H-20753D

Highly Reusable Space Transportation:

M. B.C.R.

FURC

Approaches for Reducing ETO Launch Costs to \$100- 0 crt \$200 per Pound of Payload

Dr. John R. Olds Department of Mechanical and Aerospace Engineering North Carolina State University, Raleigh, NC

The Commercial Space Transportation Study (CSTS) suggests that considerable market expansion in earth-to-orbit transportation would take place if current launch prices could be reduced to around \$400 per pound of payload. If these low prices can be achieved, annual payload delivered to Low Earth Orbit (LEO) is predicted to reach 6.7 million pounds. The primary market growth will occur in communications, government missions, and civil transportation¹. By establishing a cost target of \$100 - \$200 per pound of payload for a new launch system, the HRST program has clearly set its sights on removing the current restriction on market growth imposed by today's high launch costs.

To capture a significant portion of the expanded market, a new launch system in the 20,000 pounds of payload class would need to fly over 200 flights to LEO per year. Under HRST program guidelines, the launch costs should not exceed \$4 million per flight — an order of magnitude lower than the current target being used by NASA's reusable launch vehicle (RLV) program². To meet this challenge, "design for life cycle cost" must replace "design for performance." Focus must shift to cost and operability, and each design decision made must fully consider life cycle cost impacts. Advanced technologies should be used where cost effective. System reliability and robustness will be critical to achieving the aircraft-like operations often associated with a low-cost, mature transportation system. But perhaps most importantly, the vehicle designer must expand the design space to include disciplines normally associated with the business world — marketing strategies, customer imposed design requirements, funding limitations, and innovative operating strategies.

In particular, achieving the goal of \$100 - \$200 per pound of payload will require significant coordinated efforts in 1) marketing strategy development, 2) business planning, 3) system operational strategy, 4) vehicle technical design, and 5) vehicle maintenance strategy. (NASA-CR-199561) HIGHLY REUSABLE N96-14889 SPACE TRANSPORTATION: APPROACHES FOR REDUCING ETO LAUNCH COSTS TO \$100 - \$200 PER POUND OF PAYLOAD Unclas (North Carolina State Univ.) 61 p Many concepts for achieving HRST's aggressive cost goals will be proposed and evaluated during the course of the program. In fact, there is almost certainly more than one "right answer" — that is, more than one launch system concept capable of achieving the desired goals. While individual concept definition and evaluation remains to be performed, it is appropriate to establish a rough set of hypotheses and ideas to guide the selection of potential candidates for additional concept definition work. The following sections outline proposed cost savings strategies in each of the five disciplinary areas listed above.

Marketing Strategy Development

The CSTS study predicts an elastic ETO market that will expand by nearly a factor of ten over today's market if prices can be significantly reduced. However, a new system must be appropriately positioned to capture payloads in many or all of the individual traffic segments. A vehicle designed to deliver humans to orbit might look significantly different than one designed to dispose of nuclear waste or one designed for multiple mission use. Well defined mission requirements (e.g. target orbit, payload weight, payload volume, life support requirements) are necessary in each marketing segment, and the vehicle concept must be designed around these requirements.

Since the mission requirements are likely to be dissimilar in many marketing of the segments, it is likely that a new vehicle concept will actually be a small *family of vehicles*, rather than a single vehicle. Each member of the family will be based on common technologies and similar design guidelines, but will be optimized to capture a particular market segment.

Although the expanded ETO market is attractive, a vehicle system designed to capture even larger markets could have increased flight rates, easier amortization of development and infrastructure costs, and therefore improved rate of return to private investors. Potential supplementary markets include small payload ETO missions, direct GTO missions, large military ETO missions, military transatmospheric missions (e.g. reconnaissance and global force projection), suborbital flight test experiments, and commercial high-speed endoatmospheric flight missions (e.g. VIP and high priority package delivery). A HRST system should target as many of these additional markets as feasible.

Business Plan

.

While it is the tendency of engineers to concentrate on vehicle design and vehicle performance, it is the business plan for a new launch system that will ultimately determine the financial success of the system. The U.S. government can probably be expected to continue its practice of sharing the development cost of new space systems with the aerospace industry. The government can also be expected to pay for much of the technological development and provide anchor tenancy for new systems, but 50% or more of the development cost will likely come from private sources/investors. Therefore the rate of *return on investment becomes a paramount concern* for a new system.

Upfront development costs for manufacturers cannot be excessive (under 4 - 55 billion of private investment) and system operations must produce a positive return (a profit) within a relative short timeframe (perhaps 4 to 6 years). Infrastructure and ground facilities costs must be limited, and long development times from time of initial capitol investment must be avoided. Given the development risks, price/cost margins must be sufficient to produce returns to investors on the order of 30% - 40%.

In addition to the cost per pound of payload goal, business plan-derived financial requirements and restrictions must be properly accounted for in a successful concept design. In many cases, financial restrictions will directly impact technical decisions made on the vehicle concept design.

System Operational Strategies

With the exception of amortizing investment cost, ground and flight operations are the two largest contributors to per flight launch costs in a highly reusable launch system. The standing army of technicians required to maintain, refurbish, checkout, and ready the Space Shuttle for flight must be significantly reduced on a new launch system in order to meet HRST cost goals.

To obtain aircraft-like operations, a paradigm shift from the government as designerdeveloper-operator-customer to a scenario more like the airframer-air carrier relationship will be required. A single manufacturer/multiple operator system has *potential to exert significant downward pressure on launch operations cost*.

Use of a single manufacturer maximizes vehicle production runs, maximizes learning effects, reduces tooling startup costs, and reduces duplication of design effort. Because of the high degree of commonality between members of the overall family of vehicles, a single manufacturer would be used to produce all vehicles. Prime contractor - subcontractor arrangements of airframe manufacturers and design partnerships with the government might be considered as alternatives.

Multiple vehicle operators — perhaps even competing in certain market segments — would have a strong profit-motive to reduce operations cost. They would exert pressure on the manufacturer to keep hardware and infrastructure investment costs low and operability high. Commercial carriers would operate individual vehicles from the family

in many of the new markets (e.g. space tourism, high speed package delivery) as well as the expanded ETO market (analogous to the newly formed OSC/Rockwell Spacelines). The government would assume a role as an anchor tenant for the civil ETO payload carrier and would only serve as operator for military missions.

The choice of operational strategy has a significant effect on the vehicle technical design. The family of vehicles must be designed to meet the requirements of several different market segments and operators while maintaining a small overall number of vehicle designs and a high degree of commonality. Launch infrastructure costs must be keep low in order to reduce carrier investment costs, and the vehicle must be capable of operating from several launch sites established by the different carriers.

Vehicle Technical Design

. -

Feasible concept designs are one of the expected products of the HRST project. Proposed designs are expected to represent a broad spectrum of shapes and ideas, and it would be premature to pick a particular preferred design concept at this stage of the project. However, consistent will the establishment of broad guidelines and strategic arguments in the sections above, certain vehicle/family design characteristics can be inferred from the HRST cost goals.

Most mature, low cost transportation systems are highly reusable — railroads, automobiles, airplanes. It is reasonable to expect that a space transportation system capable of meeting HRST cost requirements will also consist of highly reusable hardware. Vehicle designers must be cognizant of the need to recover and reuse hardware for many flights. Fleet sizes are expected to be small, and therefore the number of flights per vehicle will be high.

It will be the vehicle designer's challenge to design a small family of vehicles capable of meeting all of the missions targeted in the marketing plan in a cost effective manner. Single-stage, multi-stage, and launch assisted vehicles are all potential candidates. If multiple operators are to be used, then the infrastructure and facility costs must be kept low.

Because of high incremental costs, successful systems will likely avoid the use of a flight crew unless necessary to fulfill mission requirements. New technologies should be incorporated into the system only if they are cost effective. Advanced propulsion, actuators, avionics, materials, and heat shielding technologies all have the potential to improve vehicle performance, but their use must be weighed against financial investment limitations imposed by the business plan. Commonality of technology across a family of vehicles will be necessary to distribute development cost.

Vehicle Maintenance Strategy

An important subset of the vehicle technical design is the vehicle maintenance strategy. In fact, given the high cost of maintenance and refurbishment on the Space Shuttle, it is appropriate to address maintenance strategy as an individual discipline.

Routine maintenance and major refurbishment must be easy to accomplish and be cost-effective. Designers must make use of concurrent engineering techniques to maximize the maintainability of the system. Input from maintenance engineers and technicians should be solicited early in the concept design process. Access panels to subsystems, built-in test equipment, line replaceable units, simplified inspection and checkout procedures, increased mean time between maintenance (MTBM) for components, increased component reliability, and robust system operation (e.g. engine out) are all parts of a low maintenance cost system.

A key difference between current space transportation systems and operational aircraft systems is the level of *margin* built into the vehicle. Current space vehicles have been designed for maximum performance and have unacceptably low margins on most components (e.g. engine turbopumps and landing gear structure on the Space Shuttle). The result has been a high performing system with very high maintenance and post-flight inspection costs. A family of vehicles capable of meeting HRST cost goals should require an order of magnitude less inspection after each flight and have an increased number of flights between normally scheduled maintenance activities (around every 20 - 25 flights). However, this increased system robustness should not come at the expense of decreased reliability and system safety.

Summary and Approach to System Design

Each of the sections above has offered suggestions for designing an advanced launch system capable of meeting the \$100 - \$200 per pound of payload cost target established by the HRST program. In addition, it has been argued that the design of a successful system involves more than just the technical engineering disciplines. It depends just as heavily on business and financial planning disciplines as well. The HRST design space is highly multidisciplinary — involving skills in vehicle performance and sizing, technology assessment, market planning, business strategy planning, cost estimation, operations modeling, and maintenance modeling. The designer must recognize and solve the true multidisciplinary problem in order to produce a successful HRST concept.

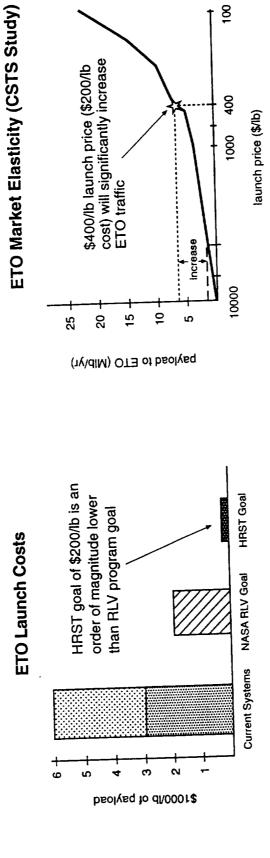
Multidisciplinary design optimization (MDO) is an emerging field in aerospace engineering capable of searching vast design spaces with inputs from a variety disciplines³. To date, these MDO methods (ranging from complex optimization procedures to simple multi-variable response surface techniques) have only been used on problems with traditional engineering disciplines. However, it is highly likely that MDO can be extended for use in the HRST program. MDO methods will provide a sound approach to system design and concept selection. However, a significant effort will be required to produce design-oriented analysis models for each of the five critical areas discussed above.

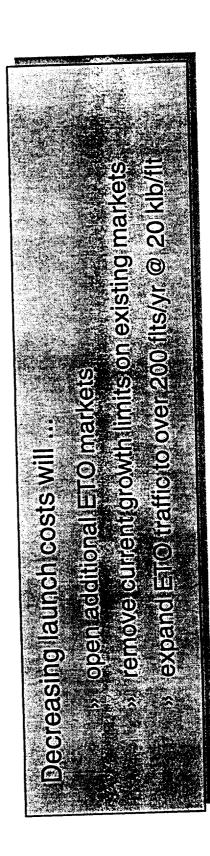
Parametric analysis models in each of the appropriate disciplines will be required. Care should be taken to avoid "point designs" in the search for suitable design candidates. Trends and effects of various design and planning decisions should be coupled with designer intuition and experience to identify promising vehicle/family concepts. Standard assumptions and groundrules will also be required in order to produce fair comparisons between different concepts.

By considering the true multidisciplinary problem presented by the HRST program, the chances of producing a successful design will be improved. In addition, engineers must recognize the importance of business and financial planning disciplines on their designs. The author hopes that some of the ideas presented in this paper will help the HRST program reach its goals.

References

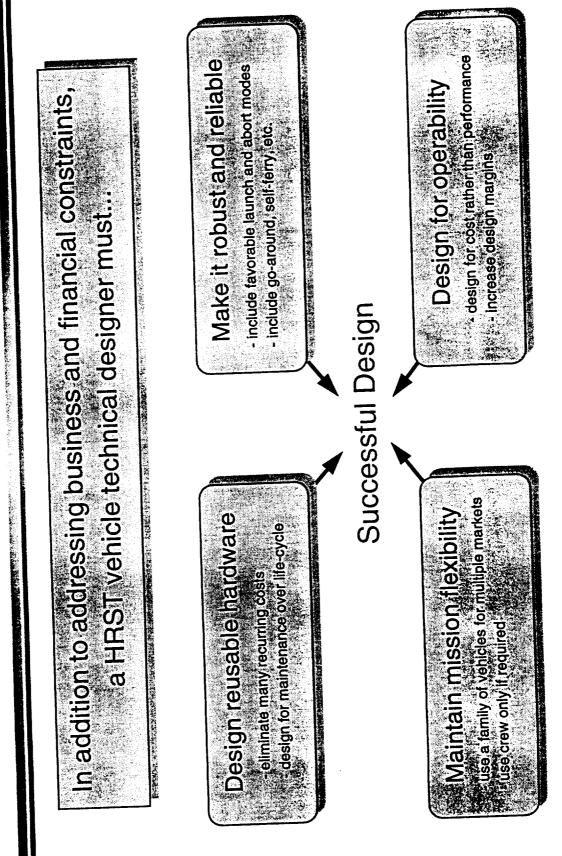
- 1. Anon. "Commercial Space Transportation Study (CSTS) Executive Summary." NASA - Langley Research Center, Hampton, VA, April, 1994.
- 2. Anon. "Access to Space Study Summary Report." NASA Headquarters, Washington, DC, January, 1994.
- 3. Sobieszczanski-Sobieski, Jaroslaw. "Multidisciplinary Design Optimization: An Emerging New Engineering Discipline." World Congress on Optimal Design of Structural Systems, Rio de Janeiro, Brazil, August, 1993.


.


