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FOREWORD
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1.0 INTRODUCTION

Atomic oxygen (AO) fluences in atoms/cm2 and solar exposure in cumulative
equivalent sun hours (CESH) have been modeled for selected LDEF hardware. Figure 1-1
lists the hardware modeled. This document describes the modeling done for these
surfaces. All photographs of LDEF hardware are printed as black and white in the section
of text near the figure reference and in color in the Appendix A.

Hardware _ AO Solar

Exposure Egosure
S0069 Row 9A thermal control surfaces experiment v

LDEF FEP blanket fold row 6 toward row 7
LDEF FEP blanket fold row 7 toward row 6
MO0001 space end NRL cosmic ray experiment
Tray D-11 copper ground strap

Tray F-9 angle bracket

Tray D-11 FEP blanket fold at tray edge toward row 10
Tray B-7 FEP blanket fold at longeron toward row 8
Tray C-5 FEP blanket fold near tray edge
Tray D-1 FEP blanket fold near row 2 edge

C-9 scuff plate

Space end tray clamp H-12 with three bolts
B-9 Environment Exposure Control Canister (EECC)
Experiment Tray
C-2 Environment Exposure Control Canister (EECC)
Experiment Tray
E-3 Environment Exposure Control Canister (EECC)
Experiment Tray
D-4 Environment Exposure Control Canister (EECC)
Experiment Tray
D-8 Environment Exposure Control Canister (EECC)
Experiment Tray

V
V
V

A P PP P P P
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Figure 1-1. LDEF AO and Solar Exposures Modeled.
1.1 Atomic Oxygen Exposure Modeling

Atomic oxygen exposure reported in this appendix was modeled using the’
microenvironment modeling code SHADOWYV?2 (ref. 1). This code is an extensive upgrade
of SHADOW Version 1.1 (ref. 2) and calculates scattered fluence more accurately than
Version 1.1. The current results should be used in preference to previously calculated AO
exposures (refs. 3 and 4). The LDEF mission average atmospheric temperature, atomic
oxygen density, and satellite speed relative to the atmosphere for the current calculations
were calculated by AVESHAD (ref. 2) using the FLUXAVG (ref. 5) generated mission
file. This resulted in the mission average values given in figure 1.1-1. SHADOWYV2
normally calculates AO fluxes. However, SHADOWV2 was used to calculate fluences by
inputting LDEF mission average AO density times mission duration rather than the LDEF
mission average AO density. This was done for all microenvironment atomic oxygen

fluence calculations. All plots report AO exposure as log1() (fluence in atoms/cmz).



| Parameter Value _

AO Density 6.4136E7 atoms/cm>3
Temperature 1182.9 K

Satellite Speed Relative to Atmosphere 7.21E5 cm/s

Mission Duration 2105.9085 days = 1.81950E8 s
AO Density Times Mission Duration 1.17E16 (atoms/cm?) s

Figure 1.1-1. LDEF Mission Average Values for AO Microenvironment Calculations.

The accuracy of the atomic oxygen modeling may be estimated as follows. The
FLUXAVG ram and side direction mission fluxes (from which the LDEF mission average
values of figure 1.1-1 are calculated) are about 8% greater than those estimated using
detailed orbit position calculations (ref. 6). Both calculations use the MSIS-86 atmospheric
model (ref. 7) to estimate atomic oxygen densities on orbit during the LDEF mission. The
MSIS-86 model is estimated to have an uncertainty of about 25% (ref. 7). The uncertainty
in the MSIS-86 model is the greatest uncertainty in the modeled fluences. SHADOWYV2
reproduces the primary exposure ram and side direction fluences to unshielded surfaces in
the mission file to three significant digits. The accuracy of the very low fluences to trailing
surfaces is less. The uncertainty in scattered AO exposure to surfaces is somewhat more
difficult to estimate because it is a function of the gridding of the surfaces and the number
of rays scattered. Tests of specular reflection between two surfaces have shown that all
flux incident on the reflecting surface is reflected to the receiving surface. By implication
this suggests that high intensity scattered fluences to satellite surfaces are modeled with
accuracy similar to that of direct fluence. Low intensity scattered fluences may be expected
to have somewhat greater uncertainty.

Surface properties of materials used for calculating AO exposures are given in
figure 1.1-2. The materials properties are defined as the fraction of AO striking a surface
which undergoes specular reflection, diffuse reflection, recombination, or surface reaction.
Materials surface properties for atomic oxygen scattering are not well known. These
surface properties are the authors' best estimates. It will be noted that the surface
properties of FEP have been changed from our previously recommended values (ref. 2).
Reanalysis of the FEP thickness vs. AO fluence for the tray F-9 angle bracket, tray D-11
FEP blanket fold, and tray B-7 blanket fold indicates that the current values for FEP
surface properties yield better agreement between observed and predicted FEP thicknesses
than the previous values.

Material Specular Diffuse Recombination Surface
Reflection Reflection Efficiency Reactivity

Aluminum 0.50 0.46 0.04 0.00
Kapton 0.40 0.45 0.15 0.00
FEP (Aluminized Teflon) 0.98 0.00 0.00 0.02
Copper 0.50 0.40 0.08 0.02
Polyethylene 0.40 0.40 0.00 0.20
Gold 0.65 0.20 0.00 0.15
Silica Glass 0.67 0.33 0.00 0.0002
Silver Oxide 0.25 0.25 0.50 0.00
Yellow Paint Chem 0.00 0.90 0.00 0.10
Glaze-II

Figure 1.1-2. Surface Properties of Some Materials for Atomic Oxygen Scattering.



1.2 Solar Exposure Modeling

Solar exposure reported in this appendix was modeled using the microenvironment
modeling code SOLSHAD Version 1.0 (ref. 8). SOLSHAD Version 1.0 allows more
accurate calculation of scattered CESH than did previous versions. The current results
should be used in preference to previously calculated solar microenvironment exposures
(ref. 4). All plots report solar exposure as CESH.

