mark the disk as busy

EndServiceActivity: Bound activity

1. Mark the service as completed and log waiting and service times

2. Mark the disk as idle

Figure 2.6: Activity-scanning pseudocode for the CPU/disk model

12

condition associated with the BeginServiceActivity is not met. Thus, the conditional activity is

not executed at this time. The event list after the execution of the event at time 43 is as follows:

Event list

Time
47
50

Event
EndServiceActivity
GenerateRequest

The simulation would proceed by setting the current time to 47 and executing the End-

ServiceActivity event. This would remove the request and mark the disk as idle. Then the

simulator would scan the conditional activity list and determine that the BeginServiceActivity

was activated. Thus, it would now execute the associated event subroutine. This would then

schedule an EndServiceActivity for some time after time 50, say 59. At this point the event list

would be as follows:

Event list

Time
50
59

Event
GenerateRequest
EndServiceActivity

We are back to the case we started with.

As can be seen in this example, the bound event list, event dispatcher, and conditional event

list are central to the simulation. As models increase in complexity, the number of conditional

events will also increase. In addition, as in the event-scheduling approach, the bound list can

grow quite large. Clearly the data structure used to implement these lists significantly affects

the run-time performance of the simulation.

The advantage of this approach over the event-scheduling approach is that the condition

triggering each conditional activity is associated with that activity rather than being distributed

into many other events. However, there is a cost. The run-time system must now scan all

conditional activities after each bound activity is executed to see if they are triggered. Thus

activity-scanning provides for an increase in modularity, but at a run-time cost that, in complex

models, could grow quite large. The activity-scanning strategy is sometimes extended by

having multiple conditional event lists, one associated with each bound event in the system.

This approach reduces the time wasted in needlessly scanning events that will not be activated.

13

Simulation Engine

Ma

Time

. . .

in Event List

Process/stack
*

_ -

User-defined
Sim. Processes

Queues with
Statistics Gathering

Report Data
Collection and
Generation

Random Variate
Generators

Report

Figure 2.7: Process-interaction simulation run-time environment

2.3 Process-Interaction Strategy

In the process-interaction strategy, a system is modeled as a collection of cooperating

simulation processes. These simulation processes, like threads, execute in a single memory

space. However, only the simulation process containing the current event is ready to execute at

any given time. Such restricted threads are sometimes called semi-coroutines [16]. Depending

on the facilities provided by the operating system, simulation processes may be implemented

using threads, coroutines, or a custom machine-dependent package to provide the semantics

required for simulation processes. We will refer to the processes in a process-interaction model

as simulation processes.

Unlike the event-scheduling and activity-scanning strategies, the flow of control through a

process-interaction model is captured implicitly by the simulation process. Processes interact

with each other through resource queues and other synchronization mechanisms such as barrier

synchronization and mailboxes. Note that in the case of operating system and network simu-

lations, the process-interaction strategy matches very closely to the way the system is actually

defined. In fact, real operating system processes can be integrated with a process-based simula-

tion with little or no changes to the code. This permits more realistic modeling of fault handling

algorithms in dependability simulation. A simplified diagram of the process-interaction run-

time environment is given in Figure 2.7.

14

The primary difficulty with the process-interaction strategy is that executing an event now

corresponds to reactivating a simulation process. The reactivation of simulation processes is

controlled by the list of future events and generally involves saving all user-visible CPU registers

on the stack associated with the previous simulation process, switching to the stack associated

with the next simulation process, restoring CPU registers from the stack, and returning control

to the next simulation process through a subroutine return statement. It is important to note that

the context switches between simulation processes never preempts a simulation process; the

simulation process voluntarily returns control-to the simulation engine whenever it waits for a

future time or event to occur (the operating system is free to preempt the simulation program

to run other programs).

In the case of the process-interaction strategy, our CPU/disk model is decomposed into two

simulation processes, the request generator and disk server. Note that now the begin and end

disk service events are combined into a single simulation process. This process waits for a

request to arrive and services the request by waiting for the computed service time to elapse.

This process is repeated until the simulation is terminated either by a limit on the number of

disk requests, the simulation time or the run-time. The pseudocode for the CPU/disk model

using the process-interaction strategy appears in Figure 2.8.

After the model has been initialized, but before the simulation has actually begun, the event

list would appear as follows:

Event list

Time
0
0

Process context
Beginning of RequestGenerator
Beginning of DiskServer

Stack contents
Empty
Empty

The simulation would proceed by setting the current time to 0 and activating the Request-

Generator process at the beginning using an initially empty stack. The process would execute

up through line l(b) which would schedule the RequestGenerator process to reactivate at the

computed interarrival time with the reactivation point being after line l(b). If we assume

that the computed interarrival time was 8, then the event list after the initial execution of the

RequestGenerator process is as follows:

15

RequestGenerator:

1. while (!done)

(a) Draw an interarrival time from an exponential distribution
(b) Wait for the computed interarrival time to pass
(c) Draw number of sectors to access from an exponential distribution rounding

to the nearest integer
(d) Enqueue the request onto the disk request queue

DiskServer:

1. while (Idone)

(a) Dequeue a request from the disk request queue (implicitly waiting, if none
available)

(b) Compute service time as the sum of the seek, rotational latency, and transfer
times

(c) Wait for the computed service time to pass
(d) Mark the service as completed and log waiting and service times

Figure 2.8: Process-interaction pseudocode for the CPU/disk model

Event list
Time

0
8

Process context
Beginning of DiskServer
After line l(b) of RequestGenerator

Stack contents
Empty
Local vars.

Next, the simulation engine would activate the DiskServer process at the beginning using

an initially empty stack. The process would then execute up to line l(a) where it attempts to

dequeue a disk request. Since there are no requests on the disk request queue at this time, the

DiskServer process is removed from the event list and placed on the waiting list that is built-in

to the queue. Thus, the event list would appear as follows after the initial execution of the

DiskServer process:

Event list
Time

8
Process context
After line l(b) of RequestGenerator

Stack contents
Local vars.

Next, the simulation engine would set the current time to 8 and reactivate the RequestGen-

erator process after line l (b) restoring any local variables by restoring the stack. When this

16

process enqueues a disk request in line l(d), the disk request queue will automatically place the

DiskServer process in the event list scheduled for the current time. Then the RequestGenerator

process continues execution looping back to lines l(a) and (b) where it again draws a random

interarrival time and reschedules itself to reactivate at the current time plus the computed inter-

arrival time, with the reactivation point being after line l(b). If we assume that the computed

interarrival time was 6, then the event list after the execution of the RequestGenerator process

is given below.