July 24 - 27, 1995

Georgia Institute of Technology

 HRST program introduction HRST program introduction a multidisciplinary problem a multidisciplinary problem vehicle technical design guidelines Candidate propulsion system Candidate propulsion system combined-cycle propulsion (rocket <i>plus</i> airbreather) combined-cycle propulsion (rocket <i>plus</i> airbreather) SSTO rocket references SERJ RBCC with Maglifter Mach 12 RBCC SSTO
--



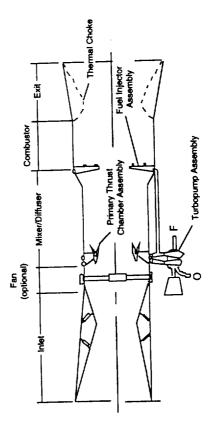
Keys to Achieving HRST Goals	A successful HRST concept must solve a <i>multidisciplinary</i> problem (financial, business, and technical)*	 Marketing Strategy address all available markets, use a tamily of vehicles 	2) Business Plan - design for return on investment within funding constraints	 3) System Operational Strategy - paradigm shift from government as single designer/operator 		5) Vehicle Maintenance Strategy -design for operational margin, reliability, and maintainability
K K G	A suc				this presentation	

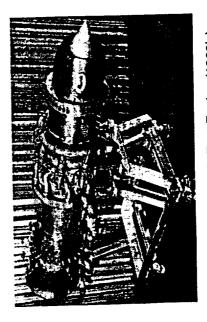
* see Olds' white paper "Highly Reusable Space Transportation: Approaches for Reducing ETO Launch Costs to \$100 - \$200 per Pound of Payload."

jro/7.85/5

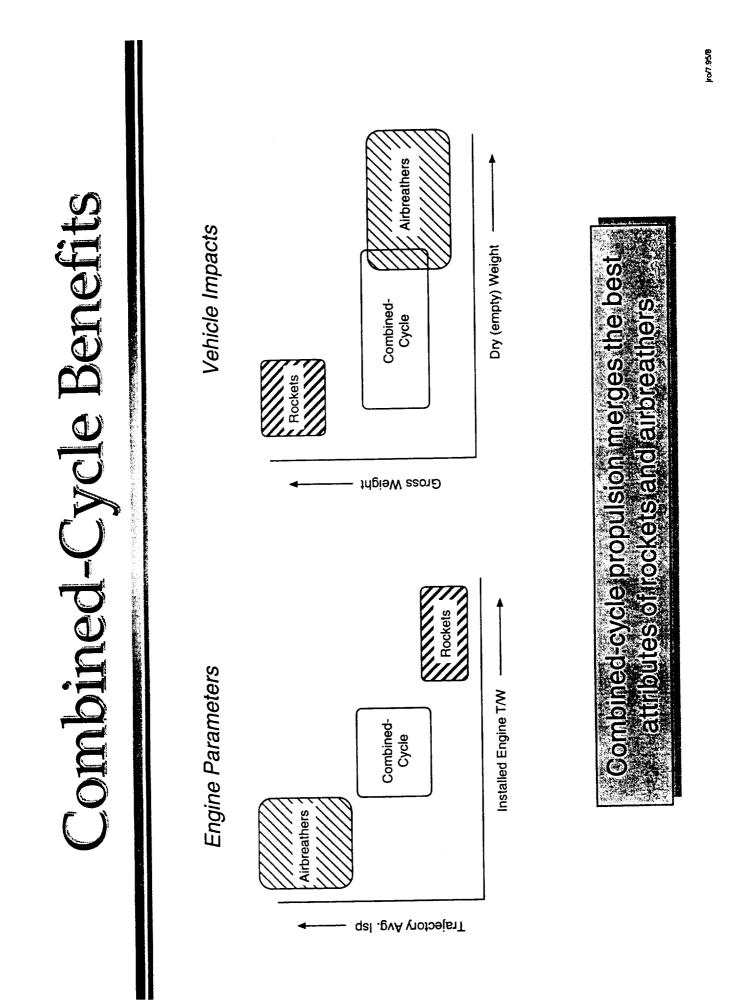
System for HRST Vehicles A Candidate Propulsion

Rocket-Based Combined-Cycle (RBCC)

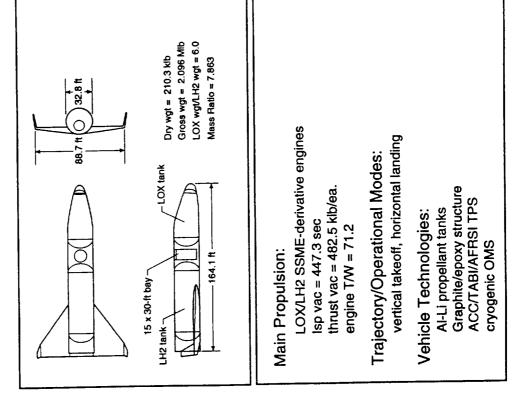


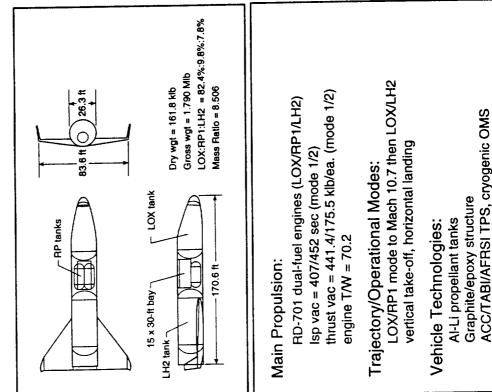


Rocket-Based Combined-Cycle (RBCC) Propulsion


Engine Schematic

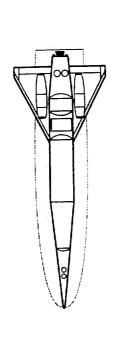
Historical Development

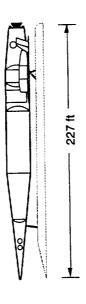

Marquardt Subscale Test Engine (1960's)

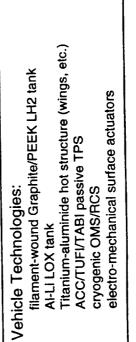

Selected Vehicle Concepts Thought Starters -

LH2/LOX SSTO

Dual-Fuel SSTO

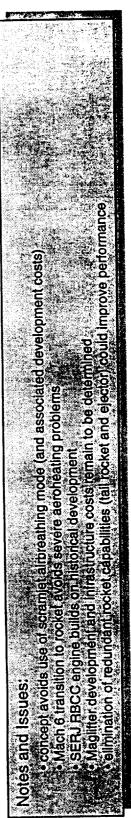



ko/7.95/11


C with Maglifter	Diffes	Dry wgt = 107.9 klb Gross wgt = 849 klb LOX wgt/LH2 wgt = 4.05 Mass Ratio = 6.125
SERJ RBCC with]	Maglifter accelerator BBCC engines LOX tank LDX tank LDX tank OMS engines	payload bay nocket engine

jro/7.95/12

SERJ RBCC w/Maglifter Summary



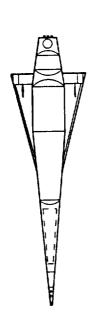
Vehicle: payload = 20 klb to 100 nmi. circular orbit @ 28.5° dry weight = 107.9 klb gross weight = 849 klb

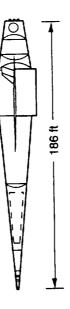
Propulsion:

2 Supercharged Ejector Ramjet (SERJ) RBCC engines lsp @ sea level = 460 sec. (LOX/LH2) thrust @ sea level = 223.4 klb/ea. engine installed T/W = 23.5

 TME-class LOX/LH2 rocket lsp vac = 455 sec thrust vac = 655 klb engine installed T/W = 70.0 Trajectory/Operational Modes: Maglifter horizontal acceleration to 800 fps @ sea level ejector Mode to Mach 2 fan-ramjet mode to Mach 3 ramjet mode to Mach 6 (const. dyn. press. = 2000 psf) (tail) rocket to orbit horizontal landing

SERJ RBCC w/Maglifter Weights	er Weights
Name	Weight (lbs)
<pre>wing and Tail Group Body Group (incls. tanks) Thermal Protection Main Propulsion OMS/RCS Propulsion OMS/RCS Propulsion Subsystems and Other Dry Weights Dry Weight Margin (15%) Dry Weight Margin (15%) Dry Weight (15%) Dry Weight (residuals, etc.) Insertion Weight Ascent Propellants</pre>	14,100 24,600 31,800 2,300 13,200 14,000 107,900 107,900 138,600 138,600 138,600
GLOSS HILLOLL WELGEN	


CC SSTO	X tank RBCC engines	Dry wgt = 87.3 Klb Gross wgt = 470 Klb LOX wgt/LH2 wgt = 2.80 Mass Ratio = 4.002
Mach 12 RBCC SSTC	OMS e	payload bay


;

Mach 12 RBCC SSTO Summary

Vehicle:

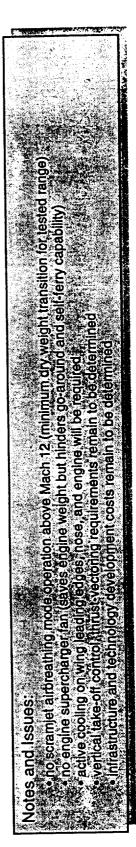
payload = 20 klb to 100 nmi. circular orbit @ 28.5° dry weight = 87.3 klb gross weight = 470 klb

Propulsion:

9 Ejector Ramjet/Scramjet RBCC engines 180° cowl wraparound angle, integrated flow path 1sp @ sea level = 421 sec. (LOX/LH2 ejector mode) thrust @ sea level = 62.6 klb/ea. 1sp in scramjet mode = 1600 - 3000 sec. (typ.) thrust in scramjet mode = 20 - 30 klb/ea. (typ.) maximum capture area = 20 sq. ft./ea. engine installed T/W = 23.5 Trajectory/Operational Modes: vertical take-off, horizontal landing ejector Mode to Mach 3 ramjet mode to Mach 12 (dyn. press. = 2000 psf) scramjet mode to Mach 12 (dyn. press. = 2000 psf) rocket mode (RBCC built-in) to orbit

ACC/TUFI/TABI passive TPS plus advanced active TPS

electro-mechanical surface actuators

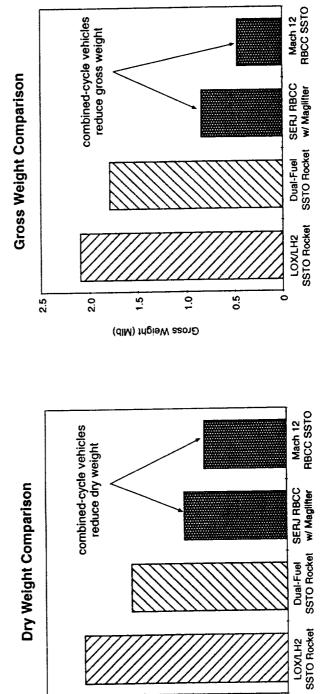

cryogenic OMS/RCS

Titanium-aluminide hot structure (wings, etc.)

illament-wound Graphite/PEEK LH2 tank

AI-Li LOX tank

Vehicle Technologies:


•

Jro/7.95/17

Vehicle Comparisons

STATES AND INCOMENTS OF A DESCRIPTION OF A

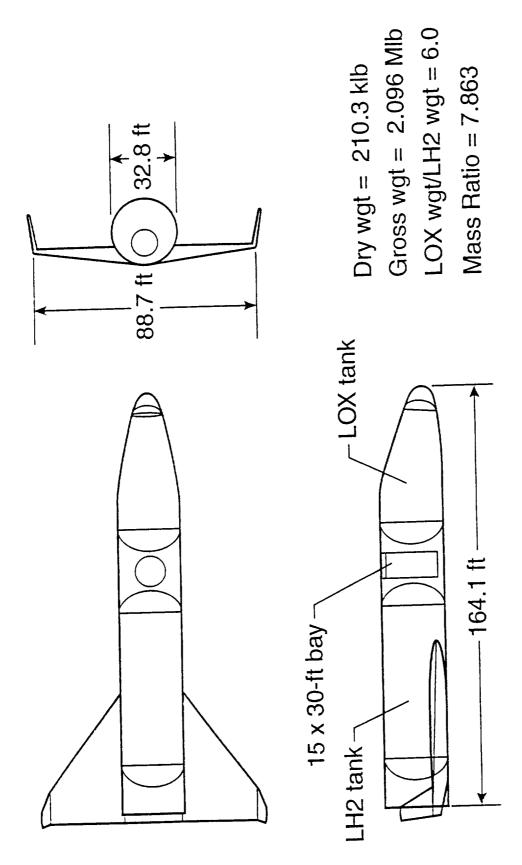
150

250

200

8

Dry Weight (klb)


0

20

7

Appendices

Vehicle Weight Statements

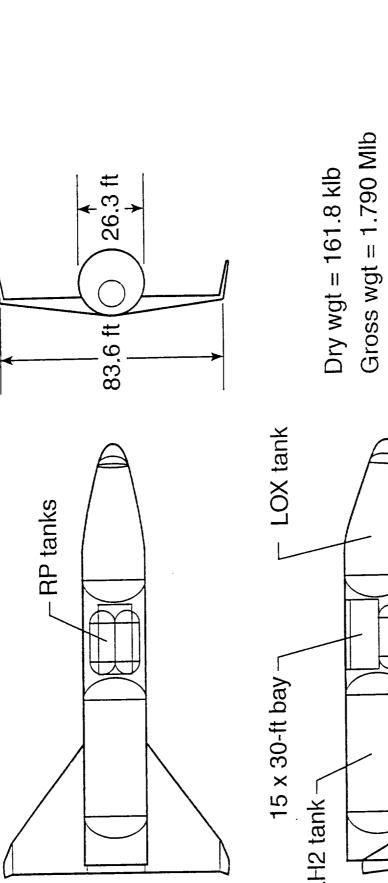
¥

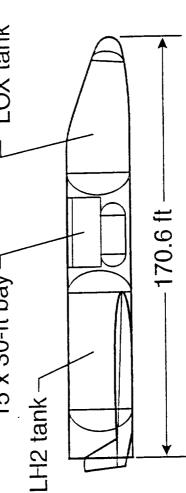
unmanned ssv,	ssme-50	der.	-	20	klb	p/1,	28.5	deg	incl.
uniunica oor,				=			\geq		

. . . .

1.0 Wing 2.0 Tail 3.0 Body 4.0 Induced environment protection 5.0 Undercarriage and aux. systems	9977. 1462. 66312. 18896. 7099.
 6.0 Propulsion, main 7.0 Propulsion, reaction control (RCS) 8.0 Propulsion, orbital maneuver (OMS) 9.0 Prime power 10.0 Electric conversion and distr. 11.0 Hydraulic conversion and distr. 	58561. 3623. 1363. 2339. 8438. 0. 1272.
<pre>12.0 Control surface actuation 13.0 Avionics 14.0 Environmental control 15.0 Personnel provisions 18.0 Payload provisions 19.0 Margin</pre>	1314. 2219. 0. 0. 27431.
EMPTY 20.0 Personnel 21.0 Payload accomodations 22.0 Payload 23.0 Residual and unusable fluids	210305. 0. 20000. 11688. 7273.
25.0 Reserve fluids 26.0 Inflight losses 27.0 Propellant, main 28.0 Propellant, reaction control 29.0 Propellant, orbital maneuver PRELAUNCH GROSS	7273. 5650. 1855335. 2861. 8815. 2121927.
Prelaunch gross Start-up losses Gross lift-off	0. 2121927. -25771. 2096155. -1829564.
Ascent propellant Insertion Ascent reserves Ascent residuals Inflight losses Aux. propulsion propellant Payload delivered Payload accepted	266591. -5862. -9582. -5650. -10966. -20000. 20000.
Entry RCS prop. (entry) Landed Payload (returned) Landed (p/l out)	234532. -710. 233822. -20000. 213822. 0.
Payload accomodations Personnel Subsystem residuals Aux. propulsion residuals Aux. propulsion reserves Empty	0. -605. -1501. -1410. 210305.

unmanned ssv, ssme-50 der. - 20 klb p/1, 29.5 deg incl.