The uncertainty in primary and Earth-reflected solar exposure to LDEF surfaces is
proportional to one over the square root of the number of Sun and satellite positions used to
model exposure. For the 3000 Sun and satellite positions typically used to model solar
exposure to LDEF surfaces, this implies about a 2% standard deviation for the 50542 hour
LDEF mission.This translates to about 7% standard deviation for the 14500 CESH space-
end primary and Earth-reflected solar exposure and proportionately larger standard
deviations for surfaces with smaller CESH. As with atomic oxygen exposure, the accuracy
of scattered CESH is a function of the surface gridding and the number of solar rays
scattered per unit surface area. High intensity scattered CESH should have uncertainties
comparable to the direct CESH on the surfaces which produced the scattering and low
intensity scattered CESH will have greater uncertainties.

Surface optical properties of materials used for calculating solar exposures are given
in figure 1.2-1. The surface properties are defined as the fraction of sunlight striking a
surface which undergoes specular reflection, diffuse reflection, or absorption. These
surface optical properties are typical values from measurements on these materials.

Maternial Specular Diffuse Absorption
_ Reflection Reflection

Aluminum 3 0.06 0.60 ~]0.34

FEP (Aluminized Teflon) 0.83 0.10 0.07

Yellow Paint Chem Glaze-II | 0.05 0.50 0.45

Figure 1.2-1. Surface Properties of Some Materials for Solar Scattering.
2.0 S0069 THERMAL CONTROL SURFACES EXPERIMENT
2.1 Experiment Location and Description

The S0069 thermal control surfaces experiment is located in LDEF experiment tray -
9A. Figure 2.1-1 (and color photo A2.1-1, p. A2) shows the location of this experiment.
Row 9 is the LDEF row most nearly facing ram direction. All surfaces on the experiment
are FEP except for the experiment disk, which is modeled as an aluminum surface.

2.2 Atomic Oxygen Exposure

Figure 2.2-1 shows LDEF mission atomic oxygen exposure to the SO069 thermal
control surfaces experiment. Several AO fluences in log atoms/cm? are marked. Because
the experiment is facing nearly directly into the ram direction, it receives a nearly uniform
AO exposure of approximately 7.5 x 102! t0 9.1 x 102! atoms/cm2. The slightly increased
exposure on the flat surfaces on either side of the central rib in the upper half of the figure
is due mostly to specular reflections from the sides of the central rib.




Figure 2.1-1. S0069 Thermal Control Surfaces Experiment On-Orbit Photo.
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2.3 Solar Exposure

Figure 2.3-1 shows LDEF mission solar exposure in CESH to the S0069 thermal
control surfaces experiment. The disk shaped experiment wheel on the bottom of the figure
is toward row 10 and the right side of the figure corresponds to the space-end side of the
experiment. As oriented on the spacecraft, the right side of the central rib receives the
highest solar exposure because it is the surface most nearly perpendicular to the average
Sun direction. The left side of the rib is in the shade most often and receives the lowest
solar exposure. The left side triangular surface receives somewhat less exposure than the
right side of the central rib because the triangular surface is less nearly perpendicular to the
average Sun position than the right side of the central rib. The partially shaded right side
triangular surface receives about two thirds the exposure of the right side of the central rib.
This triangular surface receives about a 5% CESH enhancement near its apex due to
reflections from other surfaces. The area of the bottom large trapezoidal surface around the
experiment disk shows increased CESH due to reflections from the sunny side of the disk
edge due to reflections and shows decreased CESH due to shadowing on the shady side.
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3.0 ROW 6 FEP BLANKET EDGE ADJACENT TO ROW 7
3.1 Experiment Location and Description

The row 6 FEP blanket edge is on the side of row 6 next to row 7. The FEP
blanket is folded into the LDEF to meet the aluminum row 6 tray edge. Row 6 is oriented
with its outward surface normal 98.1 degrees from the ram direction.

3.2 Atomic Oxygen Exposure

Figure 3.2-1 shows the LDEF mission AO fluence to the FEP blanket and the
aluminum tray edge in the region of the row 6 FEP blanket fold at the tray edge parallel to
row 7. In the figure, the FEP blanket is on the left and the aluminum tray edge is on the
right. Figure 3.2-2 shows a cross section of the AO exposure. Total, primary, specular
reflected and diffuse reflected AO fluences are reported. The cross section is taken along a
line on the surfaces about midway from top to bottom in figure 3.2-1. Distance (the
horizontal axis) in the cross section is measured from the left side of the FEP blanket in
figure 3.2-1 along the surface of the blanket and the aluminum tray side to the right side of
the aluminum tray .

Figure 3.2-2 shows that, depending on position, either primary AO or reflected AO
may be responsible for most of the fluence. Reflected AO fluence contributes essentially all
of the dose in the "V" of the blanket fold and tray side while primary AO impacts contribute
most of the fluence to the parallel flat surfaces of the FEP blanket and tray edge. Atomic
oxygen fluence on the flat surfaces parallel to row 6 is approximately 0.3 percent of the
fluence on a ram facing surface.

Due to the orientation of row 6, it is shadowed from direct exposure to AO from
any direction within 8.1 degrees of the ram direction. The AO fluence as a function of
angle from ram decreases very rapidly as the angle from ram increases. The fluence on a
surface is the fluence from all allowed directions times the projected area of the surface to
each direction (that is, the area of the surface times the cosine of the angle between the
outward surface normal vector and the fluence direction). We may assume, with little loss
of accuracy, that the vast majority of the direct fluence comes from angles as near to ram as
possible. Consideration of these two factors explains the shape of the primary AO fluence
cross section. As expected, the primary AO fluence on the FEP surface parallel to row 6 is
constant at about 0.3 percent of the ram fluence because of the small projected area of the
plane surface.