Event list

Time
8

14

Process context
In dequeue subroutine

After line l(b) of RequestGenerator

Stack contents
Dequeue local vars.
Return after line l(a) of DiskServer
DiskServer local vars.
RequestGenerator local vars.

Next, the simulation engine would reactivate the DiskServer process in the Dequeue sub-

routine restoring the stack so that a subroutine return from the Dequeue subroutine will return

to the DiskServer process. At this point, the DiskServer process computes a service time and

reschedules itself to reactivate at the current time plus the computed service time with the

reactivation point being after line l(c). If we assume that the computed service time was 4,

then the event list after the execution of the DiskServer process is as follows:

Event list
Time

12
14

Process context
After line l(c) of DiskServer
After line l(b) of RequestGenerator

Stack contents
Local vars. for DiskServer
Local vars. for RequestGenerator

Next, the simulation engine would set the current time to 12 and reactivate the DiskServer

process after line l(c) restoring any local variables by restoring the stack. This process would

then mark the current request as completed and loop back to line l(a) where it would attempt to

dequeue another disk request from the queue. Since the queue is once again empty, this would

remove the DiskServer process from the event list and place it on the waiting list at the disk

request queue. At this point, the event list would appear as follows:

17

Event list

Time
14

Process context
After line l(b)of RequestGenerator

Stack contents
Local vars.

We are back to the third event list condition that occurred above. Note that in the process-

interaction strategy, queues take an active role in the simulation process. The queue blocks the

dequeueing process until an entry is available and reactivates the process as soon as an entry

is available. In general, a request queue will contain at least two internal queues: the actual

request queue and the queue of blocked readers. If the queue has a maximum capacity, then it

will also maintain a queue of blocked writers. One very positive effect of this approach is that

the model itself requires no "nudging" signals as required in the event-scheduling strategy while

avoiding unnecessary condition checks as required by the activity-scanning strategy. Note that

the abstractions used in the process-interaction strategy are ideal for modeling operating systems

and their components. This eases the task of the simulationist in implementing computer system

models as they inevitably model parts of the operating system behavior.

18

3. RANDOM VARIATE GENERATION AND STATISTICS GATHERING

Simulation of computer systems normally requires the generation of random number se-

quences to provide input stimuli as well as internal response times. These random number

sequences must obey the required probability law governing each component in the system.

Among the common requirements are streams of random numbers that are independent and

identically distributed according to the exponential, hyperexponential, normal, or Weibull

distribution.

Thus, the simulation environment must have the capability to produce random variates from

a variety of distributions. Fortunately, variates from a wide variety of theoretical and empirical

distributions can be generated provided only that a sequence of independent random variates,

each with uniform distribution on the interval (0, 1), can be generated. Such a random variate

is often referred to as a uniform deviate.

We will describe some of the common techniques to generate uniform deviates in Sec-

tion 3.1. In Section 3.2 we will describe how to generate random variates given a stream of

uniform deviates.

3.1 Uniform Random Number Generation

The most common method generates the next random number in a stream of random numbers

as a function of one or more previous random numbers. Since these random numbers are

19

Seed

*-Tail-*p Cycle length-

Period

Figure 3.1: Cycle length, tail length, and period of a random-number generator

produced by a deterministic algorithm, they are not truly random, rather, they are pseudorandom

numbers which satisfy various statistical properties such as independence and uniformity. Note

that pseudorandom numbers are sometimes more desirable than truly random numbers as they

are repeatable. This repeatability greatly simplifies the debugging and validation of models.

Of course, if multiple runs are needed to produce statistically valid results, we have to ensure

that each run is started at a different point in the random number sequence; otherwise, all runs

would produce the same results. This starting position is called the seed.

Consider the following random number generation function,

A. = 5;i:,,._i + I (mod 8).

If we start with the seed, .<-0 = 2, the first 16 numbers obtained by this procedure are 3, 0, 1,

6, 7, 4, 5, 2, 3, 0, 1, 6, 7, 4, 5, 2. Note that the number generated all lie between 0 and 7 and

after the 8th number, the sequence repeats. In other words, this function generates only eight

unique numbers in a cyclic repetition. Thus, this generator has a cycle length of eight. Some

generators do not repeat an initial part of the sequence. This part of the sequence that they do

not repeat is called the tail. In these cases, the period of the generator consists of the sum of

the tail length and the cycle length. Figure 3.1 illustrates the tail, cycle length, and period of a

random-number generator [16, page 438].

Among the classical methods for generating sequences of uniform random numbers are

the linear congruential and Tausworthe generators [16, 17, 18]. In addition, recent research

by Eichenauer and Lehn indicates that a new technique known as the inversive congruential

20

generator offers improved statistical properties when compared to those for the classical tech-

niques [19, 20]. Graham compared four combined random number generators that provide an

increased period and improved statistical properties [21].

3.1.1 Properties of good random number generators

A good random number generator should be computationally efficient and should generate a

sequence of numbers where successive values are both independent and uniformly distributed.

Computational efficiency is important as simulations typically require several thousand or

more random numbers to be generated for each run. Successive values have to be statistically

independent (free from significant correlation) from each other in order to produce statistically

valid results from the simulation runs. In order to obtain statistical independence, it is necessary

that the random number generator also have a large period. This large period guarantees that

the random number sequence will not recycle. When the sequence recycles, we can no longer

be certain that our simulation will continue to produce useful results as our assumption of

independence may become invalid.

Computational efficiency and period size are easy to determine; however, statistical inde-

pendence and uniformity require that the random number generator pass a battery of tests.

3.1.2 Linear congruential generators

A linear congruential generator produces a series of positive integers x, between 0 and

some positive integer m. The following equation describes how to generate the next random

number in the stream using a linear congruential generator.

Xi = axi-\ + c (mod m) (3.1)

where a is a positive integer and c is a nonnegative integer. As can be seen, the example used at

the beginning of this section was a linear congruential generator with a = 5, c = 1, and m = 8.

We call a the multiplier, c the increment, and m the modulus. The seed of this stream is

simply XQ. Some of the advantages of this simple formula are (1) Statistical properties of the

21

resulting sequence are reasonably well-understood permitting us to select optimal values of a,

c, m, and the seed, XQ; (2) it is computationally and memory efficient; and (3) the sequence can

be easily reproduced by saving the seed. Over the years, a number of studies have investigated

the statistical qualities of these random generators and have determined a few statistically

adequate values for o, c, and m [18, 21]. Also note that the special case when c = 0 is called

the multiplicative congruential method.

The period of a linear congruential generator is bounded by the modulus; thus, the modulus

m should be large. In order for mod m calculations to be efficient, m. should be a power of 2

permitting mod 77? to be calculated by truncating the result to k bits where m = 2k. In order

to generate the maximum possible period, c must not be set to 0. In fact, c must be relatively

prime to -m. Further, if « - 1 is a multiple of 4, we are guaranteed a full-period generator.