DESIGN DATA


<pre>nose_section_areasq_ft_ intertank_areasq_ft_ aft_skirt_areasq_ft_ engine_bay_areasq_ft_ body_tps_wetted_areasq_ft_ wing_tps_wetted_areasq_ft_ exposed_wing_planform_sq_ft_ theo_wing_planformsq_ft_ body_volumecu_ft carry_through_width_ft exposed_wing_taper_ratio exposed_wing_aspect_ratio</pre>		$\begin{array}{c} 282.0456\\ 4079.4360\\ 1164.8359\\ 1221.7495\\ 15910.3421\\ 4405.7115\\ 2134.6666\\ 3923.7254\\ 123640.5167\\ 26.9737\\ 0.2359\\ 1.7836\end{array}$
SIZING PARAMETERS Mass ratio Propellant mass fraction Body length (ft.) Wing span (ft.) Theoretical wing area (sq. ft.) Wing loading at design wt (psf) Wing planform ratio, sexp/sref Sensitivity of volume to burnout wt (cu. ft./klb.) Burnout weight growth factor (lb/lb)		7.8628 0.8728 164.1 88.7 3897.0 60.0 0.55 457.3 4.58
Total volume (cu. ft.) Tank volume (cu. ft.) Fixed volume (cu. ft.) Tank efficiency factor Ullage volume fraction PROPELLANT FRACTION (lb/cu. ft.) (cu. ft.) lh2 0.1429 4.42 59150 0.142 0.9571 71.14	(cu.	WING 12623. 0. 0. 0.0000 0.0300 VOLUME ft.) 61338. 23045. 0.

.

.

•

LOX:RP1:LH2 = 82.4%:9.8%:7.8% Mass Ratio = 8.506

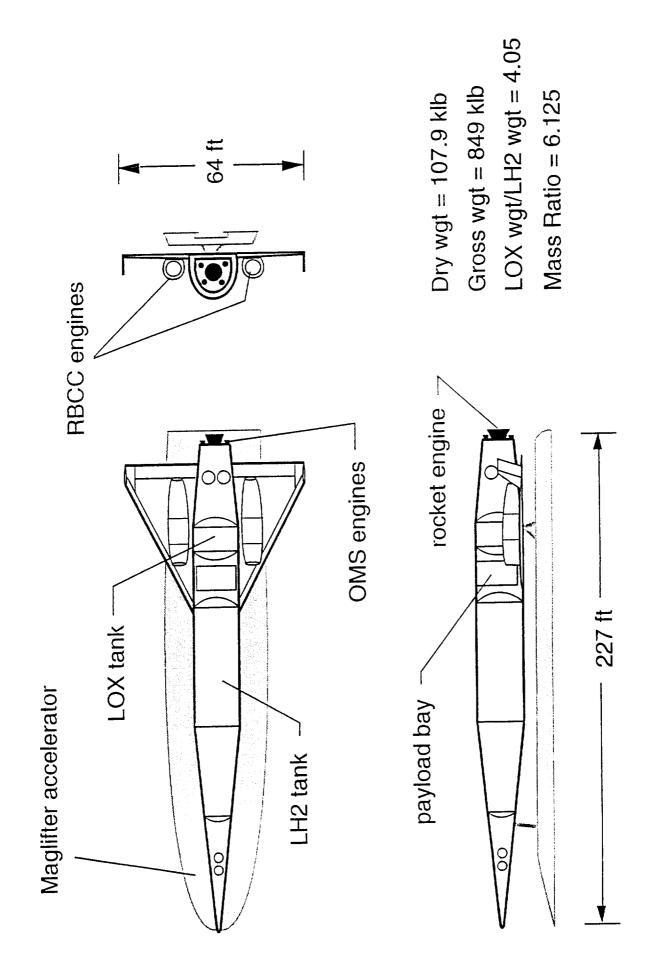
. .

unmanned ssv dual-	fuel, rd-701,	horz.	30	ft	p/l	bay,	20k1b p/l -	28.5	inc.,

<pre>1.0 Wing 2.0 Tail 3.0 Body 4.0 Induced environment protection 5.0 Undercarriage and aux. systems 6.0 Propulsion, main 7.0 Propulsion, reaction control (RCS) 8.0 Propulsion, orbital maneuver (OMS) 9.0 Prime power 10.0 Electric conversion and distr. 11.0 Hydraulic conversion and distr. 12.0 Control surface actuation 13.0 Avionics 14.0 Environmental control 15.0 Personnel provisions 18.0 Payload provisions 18.0 Payload provisions 19.0 Margin EMPTY 20.0 Personnel 21.0 Payload accomodations 22.0 Payload 23.0 Residual and unusable fluids 25.0 Reserve fluids 26.0 Inflight losses 27.0 Propellant, main 28.0 Propellant, reaction control 29.0 Propellant, orbital maneuver PRELAUNCH GROSS</pre>	$\begin{array}{c} 8325.\\ 1481.\\ 51009.\\ 16524.\\ 5843.\\ 39745.\\ 3362.\\ 1191.\\ 2339.\\ 6246.\\ 0.\\ 1050.\\ 1314.\\ 2292.\\ 0.\\ 0.\\ 21108.\\ 161827.\\ 0.\\ 0.\\ 21108.\\ 161827.\\ 0.\\ 0.\\ 20000.\\ 9894.\\ 5691.\\ 3777.\\ 1603438.\\ 2258.\\ 6957.\\ 1813842.\\ 0.\\ \end{array}$
Prelaunch gross Start-up losses Gross lift-off Ascent propellant Insertion Ascent reserves Ascent residuals Inflight losses Aux. propulsion propellant Payload delivered Payload delivered Payload accepted Entry RCS prop. (entry) Landed Payload (returned) Landed (p/l out) Personnel Payload accomodations Subsystem residuals Aux. propulsion reserves Empty	$1813842. \\ -24124. \\ 1789717. \\ -1579313. \\ 210404. \\ -4577. \\ -8231. \\ -3777. \\ -8655. \\ -20000. \\ 20000. \\ 185164. \\ -561. \\ 184604. \\ -20000. \\ 164604. \\ 0. \\ 0. \\ 0. \\ -478. \\ -1185. \\ -1113. \\ 161827. \\ \end{array}$

unmanned ssv dual-fuel, rd-701, horz. 30 ft p/l bay, 20klb p/l - 28.5 inc.,

DESIGN DATA


DESIGN DAIR	
payload volume (cu. ft.) payload weight (lb) oms delta v req. (ft./sec.) lift-off t/w ratio	2500.0000 20000.0000 500.0000 1.2000 8.5061
mass ratio rocket reduction factor body_lengthft_ body_widthft_ body_volumecu_ft_	0.0000 170.5762 26.2636 82008.9934

Ҟ

<pre>body_tps_wetted_areasq_ft_ nose_section_areasq_ft_ intertank_areasq_ft_ aft_body_areasq_ft_ lox_tank_wetted_areasq_ft_ lox_tank_volumecu_ft_ lh2_tank_volumecu_ft_ ker_tank_volumecu_ft_ ker_tank_volumecu_ft_ wing_tps_wetted_areasq_ft_ carry_through_widthft_ exposed_wing_spanft_ exposed_wing_loanform_sq_ft_ exposed_wing_taper_ratio exposed_wing_aspect_ratio body flap length (ft) tip fins (2) planform area (ft2)</pre>		$13140.4064 \\ 350.7522 \\ 4029.3243 \\ 766.1485 \\ 908.0100 \\ 4079.4898 \\ 20090.5600 \\ 5483.4919 \\ 30581.6126 \\ 3383.7165 \\ 4028.8602 \\ 23.7076 \\ 59.9081 \\ 53.0740 \\ 1943.5810 \\ 0.2324 \\ 1.8472 \\ 7.4742 \\ 215.9368 \\ \end{cases}$
SIZING PARAMETERS		
Mass ratio Propellant mass fraction Body length (ft.) Wing span (ft.) Theoretical wing area (sq. ft.) Wing loading at design wt (psī) Wing planform ratio, sexp/sref Sensitivity of volume to burnout wt (cu. Burnout weight growth factor (lb/lb)	ft./klb.)	$\begin{array}{c} 8.5061 \\ 0.8824 \\ 170.6 \\ 83.6 \\ 3381.0 \\ 54.6 \\ 0.57 \\ 384.6 \\ 3.73 \end{array}$
	BODY	WING
Total volume (cu. ft.) Tank volume (cu. ft.) Fixed volume (cu. ft.) Tank efficiency factor Ullage volume fraction	51522. 0. 0.6293 0.0300	0.0000 0.0300
PROPELLANTFRACTION(lb/cu.ft.)lh20.07824.42hc0.098350.50lox0.823571.14lox(Wing)0.0000	(cu. ft.) (cu. 27959.	3230.

.

.

iftST Vehicle w/RBCC Weights and Sizing

HTO stad hrunch RBCC with angine #11 V launch = 800 fps, q = 2000 pst, Mit = 6

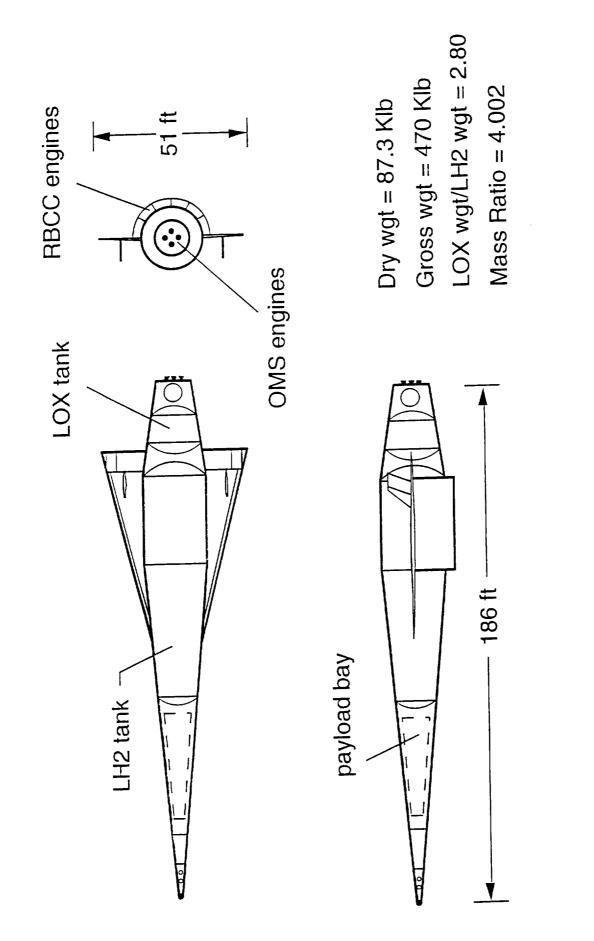
Directions: Verable that can be changed are marked with bold underline. Board verables are hyoris that are products of other analyses Adjust ascent propellant until actual mass ratio matches required mass ratio

49.47 lb 11.7 ft3 2.82 ft 197.86 lb 2.9 ft3 1.77 ft 1.89 ft 115.49 lb 27.4 ft3 3.74 ft 3.74 ft 461.96 lb 6 8 ft3 2.35 ft 2.35 ft 2.50 ft 359.96 lb 85.3 k3 5.46 k 2.159.77 lb 3.19 k3 3.93 k 2.38 k 15 11/246 35 11/246 420.0 446 259, fi/sec 462.0 895 259 Forward RCS Tatal forward RCS LH2 prop. Forward RCS LH2 prop. Forward RCS LH2 tank vol. Forward RCS LU2 tank dem Total forward RCS LOX prop. Forward RCS LOX prop. Forward RCS LOX prop. Forward RCS on-orbit AV Aft RCS on-orbit AV RCS lsp RCS mixture relio (O/F) Ah RCS **RCS Data** Total ah RCS LH2 prop An RCS LH2 tank vol An RCS LH2 tank dam Total ah RCS LUX tank vol An RCS LOX tank vol Af RCS LOX tank form Af He tank diameter DMS on orbit AV (deorbit) OMS Isp OMS mixture ratio (O/F) OMS Date Tolel OMS LH2 proy. OMS LH2 tenk vol. OMS LH2 tenk diam Total DMS LOX prop. OMS LOX tenk vol. OMS LOX tenk vol. OMS LOX tenk diameter Alt He tenk diameter 3072 6 H2 1.322 1.322 76.8 H2 76.8 H 63.74 H 8.76 H 8.76 H 63.19 H 58.70 H 58.70 H 51.101.42 H 3.16 H 8.00 U 2.21 Ib/ft2 22 ₽ 0.3721 158.08 1 316.16 Design(max.) wing limit load 9.77E+05 Required landing Cl Wing Inaring adga swamp Landing waiph/Siel Landing amord Landing amord Landing amor amor Landing Inpor Tailo Ciulae norm. force/gross wg Wing #xp. lending erlgs (en.) Span through half-choids Thickness of expos. root chord **Body Flep Data** Wing/Tail Date Body Ilap planform area Body Ilap area (top&btm) Wing Aspect ratio Wing exposed plaulotm Tail planform area(each) Wingspan Theoretical center chord Tip chord Exposed root chord Body llap length Body llap unit weight **Wing Reference area** 0.00 10,0 Approx. body passive TPS area 14107.9 112 Warg (tropistifin) worled area 3154.68 112 1.nii wetted area (boli) 307.25 112 655,044 lb 455.0 sec 6.00 69.69 lt2 0.27 466,828 lb 153.12 lt2 9.87 lt 49.37 ft 29.62 lt 1.05 0.55 9.00 9.00 9.00 9.00 9.00 **Rocket Engine Data** Nors cap active cooling weight Active cooling weightmenth Active cooling weightmenth ACC membody area ACC mea/wingklail area ACC unea/wingklail area 1UF1 area/wingklail area 1UF1 unea/body area RBCC Engine Data ransition Wg//Gross Wgt. Vehicle T/W (SLS) AU/Tocket Trans. Mach 4 Engine T/W (Instit, no marg) Engine Isp (see have) Engine langit/diameter Engine langit/diameter Vehicle T/W & transition Engine T/W (instit, no marg) Ejectors weight % ErectGs weight % Reg d thrust (SLS, both) Intercepture area (both) Eregine diametr (en) Total engine (en) Intet section length (en) Isp (vac) Mixture ratio (LOX/LH2) Nozzle exit area TPS Data Rocket thrust (vac.) 5 00 ft 21 81 ft 13 83 ft 150 27 ft2 1211.08 ft2 3886.2 ft3 2.21 |b/f12 2.21 |b/f12 1.99 |b/f12 0.33 [b/t12 0.20 [b/t12 0.13 [b 0.13 [b 0.13 [b/t13 0.101 8436.1 ft3 19.02 ft 6.90 ft 6.90 ft 32 87 ft 2136.42 ft2 33441.1 113 80 63 ft 57 69 ft 6 28 ft 2 22 ft 19 43 ft 6 87 ft 147 41 ft 7797.0 ft2 10.00 deg 2.25_1\slip 2.25_1\slip 2.12_0 2.425 2.425 2.425 2.425 2.425 2.425 Talicone/Base Dala LOX Mein Tenk Date LH2 Main Tank Date Tailcone tength (cyl section) Tailcone tength (total) Base diameter Base diameter Tailcone stutisce area At compartment volume Tank structural unit weight 2 Tank insulation unit weight 2 Cryo insulation thickness Lox density autage volume/total vol. Lox density tank done height/radius Tank volume (total) LOX tank length (cyl. section) Fore dome height Att dome height Total tank length Tank surface area (total) 2 Atthordy cone huff angle Base diam/trocelage diam Failcone struct. unit weight Base structural unit weight Tank structural unit weight 2. Tank insulation unit weight 2. Cryo insulation thickness Tank utings volume/tolat vol. Tank dome height/radius Tank volume (tota) Tank volume (tota) (H2 tank length (cyr sect.) Fore dome dameler Att dome diameler Att dome diameler Att dome diameler Total tank length Tank surface area (tota) 75.50% PL bay length 8.15 ft Margin to donnes 1.50 ft Payload section hength (total) 11.15 ft PL bay doors surface mea 2000 ft2 PL bay area (exhuding doors) 1346 89 ft2 2500.0 113 2.21 |b/112 3.50 |b/112 9.00 dnys Ascent Propellant (iteratio) 710,200 B Vehicle diameter (max) 19,76 f Mass Traito (icrytioo) 5,125 LH2 ascentrolei Ascent prop 7,9yood (iound-trip) 20,00 B) 00.08 H 20.22 H 6 11 H 243 21 H2 257.9 H3 6.125 227.26 11 11 50 848.778 15 107.904 15 171.57 11 171.57 11 171.07 11 0.75 It 2.21 Jb//12 5.50 deg 0 Payload Bay/Intertank Data Vehicle Overall Parameters Crew Cabin Data PL bey volume PL bey struct. unit wright PL bey doors str. unit wright Vehicle diameter (max) Mass Ratio (required) LH2 ascent/total asceria prop Fayload (round-trip) Nosecone Data Mass Ratio (actual) Total vehicle mergih Fineness talio (targ 11.5) Gross Weight (actual) Dry Weight (actual) Dry Weight (actual) Landing c.g. (P.L. ul) Gross Weight c.g. (P.L. ul) Hosecap radius Structural tunit weight Nosecore angle Total forebody length 105800018 length 130580018 att diamoter Mosecone surface area Nosecone volume Number of craw Mission duration Cabin length