The shape of the primary fluence curve on the curved portion of the FEP blanket
(from left to right, a small increase in fluence followed by a decrease followed by an
increase to a maximum followed by a rapid decrease to near zero fluence as the cross
section drops in the "V") occurs because of the interaction of directional fluence and
surface normal angle. Because the aluminum tray edge is assumed to be 2 mm above the
FEP blanket, the angle to ram from which primary AO fluence can come increases as one
traverses the surface from left to right. At the same time, the cosine of the angle between
the surface normal and the direction of maximum allowed fluence increases. The
interaction of these two factors, which both vary nonlinearly with distance, accounts for the
shape of the primary fluence on the curved surface of the FEP blanket.
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The relatively constant total AO fluence in the "V" between the FEP blanket and the
tray edge is due to specular reflection from the FEP to the aluminum and to both specular
and diffuse reflection from the aluminum to the FEP. If both materials were specular
reflectors, the "V" would act as a trap concentrating AO at the bottom on the "V," leaving
recombination and surface reactivity as the primary removal mechanisms. This would yield
a high concentration of AO at the point of the "V." The 0.46 diffuse reflectivity of
aluminum allows enough AO to escape to space to balance the concentrating effects of
specular reflection.

The fluence peak at approximately 60 mm in figure 3.2-2 is due almost entirely to
specular reflection from the FEP peak fluence at about 28 mm.

3.3 Solar Exposure

Figure 3.3-1 shows the LDEF mission solar exposure to the FEP blanket and the
aluminum tray edge in the region of the row 6 FEP blanket fold at the tray edge parallel to
row 7. Figure 3.3-2 shows a cross section of the solar exposure. Solar exposure is given
for total direct and Earth-reflected solar exposure (GRTOT), direct primary solar exposure
(PRIM), direct specular reflected solar exposure (SPEC), direct diffuse reflected solar
exposure (DIFF), and total direct solar exposure (TOTAL). The cross section is taken
along a line on the surfaces about midway from top to bottom in figure 3.3-1. Distance
(the horizontal axis) in the cross section is measured from the left side of the FEP blanket in
figure 3.3-1 along the surface of the blanket and the aluminum tray side to the right side of
the aluminum tray .

Examination of figure 3.3-2 shows that approximately one fourth of the total solar
exposure is due to Earth-reflected solar radiation (the difference between the total direct and
Earth reflected solar exposure and total direct solar exposure). As with the AO exposure,
the solar exposure to the flat FEP and aluminum surfaces parallel to row 6 is constant. The
average Sun position is most nearly perpendicular to the curved part of the aluminum tray
and results in the highest exposure to this surface because of the combined effects of direct
and reflected solar radiation. Nearly all of the exposure in the "V" is due to reflections.
That on the FEP is due mainly to diffuse reflection from the aluminum side of the "V"; that
on the aluminum is due mainly to specular reflection from the FEP side of the "V."

11
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4.0 ROW 7 FEP BLANKET FOLD TOWARD ROW 6
4.1 Experiment Location and Description

The row 7 FEP blanket fold on the edge of row 7 next to row 6 is shown in figure
4.1-1 (and color photo A4.1-1, p. A3). The FEP blanket is folded into the LDEF to meet
the aluminum row 7 tray edge. Row 7 is oriented with its outward surface normal 68.1
degrees from the ram direction. The row 7 FEP blanket fold is on the opposite side of the
longeron between rows 6 and 7 from the row 6 FEP blanket fold. The primary difference
between the two blanket folds is that row 7 receives much higher AO exposure than does
row 6. Both rows receive similar solar exposure.

4.2 Atomic Oxygen Exposure

Figure 4.2-1 shows the LDEF mission AO fluence to the FEP blanket and the
aluminum tray edge in the region of the row 7 FEP blanket fold at the tray edge parallel to
row 6. Figure 4.2-2 shows a cross section of the AO exposure. Total, primary, specular
reflected and diffuse reflected AO fluences are reported. The cross section is taken along a
line on the surfaces about midway from top to bottom in figure 4.2-1. Distance (the
horizontal axis) in the cross section is measured from the left side of the aluminum tray in
Figure 4.2-1 along the surface of the tray and the FEP blanket to the right side of the FEP
blanket .

As with the row 6 FEP blanket fold described in the preceding section, figure 4.2-2
shows that, depending on position, either primary AO or reflected AO may be responsible
for most of the exposure to the row 7 FEP blanket fold. Again, reflected AO fluence
contributes essentially all of the exposure in the "V" of the blanket fold and tray side while
primary AO fluence contributes most of the exposure to the parallel flat surfaces of the FEP
blanket and tray edge. The net effect of primary and reflected AO is to give a nearly
constant fluence across the blanket fold. Atomic oxygen fluence on the flat surfaces
parallel to row 7 is approximately one third of the fluence on a ram facing surface or
approximately 100 times the fluence on surfaces parallel to row 6.
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Figure 4.1-1. Row 7 Toward Row 6 FEP Blanket Fold On-Orbit Photo.
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Figure 4.2-1. Row 7 Toward Row 6 FEP Blanket Fold Atomic Oxygen Exposure Given
as Log1g AO Fluence (Atoms/cm?).
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4.3 Solar Exposure

Figure 4.3-1 shows the LDEF mission solar exposure to the FEP blanket and the
aluminum tray edge in the region of the row 7 FEP blanket fold at the tray edge parallel to
row 6. Figure 4.3-2 shows a cross section of the solar exposure. Solar exposure is given
for total direct and Earth-reflected solar exposure (GRTOT), direct primary solar exposure
(PRIM), direct specular reflected solar exposure (SPEC), direct diffuse reflected solar
exposure (DIFF), and total direct solar exposure (TOTAL). The cross section is taken
along a line on the surfaces about midway from top to bottom in figure 4.3-1. Distance
(the horizontal axis) in the cross section is measured from the left side of the aluminum tray
side in figure 4.3-1 along the surface of the tray side and the FEP blanket to the right side
of the FEP blanket.