If c = 0 is chosen, ihen m must not be a power of 2 in order to obtain full period. Note that

when c = 0, the full-period length is 771. — 2 since 0 must be excluded. Care must be taken to

ensure that overflow does not occur as this will give incorrect results when the modulus differs

from the maximum unsigned value representable on the computer system. See [22, 23] for a

statistical analysis of multiplicative congruential random number generators for optimal values

of the a parameter where 777. = 231 — 1 is chosen.

Frequently, it is desirable to allocate ranges of random numbers to several streams. To do

this while preserving the statistical independence of the streams, we have to be able to predict

the nth next random number to be generated by a given linear congruential generator so that we

can set the seed for the next stream to start after n random numbers in the previously allocated

stream. The following formula, also a linear congruential generator, will predict the nth next

random number in a given stream:

•L-, = an.t:,_n + c -- (mod m). (3.2)

For other types of random number generators, tables of seeds separated by some fixed amount,

say 10,000, are used to provide multiple independent random number streams.

22

/,fy /,
"n-l

h
"n-2 tti-q+I

^

Figure 3.2: Feedback shift register implementation of a random-number generator

3.1.3 Tausworthe generators

Tausworthe random number generators, developed for cryptographic applications, can be

used to generate long sequences of pseudorandom numbers. They generate one bit at a time as

a function of the last n bits where n is the number of bits in the random number to be generated.

The general form for a Tausworthe generator is as follows:

where c, and 6, are binary variables and ty is the exclusive-or (mod 2 addition) operation. This is

frequently represented using the polynomial representation where the power of the polynomial

variable represents the delay of the corresponding bit and the presence of the polynomial term

indicates that the corresponding coefficient c; = 1. When c, = 0, no term is included in the

polynomial. Therefore, the polynomial form of the above equation is as follows:

<:„_, a.-«- l+c,_2.T"-2+' CQ. (3.4)

See Figure 3.2 for a feedback shift register implementation of a random-number generator

using a general q-degree polynomial [16, page 446]. Note that the AND gates depicted in the

illustration are not necessary when the coefficients, c,, are known beforehand.

As an example, consider the following polynomial:

X1 + .T + 1.

Converting back to the original notation.

bn , n= 0,1,2,

23

Figure 3.3: Feedback shift register implementation of x1 + x

If we start with fe0 = />, = ••• = 66 = 1, we obtain the following bit sequence:

= />2®

612 =

65 0 64

/>6 ® 65

6? ® kf,

1® 1

1® 1

1® 1

1® 1

0
0
0
0
0
0
1

The feedback shift register implementation for this polynomial is given in Figure 3.3.

See [24] for a statistical analysis of combined Tausworthe random number generators for

optimal statistical properties.

3.1.4 Inversive congruential generators

More recently, research by Eichenauer and Lehn has led to the development of a new

inversive congruential pseudorandom number generator [19, 20]. This technique provides

more desirable statistical properties of the resulting random number stream than either of the

linear congruential or Tausworthe generators.

Let w > 3 be an integer. For integers «, l> with a = 1 (mod 2) a function / is defined by

-i
(mod 2'") (3.5)

with nonnegative integer / and odd integer ;c,-_i /2', where 0 is identified with 2W. The inversion

of z = Xi_i /2 ' can be efficiently computed using the Euclidean algorithm [19, page 2]. The

sequence generator has maximal period length 2'" if and only if « = 1 (mod 4) and b = 1

(mod 2).

24

Table 3.1: CDFs and their inverses for several common distributions
\

"Distribution CDF F(x) Inverse F~ l(u)
Exponential 1 — exp"*/" — aln(u)

Geometric l - (l -p) ' [^1
Weibull 1 - exp-(r/")6 a (- lnu) 1 / 6

Clearly this random number generation technique trades increased run-time for the greater

statistical randomness inherent in its nonlinear technique.

3.2 Random Variate Generation

Random variates are generated using uniform random numbers as building blocks. Among

the techniques used are the inverse transform method, the acceptance-rejection method, com-

position, and convolution. Each technique is applicable to only a subset of the distributions.

3.2.1 Inverse-transform method

Consider a continuous random variable A' with density function /A'(-T) and cumulative

distribution function (CDF)

Fx(x) = IX !x(0}dO. (3.6)
./—x.

Now, Fx(-r) is a nondecreasing function such that

lim F v (. r) = 0 and lim F x (x) = l .
x cc. " r—>+oo

The inverse-transform method is based on the observation that the CDF of a random variable

maps the random variable A" to a value between 0 and 1, namely, F\-(.T). The method works by

taking the inverse of the CDF, Fy ' (»•) . generating a uniformly distributed random number, u,

betweenOand 1, and computing x = F~'(u) , which is a random variate distributed according to

the original CDF. Table 3.1 gives the CDFs and their inverse for several common distributions.

25

3.2.2 Acceptance-rejection method

Consider a continuous random variable A' with probability density function (PDF) fx(x).

The acceptance-rejection method can be used if another PDF, g(x), exists that, when multiplied

by a constant c, majorizes fx(x). A function is said to majorize another function, if for all

values of the independent variable, ,r, the majorizing function is greater than or equal to the

other function. Given such a function that majorizes fx(x), namely, cg(x), the following steps

can be used to extract random variates according to the desired PDF:

1. Generate .T with PDF <j(x).

2. Generate ?/ uniform on [0, cg(x)].

3. If?/ < fx(x) , then accept x\ otherwise, reject x and repeat from step 1.

Consider the following example which illustrates the use of the acceptance-rejection tech-

nique to generate random variates from the Beta distribution with parameters (a, (3) = (2,3).

The PDF for the Beta(2, 3) is

f (x) = I2x(l -x)2 , 0< x < 1.

This function reaches a maxima at x = 1/3 where f (x) = y w 1.78. It can be bounded by a

constant function of height 1.78. Thus, we can use a uniform distribution with c = 1.78, and

i j (x) =1. 0< rr < 1.

To generate the Beta(2.3) variates, we use the following algorithm:

1. Generate x uniform on [0, 1].

2. Generate y uniform on [0, 1.78].

3. I f / / < 12.r(1 - . r) 2 , then accept ./•; otherwise, reject x and repeat from step 1.

Steps 1 and 2 generate a point (. r . / /) uniformly distributed over the rectangle shown in

Figure 3.4. If the point falls above the beta density function /(.r), then step 3 rejects re.