SEET See of

Ś

Vehicle Weight Statement HTO sled launch RBCC with engine #11 V launch = 800 fps, q = 2000 psf, Mtr = 6


	<u>Level 3</u>	Level 2	Level 1
1.0 Wing Group			13,086
2.0 Tail Group			1,022
3.0 Body Group			24,627
4.0 Thermal Protection			7,914
5.0 Landing Gear			3,871
6.0 Main Propulsion			31,785 1,417
7.0 RCS Propulsion			930
8.0 OMS Propulsion			930 617
9.0 Primary Power			3,616
10.0 Electrical Conversion & Dist.			0,010
11.0 Hydraulic Systems			853
12.0 Surface Control Actuation			1,600
13.0 Avionics			2,491
14.0 Environmental Control			2,431
15.0 Personnel Equipment			14,074
16.0 Dry Weight Margin (15%)			14,074
			107,904
Dry Weight			107,504
, .			0
17.0 Crew and Gear			0
18.0 Payload Provisions			20,000
19.0 Cargo (up and down)			856
20.0 Residual Propellants			291
21.0 OMS/RCS Reserve Propellants			291
			129,050
Landed Weight			129,030
			239
22.0 RCS Entry Propellants ($\Delta V = 25$ fps)			209
			129,289
Entry Weight			125,200
			2,670
23.0 RCS/OMS Propellants (on-orbit)			2,010
24.0 Cargo Discharged			5,327
25.0 Ascent Reserve and Unusable Propellants			1,293
26.0 Inflight Losses and Vents			1,290
2010 h			138,578
Insertion Weight			130,070
••••••••••			710,200
27.0 Ascent Propellants			710,200
			848,778
Gross Liftoff Weight			040,110
-			2,030
28.0 Startup Losses			2,000
			850,807
Maximum Pre-launch Weight			000,001

		Vehicle Weight Statem HTO sled launch RBCC with e	engine #11		
		V launch = 800 fps, q = 2000 p	ost, Mtr = 6		
	L			Laural C	Lavel 1
			<u>Level 3</u>	Level 2	<u>Level 1</u> 13,086
.0 Wing Group	Exposed wing			8,973	
	Carry through			4,112	1,022
.0 Tail Group					24,627
.0 Body Group	Nosecone			537	
	Crew Cabin			0 6.677	
	Payload Bay/Ir	tertank Structure	2,977	0.077	
		Structure P/L Bay Doors	700		
		P/L Accommodations	3,000	10 555	
	LH2 Tank		8,527	10,555	
		Tank Structure Tank Insulation	2,027		
	LOX Tank			3,184	
		Tank Structure	2,767 417		
	the Barder	Tank Insulation	417	2,975	
	Aft Body	Tail cone	2,676		
		Base	299	699	
	Body Flap			033	7,914
4.0 Thermal Pro				0	·
	Active Cooling	Nosecap	0		
		Wing leading edges	0	1,758	
	Advanced Car		1,411	1,750	
		Body/cowi Wing/tails	347		
	TUFI (tiles)	, .		3,511	
		Body/cowi	2.094 1,417		
	TABI (blanket	Wing/tails	.,	2,645	
	TABI (Diariket	Body/cowl	2,645		
		Wing/tails	0		3,871
5.0 Landing Ge				581	
	Nosegear Main gear			3,291	31,785
6.0 Main Propu	Ision			19,865	31,703
	RBCC Engine	s (installed) Ejector rockets (incl. pumps)	5,291	10,000	
		Diff./Comb./Noz. (w/ cooling)	3,930		
		Fan/gas generator	5,644	9,358	
	Main Rocket 8	Engine		1,640	
	Pressunzation Purge System	n and feed systems		922	
7.0 RCS Propu	. .			354	1,417
	Foreward RCS	S Thrusters (15 pressure fed)	111	004	
		Prop. tanks/empty(195 psia)	37		
		He pressnt, tank(3000 psia)	113		
		He pressurant	10 82		
		Lines, manifolds, valves, etc.	02	1,064	
	Aft RCS	Thrusters (22 pressure fed)	397		
		Prop. tanks/empty(195 psia)	86 264		
		He pressnt. tank(3000 psia)	284		
		He pressurant Lines,manifolds,valves,etc.	294		93
				367	
8.0 OMS Prop	ulsion				
8.0 OMS Prop	Engines (4 I	pump fed)		38	
8.0 OMS Prop	Engines (4) Prop. tanks	/empty(25 psia)		38 226	
8.0 OMS Prop	Engines (4) Prop. tanks He pressnt. He pressura	/empty(25 psia) tank(3000 psia) Int (for low pressure tanks)		38 226 20	
	Engines (4 p Prop. tanks He pressnt. He pressura Lines,manif	/empty(25 psia)		38 226	
8.0 OMS Prop 9.0 Primary P	Engines (4 p Prop. tanks He pressnt. He pressura Lines,manif	/empty(25 psia) tank(3000 psia) Int (for low pressure tanks)		38 226 20 279 396	61
	Engines (4 p Prop. tanks He pressnt. He pressura Lines,manif Power Fuel cells	/empty(25 psia) tank(3000 psia) unt (for low pressure tanks) olds,valves,etc.		38 226 20 279 396 177	61
	Engines (4 p Prop. tanks He pressnt. He pressura Lines,manif	/empty(25 psia) tank(3000 psia) unt (for low pressure tanks) olds,valves,etc.		38 226 20 279 396	61
9.0 Primary P	Engines (4 (Prop. tanks He pressnt. He pressura Lines,manif Power Fuel cells Reactant de Batteries Conversion & Dis	/empty(25 psia) tank(3000 psia) Int (for low pressure tanks) olds,valves,etc. ewers t.		38 226 20 279 396 177	61 3,61
9.0 Primary P	Engines (4 (Prop. tanks He pressnt. He pressura Lines,manif Tower Fuel cells Reactant de Batteries Conversion & Dis Power conv	/empty(25 psia) tank(3000 psia) int (for low pressure tanks) olds,valves,etc. ewers t. rersion and distribution		38 226 20 279 396 177 44 1.406 276	61 3,61
9.0 Primary P	Engines (4 (Prop. tanks He pressnt. He pressura Lines,manif Power Fuel cells Reactant de Batteries Conversion & Dis Power conv EMA contro	/empty(25 psia) tank(3000 psia) unt (for low pressure tanks) olds,valves,etc. ewers t. rersion and distribution		38 226 20 279 396 177 44 1.406 276 1.827	61 3.61
9.0 Primary P	Engines (4 (Prop. tanks He pressura Lines.manif Fower Fuel cells Reactant de Batteries Conversion & Dis Power conv EMA contro Circuitty &	/empty(25 psia) tank(3000 psia) unt (for low pressure tanks) olds,valves.etc. swers t. rersion and distribution wiring		38 226 20 279 396 177 44 1.406 276	61 3.61
9.0 Primary P 10.0 Electrical	Engines (4 (Prop. tanks He pressnt. He pressur Lines,manif Yower Fuei cells Reactant de Batteries Conversion & Dis Power conv EMA contro Circuitry & EMA cabine Systems	/empty(25 psia) tank(3000 psia) unt (for low pressure tanks) olds,valves.etc. swers t. rersion and distribution wiring		38 226 20 279 396 177 44 1.406 276 1.827	61 3.61
9.0 Primary P 10.0 Electrical	Engines (4 (Prop. tanks He pressura Lines.manif Yower Fuel cells Reactant de Batteries Conversion & Dis Power conv EMA contro Circuitry & EMA cabino	/empty(25 psia) tank(3000 psia) int (for low pressure tanks) olds,valves,etc. ewers t. remaion and distribution allers wiring g		38 226 20 279 396 177 44 1.406 276 1.827	61 3.61

.

			221	
	Body Flap EMAs			1,600
13.0 Avionics 14.0 Environmental	Control			2,491
	Personnel systems		0 729	
	Equipment cooling Heat transport loop		1,087	
	Heat rejection system		675	
	Aadiators	512		
_	Flash evaporators	163		0
15.0 Personnel Equ	Food, water, waste manag.		0	
	Seats, etc.		0	14.074
16.0 Dry Weight M	argin (15%)			14,074
On Weight				107,904
Dry Weight				0
17.0 Crew and Gea				o
18.0 Payload Provis	sions			20.000
19.0 Cargo (up and 20.0 Residual Prop	ellants			856
20.0	OMS/RCS residuals	2	145	
	Fore LH2 RCS residuals Fore LOX RCS residuals	9		
	Aft LH2 RCS residuals	5		
	Aft LOX RCS residuals	20		
	LH2 OMS residuals	16 94		
	LOX OMS residuals Main Propellant residuals	54	710	
	LH2 residuals	141		
	LOX residuals	570		291
21.0 OMS/RCS Re	serve Propellants RCS reserves		72	
	Fore LH2 reserves	4		
	Fare LOX reserves	17		
	Aft LH2 reserves Aft LOX reserves	40		
	OMS reserves		219	
	LH2 reserves	31		
	LOX reserves	188		
Landed Wei	abt			129,050
				239
22.0 RCS Entry P	ropellants ($\Delta V = 25$ fps)		72	200
	Forward RCS Propellants LH2	14		
	LOX	57		
	Aft RCS Propeilants	33	167	
	LH2 LOX	134		
Entry Weigi	nt			129,289
				2,670
23.0 RCS/OMS P	ropellants (on-orbit) Forward RCS Propellants		143	
	LH2	29 115		
	LOX	113	335	
	Aft RCS Propellants LH2	67		
	LOX	268	2,191	
	OMS Propellants	313	2,131	
	LH2 LOX	1,878		
24.0 Cargo Disch	arced			0 5,327
25.0 Ascent Rese	erve and Unusable Propellants		1,055	5.52
	LH2 reserves and unusables LOX reserves and unusables		4,272	
26.0 Inflight Loss				1.293
2,0:0 million				138.578
Insertion V	Veight			
27.0 Ascent Prop	peilants		140 000	710.200
	LH2 ascent		140,620 569,580	
	LOX ascent			
Gross Lift	off Weight			848,778
				2.030
28.0 Startup Los			290	
	LH2 startup LOX startup		1,740	
				850,807
Maximum	Pre-launch Weight			

SER3 No casu No crew _____ Grozz = 848778 SEP = 3072.6 466828 169193 - 2.759 Lox = -* 312.89 = 863.31 ejectur -Ac = 153.12 = .7397 Zocked = 655044 (69.7) $HR = \frac{848778}{138564} = 6.126$ HR = 150.50 $LH27_{0} = 1 - \frac{569456}{710214} = .198$ $\frac{574596}{574596} = .677$ D.m. 1. = 8+8778 $w_{2,0} = \frac{623432}{640176} = .735$ f Gass = 849 115 S.C = 3073.4 . V 467013 = 2.76 eyector = 169193 = 2.76 : ×ما 4 312,57 = 863,65 Ac = 153.18 = .740 Robel = 655304 (69.7) MR = 138621.3 = 6.125 (42% = \ - 710494 - · . 198 <u>574978</u> 849115 : .677 Dimile -623637 = .735 Was =

RBCC Single-stage-to-orbit Weights and Stzing HRST Requisements Configuration 5 degree cone, VTO FIBCC SSTO wills engine #10 9 = 2000 pst, Mir =12, stag. heat rate = 350 BTU/sqft-sec

.

Directions: Veniabse that can be changed are marked with bold undefine. Vera variabse sue inyuis that are products of other analyses Adjust ait LHZ tank diameter until actual mass ratio matches required mass tailo