Examination of figure 4.3-2 shows that it is approximately a mirror image of figure
3.3.2. As in figure 3.3.2, approximately one fourth of the total solar exposure is due to
Earth-reflected solar radiation (the difference between the total direct and Earth reflected
solar exposure and total direct solar exposure). The solar exposure to the flat FEP and
aluminum surfaces parallel to row 7 is constant. The average Sun position is most nearly
perpendicular to the curved part of the aluminum tray and results in the highest exposure to
this surface because of the combined effects of direct and reflected solar radiation. Nearly
all of the exposure in the "V" is due to reflections. That on the FEP is due mainly to
diffuse reflection from the aluminum side of the "V"; that on the aluminum is due mainly to
specular reflection from the FEP side of the "V."
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5.0 MO0001 NRL COSMIC RAY EXPERIMENT
S.1 Experiment Location and Description

The MO0001 NRL cosmic ray experiment is located on the space end of LDEF as
shown in figure 5.1-1 (and color photo A5.1-1, p. A4). The experiment is modeled as a
square FEP plate surrounded by a square sided trough. The inner and bottom walls of the
trough are FEP and the outer walls are aluminum.

5.2 Atomic Oxygen Exposure

Figure 5.2-1 shows LDEF mission atomic oxygen fluence to the M0001 NRL
cosmic ray experiment. In the figure, the active side of the surfaces making up the edges of
the trough face the inside of the trough. The left side of the figure faces ram, with the ram
direction oriented to the left and 8.1 degrees below horizontal in the figure. The large
space-facing top plate receives uniform primary AO and no reflected AO. The trough
receives the highest AO fluence in the upper and lower right outer corners due to the upper
and lower sections of the trough being nearly aligned with the ram direction.

Figures 5.2-2 and 5.2-3 show the total, primary, specularly reflected and diffusely
reflected AO fluence cross section down the middle of the top and bottom troughs,
respectively, from left to right. In the figures, the distance is measured from the top of the
left outside edge of the trough, down the edge, across the bottom to the bottom of the right
outside edge, and up to the top of the edge. Because of an artifact of TECPLOT, the
portion of the bottom of the trough shaded by the left vertical side of the trough is not
included in the cross sections. The cross sections for the top and bottom troughs are quite
similar. The left edge of the trough receives most of its exposure from specular reflection
from the inside walls of the the trough. As one moves from left to right along the bottom
of the trough, specular reflection generally dominates over primary and diffuse fluences.
On the right vertical end of the trough primary AO fluence dominates, although diffuse and
specular AO fluences are also significant.

Figures 5.2-4 and 5.2-5 show the the total, primary, specularly reflected and
diffusely reflected AO fluence cross section of the left and right troughs, respectively,
approximately down the middle from top to bottom. The cross sections are taken from top
to bottom in the same manner as the cross sections in figures 5.2-2 and 5.2-3. The left
trough shows relatively constant total fluence due mostly to diffusely reflected fluence.
The right trough shows decreased fluence away from the ends. In both cases diffuse
reflections contribute the majority of the fluence.
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Figure 5.1-1. M0001 NRL Cosmic Ray Experiment On-Orbit Photo.
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Figure 5.2-1. M0001 NRL Cosmic Ray Experiment Atomic Oxygen Exposure Given as
Log1p AO Fluence (Atoms/cm?).
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5.3 Solar Exposure

Figure 5.3-1 shows LDEF mission solar exposure to the MO0OO1 NRL cosmic ray
experiment. In the figure, the active side of the surfaces making up the edges of the trough
face the inside of the trough. The left side of the figure faces ram, with the ram direction
oriented to the left and 8.1 degrees below horizontal in the figure. The large space-facing
top plate receives the maximum CESH of any of the surfaces making up the experiment,
with uniform primary direct CESH and no reflected CESH. The trough bottom surfaces
receive relatively uniform solar exposure at somewhat lower values than the top square
surface because the trough sides shield the bottom from some direct solar exposure. The
sides of the trough, being more nearly perpendicular to the average Sun position, receive
less CESH than the trough bottom.

Figures 5.3-2 through 5.3-5 show the total, primary, specularly reflected and
diffusely reflected CESH cross sections for the same portions of the trough as figures 5.2-
2 through 5.2-5 show for AO. As these figures show, primary CESH account for half to
two thirds as much exposure to the tray bottoms as it does to the square top plate. The
remainder of the exposure is due to specularly and diffusely reflected CESH. As expected,
the cross sections show a decrease in CESH on the vertical ends of the cross section.
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6.0 TRAY D-11 COPPER GROUND STRAP
6.1 Experiment Location and Description

The tray D-11 copper ground strap is located on LDEF as shown in figure 6.1-1
(and color photo A6.1-1, p. A5). The area modeled includes the copper ground strap, the
aluminum tray edge, a clamp plate, bolts, and the FEP blanket near the copper ground
strap. Row 11 is oriented 51.9 degrees from the ram direction. The longeron between
rows 11 and 12 on which the clamp plate is mounted is oriented 66.9 degrees from the ram
direction. The copper ground strap extends from under the clamp plate to the bend of the
tray edge, where it is covered by the edge of the FEP blanket.

6.2 Atomic Oxygen Exposure

Figure 6.2-1 shows AO exposure fluence in the area of the tray D-11 copper
ground strap. The values of log (fluence) have been labeled for several representative
locations on the figure. The top of the figure corresponds to the space end direction. The
ram direction is toward the left. The missing and distorted areas of the bolt heads and the
clamp plate are artifacts of the plotting program.

The effects of reflected and shadowed AO fluence are clearly shown in figure 6.2-
1. The fluence is most intense on surfaces facing nearest the ram direction, namely the
curved part of the aluminum tray edge and the near vertical left-facing aluminum plate edges
on the longeron. Specular reflection from the curved part of the aluminum tray edge
accounts for increased exposure to the FEP blanket in the fold "V." The otherwise near
uniform fluence on both sides of the "V" is due to a combination of specular and diffuse
reflections in the "V." The near vertical left-facing clamp plate edges on the longeron
reflect fluence on the copper ground strap and aluminum tray edge nearby. Portions of the
tray edge not near the clamp plate edge do not show this increased fluence.