26

1.78

Figure 3.4: Acceptance-rejection method for generating a beta distribution

3.2.3 Composition

This technique can be used if the desired CDF F(.T) can be expressed as a weighted sum of

n other CDFs, that is,

F(x) = £piFi(x). (3.7)
i=i

Of course, 0 < pi < 1, £"_, p,- = 1, and F;'s are CDFs. This same technique is sometimes

called decomposition referring to the fact that the desired CDF can be decomposed into the sum

of n other CDFs.

The steps to generate variates using composition are as follows:

. 1. Generate a random integer / such that Prob(I = i) = p, using the in verse-transform

method.

2. Generate x with the /th CDF F,(.T) again, using the inverse-transform method and return

x.

27

3.2.4 Convolution

This technique can be used if the random variable x can be expressed as a sum of n easily

generated random variables, that is,

x = 7/1 + 7/2 + 1- yn (3.8)

Here, x can be generated by simply generating j / i , i/2> • • • > lln and then summing them.

This technique is called the convolution technique because the PDF of a random variable x

that is the sum of n random variables can be obtained by a convolution of the PDFs of the i/i's.

During random number generation, no convolution is required. The Erlang-fc distribution may

be generated using this technique as it is the sum of k exponential random variates.

3.3 Statistics Gathering and Reporting

Statistics gathering during the simulation and reporting afterwards are necessary in order

to interpret the results. Generally, the simulation environment will provide facilities to collect

statistics by providing histogram objects. In the process-interaction model, limited resources

are modeled using servers which contain resource queues. These queues generally gather

statistics for queue length, response time, service time, and throughput rate distributions [25].

28

4. MOTIVATION

Computer systems are most easily modeled using the process-interaction strategy because

of the relatively large size of computer system models and the ease with which the process-

interaction strategy maintains the sequence of operations occurring in the system. For higher-

level models such as those employed in dependability studies, much of the actual computation

has been removed from the model in order to permit simulation of the system over long periods

of time. This results in models which have short sections of code between statements that cause

simulation time advancement either directly, by waiting for a resource to become available, or

through synchronization. Note that even when the models are more detailed, time advancement

statements will tend to be nearly as frequent since the system is being modeled in greater detail.

Whether we are using structural models to permit simulation for long periods of time or more

detailed models which will be simulated over shorter periods of time, models will tend to have

short sections of code between time advancement statements.

This characteristic leads to poorer than expected performance because of the high frequency

and relatively long time involved in simulation process reactivation. Recall that reactivation

involves saving CPU registers for the previous simulation process, switching to the next

process's stack, restoring CPU registers, and returning control to the next simulation process.

Modern RISC processors have anywhere from 47 (i860) to 160 (SPARC) 32-bit registers that

must be saved/restored at each simulation process reactivation (see Table 4.1). This represents

quite a large fraction of the simulation time in models that switch between simulation processes

29

Table 4.1: Register counts for several recent microprocessors
i860 MIPS M88000 SPARC Pentium

32-bit Integer Registers 31 31 31 31 6
Floating-point Registers 30 x 32 bits 16x32 bits 0 32 x 32 bits 8 x 80 bits
Register Window Size 128 to 136
Total 32-bit Registers 61 47 31 164 26

frequently. Further, newer architectures tend to include more rather than less registers on-

chip resulting in even higher reactivation times as compared to actual model execution times.

Finally, these problems are further exacerbated by the fact that the fault-tolerance analysis

requires very large run times.

Our approach combines the efficiency of the event-scheduling strategy with the ease of

model specification of the process-interaction strategy by transforming an input process-

interaction model using compiler-based techniques to avoid the need for stack switching to

achieve simulation process reactivation. Simulation process reactivation is essentially replaced

with a subroutine call and return and local simulation process variables are allocated explicitly

in memory. A slightly increased overhead is added to the model in that modified variables

must be saved to memory upon return, whereas previously they could, in certain cases, re-

main in CPU registers that were saved and restored by reactivation. The major increase in

performance comes from avoiding the saving and restoring of large numbers of CPU registers.

Tests performed on the SPARC architecture indicate that we have successfully reduced the

event-to-event times from 210 //s to 2.5 //s. And, of that original 210 /^s, 200 were in the

save/restore register code which involves a system trap to flush the register windows. On an

IBM RS/6000 system, the performance improvement is less dramatic due to fewer registers that

must be saved and restored, but it is still significant with event-to-event switch times reduced

from 35.0 down to 3.5 //s

30

5. COMPILER-BASED PROCESS-INTERACTION STRATEGY

Our approach is to use compiler techniques to transform a model based on the process-

interaction strategy into a simpler event-driven model. This event-driven model then executes

in a new run-time environment based on the previously developed DEPEND simulation-based

environment [9, 10, 11]. Figure 5.1 illustrates, our simulation-based environment.

The key compiler technique used is to break down processes into a set of constituent

event subroutines. Unfortunately, this also requires our run-time environment to explicitly

maintain the call-return stack within processes and to explicitly allocate memory to contain

what were formerly local variables for those subroutines. We combine these two functions into

a single data structure that is called an activation record. This increased overhead for handling

activation records explicitly is more than offset by the simpler simulation engine that is possible

in our approach as compared to that for the process-interaction model. Furthermore, the event-

scheduling and activity-scanning strategies cannot handle multiple instances of a given event

whereas our compiler-based strategy handles these mult iple instances through maintaining local

variables (as does the process-interaction model). A simplified diagram of our compiler-based

process-interaction run-time environment is given in Figure 5.2.

31

User-specified
process based
simulation model

Preprocessor

Simulation model wilh control
program; user-definrtTcihjeciS;
aiid;DEPpNp(ibiccts

Figure 5.1: DEPEND simulation-based environment

Simulation Engine

Ma

Time

in Event List

Activation rec.

_ -

Compiler-generated
Event subroutines

Random Variate
Generators

Queues with
Statistics Gathering

Report Data
Collection and
Generation

Report

Figure 5.2: Compiler-based process-interaction run-time environment

32

RequestGenerator:

1. while (Idone)

(a) Draw an interarrival time from an exponential distribution
(b) Wait for the computed interarrival time to pass
(c) Draw number of sectors to access from an exponential distribution rounding

to the nearest integer
(d) Enqueue the request onto the disk request queue

DiskServer:

1. while (Idone)

(a) Dequeue a request from the disk request queue (implicitly waiting if none
available)

(b) Wait until request available
(c) Compute service time as the sum of the seek, rotational latency, and transfer

times
(d) Wait for the computed service time to pass
(e) Mark the service as completed and log waiting and service times

Figure 5.3: Process-interaction pseudocode for the CPU/disk model

5.1 CPU/Disk Model

Recalling the CPU/disk model used as an example in the description of the classical discrete

event simulation world views, we will use this same model, now, to demonstrate our technique.