with the first functionthe first function <th< th=""><th>li Parat</th><th>LH2 Mein Tank C</th><th></th><th>Engine Uala</th><th></th><th></th><th></th><th></th><th></th><th></th></th<>	li Parat	LH2 Mein Tank C		Engine Uala						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$									1	-
$m_{1} = \frac{1}{100}$ $m_{1} = \frac{1}{100}$ $m_{2} = \frac{1}{100}$ $m_{1} = \frac{1}{100}$ $m_{2} = \frac{1}{100}$			ŕ				6,00 deg	OMS on-orbit AV (incl circ.)	. 1	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	L L	Aft diameter (incl. Insulation)	Ŧ	/ehicle liftol! T/W	172.1		1.00	OMS Isp	462.0 2.05	_
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	t brob		26 Ib/It3	fotal Engine length	23.22 1		10 00	OMS mixture ratio (O/F)		
	4 prop		26 Ib/02	nict section length	23.49 11					-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				MNRIOCKot Trans Mach #	12.99 Univent 1/W	Dunds brighter	120-222	Total OMS U12 mon.	765 51 lb	
		Cryo Insulation Uncknoss	y.16.0	Enclose T/W first no more h	23,50 35.45	Theor which c.p., bic ("41 ref)!		Chief Ha last und	101 4 113	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		VORINIA/IOINI VOI		indian iso (son level)	420.8 .95	[tuil minn(nn)/wing tal minn	EZ0.0	CARE 115 Int America	1 02 11	_
σ 0.00 (0.01)(1.00 (1.01))(1.01 (1.01)) <td></td> <td></td> <td>2020</td> <td>Heat mixture of OX/ H21</td> <td>6.00</td> <td>Wing thickness ratio</td> <td>64.0</td> <td></td> <td>45 93 07 lb</td> <td>_</td>			2020	Heat mixture of OX/ H21	6.00	Wing thickness ratio	64.0		45 93 07 lb	_
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Tank dome heightradius	7.07.0		120	Cruise norm. force/gross wg	0.402		67 7 113	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$,			Electors weight a				OWS LOX THIN YOU		_
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2	Core diameter	13 63 H	Far/GG/stowage weight %	A . A		580.9 112	OMS LOX tank diam.	1 90 9	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	186.04 1		4 82 1	Cowi wrap angle	180.00 deg			1 Ah He tank dismeter	3.06 11	_
0 $0.237.8$ (b) $0.236.1$ (c) $0.237.1$ (c)	4.002 Eng.			Coul stude senaration andle	20.00 deg	Wing exposed plantorm				_
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	N 469.726 lb	At dome height	1 10.1	field monthly in the second seco	5 21 Ib/ft2	Tail planform area(each)	54 5 112			_
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			4955.1 112	COMI DUH Mendinfundit		Windshan	50 80 11			
101011 4.32 II <t< td=""><td></td><td></td><td>2122.1 113</td><td>Inlet section unit wgf (10P)</td><td>5.13 E1.2</td><td>ter - T f to both base landly</td><td>25.67 11</td><td></td><td></td><td></td></t<>			2122.1 113	Inlet section unit wgf (10P)	5.13 E1.2	ter - T f to both base landly	25.67 11			
(i)(16.3.3)(16.3.3)(16.3.4)(16.3.3)(16.3.3)(17.3.4) <td></td> <td></td> <td></td> <td>tulat heidhi</td> <td>4.50 []</td> <td>wing I.E. to booy base lengin</td> <td></td> <td></td> <td></td> <td></td>				tulat heidhi	4.50 []	wing I.E. to booy base lengin				
(1) (12) <		Tenk length	86.11 11			-	69.33 11			
Total Lox Main Tank Data Contrained indication indindicatina indication indicatina indicatina indicatio							113.60 11			
Math Task structural ural weight $0.32.1$ bit is tructural ural weight $0.32.0$ bit is tructural ural weight	#1.C#1	1 OY Main Tent	Data	Engine inlet ref. area			101 60 11			
a DataTark structural unit weight 0.31 Ditt 0.32 DittDitt 0.32 DittDitt 0.32 DittDitt 0.32 DittDitt 0.32 Ditt				Cowl surface area	1320.37 112	Indretical center crord				
12.1Tank includion unit woipi $2.2.$ Diff Mox. interded in VolCorp demote on woipi $3.2.$ Diff Mox. interded on the local $3.2.$ <td>Mosecone Data</td> <td></td> <td></td> <td>Contraction advantage</td> <td>46.73 1</td> <td>Thickness of expos. rool chord</td> <td>2.40 1</td> <td></td> <td></td> <td></td>	Mosecone Data			Contraction advantage	46.73 1	Thickness of expos. rool chord	2.40 1			
2.30.1 $1.30.1$ $1.32.1$ $1.23.0$ $1.23.$			517q1 CC.4			Roch riam & exp wind Apex	17.26 1			
2.1 0.021 To know fraction (with the form of the form (with the form of the form (with the			1.20 lb/ft2	Max. Inlet hgt. (shock on Mp)	1 20.4		42 A 11/112			
2.11LU(12)Corportant for the function $2.12 \pm 10/12$ For operative conting weight if 20 0 \pm 10 \pm 100 \pm 10										
1.20Task vilage volume/order 0.2422 Nose cay for weight 1500 LBRCS Data 3751 Task vilage volume/order $1.2.1212$ Nose cay for weight 1500 LBNose cay for weight 1500 LBNose cay for weight 1500 LB 3751 Task dorme height redus $1.2.1212$ Nose cay for weight 1.200 LBNose cay for weight 1.200 LBNose cay for weight 1.200 LB 3751 Task dorme height $1.2.0212$ Active cooling weighterer 2.0240 Nose cay for weight 1.500 LB 3751 Task dorme height 5.00 LB 1.015 Active cooling weighterer 2.0240 Nose cay for weight 1.500 LB 6000 LBFore diameter 1.640 H 1.640 H 2.00 LB 1.640 H 2.00 LB 1.01 More height 1.161 H 1.01 H 2.00 LB 1.01 H 1.01 H 2.000 data 1.01 H 1.01 H 2.00 LB 1.01 H 1.01 H 2.000 data 1.01 H 1.01 H 1.01 H 1.01 H 1.01 H 2.000 H 1.01 H 1.01 H 1.01 H 1.01 H 1.01 H 2.000 H 1.01 H 1.01 H 1.01 H 1.01 H 1.01 H 2.000 H 1.01 H 1.01 H 1.01 H 1.01 H 1.01 H 2.000 H 1.01 H 1.000 H 1.01 H 1.01 H 1.01 H 1.01 H 1.01 H 1.000 H <td>10.0</td> <td>Cryo insulation thickness</td> <td>0-21-6</td> <td>The Date</td> <td></td> <td></td> <td>GI 110'126</td> <td></td> <td></td> <td></td>	10.0	Cryo insulation thickness	0-21-6	The Date			GI 110'126			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			0.0425							
37.63 It 37.63 It Tark dome height reducts 0.101 Nose consist weight and the second weight and the second weight and the second weight and the second weight area 3.50 It 1.012 and dome height activity and the second weight and the second weight area 3.00 It 1.012 and dome height activity and the second weight area 3.00 It 1.012 and the second weight area 3.00 It 1.0112 and the second weight area 3.0112 and the second weight area			71.2 Ib/U3			BCS Date				
37.53IIAll NR corries tregenuescue $2.00 - 151$ Fervard RCS on-orbit AV 3.53 $2.00 - 151$ Fervard RCS on-orbit AV 3.53 37.63IIAll NR corres actives colling weightieres $2.00 - 151$ An InCS on-orbit AV 3.53 $3.00 - 151$ An InCS on-orbit AV 3.53 37.63IIFerva dermelo 1.64 N $7.60 - 151$ An InCS on-orbit AV 3.92 $3.00 - 151$ 30.0IIFerva dermelo 1.64 N $7.60 - 151$ $1.64 - 151$ An InCS on-orbit AV 3.92 An dorma height 1.61 Active activing stall area $2.00 - 113$ InCS instrue relio (DF) $3.00 - 151$ An dorma height 1.61 Active activing stall area $0.02 - 113$ Incl serving stall area $0.02 - 113$ Incl serving Attria $3.00 - 113$ $0.00 - 0$ IIIntervention (orbit) $2.84 - 11$ Intervention (orbit) $2.84 - 113$ Intervention (orbit) $3.24 - 123$ $7.00 - 111$ Intervention (orbit) $2.84 - 113$ Intervention (orbit) $2.84 - 113$ Intervention (orbit) $2.84 - 113$ $7.00 - 111$ Intervention (orbit) $2.84 - 113$ Intervention (orbit) $2.84 - 113$ Intervention (orbit) $2.84 - 113$ $7.00 - 1112$ Intervention (orbit) $2.84 - 113$ Intervention (orbit) $2.84 - 113$ Intervention (orbit) $2.84 - 113$ $7.00 - 1112$ Intervention (orbit) $2.84 - 113$ Intervention (orbit) $2.84 - 113$ Intervention (orbit) $2.81 - 100$ $7.00 -$		the tables of the	0 707	Nose cap active cooling weight						
499.38 It2Air USAir US 120 Even demote LOV dis. 200 115 Free demote DV dis. 200 115 Free demote DV dis. 200 115 Free demote DV dis. 200 115 100 125 100				Active cooling weight/length						
Tight Data Total of 13 For elemetric 16,49 Takene econo schooly area 2,00 M </td <td></td> <td>An LH2 tank dome to LUX dist.</td> <td>1 00.5</td> <td>ser-Maley colors</td> <td>3.50 lb/ft2</td> <td>Forward RCS on-orbit AV</td> <td>12 (1/395</td> <td></td> <td></td> <td></td>		An LH2 tank dome to LUX dist.	1 00.5	ser-Maley colors	3.50 lb/ft2	Forward RCS on-orbit AV	12 (1/395			
Burl of the service of the s				ACTIVE COOLING WEIGHT ACTIVE		At DCS on orbit AV	35 It/sec			
x cabin DataFor entimet x combroky area 0.40 RCS mixture relib (0/F) x composition area x cabin Data x combroky x combroky x combroky x combroky x comparison x comparison<			16 40 11	Tailcone active cooled length	2.00 11		430.0 445			
τ cabin Data Fore domo height 5 0 H 5 0 H 1 0 H 0 0 H		Fore diamonici		ACC areamory area	0.40	FICS Isp				
All diameter1161 HACC menvingen are word fict201161 HACC menvingen are word fict1161 HACC menvingen are word fict1161 HACC menvingen are word fict1101 H1101 H<	C.au Cabin Data	Fore dome height	1 69 6		5 F C	RCS mixture ratio (O/F)	e i			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Att diameter	11.61 #	AUU RICHATTAGATA BISS	1					
0.01010.010.110.010.110.010.110.010.110.010.110.010			1 10 1	ACC unit weight						
0 1 1208 60 112 1 ark suttice and (odd) 1208 60 112 1 unit weight 1 unit weight 0.4 1 on ward RCS UH2 pero 4 9.00 data Tark suttice and (odd) 3208 60 112 1 rank length 1 unit weight 0.0 1 unit weight 0.4 1 on ward RCS UH2 pero 4 7 50 11 Tark length 28.4 a 1 1 unit weight 0.00 1 rank length 0.00 1 rank length 0.00 f 1 rank length 0 rank 1 rank dam 0.00 f 1 rank length 1 rank length 0 rank 1 rank dam 0 rank 1 rank dam		An dome height		TURI Ander arga	0.33	FORMER HCG				
0.00 data in wolume (lotal) 368.1 (I) 28.4.8 in Volume (lotal) 7.0.1 bit it 28.4.8 in Volume (lotal) 7.0.1 bit it 28.7.4 it 7.0.1 bit it 7.0		Tank surface area (total)	1208.60 112		0 43	Total forward RCS LH2 prop.	41.55 Tb			
0.00 data 1.01 0.01		Tark webune field	3868.1 113	TUFI Brea/wingstell area	l.	r note i us teat wi	9.8 (13			
Tank length Tenk			1 2 20	TIET and weight		LOIMBIG LICS FLIC MIN OF	-			
7.50 H 7.50 H 7.50 H 7.50 H 7.50 H 7.51 H <td></td> <td>Tarrik length</td> <td>10 29.92</td> <td></td> <td></td> <td>Forward RCS LH2 tank diam.</td> <td>1 94.7</td> <td></td> <td></td> <td></td>		Tarrik length	10 29.92			Forward RCS LH2 tank diam.	1 94.7			
No.01 TABI unit weight 0.23 0.014 Payload Bay Data Payload Bay Data Tallcone/Base Data Dody & control Dody & control Payload Bay Data Passe dam/Li2 tank max dam 0.1 Unit weight 0.23 Doty & control Payload Bay Data Passe dam/Li2 tank max dam 0.1 Doty & control Doty & control Doty & control Payload Bay Data 250.00 113 Tallcone/Base Data Doty & control Doty & control Doty & control Payload Bay Data 250.00 113 Tallcone/Base Data 0.1 Doty & control Doty & control Revelot 250.00 113 Tallcone attroct unit weight 1.9 DUIZ Northered area 1.00 An CS Revelot 220.00 113 Tallcone attroct 1.9 DUIZ Northered area 1.03 Northered area 1.01 Northered area 1.03 Northered area 1.01 Norea 1.01 <td></td> <td></td> <td></td> <td>IABI Breakcoury Bieg</td> <td></td> <td>Total forward RCS LOX prop.</td> <td>166.19 Pb</td> <td></td> <td></td> <td></td>				IABI Breakcoury Bieg		Total forward RCS LOX prop.	166.19 Pb			
0.00 II Tallcone/Base Data Body & cow/ passive IYS area 817.5.3 112 Forward RCS LOX hank dam Payload Bay Data Base dam/Lit2 hank max dam 0.5 121 BL 122 121.1 Payload Bay Data Base dam/Lit2 hank max dam 0.5 131.2 123.1 121.2 124.1 Payload Bay Data Base dam/Lit2 hank max dam 0.5 131.4 132.1 121.1 132.1 131.2 131.2 131.2 131.2 131.2 131.2 131.2 131.4 131.2 131.4 131.2 131.4 131.2 131.4 132.1 131.1 132.1 131.1 132.1 131.1 132.1 131.1 133.1 131.2 131.4 131.2 131.4 132.1 131.2 131.4 132.1 131.4 132.1 131.4 132.1 131.4 132.1 131.4 132.1 131.4 132.1 1	06.1			TABI unit weight			25 113			
Payload Bay Data TeleconedBase Data Body & cowl passive 1PS area 917.5.3 112 Forward RCSLOX lank dam. Payload Bay Data 2500.0_113 Taskconestruct. unit weight 2.21 Ib/lt2 1 ank diameter Mine regit 2.20.0_113 Taskcone struct. unit weight 2.21 Ib/lt2 1 ank diameter Mine regit 2.20.0_113 Taskcone struct. unit weight 2.21 Ib/lt2 Norzia eral active TPS area 12.9 10 and RCS LV2 prop. An NCS Base diameter 1.92 Ib/lt2 Norzia eral active TPS area 12.8.7.4 12 1 ank diameter An NCS 2.00.1 Base diameter 1.9.3.6 Ib/lt2 Norzia eral active TPS area 12.8.7.4 12 1 ank diameter An NCS 2.0.1 Base diameter 1.9.3.6 It 2.8.7.4 12 1 ank diameter An NCS 2.0.2.1 Base diameter 1.9.3.6 It 2.8.7.4 12 1 ank diameter An NCS 2.0.2.1 Base diameter 1.9.3.6 It 2.8.7.4 12 2.8.7.4	8.0	1				FORWARD FICS LOA TARK VU.				
Image: Non-Section 1/2 Body (composition 1/2 and mode) 0.5 Month (composition 1/2 and mode) Month (composition 1/2		Tallcone/Base	Data		0 31 10	Forward RCS LOX tank diam.	167 8			
Main Base dam/Lit2 tenk max dam 0.5 Wing (topkhm) welled area 1903 56 112 Poweart reliant warreal 2500.0.113 Taikcone structural unit weight 2.21.1b/Lit2 Wing (topkhm) 259 012 Poweart reliant weight 2.0 2.1.1b/Lit2 Base structural unit weight 1.99.1b/Lit2 Nozrie ent active TPS eres 12.8.74 112 Tenk vol. 3.3.1 ent vol. 3.4.1 ent vol. <t< td=""><td></td><td></td><td></td><td>Body & cowl passive 1PS are</td><td>0.0118</td><td></td><td>1 78 11</td><td></td><td></td><td></td></t<>				Body & cowl passive 1PS are	0.0118		1 78 11			
2500.0 129 124 124 124 124 124 125 126 101 258 09 112 An PCS 32 </td <td>Payload Bay Usia</td> <td></td> <td></td> <td>Winn Ronghtm) welled are</td> <td>1903 58</td> <td>FORWARD ALLEL ALL DISMO</td> <td></td> <td></td> <td></td> <td></td>	Payload Bay Usia			Winn Ronghtm) welled are	1903 58	FORWARD ALLEL ALL DISMO				
2500.0_113 Takcone structural unit weight 2.2.1. Ib/112 Norzie ent active TPS eres 1.29. 1b/112 An FICS LP2 prop. 9 2.1.1 Ib/112 Base structural unit weight 1.99. 1b/112 Norzie ent active TPS eres 1.29. 1b/112 Inola At TCS LP2 prop. 9 2.1.1 Ib/113 Base structural unit weight 1.99. 1b/112 Norzie ent active TPS eres 1.29. 74 12 10 and TCS LP2 prop. 9 3.10 112 Base eres 9.15 at 12 Norzie ent active TPS eres 12.00. 1b/112 Norzie ent active TPS eres 9 493 112 Base eres 9.16 at 12 1.01 at 12		Base diam/LH2 tenk max oram			258.09					
2.3.1.b/L12 Base structured unit weight 1.9 1b/L12 Nozzla exit active 1P5 area 1/28./4 1/2 100al at RCS LH2 prop. 9 2.3.1.b/L12 Base structured unit weight 1.9 1b/L12 Nozzla exit active 1P5 area 1/28./4 1/2 100al at RCS LH2 prop. 9 3.50 1b/L12 Base area 10.38 ft An RCS LH2 lenk wol. An RCS RUX lenk wol. An RUX rux wor. An RUX rux wor. An RUX rux wol.		I Taitone struct, unit weight	2.21 lb/ft2	184 Meneo Pres (non)		An PCS				
2.21_10/112 Base entrocutant on months 10.38 H 10.31 H 10.38 H 10.31 H 2.21_10 H 2.21_11 H 2.21_10 H 2.21_10 H 2.21_11 H 2.21_11 H 2.21_11 H		the second se	1 99 Ib/It2	Nozzle exit active TPS area	128./4 112	The second second second	a7 01 th			
3.50 Ib//12 Base dameter 10.38 h An ICS LH2 lank vol. An 30.24 H Base area 84.54 ll2 84.54 ll2 An ICS LH2 lank vol. 36 30.24 H Base area 84.54 ll2 84.54 ll2 An ICS LH2 lank vol. 36 463.74 ll2 Tailcone suffere area 94.54 ll2 39.40 h An ICS LOX lank vol. 36 463.74 ll2 Tailcone suffere area 93.40 h 12 An roce luck vol. 36 463.64 il 12 Tailcone suffere area 15.9 ll3 An roce luck vol. 36 463.74 il 12 Tailcone suffere area 15.9 ll3 An roce roce luck vol. 36	a unit weight 2.21 [b/112	Base structural our wergin				I DIBI BIL HOS CUT Proh.				
Base dameler 10.38 H An InCS LH2 tank dam. 30.24 H Base area 84.54 II2 Total an InCS LOX prov. 36 30.24 H Base area 84.54 II2 10.38 H An InCS LH2 tank dam. 36 30.24 H Base area 84.54 II2 112 and tank of the total and total and the total and tank total and the total and tank total and the total and tank total and total and total and total and total and total and tank total an	-t					Aft RCS LHZ tenk vol.	23.0 113			
30 24 11 Base area 84.54 112 7046 area 194.54 112 7046 area 194.10 705 0079 378 1016 20 20 20 112 1 Talkone arrive arrive 194.300 112 1 Talkone length 394.04 112 1 Talkone length 394.04 112 1 Talkone length 394.04 112 1 Talkone length 155.9 113 1 Talkone length 1		Rase dismeter	10.38 1			An RCS LH2 tank diam.	3.53 1			
30.24 II Dase area 1943.06 112 Los Los An Ince Los Los Puop. Junisee area 1943.06 112 Laikone surface area 1943.06 112 Taikone surface area 1943.06 112 Taikone surface area 1943.06 112 Taikone surface area 1943.06 113 Laikone surface area 1943.06 113 Laikone surface area 1943.06 113 Laikone surface area 1943.06 112 Taikone surface area 1940.06 112 Taikone surfa			R4 54 112				AR O Th			
urriace area 43.74 II2 Talicone surface area 194.305 n2 All FOSLOX tank vol. 5 All FOSLOX tank vol. 5 arbuding doorsi 564.61 II2 Talicone length area 194.01 All He lank diam 2 Alt He tank diameter 155.9 H3		Base area				I ORBI BILLICS FOX Drop.				
xs) 684 61 112 Talkcone length 38 40 ft 2 Aft compartment volume 155.9 H3 Aft He tark diameter 2	and and a set	Tailcone surface area	1943 UB 112			AH PCS LOX tenk vol.	5.7 113			
64 01 112 Alt compatibuted volume 155.9 H3 Alt to compatibuted volume 155.9 H3	-	I Tait-one length	39.40 H			AFT RCS LOX Innik dom.	2.22 11			
			145 0 113				1 97.0			
		All compariment volume				Aft He tank diameter				