Shadowing is clearly evident in the reduced AO fluences to the right of the bolt
heads. The appearance of the structure near the middle bolt head is an artifact of the
TECPLOT plotting program. The different apparent AO fluences downwind of the bolts is
an artifact of the grid sizes and of the portions of the grid areas hidden by the bolt heads.
The grid sizes used were chosen to give a reasonable representation of the AO fluence
while maintaining computational efficiency. These artifacts do not affect the AO fluence
predicted for the copper surface being modeled.
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7.0 F-9 ANGLE BRACKET
7.1 Experiment Location and Description

The tray F-9 angle bracket is located on LDEF as shown in figure 7.1-1 (and color
photo A7.1-1, p. A6). Figure 7.1-2 shows the orientation of the F-9 angle bracket on
LDEF. The ram direction is oriented 8.1 degrees toward row 10 and 0.8 degrees toward
the space end from the row F-9 surface normal. The top of figure 7.1-1 is oriented toward
the space end of LDEF. The F-9 angle bracket is coated with a thin layer of FEP.

7.2 Atomic Oxygen Exposure

Figure 7.2-1 shows LDEF mission atomic oxygen exposure to the F-9 angle
bracket. In the figure, ram fluence strikes the bracket at an angle of 8.1 degrees to the
vertical face of the bracket. Figure 7.2-2 is a cross section of the fluence to the angle
bracket from left to right across the middle of the bracket. The figure shows primary,
specular, and total AO fluence. The figures show that the vertical surface of the angle
bracket receive about 10% of the fluence of the horizontal surfaces and that reflected
fluence contributes significantly to the fluence on the lower horizontal surface.

The FEP thickness along a cross section of the F-9 angle bracket was measured.
The measured cross section started at the left side of the upper curved surface in figure 7.2-
1 (or at about 1.0 cm in figure 7.2-2) and extends on to the flat surface at the lower right of
figure 7.2-1 (or to about 3.6 cm in figure 7.2-2). Figure 7.2-3 shows these experimentally
measured FEP thicknesses superimposed on a plot of calculated FEP thickness due to
erosion from primary and total AO exposure. The calculated FEP thickness is based on

Thickness (mm) = 0.125 mm - [3.4 x 10-26 mm/(AO/cm?2)] * [AO fluence (AO/cm2)] .

In this equation 0.125 mm is the initial FEP thickness before exposure to atomic oxygen
fluence. This value was determined by adjusting the initial FEP thickness to give the best
fit between the experimentally measured and calculated FEP thicknesses. The recession

rate of 3.4 x 10-26 mm/(AO/cm2) is based on the value given by Stein and Pippin (ref, 9).

Figure 7.2-3 shows that primary AO fluence alone is not sufficient to model the
erosion of the FEP on the F-9 angle bracket. Reflected AO contributes significant erosion
to the FEP on the lower flat surface of the angle bracket. The measured FEP thickness is
less than the calculated thickness from about 30 to 35 mm. This difference in thicknesses
is unexplained, but may indicate a greater contribution due to scattered AO than predicted
by the model. In all other regions, the agreement between measured and calculated FEP -
thickness is quite good.
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8.0 D-11 FEP BLANKET FOLD AT TRAY EDGE TOWARD ROW 10
8.1 Experiment Location and Description

The tray D-11 blanket fold is located on LDEF on the row 10 side of tray 11 as
shown in figure 8.1-1 (and color photo A8.1-1, p. A7). Figures 7.1-2 and 8.1-2 show the
orientation of the D-11 blanket fold on LDEF. The row 11 surface normal is oriented 51.9
degrees from ram direction. The top of figure 8.1-1 is oriented toward the space end of
LDEF. The thermal control blanket is FEP and the tray edge is aluminum.

8.2 Atomic Oxygen Exposure

Figure 8.2-1 shows LDEF mission atomic oxygen exposure to the D-11 blanket
fold. In the figure, ram fluence strikes the parallel flat surfaces of the FEP blanket and
aluminum tray edge at an angle of 51.9 degrees from the vertical to these surfaces. In
figure 8.2-1 the ram fluence comes from the right of the figure toward the left of the figure.
Figure 8.2-2 is a cross section of the fluence to the blanket fold from left to right across the
middle of the blanket fold. The figure shows primary, specular, and total AO fluence.
Examination of the figures shows that primary fluence is uniform on the parallel surfaces of
the FEP and aluminum and is most intense on the curved surface of the FEP because this
surface is most nearly normal to the ram fluence. The curved surface of the aluminum tray
edge is shielded from primary AO fluence. The curved surface of the FEP reflects fluence
on to the aluminum surface of the "V" formed by the FEP blanket and aluminum tray edge.
Almost all of the fluence in the "V" is due to reflected fluence. The lower part of the "V"
receives about 10% as much fluence as the parallel flat surfaces of the FEP blanket and tray
edge.

The FEP thickness along a cross section of the FEP blanket was measured. The
measured cross section started to the left of the curved FEP surface in figure 8.2-1 (or at
about 16 mm in figure 8.2-2) and extends beyond the bottom of the "V* (the FEP blanket is
in contact with the aluminum tray side below the bottom of the "V" and is shielded from
AOQ fluence; this the region from 42 to 52 mm in figure 8.2-2). Figure 8.2-3 shows these
experimentally measured FEP thicknesses superimposed on a plot of calculated FEP
thickness due to erosion from primary and total AO exposure. The calculated FEP
thickness is based on

Thickness (mm) = 0.135 mm - [3.4 x 10-26 mm/(AO/cm2)] * [AO fluence (AO/cm?2)] .

In this equation 0.135 mm is the initial FEP thickness before exposure to atomic oxygen
fluence. This value was determined by measuring the FEP thickness in the area shielded .

from AO fluence. The recession rate of 3.4 x 10-26 mm/(AO/cm?2) is based on the value
given by Stein and Pippin (ref. 9).