Figure 5.3 duplicates the pseudocode given earlier for the process-interaction model so that it

can be more easily compared with the transformed code in Figures 5.4 and 5.5.

As done for each of the simulation world views, we will now step through the simulation of

this model. After the model has been initialized, but before the simulation has actually begun,

the event list would appear as follows:

Event list
Time

0
0

Activation record
Uninitiali/ed local vars.
Uninitialized local vars.

and pointer to RequestGenerator 1 event
and pointer to DiskServer 1 event

RequestGeneratorl:

1. if(ldone)

(a) Draw an interarrival time from an exponential distribution

(b) Change reactivation routine to RequestGenerator2
(c) Return to wait for the computed interarrival time to pass

2. otherwise, terminate the RequestGenerator process

RequestGenerator2:

1. if (Idone)

(a) Draw number of sectors to access from an exponential distribution rounding
to the nearest integer

(b) Enqueue the request onto the disk request queue
(c) Draw an interarrival time from an exponential distribution
(d) Return to wait for the computed interamval time to pass

2. otherwise, terminate the RequestGenerator process

Figure 5.4: Event pseudocode for the RequestGenerator process after transformation

The simulation would proceed by setting the current time to 0 and calling the RequestGener-

atorl event using the uninitialized activation record. The event would compute the interamval

time and return specifying the time to be reactivated along with the event to call upon reacti-

vation, RequestGeneraior2. If we assume that the computed interamval time was 8, then the

event list after the execution of the RequestGeneraiorl event is as follows:

Event list

Time
0
8

Activation record
Uninitialized local vars. and pointer to DiskServerl event
Local vars. and pointer to RequeslGenerator2 event

Next, the simulation engine would call the DiskServerl event using the uninitialized activa-

tion record. The event would check if a request were available on the disk request queue. Since

no requests are currently on the queue, it would place itself on the waiting list at the disk service

queue and return specifying thai the event to call upon reactivation would be DiskServer2.

Thus, the event list would appear as follows after the initial execution of the DiskServerl event:

34

DiskServerl:

1. if(!done)

(a) Change reactivation routine to DiskServer2

(b) Dequeue a request from the disk request queue

(c) Return to wait until request available

2. otherwise, terminate the DiskServer process

DiskServer2:

1. Compute service time as the sum of the seek, rotational latency, and transfer
times

2. Change reactivation routine to DiskServer3

3. Return to wait for the computed service time to pass

DiskServer3:

1. Mark the service as completed and log waiting and service times

2. i f (ldone)

(a) Change reactivation routine to DiskServer2

(b) Dequeue a request from the disk request queue

(c) Return to wait until request available

3. otherwise, terminate the DiskServer process

Figure 5.5: Event pseudocode for the DiskServer process after transformation

35

Event list
Time

8
Activation record
Local vars. and pointer to RequestGenerator2 event

Next, the simulation engine would set the current time to 8 and call the RequestGenerator2

event using the activation record. When this event enqueues a disk request in line l(b), the

disk request queue will automatically place the DiskServer process (as represented by the

activation record currently pointing to the DiskServer2 event) in the event list scheduled for

the current time. Then the RequestGenerator2 event continues execution to lines l(c) and l(d)

where it draws a random interarrival time and reschedules itself to reactivate at the current

time plus the computed interarrival time by returning to the simulation engine. Note that

the RequestGenerator2 event remains the current event for this process until the simulation is

completed. If we assume that the computed interarrival time was 6, then the event list after the

execution of the RequestGenerator2 event is

Event list
Time

8
14

Activation
Local
Local

vars.
vars.

record
and
and

pointer
pointer

to
to

DiskServer2 event
RequestGenerator2 event.

Next, the simulation engine would call the DiskServer2 event. At this point, it computes

a service time and schedules the DiskServer3 event to activate at the current time plus the

computed service time and returns to the event scheduler. If we assume that the computed

service time was 4, then the event list after the execution of the DiskServer2 event is

Event list
Time

12
14

Activation record
Local
Local

vars.
vars.

and
and

pointer
pointer

to
to

DiskServer3 event
RequestGenerator2 event.

Next, the simulation engine would set the current time to 12 and call the DiskServer3 event

using the activation record. This event would then mark the current request as completed and

then attempt to dequeue another disk request from the queue. Since the queue is once again

empty, it would place itself on the waiting list at the disk service queue and return specifying

that the event to call upon reactivation would be DiskServer2. At this point, the event list

would appear as follows:

36

Event list

Time
14

Activation record
Local vars. and pointer to RequestGenerator2 event

We are back to the third event list condition that occurred above. Note that like the process-

interaction strategy, queues are still active in the simulation process; they stall readers until

queue entries are available and reschedule them as soon as a queue entry is available. Next,

we will examine in a more formal manner the source of speedup over the process-interaction

approach.

5.2 Source of Speedup over Process-Interaction Simulation

Our technique achieves its improved performance by avoiding the costly context switches

used in process-interaction simulation. In effect, the context switch is replaced by a subroutine

call/return pair and a few additional memory references. The following equations express the

expected speedup from our technique.

speedup = -^- (5.1)
''new

where

('-old event + tracked + *cs) (5.2)
all events

'•new = / ^ ('new event ~^~ Breached + 'or) (5.3)

all events
'old event = t'me lo execute lne user-written event code (5.4)

'•new event = '-old event ^ "extra memrefs * ̂ m e m a c c ~ re*/acc/ ""^

J ractime adv sub calls * 'alloc activa. record (^.5)

trescked = time to reschedule this event on the future event list (5.6)

tca — context switch time (5.7)

Lcr = subroutine call + return time (5.8)

and tc3 includes the time to save and restore all of the user-visible CPU registers plus the time

to flush register windows (if any). Naturally, this time is architecture dependent, but for many

37

RISC architectures, this represents a significant overhead when compared to tQ^ event. For

the SPARC architecture with its register windows,

tcs = 130* (tmemWrite + t-memRead} (5-9)

In the next chapter, we will describe in greater depth this compiler-based transformation as

well as the underlying run-time support for our technique.

38

6. DETAILED DESCRIPTION OF OUR SIMULATION TECHNIQUE

The run-time environment for the simulation uses a modified form of the event-scheduling

strategy. All simulation execution is controlled by the event list which is maintained by the

simulation kernel. The event list maintains the simulation time ordering of all scheduled events.

Before the simulation executive is entered, the user invokes one or more coroutines which will

be executed at simulation time 0. Note that in this context when we refer to a coroutine, we are

referring to a simulation process as specified in the input to our extended C++ precompiler.

Once the simulation executive is entered, simulation proceeds until there are no more events

on the event list. Figure 6.1 illustrates the data structures associated with the main event list.