HEST Rogunault No LAW or Cali

ilo k 1630 21 M 2.15 K 2-150 ر ح 5 293 K 3500 Y .~. Y

Vehicle Weight Statement **5 degree cone, VTO RBCC SSTO with engine #10** q = 2000 psf, Mtr =12, stag. heat rate = 350 BTU/sqft-sec

	Lev	<u>rel 3</u>	<u>Level 2</u>	Level 1
1.0 Wing Group				3,814
2.0 Tail Group				845
3.0 Body Group				28,292
4.0 Thermal Protection				10,982 3,252
5.0 Landing Gear				18,623
6.0 Main Propulsion (less cowl)				1,056
7.0 RCS Propulsion				1,146
8.0 OMS Propulsion				600
9.0 Primary Power				2,801
10.0 Electrical Conversion & Dist.				0
11.0 Hydraulic systems				531
12.0 Surface Control Actuation				1,600
13.0 Avionics				2,331
14.0 Environmental control				0
15.0 Personnel Equipment				11,381
16.0 Dry Weight Margin (15%)				
				87,254
Dry Weight				
17.0 Crew and Gear				0
18.0 Payload Provisions				20,000
19.0 Cargo (up and down)				20,000
20.0 Residual Propellants				526
21.0 OMS/RCS Reserve Propellants				520
				108,396
Landed Weight				,
				200
22.0 RCS Entry Propellants ($\Delta V = 25$ fps)				
				108,596
Entry Weight				
a manufactor (an arbit)				5,062
23.0 RCS/OMS Propellants (on-orbit)				0
24.0 Cargo Discharged				2,643
25.0 Ascent Reserve and Unusable Propellants				1,086
26.0 Inflight Losses and Vents				
Insertion Weight				117,386
Illaction weight				352,340
27.0 Ascent Propellants				352,340
				469,726
Gross Liftoff Weight				400,120
				2,679
28.0 Startup Losses				•
				472,405
Maximum Pre-launch Weight				

	5 (Vehicle Weight Staten legree cone, VTO RBCC SSTO	with engine #	10	
	7 = 20	00 pst, Mtr =12, stag, heat rate			Level 1
.0 Wing Group			<u>Levei 3</u>	<u>Level 2</u>	3,81
	Exposed wing	1		3,349	
	Carry through	1		465	84
2.0 Tail Group					28,29
3.0 Body Group	Nosecone			1,104	
	Crew Cabin			0	
	Payload Bay			6.206	
		Structure	1,513 1,693		
		P/L Bay Doors P/L Accommodations	3,000		
	LH2 Tank			6,929	
	.	Tank Structure	5,641		
		Tank Insulation	1,288	1,504	
	LOX Tank	Tank Shaveburg	1,269	1,304	
		Tank Structure Tank Insulation	236		
	Aft Body	Tank madution		4,462	
	,	Tail cone	4.294		
		Base	168	0.000	
	Cowl	•	5.983	8,086	
		Cowl ring Cowl struts	2,102		
1.0 Thermal Pro	tection	Cowl struts			10,98
1.0 inermal Pio	Active Coolir	a		1,101	
		Nosecap	150		
		Cowi leading edge	126		
		Wing leading edges	374 451		
	Advanced Ca	Engine nozzie exit	40 .	7,200	
	Advanced Ca	Body/cowl	6,532		
		Wing/tails	668		
	TUF! (tiles)	-		2,681	
		Body/cowi	2.005 676		
	7101 (b)	Wing/tails	0/0	0	
	TABI (blank	Body/cowi	0		
		Wing/tails	0		
5.0 Landing Gear		-			3,25
-	Nosegear			488 2.764	
	Main gear			2,104	18,62
6.0 Main Propuls	HBCC Engine			15,900	
	hood angine	Ejector rockets (incl. pumps)	5.883		
		Diff./Comb./Noz. (w/ cooling)	10,017		
		Fan/gas generator/storage	٥	2,165	
		on and feed systems		558	
	Purge Syste	ms			1.0
7.0 RCS Propuls	Foreward RC	S		268	
	1 District of the	Thrusters (15 pressure fed)	77		
		Prop. tanks/empty(195 psia)	31		
		He pressnt. tank(3000 psia)	95 8		
		He pressurant Lines,manifolds,valves,etc.	57		
	Aft RCS	Lines, manifolds, valves, etc.		788	
	All HOS	Thrusters (22 pressure fed)	273		
		Prop. tanks/empty(195 psia)	73		
		He pressnt. tank(3000 psia)	222		
		He pressurant	19 202		
		Lines.manifolds.valves.etc.	202		1.1
•				309	
8.0 OMS Propuls	ion Engines (A r	oumo fed)			
8.0 OMS Propuls	Engines (4)	pump fed) /empty(25 psia)		81	
8.0 OMS Propuls	Engines (4) Prop. tanks He pressnt.	/empty(25 psia) tank(3000 psia)		481	
8.0 OMS Propuls	Engines (4) Prop. tanks He pressnt. He pressura	/empty(25 psia) tank(3000 psia) ant (for low pressure tanks)		481 42	
	Engines (4) Prop. tanks He pressnt. He pressura Lines.manif	/empty(25 psia) tank(3000 psia)		481	6
8.0 OMS Propuls 9.0 Primary Po	Engines (4 p Prop. tanks He pressnt. He pressura Lines,manif wer	/empty(25 psia) tank(3000 psia) ant (for low pressure tanks)		481 42	6
	Engines (4 p Prop. tanks He pressnt. He pressura Lines.manif wer Fuel cells	/empty(25 psia) tank(3000 psia) ant (for low pressure tanks) olds,valves,etc.		481 42 234	6
	Engines (4) Prop. tanks He pressnt. He pressura Lines,manif wer Fuel cells Reactant do	/empty(25 psia) tank(3000 psia) ant (for low pressure tanks) olds,valves,etc.		481 42 234 396	-
9.0 Primary Po	Engines (4) Prop. tanks He pressnt. He pressurz Lines.manif wer Fuel cells Reactant de Batteries powersion & D	/empty(25 psia) tank(3000 psia) int (for low pressure tanks) olds,valves,etc. ewers		481 42 234 396 177 27	-
9.0 Primary Po	Engines (4) Prop. tanks He pressura Lines,manif wer Fuel cells Reactant di Batteries proversion & D Power com	/empty(25 psia) tank(3000 psia) ant (for low pressure tanks) olds,valves,etc. ewers bist. version and distribution		481 42 234 396 177 27 1,406	-
9.0 Primary Po	Engines (4) Prop. tanks He pressnt. He pressura Lines, manif wer Fuel cells Reactant de Batteries power com EMA contro	/empty(25 psia) tank(3000 psia) ant (for low pressure tanks) olds,valves,etc. ewers hist. version and distribution billers		481 42 234 396 177 27	-
9.0 Primary Po	Engines (4) Prop. tanks He pressnt. He pressura Lines, manif wer Fuel cells Reactant de Batteries power cont EMA contro Circuitry &	/empty(25 psia) tank(3000 psia) ant (for low pressure tanks) olds,valves,etc. ewers hist. rersion and distribution billers wiring		481 42 234 396 177 27 1,406 172	-
	Engines (4 p Prop. tanks He pressnt. He pressura Lines, manif wer Fuel cells Reactant de Batteries power conto EMA contro Circuitry & EMA cabling	/empty(25 psia) tank(3000 psia) ant (for low pressure tanks) olds,valves,etc. ewers hist. rersion and distribution billers wiring		481 42 234 396 177 27 1.406 172 1.169	6 2.8 5

			93	
Verticals EMAs			30	1,600
13.0 Avionics				2,331
14.0 Environmental control Personnel systems			0	
Equipment cooling			729	
Heat transport loop			927	
Heat rejection system			675	
Radiator	5	512		
Flash ev	aporators	163		0
15.0 Personnel Equipment			0	
Food, water, waste mar	ag.		٥	
Seats, etc. 16.0 Dry Weight Margin (15%)				11,381
16.0 Dry Weight Margan (10.0)				
Dry Weight				87,254
				0
17.0 Crew and Gear				٥
18.0 Payload Provisions				20.000
19.0 Cargo (up and down) 20.0 Residual Propellants				615
OMS/RCS residuals			263	
	RCS residuals	2 7		
	RCS residuais	4		
	RCS residuals	17		
	RCS residuals 5 residuals	33		
	S residuals	200		
Main Propellant residu			352	
LH2 res		93		
LOX res	duals	260		526
21.0 OMS/RCS Reserve Propellants			60	
RCS reserves	2 reserves	4		
	(reserves	14		
	reserves	8		
	reserves	34		
OMS reserves		67	466	
LH2 res		399		
LOX res	erves			
t Mainht				108,396
Landed Weight				
22.0 RCS Entry Propellants ($\Delta V = 25$ fps)			~~	200
Forward RCS Propella	nts		60	
LH2		12		
		+0	140	
Aft RCS Propellants		28		
LOX		112		
				108,596
Entry Weight				100,000
				5,062
23.0 RCS/OMS Propellants (on-orbit)	ote		121	
Forward RCS Propella		24		
		96		
Aft RCS Propellants			281	
LH2		56		
LOX		225	4,660	
OMS Propeilants LH2		666		
		3,994		-
24 0 Caron Discharged				0 2,643
25.0 Ascent Reserve and Unusable Prope	liants		695	2.543
LH2 reserves and unu	sables		1,948	
LOX reserves and unu	sables			1,086
26.0 Inflight Losses and Vents				
Insertion Weight				117,386
HISELLON MERSIN				352,340
27.0 Ascent Propellants			92,665	JJ2,J4U
LH2 ascent			259,674	
LOX ascent				
				469,726
Gross Littoff Weight				
28.0 Startup Losses				2,679
LH2 startup			383 2,296	
LOX startup			2,230	
				472,405
Maximum Pre-launch Weight				

•

-

Robert while (no crew or com)

Gross = 481775 $A_{c} = \frac{180.6}{2.07} = .8725$ $e_{120} = \frac{44237}{6.077} \times 9 = 8.632$ $Lox = \frac{1159.5}{5.65} = \frac{2628.6}{5.65}$

$$\frac{481775}{12034L} = 4.003$$

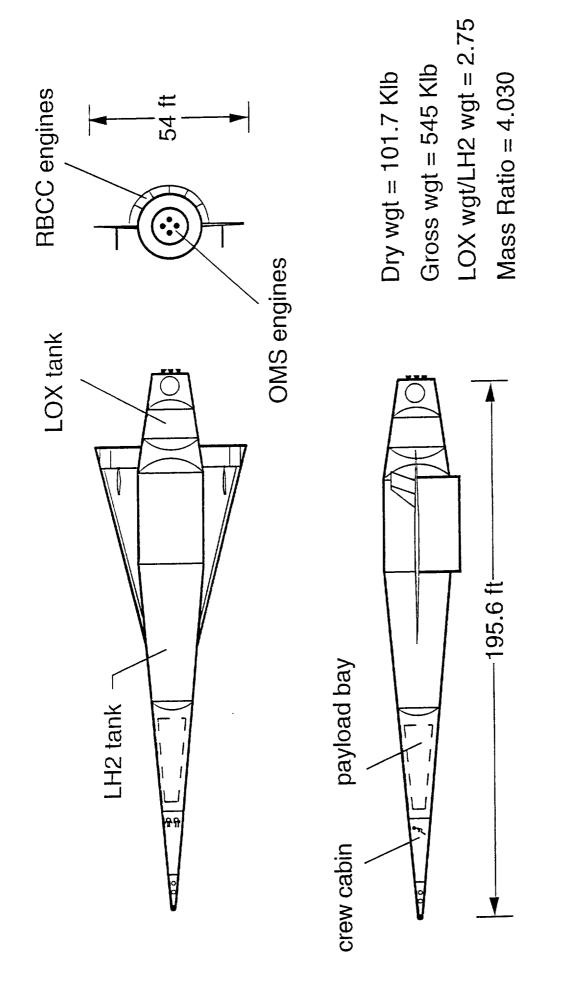
$$\frac{112}{6} = \frac{266353}{361429} = 263$$

$$\frac{194330}{481775} = .403$$

$$G_{ress} = 470328$$

 $A_{c} = \frac{178.5}{207} = .8626$
 $e_{c}cdar = \frac{62710}{66977} = 9 = 8.427$
 $box = \frac{1132.0}{100}$

$$HR = \frac{470328}{117552} = 4.001$$


$$U27_{0} = 1 - \frac{352776}{352776} = 263$$

$$W_{1}^{2} = \frac{188890}{470328} = -402$$

....