Figure 8.2-3 shows that primary AO fluence alone is not sufficient to model the

erosion of the FEP on the D-11 FEP blanket. However, when reflected AO fluence is
accounted for, the fit between calculated erosion and measured erosion is much better.
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9.0 TRAY B-7 FEP BLANKET FOLD AT LONGERON TOWARD ROW 8§
9.1 Experiment Location and Description

The tray B-7 blanket fold is located on LDEF on the row 8 side of tray 7 as shown
in figure 9.1-1 (and color photo A9.1-1, p. A8). Figure 7.1-2 shows the orientation of the
B-7 blanket fold on LDEF. The row 7 surface normal is oriented 68.1 degrees from ram
direction. The top of figure 9.1-1 is oriented toward the space end of LDEF. The thermal
control blanket is FEP and the longeron is aluminum.

9.2 Atomic Oxygen Exposure

Figure 9.2-1 shows LDEF mission atomic oxygen exposure to the B-7 blanket
fold. In the figure, ram fluence strikes the parallel flat surfaces of the FEP blanket and
aluminum longeron edge at an angle of 68.1 degrees from the vertical to these surfaces. In
figure 9.2-1 the ram fluence comes from the right of the figure toward the left of the figure.
Figure 9.2-2 is a cross section of the fluence to the angle bracket from left to right across
the middle of the bracket. The figure shows primary, specular, and total AO fluence.
Examination of the figures shows that primary fluence is uniform on the parallel surfaces of
the FEP and aluminum and is most intense on the curved surface of the FEP because this
surface is most nearly normal to the ram fluence. The curved surface of the aluminum
longeron edge is shielded from primary AO fluence. The curved surface of the FEP
reflects some fluence on to the top of the aluminum surface of the "V" formed by the FEP
blanket and aluminum longeron edge. Almost all of the fluence in the "V" is due to
reflected fluence. The lower part of the "V" receives about 4% as much fluence as the
parallel flat surfaces of the FEP blanket and longeron edge.

The FEP thickness along a cross section of the FEP blanket was measured. The
measured cross section started to the left of the curved FEP surface in figure 9.2-1 (or at
about 5 mm in figure 9.2-2) and extends beyond the bottom of the "V" (the FEP blanket is
in contact with the aluminum longeron side below the bottom of the "V" and is shielded
from AO fluence; this the region from 41 to 45 mm in figure 9.2-2). Figure 9.2-3 shows
these experimentally measured FEP thicknesses superimposed on a plot of calculated FEP
thickness due to erosion from primary and total AO exposure. The calculated FEP
thickness is based on

Thickness (mm) = 0.135 mm - [3.4 x 10-26 mm/(AO/cm2)] * [AO fluence (AO/cm2)] .

In this equation 0.135 mm is the initial FEP thickness before exposure to atomic oxygen
fluence. This value was determined by measuring the FEP thickness in the area shielded
from AO fluence. The recession rate of 3.4 x 10-26 mm/(AO/cm2) is based on the value
given by Stein and Pippin (ref. 9).

Figure 9.2-3 shows that because relatively little AO fluence is reflected on to the
FEP blanket, there is little difference in calculated FEP erosion whether or not reflected AO
is considered. Agreement between calculated and measured FEP thickness is good to the
right of about 20 mm in the figure. The FEP in the region to the left of 20 mm was
wrinkled, so the measured FEP thicknesses there are not representative of the modeled flat
blanket surface. Hence, this region should not be considered when comparing the
calculated and measured FEP blanket thicknesses.
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Figure 9.1-1. B-7 FEP Blanket Fold at Longeron Photo.

50



IS

"(Zwo/swoly) ousn] Qv 01801

Se uaAID) amsodxqg uafAx( oMuOy U0ISSUOT I PO 1oueld d2 L-9 ‘1-7°6 2mS1g

(3D) || Print]| a:b7blansh.pit || TRAY B7 FEP BLANKET FOLD AT LONGERON TOWARD ROW 8

LOG(FLUENCE)
(AO/CM?)

22
21.8214
21.6429
21.4643
21.2857
21.1071
20.9286
20.75
20.5714
20.3929
20.2143
20.0357
19.8571
19.6786
19.5

FEP

ALUMINUM




———— PRIM

~=--- SPEC
DIFF
TOTAL

——
— —
— e
e —
———
—

i

-
-
-
™ creseene

80|

| |
Q Q
> o
(4V] N

(zWO/SWOLY) (3ON3NT4 OV)D0T

!
Q
o
2

(2D) |[ Print [} a:b7blansh.xyp || TRAY B7 FEP BLANKET FOLD CROSS SECTION BLANKET TO TRAY EDGE

50 75

25
DISTANCE ALONG FEP BLANKET (MM)

Figure 9.2-2. Atomic Oxygen Exposure Cross Section of Figure 9.2-1.

52




€S

*SSOUOIY L,

-4 '€-7°6 am31y

d= rewswuadxy sa paje[noe) ueIs3uory e pjog 1oyueg I L

Primary Thickness (mm)

Experiment Tray B7
FEP Blanket Thickness Near Edge Facing Row 6

0.14 )
----- Primary Thickness (mm) 000 o o o
———  Total Thickness (mm) ol %% °
ol O
o Experimental Thickness (mm) — o °
® o
0.131
o
o
o
b
0.121
o
°
°
°o, ‘o o
oo ©
o o
0.1 T ” v T T Y '
0 10 20 30 40 50

Distance (mm) (Same Scale as Cross Section)



10.0 TRAY C-5 FEP BLANKET FOLD NEAR TRAY EDGE
10.1 Experiment Location and Description

The tray C-5 blanket fold is located on LDEF on the row 6 side of tray 5. The row
5 surface normal is oriented 128.1 degrees from ram direction. The thermal control blanket
is FEP and the tray is aluminum.

This region was modeled so that predicted solar exposure to it could be compared to
the measured variations in FEP surface structure with location (ref. 10).