Note that the actual data structure used to time-order the events in the main event list is not

shown. The current implementation includes singly and doubly linked lists and a B-tree-based

indexed list (for more efficient event-list manipulation when many processes are active at the

same time).

Each simulation process (coroutine) instance is managed by its corresponding coroutine

control block. Since, by definition, a coroutine instance cannot have more than one next event

at a time, this control block also serves as the uni t of event scheduling (much like a process

control block in an operating system). This control block contains the status of the coroutine,

active or blocked, the reactivation time for the coroutine when active, and a pointer to the top

of the activation record slack for the current context of the coroutine. All coroutines on the

main event list must he active (i.e., ready to execute ai some definite future simulation time).

39

Main Event List Coroutine Control Block

Reactivation Tune: 27.2

Activation Rec: *-~

Activation Record

Reactivation Time: 27.3

Activation Rec: •—

Reactivation Time: M.7

Activation Rec:

Event Function:

Prev. Activation Rec: nil

Event Function:

Prev. Activation Rec:

Event Function:

Prev. Activation Rec: nil

Ifvenl Function:

Prev. Activation Rec: nil

• CPU WorkServerAR::WorkServer4

CPU useAR::use2

• CPU_WorkServerAR::WorkServer3

CPU_WorkServerAR::WorkServerl

1

4

Figure 6.1: The main event list data structures

40

In addition to what was listed above, the coroutine control block also contains an identification

number.

The activation record pointed to by the coroutine control block contains the contents of

all of the nontemporary local variables in the original subroutine that this activation record

represents. In addition, it contains a pointer to the event function to be invoked when the

coroutine is reactivated and a pointer to the previous activation record, if any. The previous

activation record pointer is used to support coroutines calling other functions which have the

potential for advancing simulation time.

This ability for a coroutine to call a subroutine which itself advances simulation time is

unique and permits the user to write well-structured code for the simulation processes. Some

other simulation environments such as Maisie require the user to "flatten" the process hierarchy

since they do not allow subroutines which advance simulation time [26, 27, 2]. The most

common function to use this capability is the use function associated with each server queue.

Without this feature, a much greater portion of DEPEND would have to be written into the C++

precompiler.

6.1 Extended C++ Precompiler

The input language to our precompiler is an extended version of C++. The extensions

include two additional function specifiers, coroutine and uineAdvunce, and a pseudofunction,

hold. All other features of process-interaction simulation are supplied through the included

C++ object library.

We also provide for the specification of fault-handling functions which are conceptually

similar to the proposed exception handling system for C++. The default fault-handler behaves

as follows: If the coroutine is scheduled on the future event list, it is rescheduled to execute

at the current time (after the fault injection is completed); otherwise, no action is taken. The

fault-handler receives as input a pointer to the fault description. Note that fault handlers have

access to all local variables of the lime-advancement function so that they can easily determine

41

1
2

3
4

5
6
7
8
9
10
11
12

13
14

int done = 0;
timeAdvance void scrubMeiri(Memory* mem, int memoryLoc,

int scrubAmount);

coroutine memScrubProc (Memory* mem, int scrublncrement,
double scrublnterval)

{
int memoryLoc = 0 ;

while (!done)
{
hoUK scrublnterval) ;
scrubMem(mem, memoryLoc, scrublncrement);
memoryLoc = (memoryLoc + scrublncrement) %

mem->getMemorySize();

Figure 6.2: Example source code illustrating keywords

the state of the coroutine being injected. Furthermore, multiple fault-handlers can be defined,

if desired, where the fault-handler is changed by the user as the function proceeds.

Simulation processes are identified by the presence of the coroutine function specifier in the

function prototype and definition. Coroutines return a pointer to the created coroutine class.

This returned pointer may be used to control the coroutine. This permits aborting holds early

or suspending, resuming, or terminating the coroutine. This kind of control permits importance

sampling techniques to be implemented. A coroutine is created by invoking a function just

as would be done in a subroutine call. In order to permit separate compilation, subroutines

which advance time (or call other subroutines that advance time) must be flagged with the

timeAdvance keyword. All explicit time advancement is specified through the use of the hold

function. Figure 6.2 illustrates the use of each of these keywords in a simple memory scrubbing

process.

During the precompilation step, a control How graph (CFG) is constructed for each coroutine

and time-advancement subroutine. Nodes in the CFG represent statements which are executed

at the same simulation time (i.e., during a single event). The edges in the CFG which represent

42

Terminate (14

Figure 6.3: Control flow graph for the memory scrubbing process

time advancement are solid, all other edges are dashed. Figure 6.3 shows the CFG for the

memory scrubbing process. Note that each node in the graph contains the statement numbers

assigned to that node.

In addition to the construction of the CFG, the precompilation step also extracts all function

argument variables and local variables. Storage for these extracted variables is allocated in a

structure associated with each time advancement routine called an activation record. When

a coroutine calls a time advancement routine, a new activation record is created for the time

advancement routine and pushed onto the coroutine's stack of activation records. This stack of

activation records replaces the individual coroutine stacks employed in typical implementations

of process-based simulation. In addition, the activation record stores the next reactivation point

for each time advancement subroutine. Figure 6.4 gives the activation record created for the

example memory scrubbing process.

43

class memScrubProcAR : public ActivationRecord

{
private:

// Coroutine argument variables
Memory* mem;
int scrublncrement;
double scrublnterval;
// Coroutine local variables
int memoryLoc;
// Component event function prototypes
double memScrubProcl(), memScrubProc2(), memScrubProc3

public:
memScrubProcAR(Memory* pi, int p2, double p3)

: mem(pi), scrublncrement(p2),
scrublnterval(p3), memoryLoc(0)

{ func = (AR.FUNC) &memScrubProcAR::memScrubProcl; }

Figure 6.4: Activation record for memory scrubbing coroutine

The control flow graph is then used to decompose the coroutine into a coroutine creation

function and a set of event functions. Figure 6.5 shows the coroutine creation and event

functions.

After the precompiler has transformed all coroutines and time-advancement subroutines

into their constituent event functions and activation records, the resulting C++ source code is

compiled and linked with the DEPEND object library to produce the simulation program.