....

. .

RBCC Single-stage-to-orbit Weights and Sicing HRST Requirements Configuration 5 degree cone. VTO RBCC SSTO with engine #10 9 × 2000 psi, Mir =12, stag. heat rate = 350 BTU/sqfi-sec

٢.

Variebles that can be changed are marked with bold underline. Borat variebles and through that are products of other analyses Adjust att LH2 tank diameter until actual mass ratio matches required mass ratio Directions:

0.02.04 th 209.1 th 7.36 th 5292.22 th 78.0 th 5.30 th 5.30 th 625. 1/392 462.0 895 OMS an-orbit AV (Incl circ.) OMS hep OMS mixture ratio (O/F) OMS Data Total MAS 1117 prop OMS LI12 Teach vol OMS LH2 Teach dam Total OMS LOX prop OMS LOX Teach vol OMS LOX Teach vol OMS LOX Teach vol OMS LOX Teach dam Att He Teach diameter 265 ft3 265 ft3 3.70 ft 447.09 fb 66 ft3 2.33 ft 2.33 ft 2.48 ft Wing Aspect ratio Lanviag versignt/Snel <u>42.009</u> V Lansing syamd Inthin mung or ber (34. ml) 200.4019 Ving thetheres ratio Ving thetheres ratio <u>0.04</u> Cruise norm. Jorce/gross wgt <u>0.418</u> 47.87 fb 113 f13 2.79 f1 2.79 f1 191.49 fb 2.8 f13 1.75 ft 1.87 ft 2973.7 112 74.3 112 74.3 112 54.53 112 54.53 112 154.54 1126.112 1126.112 1176.11 1176.11 1176.11 1176.11 1176.13 136.338 15 136.348 15 136.348 15 136.348 15 136.348 15 137.348 15 147.348 15 11/545 35 11/545 420.0 345 4 26.00 deg Thickness of expos. root chord Rody diam @ exp wing epex Landing wing loading Design(max.) wing limit load C Total forward RCS LH2 prop. Forward RCS LH2 park vol. Forward RCS LH2 park vol. Total forward RCS LOX prop. Total forward RCS LOX prop. Forward RCS LOX prop. dem Forward RCS LOX prop. dem Forward HE tark diameter Wing Reference area Wing exposed planloim Tall planloim area(acch) Wing T.E. to body base length Wing T.E. to body base length Wing T.E. to body base length (1) Spin through backs deal (1) Spin through backs Wing/Tall Date An RCS Forki all RCS LH2 prop. An RCS LH2 tank vol. An RCS LH2 tank diam. Total all RCS LOX tank uol. Att RCS LOX tank diam. AFT RCS LOX tank diam Forward RCS **RCS Data** Forward RCS on-orbit AV Alt RCS on-orbit AV RCS lsp RCS mixture ratio (O/F) Wing teading edge sweep Att He tank diameter Iniei 20.82 33.63 1 vv Eng Indust 9035.6 ft2 2251.93 ft2 297.37 ft2 136.63 ft2 150.00 th 2.12 bM 3.20 M12 2.00 M12 2.00 M12 2.00 114 2.00 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.102 0.25 bM12 187 36 112 1386 05 112 48.70 11 4.80 11 Body & cowl passive TPS area Wing (top&bim) wetted area 2 Taš wetted area (both) Nozzle exit active TPS area Nose cap active cooling weight active cooling weight/length Active cooling weight/length Talicons active cooled length ACC area/body area ACC area/body area 101F1 area/body area 101F1 area/body area 118F1 area/body area Totel Engine length Inler section length Antrocken Lums, Mnch # Englan Sp (sea Irvel) Englan Sp (sea Irvel) Litteft mixture (LOXLH2) Epectors weight % Encloses weight % Cowl ways angle Cowl ways angle Cown unit weight(non-intel) Intel section unit wgr (10p) intel height Engine inhidi teli area Cowi surface area Cowi texting erige kingth Max, inhiet hgt. (shock on fig) Engine Data TPS Data Vehicle liftoff T/W Exit 36.67 Ľ, 11.00 fl 95.09 ft2 2185.42 ft2 41.79 ft 388.8 ft3 2.21 1b/112 2.21 1b/112 1.99 1b/112 17.54 R 8.20 R 12.84 N 4.54 N 1302.58 N2 4475 7 N3 28.57 N 1.12 1 13 90 R 4 91 R 7.78 R 5563 0 R2 26125.9 H3 92.34 R <u>707.0</u> 101.dl 25.0 101.dl 25.0 101.dl 25.0 10.1.d 10.25 10 Tallcone/Base Data LOX Main Tenk Data LH2 Main Tenk Data Base diamALH2 tank max diam Taitoone struct, unit weight Base structurat unit weight (lank structured unit weight 5 Cryo insulation turit weight 5 Cryo insulation thickness fank utdage volume/total vol. Toxt dome heigh/infadus Att LH2 tank dome ho LOX dist. Tenk structurel una weight 5 Tenk insulation unit weight 5 Cryo insulation unit weight 5 Tryo insulation volume/total vol. 1 nuk dome heigh/vadius diameter (inci. Insulation Fore diameter Fore donne height All diammeter An dome height Tank surfnoe area (lotal) Tank kength Tank kength Base area Telácone surface area Tailcone levyth Afi compartment volume Fore diameter Fore dome height 2 Alt dome height 7 ank surface area (total) Tank tength **Base diameter** Ę 0087 rads 0.131 rads 195.61 th 4.030 Eng Thrust F 5.45,189 th 7.2632 / 1 101,686 th 27.84 N 465 32 N2 673 93 N2 2500.0 113 2.21 15/112 3.50 15/112 2.00 days 8.16 ft 26.66 ft 0.50 fl 2.21 [b/112 3.50 fl 5.20 deg 7.50 deg 4.030 2.24.7 20.000 b 107.27 ft 118.60 ft 152.13 ft 14.77 h 102.88 h2 62.9 h3 750.0 113 Vehicle Overell Parameters Payload Bay Data **Crew Cabin Date** L bay vokume L bay struct, unit weight L bay doors str. unit weight S L bay fength L bay doors surface area L bay area (extuding doors) Attbody come half angle Mass Ratio (required) LH2 ascent/total ascent prop Psyload (round titp) Forebody cone half angle Atthoody cone half angle Atthoody cone half angle Mass Ratio (actual) Gross Weight (actual) Londing cg. (P.L. In) Landing cg. (P.L. In) Cross Weight cg. (P.L. In) Gross Weight cg. (P.L. In) Nosecone Data Nosecap Radius Structural unit weight Att diameter Riosecorie length Nosecorie surface area Nosecorie volume corebody cone half angle Crew cabin volume Number of crew Mission duration Alt diameter Cabin length

ಕೆ ಹೆ ಹೆ

ದ ದ ದ

HIZ Robust wirt cow

Vehicle Weight Statement **5 degree cone, VTO RBCC SSTO with engine #10** q = 2000 psf. Mtr =12. stag. heat rate = 350 BTU/sqft-sec

.

•.

	Level 3	Level 2	Level 1
1.0 Wing Group			4,674
2.0 Tail Group			986
3.0 Body Group			31,636
4.0 Thermal Protection			12,187
5.0 Landing Gear			3,747
6.0 Main Propulsion (less cowl)			22,625
7.0 RCS Propulsion			1,252
8.0 OMS Propulsion			1,321
9.0 Primary Power			958
10.0 Electrical Conversion & Dist.			2,901
			0
11.0 Hydraulic systems 12.0 Surface Control Actuation			612
			2,200
13.0 Avionics			2,521
14.0 Environmental control			802
15.0 Personnel Equipment			13,263
16.0 Dry Weight Margin (15%)			
Dry Weight			101,686
Dry Weight			
17.0 Crew and Gear			1,890
18.0 Payload Provisions			0
19.0 Cargo (up and down)			20,000
20.0 Residual Propellants			713
21.0 OMS/RCS Reserve Propellants			606
21.0 Oldanos neserve riopoliarko			
Landed Weight			124,896
Landed Weight			
22.0 RCS Entry Propellants ($\Delta V = 25$ fps)			231
Entry Weight			125,127
Entry Holgin			
23.0 RCS/OMS Propellants (on-orbit)			5,832
24.0 Cargo Discharged			0
25.0 Ascent Reserve and Unusable Propellants			3,074
26.0 Inflight Losses and Vents			1,251
26.0 millight Losses and Vento			
Insertion Weight			135,284
			100.005
27.0 Ascent Propellants			409,905
Gross Liftoff Weight			545,189
G1033 Enton 11013			0 100
28.0 Startup Losses			3,109
Maximum Pre-launch Weight			548,298
WIGAUTUNT TE TUNNET TO J.			

	a = 20	tegree cone, VTO RBCC SSTO w 000 ost, Mtr =12, stag. heat rate	= 350 BTU/sq	tt-sec	
	<u> </u>		<u>Level 3</u>	Level 2	<u>Level 1</u> 4.674
.0 Wing Group	Exposed wing			4,080	4,014
	Carry through			594	986
.0 Tail Group					31,636
.0 Body Group				227	
	Nosecone			2,058	
	Crew Cabin Pavioad Bay	Structure		6,118	
	(ayiold day	Structure	1,489		
		P/L Bay Doors	1,629 3,000		
		P/L Accommodations	3,000	8,108	
	LH2 Tank	Tank Structure	6,662	•1	
		Tank Insulation	1,446		
	LOX Tank	THIR INCLUSION		1,722	
	COX Turk	Tank Structure	1,468		
		Tank Insulation	254	5,019	
	Aft Body		4,830	3,013	
		Tail cone	189		
	Com	Base		8,383	
	Cowi	Cowl ring	6,281		
		Cowl struts	2,102		12,187
4.0 Thermal Pr	otection			1,171	12,107
	Active Cooli		150	1,171	
		Nosecap	132		
		Cowl leading edge Wing leading edges	411		
		Engine nozzle exit	478		
	Advanced C	arbon/Carbon		7,934	
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Body/cowl	7,204		
		Wing/tails	730	3.082	
	TUF1 (tiles)		2.274	3,002	
		Body/cowi	808		
	TAQL (black	Wing/tails		0	
	TABI (blank	Body/cowl	0		
		Wing/tails	0		3,74
5.0 Landing Ge	ar			562	3,7-
	Nosegear			3,185	
	Main gear			•••••	22,62
6.0 Main Propu	ilision (less cov	vi)		19,456	
	RBCC Engin	Ejector rockets (incl. pumps)	7,199		
		Diff./Comb./Noz. (w/ cooling)	12,257		
		Fan/gas generator/storage	0	2.512	
		on and feed systems		657	
	Purge Syst	ems			1,25
7.0 RCS Propu	lision Faceword P	C S		316	
	Foreward R	Thrusters (15 pressure fed)	93		
		Prop. tanks/empty(195 psia)	36		
		He pressnt, lank(3000 psia)	109		
		He pressurant	10 69		
		Lines, manifolds, valves, etc.	0 9	936	
	Aft RCS	Thrusters (22 pressure fed)	330		
		Prop. tanks/empty(195 psia)	84		
		He pressnt, tank(3000 psia)	255		
		He pressurant	22		
		Lines, manifolds, valves, etc.	245		1.3
8.0 OMS Prop	ulsion			355	
	Engines (4	pump fed}		93	
	Prop. tank	(s/empty(25 psia) t. tank(3000 psia)		554	
	He pressn	rant (for low pressure tanks)		48	
	Lines.man	ifolds,valves,etC.		270	9
9.0 Primary F				396	
5.5	Fuel cells			531	
	Reactant	dewers		32	
	Batteries				2.9
10.0 Electrical	Conversion &	Dist.		1,406	5
		nversion and distribution		198	
	EMA cont Circuiter			1,231	
	EMA com Circuitry EMA cabli	& wiring		1,23	

Elevon EMAs		505	
Verticals EMAs		107	2,200
13.0 Avionics			2.200
14.0 Environmental control		141	2,22,1
Personnel systems Equipment cooling		729	
Heat transport loop		976	
Heat rejection system		675	
Radiators	512		
Flash evaporators	163		802
15.0 Personnel Equipment		502	302
Food, water, waste manag.		300	
Seals, etc.			13,263
16.0 Dry Weight Margin (15%)			
			101,686
Dry Weight			
17.0 Crew and Gear			1,890
18.0 Payload Provisions			0
19.0 Cargo (up and down)			20,000
20.0 Residual Propellants			713
OMS/RCS residuals		303	
Fore LH2 RCS residuals	2		
Fore LOX RCS residuals	8		
Aft LH2 RCS residuals	5		
Aft LOX RCS residuals	19		
LH2 OMS residuals	38		
LOX OMS residuals	230	410	
Main Propellant residuals	109	-10	
LH2 residuals	300		
LOX residuals	300		606
21.0 OMS/RCS Reserve Propellants		69	
RCS reserves	4		
Fore LH2 reserves Fore LOX reserves	17		
Aft LH2 reserves	10		
Att LOX reserves	39		
		537	
OMS reserves LH2 reserves	77		
LOX reserves	460		
			101 005
Landed Weight			124,896
			231
22.0 RCS Entry Propellants (ΔV = 25 lps)		69	
Forward RCS Propellants	14	55	
LH2	55		
LOX	55	162	
Aft RCS Propellants	32		
LH2	129		
LOX			
			125,127
Entry Weight			
23.0 RCS/OMS Propellants (on-orbit)			5,832
Forward RCS Propellants		139	
LH2	28		
LOX	111		
Alt RCS Propellants		324	
LH2	65		
LOX	259		
OMS Propellants		5,369	
LH2	767		
LOX	4,602		0
24.0 Cargo Discharged			3,074
25.0 Ascent Reserve and Unusable Propellants		821	
LH2 reserves and unusables		2,253	
LOX reserves and unusables			1,251
26.0 Inflight Losses and Vents			
A sector Mainhe			135,284
Insertion Weight			
27.0 Ascent Propellants			409,905
LH2 ascent		109.445	
LOX ascent		300,460	
Gross Liftotf Weight			545,189
			3,109
			3,103
28.0 Startup Losses			
28.0 Startup Losses LH2 startup		444	
		444 2.665	
LH2 startup LOX startup			548,298
LH2 startup			548,298

•

.

$$\frac{1}{12577} = \frac{502289}{125777} = 4.00$$

$$\frac{1}{125777} = \frac{1}{27180714} = 222 \qquad \frac{1}{125777} = \frac{1}{270} = \frac{1}$$

 $\frac{590871}{146007} = 4.047$ $\frac{11}{146007} = 4.047$ $\frac{325450}{250457} = 263$ $\frac{312}{250457}$ $\frac{325}{250457} = .434$

 \bigcirc

R. J. s.

$$Good = \frac{552.303}{A_{c}}$$

$$A_{c} : \frac{1300}{207} : .910$$

$$eyeler < kd : \frac{171440}{4477} : 9 : 9.895 (actor)$$

$$Gx = \frac{7}{3001.1}$$

$$H2 : \frac{552303}{101.429} : 4.019$$

$$H2 : \frac{552303}{101.429} : .205$$

$$H2 : \frac{228920}{552.303} : .414$$

$$Good = \frac{180.33}{101.7} : .900$$

$$eyeler : \frac{11884}{1407} : .900$$

$$eyeler : \frac{11884}{1407} : .900$$

$$eyeler : \frac{11884}{1407} : .245$$

$$H2 : \frac{539.132}{10077} : .900$$

$$eyeler : \frac{11884}{14077} : .245$$

$$H2 : \frac{539.132}{10077} : .904$$

$$eyeler : \frac{1084}{445373} : .245$$

$$H2 : \frac{539.132}{10077} : .904$$

$$eyeler : \frac{1074}{445373} : .245$$

$$H2 : \frac{1074}{10077} : .904$$

$$eyrler : .904$$

$$eyrler : .904$$

$$H2 : \frac{1074}{10077} : .904$$

$$eyrler : .904$$

$$H2 : \frac{1074}{10077} : .904$$

$$eyrler : .9049$$

$$H2 : \frac{544599}{10077} : .904$$

$$eyrler : .9049$$

$$H2 : \frac{544599}{10077} : .904$$

$$eyrler : .9049$$

$$H2 : \frac{544599}{10077} : .904$$

$$eyrler : .9049$$

$$H2 : .9049$$

$$H2 : .9049$$

$$H2 : .9049$$

(2)

HRST Vehicle w/RBCC Weights and Sizing

.