10.2 Solar Exposure

Figure 10.2-1 shows the LDEF mission solar exposure to the FEP blanket and the
aluminum tray edge in the region of the C-5 FEP blanket fold at the tray edge parallel to
row 6. In the figure, the FEP blanket is on the left and the aluminum tray edge is on the
right. Figure 10.2-2 shows a cross section of the solar exposure. Solar exposure is given
for total direct and Earth-reflected solar exposure (GRTOT), direct primary solar exposure
(PRIM), direct specular reflected solar exposure (SPEC), direct diffuse reflected solar
exposure (DIFF), and total direct solar exposure (TOTAL). The cross section is taken
along a line on the surfaces about midway from top to bottom in figure 10.2-1. Distance
(the horizontal axis) in the cross section is measured from the left side of the FEP blanket in
Figure 10.2-1 along the surface of the blanket and the aluminum tray side to the right side
of the aluminum tray .

Examination of figure 10.2-2 shows that approximately one seventh of the total
solar exposure is due to Earth-reflected solar radiation (the difference between the total
direct and Earth reflected solar exposure and total direct solar exposure). The solar
exposure to the flat FEP and aluminum surfaces parallel to row 5 is constant. The average
Sun position is most nearly perpendicular to the curved part of the aluminum tray and
results in the highest exposure to this surface because of the combined effects of direct and
reflected solar radiation. Nearly all of the exposure in the "V" is due to reflections. That
on the FEP is due mainly to diffuse reflection from the aluminum side of the "V"; that on
the aluminum is due mainly to specular reflection from the FEP side of the "V."
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11.0 TRAY D-1 FEP BLANKET FOLD NEAR ROW 2 EDGE
11.1 Experiment Location and Description

The tray D-1 blanket fold is located on LDEF on the row 1 side of tray D-1 as
shown in figure 11.1-1 (and color photo A11.1-1, p. A9). The row 1 surface normal is
oriented 111.9 degrees from ram direction. The top of figure 11.1-1 is oriented toward the
space end of LDEF. The thermal control blanket is FEP and the tray is aluminum.

This region was modeled so that predicted solar exposure to it could be compared to
the measured variations in FEP surface structure with location (ref. 10).

11.2 Solar Exposure

Figure 11.2-1 shows the LDEF mission solar exposure to the FEP blanket and the
aluminum tray edge in the region of the D-1 FEP blanket fold at the tray edge parallel to
row 2. In the figure, the FEP blanket is on the left and the aluminum tray edge is on the
right. Figure 11.2-2 shows a cross section of the solar exposure. Solar exposure is given
for total direct and Earth-reflected solar exposure (GRTOT), direct primary solar exposure
(PRIM), direct specular reflected solar exposure (SPEC), direct diffuse reflected solar
exposure (DIFF), and total direct solar exposure (TOTAL). The cross section is taken
along a line on the surfaces about midway from top to bottom in figure 11.2-1. Distance
(the horizontal axis) in the cross section is measured from the left side of the FEP blanket in
figure 11.2-1 along the surface of the blanket and the aluminum tray side to the right side of
the aluminum tray.

Examination of figure 11.2-2 shows that approximately one sixth of the total solar
exposure is due to Earth-reflected solar radiation (the difference between the total direct and
Earth reflected solar exposure and total direct solar exposure). The solar exposure to the
flat FEP and aluminum surfaces parallel to row 1 is constant. The average Sun position is
most nearly perpendicular to the curved part of the FEP blanket and results in the highest
exposure to this surface because of the combined effects of direct and reflected solar
radiation. Nearly all of the exposure in the "V" is due to reflections. That on the FEP is
due mainly to diffuse reflection from the aluminum side of the "V": that on the aluminum is
due mainly to specular reflection from the FEP side of the "V."
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Figure 11.1-1.  D-1 FEP Blanket Fold Near Row 2 Edge Photo.
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12.0 C-9 SCUFF PLATE
12.1 Experiment Location and Description

The C-9 scuff plate is located in LDEF experiment tray 9. Figure 12.1-1 (and color
photo A12.1-1, p. A10) shows the location of this experiment. Row 9 is the LDEF row
most nearly facing ram direction. All surfaces on the scuff plate are coated with yellow
Chem Glaze-II paint. The tray surfaces are modeled as aluminum.

12.2 Atomic Oxygen Exposure

Figure 12.2-1 shows LDEF mission atomic oxygen exposure to the C-9 scuff plate.
Both ram facing and row 9 facing surfaces of the scuff plate are represented. The large
rectangular surface under the scuff plate represents tray C-9 and the large rectangular
surface in the lower part of figure 12.2-1 represents row 10. The right side of the figure is
oriented toward the space end of LDEF. Several AO fluences in log atoms/cm? are
marked. The surfaces parallel to row 9 and facing ram receive a near constant AO fluence

of 8.5 x 10 21 atoms/cm?2 and row 10 receives a constant fluence of 7.4 x 10 21

atoms/cm2. The surfaces on the under side of the scuff plate show clearly the effects of
shadowing and reflection. Some materials samples in tray C-9 under the scuff plate (under
the left side of the scuff plate in figure 12.2-1) are partially shadowed from atomic oxygen.
The maximum shadowing reduces the AO fluence to samples nearest the base of the scuff
plate to about one third that on unshadowed surfaces of tray C-9.

12.3 Solar Exposure

Figure 12.3-1 shows LDEF mission solar exposure in CESH to the C-9 scuff plate.
Solar exposure in CESH are indicated at several locations on the figure. As with AO
exposure, the effects of shadowing and reflections are clearly shown on the figure. Tray
C-9 material samples nearest the base of the scuff plate (to the left side of the scuff plate
base in figure 12.3-1) receive about on third the CESH of samples which are not shielded.
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12.1-1.  C-9 Scuff Plate Location Photo.
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13.0 SPACE END TRAY CLAMP H-12 WITH THREE BOLTS
13.1 Experiment Location and Description

Tray clamp H-12 is located on the space end of LDEF. Figure 13.1-1 (and color
photo A13.1-1, p. A11) shows the location of this tray clamp. All surfaces of the tray
clamp are aluminum.