6.2 Optimization Techniques

Once the coroutines and time-advancement routines are decomposed into their constituent

events by the control flow graph, these events can be optimized. Recall that the edges in the

control flow graph can be categorized as either time advancement edges or re-entry edges. The

re-entry edges were necessitated by the fact that one or more time advancement instructions

existed inside of a loop. These edges can be removed by concatenating the target node's

code onto the end of the source node's code. Heuristics will be employed to avoid excessive

44

double scrubMem (Memory* mem, int memoryLoc, int scrubAmount) ;

Coroutine* memScrubProc (Memory* mem, int scrublncrement ,
double scrublnterval)

{
return new Coroutine! new memScrubProcAR (mem,

scrublncrement ,
scrublnterval)) ;

double memScrubProcAR: .-memScrubProcl ()

{
if (idone)

{
func = (AR.FUNC) &memScrubProcAR : : memScrubProc2 ;
return scrublnterval;

// Terminate this coroutine
delete this;
return -1.0;

double memScrubProcAR: :memScrubProc2 ()

{
func = (AR-FUNC) &memScrubProcAR: :memScrubProc3 ;
return scrubMem (mem, memoryLoc, scrublncrement) ;

double memScrubProcAR: :memScrubProc3 ()

{
memoryLoc = (memoryLoc + scrublncrement)

mem->getMemorySize () ;
return memScrubProcl () ;

Figure 6.5: Coroutine creation and event functions for the memory scrubbing process

45

Unoptimized

r^
Initiate I 4-7

Optimized

Initiate (4-10]

' 8-10

11

12-13

Terminate (14 Terminate I 14

Figure 6.6: Optimized control flow graph for the memory scrubbing process

code duplication. This can be illustrated using the memory scrubbing coroutine from the

previous section. Here the first and second nodes as well as the fourth and second nodes can be

concatenated to form the re-entry edge optimized control flow graph. Figure 6.6 shows both

the optimized and unoptimized control flow graphs.

Further optimizations can be obtained by analyzing the possible interactions between a

coroutine and other coroutines. In particular, adjacent time advancement statements may be

combined into a single time advancement that holds for the total time of the original statements

as long as only local variables are updated between the holds. Figure 6.7 illustrates a time-

advancement subroutine where this optimization can be taken.

This subroutine scrubs memory by reading the specified range of memory locations one at a

time. To simulate the time it takes to scrub a single memory location, this subroutine advances

time 80 ns for each read access. In this case, these time advancements can be combined together

by removing the hold statement from the loop and issuing a single hold after the loop for the

46

1: int done = 0;
2: timeAdvance void scrubMem(Memory* mem, int memoryLoc,

int scrubAmount)

3 {
4
5
6
7
8
9

for (int i = 0; i < scrubAmount; i++, memoryLoc++

mem->read(memoryLoc) ;
hold(8 0 . 0 E - 9) ;

Figure 6.7: Example to illustrate time-advancement optimization

.int done = 0 ,-
timeAdvance void scrubMem(Memory* mem, int memoryLoc,

1
2

int scrubAmount
3
4 for (int i = 0; i < scrubAmount; i++, memoryLoc++
5
6
7
8
9

mem->read(memoryLoc);

holcK 80.0E-9 * scrubAmount) ,-

Figure 6.8: Time-advancement optimized code

total time to scrub the specified range of memory addresses. The resulting code is given in

Figure 6.8. As a result of taking these optimizations, the number of memory scrubbing events

has been reduced by a factor of the scrubAmount.

When one coroutine sends a message to a message queue served by another coroutine,

instead of scheduling an event for the receiving coroutine, in certain cases the message can

begin to be processed by this coroutine.

6.3 Parallelization Techniques

Several techniques are available for the parallelization of the simulation model to execute

on a multiprocessor system. These techniques include

47

1. the offloading of simulation support tasks such as random variate generation, statistics

gathering/reporting, and event-list management to other processors,

2. the execution of multiple instances of the complete model in parallel using different

random number seeds for each simulation run, and

3. the parallelization of the actual model by allocating simulation processes to pods which

run on individual processors.

We believe that the first two techniques will yield the greatest improvement for most computer

system models because of the inherent coupling that exists between components in the computer

system. Parallelization can succeed if a good partitioning of the model exists that results in

relatively independent submodels.

The model chosen for parallelizalion can be implemented on both shared/distributed mem-

ory and message-passing systems with equal ease. The model groups simulation processes

into pods which are assigned to processors at simulation run-time along with the simulation

support tasks. The simulation support tasks behave in a similar way to process pods. Pods then

communicate through explicit message passing using ports. Ports can be declared as either

one-way or bidirectional connections. The network of port interconnections between pods

provides the necessary information for maintaining time synchronization. Figure 6.9 illustrates

the network of pods interconnected by ports.

For example, to implement the off-loading of random variate generation, the random variate

stream class is converted into a client of the random variate generator task. When the class

is initialized, the variate parameters (e.g., desired mean and variance) are sent to the random

variate generator task as a message. This message includes the identification of the port to

receive the resulting stream of random variates. Then, as the random variate generator task has

time, it precomputes the first batch of random variates and sends them to the initially specified

port. Then, when the simulation requests a random variate from that stream, the message is

read and the first variaic extracted from the message. The important point here is that as long

as the random variate generator task can "keep up," the stream of random variates is generated

48

Figure 6.9: Network of pods interconnected by ports

for the cost of receiving a message divided by the number of random variates packed in each

message.

49

7. CASE STUDY

This chapter presents a preliminary evaluation of our new approach through the use of a

simple case study. In this chapter, we describe a simple four-processor, bus-connected ring

system which has been implemented in two different simulators. One implementation was

completed in the previous version of DEPEND based on the CSIM process-interaction simu-

lator. The other was hand-translated using the techniques developed in this thesis. Figure 7.1

illustrates the system being modeled.

Every second, each CPU sends an "I'm alive" message to the CPU to its right. Faults are

injected into the CPUs, according to a Weibull distribution, causing them to fail. Faults are

also injected at an exponential rate into the interconnecting bus causing messages to be lost.

The system fails if a processor fails to receive an "I'm alive" message from its left neighbor for

at least 2.1 seconds. Note that this can he either due to a CPU failure or multiple link failures.

The model divides into four processes as follows:

CPU2

Bus

Figure 7.1: Four processor, bus-connected ring

50

Table 7.1: Simulation results for the four-processor ring system

Hybrid technique Process-interaction Speedup
7l)6 227.8 32.27

1. A heartbeat sending process for each CPU which sends an "I'm alive" message to its

right neighbor once a second.

2. A heartbeat monitoring process for each CPU which waits for up to 2. 1 seconds to receive

an "I'm alive" message from its left neighbor. If the monitoring process times out, it

shuts the CPU down.

3. A fault injection process for each CPU, injecting faults at a rate set by the Weibull

distribution with parameters a = 1C5 and l> = 2.0, where the cumulative distribution

function for the Weibull distribution is as given below.

4. A fault injection process for the bus injecting faults at a rate set by the Exponential

distribution with mean a = 104, where the cumulative distribution function for the

exponential distribution is as given below.

This example was implemented with the CSIM-based version of DEPEND and on the new

simulator. Each simulation was timed and the results are given in Table 7.1.

51

8. CONCLUSIONS

The new compiler-based techniques including our hybrid process-interaction/event-driven

simulation strategy provide improved performance for existing models while still using the

straightforward process-based modeling. The case study demonstrated that a speedup of 32

times can be obtained for system dependability studies. We believe that with continued de-

velopment, these techniques can lead to significant run-time performance gains on realistic

performance and dependability models. As multiprocessing machines become more common-

place, we expect to exploit parallelism to further reduce the simulation run-time. :

52

REFERENCES

[1] V. Jha and R. L. Bagrodia, "Transparent implementation of conservative algorithms in
parallel simulation languages," in Proceedings of the 1993 Winter Simulation Conference
(G. W. Evans, M. Mollaghasemi, E. C. Russell, and W. E. Biles, Eds.), pp. 677-686,
IEEE, 1993.

[2] R. Bagrodia, K. M. Chandy, and W.-T. Liao, "A unifying framework for distributed
simulation," ACM Transactions on Modeling and Computer Simulation, vol. 1, pp. 348-
385, Oct. 1991.

[3] R. L. Bagrodia and W.-T. Liao, "Transparent optimizations of overheads in optimistic
simulations," in Proceedings of the 1992 Winter Simulation Conference (J. J. Swain,
D. Goldsman, R. C. Grain, and J. R. Wilson, Eds.), pp. 637-645, IEEE, 1992.

[4] V. F. Nicola, M. K. Nakayama, P. Heidelberger, and A. Goyal, "Fast simulation of depend-
ability models with general failure, repair and maintenance processes," in Proceedings of
the 20th International Symposium on Fault-Tolerant Computing, June 1990.

[5] P. Shahabuddin, V. F. Nicola, P. Heidelberger, A. Goyal, and P. W. Glynn, "Variance reduc-
tion in mean time to failure simulations," in Proceedings of the 1988 Winter Simulation
Conference, pp. 491-498, 1988.

[6] K. K. Goswami, "Design for dependability: A simulation-based approach," Ph.D. disser-
tation, University of Illinois at Urbana-Champaign, 1993.

[7] R. Fujimoto and D. M. Nicol, "State of the art in parallel simulation," in Proceedings
of the 1992 Winter Simulation Conference (J. J. Swain, D. Goldsman, R. C. Grain, and
J. R. Wilson, Eds.), pp. 246-254, IEEE, 1992.

[8] D. M. Nicol, "The automated partitioning of simulations for parallel execution," Ph.D.
dissertation, University of Virginia, Aug. 1985.

[9] K. K. Goswami and R. K. Iyer, "DEPEND: A design environment for prediction and
evaluation of system dependability," in Proceedings of the 9th Digital: Avionics Systems
Conference, pp. 87-92, Oct. 1990.

53

[10] K. K. Goswami and R. K. Iyer, "DEPEND: A simulation-based environment for system
level dependability analysis," Tech. Rep. CRHC Report #92-11, University of Illinois -
Center for Reliable and High-Performance Computing, June 1992.

[11] K. K. Goswami and R. K. Iyer, The DEPEND Reference Manual. University of Illinois -
Center for Reliable and High-Performance Computing, Urbana, Illinois 61801, Oct. 1990.

[12] B. P. Zeigler, Multifacetted Modelling and Discrete Event Simulation. London, UK:
Academic Press, 1984.

[13] B. P. Zeigler, "System theoretic foundations of modelling and simulation," in Simulation
and Model-Based Methodologies: An Integrative View, Proceedings of the NATO Ad-
vanced Study Institute held at Ottawa. Ontario/Canada, July 26-August 6,1982 (T. I. Oren,
B. P. Zeigler, and M. S. Elzas, Eds.), pp. 91-118, Berlin, Germany: Springer-Verlag, 1984.

[14] G. S. Fishman, Concepts and Methods in Discrete Event Digital Simulation. New York,
NY: John Wiley & Sons, 1973.

[15] J. B. Evans, Structures of Discrete Event Simulation: An Introduction to the Engagement
Strategy. New York, NY: Halstead Press, 1988.

[16] R. Jain, The Art of Computer Systems Performance Analysis: Techniques for Experimental
Design, Measurement, Simulation, and Modeling. New York, NY: John Wiley & Sons,
1991.

[17] H. Kobayashi, Modeling and Analysis: An Introduction to System Performance Evaluation
Methodology. Reading, MA: Addison-Wesley, 1978.

[18] G. S. Fishman, Principles of Discrete Event Simulation. New York, NY: John Wiley &
Sons, 1978.

[19] J. Eichenauer-Herrmann and H. Grothe, "A new inversive congruential pseudorandom
number generator with power of two modulus," ACM Transactions on Modeling and
Computer Simulation, vol. 2, pp. 1-11, Jan. 1992.

[20] H. Niederreiter, "New methods for pseudorandom number and pseudorandom vector
generation," in Proceedings of the 1992 Winter Simulation Conference (J. J. Swain,
D. Goldsman, R. C. Grain, and J. R. Wilson, Eds.), pp. 264-269, IEEE, 1992.

[21] W. N. Graham, "A comparison of four pseudo random number generators implemented
in Ada," Tech. Rep., Applied Research Laboratories, University of Texas at Austin, Oct.
1991.

[22] J. A. Fisher, "Object oriented random number generators," Computers and Industrial
Engineering, vol. 25, pp. 561-563, Sept. 1993.

54

[23] G. S. Fishman and L. S. Moore, III, "An exhaustive analysis of multiplicative congru-
ential random number generators with modulus 231 — 1," SI AM Journal of Scientific
Computation, vol. 7, pp. 24-45, Jan. 1986.

v

[24] S. Tezuka and P. L'Ecuyer, "Efficient and portable combined Tausworthe random number
generators," ACM Transactions on Modeling and Computer Simulation, vol. 1, pp. 99-
112, Apr. 1991.

[25] H. Schwetman, "CSIM reference manual (revision 16)," Tech. Rep., Microelectronics and
Computer Technology Corporation, June 1992.

[26] R. L. Bagrodia and W.-T. Liao, "Maisie user manual," Tech. Rep., Computer Science
Department, University of California at Los Angeles, June 1993.

[27] R. L. Bagrodia and W.-T. Liao, "Maisie: A language for the design of efficient discrete-
event simulations," Tech. Rep., Computer Science Department, University of California
at Los Angeles, 1992.

[28] K. K. Goswami and R. K. Iyer, "Simulation of Software Behavior Under Hardware Faults,"
in Proceedings of the 23rd International Symposium on Fault-Tolerant Computing, June
1993.