13.2 Atomic Oxygen Exposure

Figure 13.2-1 shows LDEF mission atomic oxygen exposure to the space end tray
clamp H-12 and three bolt heads. The ram direction is from the right of the figure and
nearly parallel to the plane of the clamp. The thin vertical plate above the clamp simulates
the tray side which shields the top of the clamp from side AO fluences. Several AO

fluences in log atoms/cm?2 are marked. Figure 13.2-1 clearly shows the effects of
shadowing behind the bolt heads. The differences in the shadow patterns behind the bolt
heads are primarily artifacts of the finite resolution of the grid on the clamp surface. Had
the grid been made finer, the shadow patterns would be expected to be more nearly alike.
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Space End
Tray Clamp H12 ™

13.1-1.  Space End Tray Clamp H-12 On-Orbit Photo.
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14.0 ENVIRONMENT EXPOSURE CONTROL CANISTER (EECC)
EXPERIMENT TRAYS

14.1 Experiment Location and Description

The B-9, C-2, D-4, D-8, and E-3 Environment Exposure Control Canisters
(EECC) are located as shown in figure 14.1-1. This figure shows the orientation of the
EECC experiment tray drawers when opened with respect to their enclosures. All surfaces
of the EECC are modeled as aluminum. Only the experiment tray and front experiment tray
lip and the lip of the EECC enclosure for each EECC are modeled.

EECC B-9, C-2, and E-3 experiment trays were either completely closed or
completely exposed during the LDEF mission. EECC D-4 and D-8 experiment trays were
exposed to the space environment in stages. Figure 14.1-2 lists the experiment tray
exposure times for the EECCs.

EECC Exposure Exposure Start Date | Exposure End Date
B-9,C-2, and E-3| 100% of tray exposed | April 17, 1984 January 29, 1985
D-4 and D-8 75% of tray exposed | April 21, 1984 September 15, 1984

87.5% of tray exposed [ September 15, 1984 | November 26, 1984
100% of tray exposed | November 26, 1984 | January 26, 1985

Figure 14.1-2 EECC Exposure Sequence.
14.2 Atomic Oxygen Exposure

14.2.1 B-9, C-2, and E-3 EECC Experiment Trays. Figure 14.2.1-1
shows atomic oxygen fluence to the B-9 EECC experiment tray. The B-9 EECC
experiment tray, which faces almost directly into the ram direction, receives a nearly
uniform AO exposure except for slight shadowing and reflection near the lips of the tray
and enclosure (left and right sides of fig. 14.2.1-1, respectively). The C-2 (141.9 degrees
from ram) and E-3 EECC (171.9 degrees from ram) experiment trays are both on the
trailing side of the LDEF and are well shielded from AO exposure. The exposure to these
EECC experiment trays is 8 to 20 orders of magnitude less than on the B-9 EECC
experiment tray. For engineering purposes the trailing edge EECC experiment trays may
be considered to have had zero AO exposure.

14.2.2 D-4 and D-8 EECC Experiment Trays. Figure 14.2.2-1 shows
atomic oxygen fluence to the D-8 EECC experiment tray. The D-4 EECC experiment tray
(158.1 degrees from ram) is on the trailing edge of LDEF and received such a small AO
fluence that the the fluence may be considered to be zero. The D-8 EECC experiment tray
is 38.1 degrees from ram. Figure 14.2.2-1 clearly shows the effects of the sequenced
exposure of the experiment tray, with decreasing AO fluence to the more recently exposed
portions. Also evident is an increase in flux due to reflections from the lip of the
experiment tray.
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14.3 Solar Exposure

B-9, C-2, and E-3 EECC Experiment Trays. Figures 14.3.1-1 through
14.3.1-3 show solar exposure in CESH to the B-9, C-2, and E-3 EECC experiment trays.
The B-9 EECC experiment tray, which faces almost directly into the ram direction,
receives a nearly uniform solar exposure except for shadowing near the lip of the tray (left
side of fig. 14.3.1-1). The C-2 (141.9 degrees from ram) is slightly shadowed from solar
exposure by the experiment tray lip (right side of fig. 14.3.1-2) and receives some reflected
exposure from the EECC cover lip (left side of fig. 14.3.1-2). The E-3 EECC (171.9
degrees from ram) experiment trays receives nearly uniform solar exposure, with the
differences shown in figure 14.3.1-3 being of statistical nature rather than real.

14.3.2 D-4 and D-8 EECC Experiment Trays. Figures 14.3.2-1 and
14.3.2-2 show solar exposure in CESH to the D-4 and D-8 EECC experiment trays. The
D-4 and D-8 EECC experiment trays both clearly show the effects of the sequenced
exposure of the experiment trays, with decreasing solar exposure to the more recently
exposed portions. The D-4 experiment tray shows an increase in solar exposure at about
75% exposure due to reflections from the lip of the EECC housing.
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Figure 14.3.1-1. B-9 EECC Experiment Tray Solar Exposure in CESH.
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APPENDIX A
COLOR PRINTS OF PHOTOGRAPHS SHOWN IN THE TEXT

Appendix A contains color prints of the black and white photographs shown in the main

section of this document. Figure numbers in the Appendix A are identical to the figure numbers in
the main section except that Appendix A figure numbers are preceded by an A.
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Figure A2.1-1.  S0069 Thermal Control Surfaces Experiment On-Orbit Photo.
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Earth End

Figure A4.1-1. Row 7 Toward Row 6 FEP Blanket Fold On-Orbit Photo.
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Figure A5.1-1. MO0001 NRL Cosmic Ray Experiment On-Orbit Photo.
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Row 11

Earth End

Figure A6.1-1. Tray D-11 Copper Ground Strap Photo.
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Figure A7.1-1. F-9 Angle Bracket On-Orbit Photo.
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Figure A8.1-1. D-11 FEP Blanket Fold at Tray Edge Photo.
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Earth End

Figure A9.1-1. B-7 FEP Blanket Fold at Longeron Photo.
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A - th End

Figure A11.1-1. D-1 FEP Blanket Fold Near Row 2 Edge Photo.
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Figure A12.1-1. C-9 Scuff Plate Location Photo.
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Figure A13.1-1. Space End Tray Clamp H-12 On-Orbit Photo.
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