,

HTO slast fauteh Agec with engine 811 V laimeti = 800 faz di = 2000 pal, Mir = 6

Directions: Vaiables that am be changed are merked with bold underline. Sozed vaiables are inputs that are products of other ambyses Adjust escent propellant until actual mess relio matches required mass relio

)			ONC Date	
		RBCC Engine Data	Wing/Tali Data	SHAD CHO	
Vehicle Overall Parameters				Otto anathi AV (dentil)	250 11/300
		0.55	Wing leading orde sweep58.00.499,		200 D 000
	Tank structural unit weight 0.26 [b//12		<u> </u>	OMS lap	5
			j	OMS mixture ratio (O/F)	
- -		Engine 1/W (instit, no marg)			
Mass Ratio (reguland) 2.125		Ending ten (and level) 460.0 295		Traint CMS 1112 Area	421,15 lb
1112 ascentiotel ascent prov. 0.198	volume/lotal VOL	141	elo elo		99 8 N3
Pavload (notind-trip) 20,000 1b		Fraint touch (issues and is 0			5 76 11
}	Tank dome height/radius 2.191		Cruise norm. force/gross wgl. 0.677		SESE BO Th
R 195				I I OFAL OWS LOX Prop.	
	Tenk whime (Inlaf) 39129 2 ft3		Mana Delevence area 3594 9 ft2	OMIS LOX Iank vol.	51 C.1C
2		Fan/GG weight %		OMS LOX terk dem.	4.14 1
Fineness ratio (larg. 11.5) 11.49		Bend thrust (SLS, both) 546,224 lb		Att He terds diameter	2.50 11
Gense Weinht (actual) 993.134 lb	Ne sect.) C	[Wing exposed plantorm 1892.4 112		
	Fore dome diameter 7.42 ft	ĥ	Î		
			Minorian 68.95 ft		
11 CH-4/1		Total engine length (ea.) 53.40 T		RCS Date	
Landing c.g. (P/L out) 172.87 (1 72.41%	All dome duameter	Inial section length (ea.) 32.04 ft	I CENTRI CINOLO		
Genes Weinht c n (P/L in) 185.19 It				r and are an odd AV	15 ft/nec
	Total tank length 152 72 fl		yol chord	FORWARD HUCS DRIVERING	
	Tank surface area (total) 8524.3 112		lae (nn)	AN RCS ON-ONDA AV	
Nosecore Unia		Rocket Engine Unia		ITCS No	120.0 BVE
	i av H-t- 1t-Deta			Incs mixture ratio (O/F)	-
Nocecan radius 0,1513	COX MAILE FAILE DAM	Transition Wal/Gross Wal	Thickness of expos. root chord		
value 2.21			a14- + + 1 1		
	I Brik structural unit weight 2.22 [2/112	-	Design(max.) wing limit load # # # # # # #		67 07 th
	Tank mentation unit weight 0.20 [b/[12	Engine I/W (mistl, no marg) LYLYY	Dominant landing Cl 0.3721	Total forward HUS LHZ prop.	
				Forward RCS LH2 tank vol.	13.6 13
Total forebody length R5 34 II	7	Rocket thrust (vac.) 766.451 lb		Forward RCS LH2 tank diam.	2.97 #
Plosecone length 12 80 11	TOA INCLUSION	Lien tvac) 455.0 sec		Total forward RCS LOX prop.	231.49 fb
November all diameter 4 42 N		History and ACH H21 6.00	Body Fish Unia	Comment BCS LOX tank vol	3.4 113
Phearma surface area 119 74 112	Tank dome height/radius				1.87 1
			Body flap length 9,00 1		4 50 1
	Tank withing flotal) 9871.0 113		Body flan unit weight 2,21 [b//12	Forward He tank dameter	
	Low				
	chi sectori	TPS Data	11 US 31 113	AN PCS	
Craw Cabin Data	*				135,12 lb
	Aft dome height 7.26 II	i i i i i i i i i i i i i i i i i i i	Rody flap area (top&btin) 332.40 ft2		EN Der
	Total tank length 34.67 ft			AN HUS LITZ BUT YOU	
	Tool audace area ficial) 2373.96 ft2	F		Ah RCS LH2 tank dam.	
Mission duration 2.00 days		8		Total eff RCS LOX prop.	540.48 Ib
Cabin length 12.00 II	t-Home Para Para			An RCS LOX tank vol.	8.0 113
		ACC area/wind&teil area		AFT RCS LOX tank dam.	2.48 11
Pavioad Bav/Intertank Data		ACC mit weight		All the tank diamater	2.64 N
	8				
Ter have meterine 2500.0 (13					
•	Tailcone struct. unit weight 2.21 [b(1)2			<u>. </u>	
	Base structural unit weight 1.99 [b/[12				
PPL bay doors sir, unit wright 2,22 10(1)4		68			
	Tailcone length (rul section) 5.00 fl	IABI unit weight [0.25 ID/II2]			
PL bay length 7 38 11					
Margin to domes 1 50 ft	fieinit u	Amount body passive TPS area 15581.1 112			
length (tolal)		Winn (ton&btm) wetted area 3784.88 It2		-	
PI hav chock surface area 200.00 [12		Trail waited area (holh) 359.49 [12			
Pi hav area (exhuting doors) 1422.47 [12	-				
	An compartment volume 4428.3 113				

SERJ will and.

and and a

Vehicle Weight Statement HTO sied launch RBCC with engine #11 V launch = 800 fps. q = 2000 psf. Mtr = 6

	Level 3	Level_2	Level 1
1.0 Wing Group			15,942
2.0 Tail Group			1,213
3.0 Body Group			29,073
4.0 Thermal Protection			8,898
5.0 Landing Gear			4,530
6.0 Main Propulsion			37,190
7.0 RCS Propulsion			1,710 1,088
8.0 OMS Propulsion			978
9.0 Primary Power			3,781
10.0 Electrical Conversion & Dist.			3,781
11.0 Hydraulic Systems			998
12.0 Surface Control Actuation			2,200
13.0 Avionics			2,687
14.0 Environmental Control			802
15.0 Personnel Equipment			16,664
16.0 Dry Weight Margin (15%)			10,004
Dry Weight			127,755
			1,890
17.0 Crew and Gear			0
18.0 Payload Provisions			20,000
19.0 Cargo (up and down)			1,001
20.0 Residual Propellants			340
21.0 OMS/RCS Reserve Propellants			
Landed Weight			150,986
a_{2} a DOC Esta: Brazellanta (A)/ = 25 fps)			279
22.0 RCS Entry Propellants ($\Delta V = 25$ fps)			
Entry Weight			151,265
			3,123
23.0 RCS/OMS Propellants (on-orbit)			0
24.0 Cargo Discharged			6,233
25.0 Ascent Reserve and Unusable Propellants			1,513
26.0 Inflight Losses and Vents			
Insertion Weight			162,134
27.0 Ascent Propellants			831,000
,			993,134
Gross Liftoff Weight			333,134
28.0 Startup Losses			2,375
			005 500
Maximum Pre-launch Weight			995,509

Ca 2.0 Tail Group 3.0 Body Group No Cr Pa LH	12 Tank	Vehicle Weight Statem HTO sied launch RBCC with V launch = 800 1ps. q = 2000 tertank Structure Structure P/L Bay Doors P/L Accommodations	engine #11	Level 2 10.930 5.012 265 2.058 6.844	<u>Level 1</u> 15.942 1.213 29.073
Ex Ca 2.0 Tail Group 3.0 Body Group Noc Cr Pa LI-	isecone ew Cabin iyload Bay/In 12 Tank	tertank Structure Structure P/L Bay Doors	Level 3	10.930 5.012 265 2.058	15,942
Ex Ca 2.0 Tail Group 3.0 Body Group Noc Cr Pa LI-	isecone ew Cabin iyload Bay/In 12 Tank	Structure P/L Bay Doors		10.930 5.012 265 2.058	15,942
Ex Ca 2.0 Tail Group 3.0 Body Group Noc Cr Pa LI-	isecone ew Cabin iyload Bay/In 12 Tank	Structure P/L Bay Doors		5.012 265 2.058	
2.0 Tail Group 3.0 Body Group No Cr Pa LH	osecone ew Cabin lyload Bay/In 12 Tank	Structure P/L Bay Doors		265 2,05B	
3.0 Body Group No Cr Pa LH	ew Cabin Iyload Bay/In 12 Tank	Structure P/L Bay Doors		2,058	
Cr Pa LF	ew Cabin Iyload Bay/In 12 Tank	Structure P/L Bay Doors	0 1 1 1	2,058	
Pa Lŀ	iyload Bay/In 12 Tank	Structure P/L Bay Doors			
L.	12 Tank	Structure P/L Bay Doors		n X44	
LC	12 Tank	P/L Bay Doors	3,144	0,011	
LC	12 Tank	P/L Accommodations	700		
LC			3,000	12,220	
		Tank Structure	9,978		
		Tank Insulation	2,242	0 701	
At)Х Талк	Tank Structure	3,238	3,701	
Af		Tank Insulation	463		
	t Body			3,252	
		Tail cone	2,921 331		
Br	dy Flap	Base		735	
4.0 Thermal Protectio	•				8,898
Ac	tive Cooling		0	0	
		Nosecap Wing leading edges	ő		
Ac	vanced Cart	-		1,973	
		Body/cowl	1,558		
-		Wing/tails	414	4,004	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	JFI (tiles)	Body/cowl	2,312		
		Wing/tails	1,691	2,921	
T/	ABI (blankets	) Body/cowi	2,921	2,321	
		Wing/tails	0		
5.0 Landing Gear		-		679	4.530
	osegear			3,850	
Main Propulsion	ain gear				37,190
	BCC Engines	(installed)	C 101	23,244	
		Ejector rockets (incl. pumps) Diff./Comb./Noz. (w/ cooling)	6.191 10,449		
		Fan/gas generator	6.604		
	ain Rocket Er			10.949 1,919	
	ressurization urge Systems	and feed systems		1,079	
7.0 RCS Propulsion	urge Systems	•			1,710
	preward RCS		137	425	
		Thrusters (15 pressure fed) Prop. tanks/empty(195 psia)	43		
		He pressnt. tank(3000 psia)	132		
		He pressurant	11 101		
	It RCS	Lines.manifolds.valves.etc.	101	1,285	
~		Thrusters (22 pressure fed)	488		
		Prop. tanks/empty(195 psia)	101 309		
		He pressnt, tank(3000 psia) He pressurant	27		
		Lines,manifolds,valves,etc.	361		1 000
8.0 OMS Propulsion				430	1,088
	ngines (4 pui	mp ted) mpty(25 psia)		44	
н	e pressnt. ta	ank(3000 psia)		265	
		(for low pressure tanks)		23 327	
9.0 Primary Power	ines,manitolo	is,valves,etc.			978
	uel cells			396	
	leactant dew	ers		531 52	
B 10.0 Electrical Conver	latteries sion & Dist.				3,781
P	ower conver	sion and distribution		1,406 323	
	MA controlle			323 1,919	
	Sircuitry & will MA cabling	nng		132	
	-				0 998
					320
11.0 Hydraulic System 12.0 Surface Control	Hevon EMAs			610	

٠

.

		259	
Body Flap EMAs		200	2,200
13.0 Avionics			2,687
14.0 Environmental Control		141	
Personnel systems		729	
Equipment cooling Heat transport loop		1,142	
Heat rejection system		675	
Radiators	512		
Flash evaporators	163		
15.0 Personnel Equipment			802
Food, water, waste manag.		502 300	
Seats, etc.		300	16,664
16.0 Dry Weight Margin (15%)			
			127,755
Dry Weight			
			1,890
17.0 Crew and Gear			0
18.0 Payload Provisions			20.000
19.0 Cargo (up and down) 20.0 Residual Propeilants			1,001
20.0 Residual Propenants OMS/RCS residuals		170	
Fore LH2 RCS residuals	з		
Fore LOX RCS residuals	10		
Att LH2 RCS residuals	6		
Att LOX RCS residuals	23		
LH2 OMS residuals	18		
LOX OMS residuals	110	831	
Main Propellant residuals	165	0.01	
LH2 residuals	666		
LOX residuals	000		340
21.0 OMS/RCS Reserve Propellants		84	
RCS reserves Fore LH2 reserves	5		
Fore LOX reserves	20		
Alt LH2 reserves	12		
Aft LOX reserves	47		
OMS reserves		256	
LH2 reserves	37		
LOX reserves	220		
			150,986
Landed Weight			100,000
			279
22.0 RCS Entry Propellants ( $\Delta V = 25$ fps)		84	
Forward RCS Propellants	17		
LH2	67		
LOX	•	196	
Att RCS Propellants	39		
LH2 LOX	156		
ĘŎĂ			
T Maight			151,265
Entry Weight			
23.0 RCS/OMS Propellants (on-orbit)			3,123
Forward RCS Propellants		168	
		100	
LH2	34		
LH2 LOX	34 134		
LH2 LOX Att RCS Propellants	134	392	
LH2 LOX Att RCS Propellants LH2	134 78		
LH2 LOX Att RCS Propellants LH2 LOX	134		
LH2 LOX Aft RCS Propellants LH2 LOX OMS Propellants	134 78	392	
LH2 LOX Aft RCS Propellants LH2 LOX OMS Propellants LH2	134 78 314	392	
LH2 LOX Aft RCS Propellants LH2 LOX OMS Propellants LH2 LOX	134 78 314 366	392	0
LH2 LOX Att RCS Propellants LH2 LOX OMS Propellants LH2 LOX	134 78 314 366	392 2,564	0 6,233
LH2 LOX Aft RCS Propellants LH2 LOX OMS Propellants LH2 LOX 24.0 Cargo Discharged 25.0 Ascent Reserve and Unusable Propellants	134 78 314 366	392 2,564 1,234	
LH2 LOX Aft RCS Propellants LH2 LOX OMS Propellants LH2 LOX 24.0 Cargo Discharged 25.0 Ascent Reserve and Unusable Propellants LH2 reserves and unusables	134 78 314 366	392 2,564	6,233
LH2 LOX Aft RCS Propellants LH2 LOX OMS Propellants LH2 LOX 24.0 Cargo Discharged 25.0 Ascent Reserve and Unusable Propellants LH2 reserves and unusables LOX reserves and unusables	134 78 314 366	392 2,564 1,234	
LH2 LOX Aft RCS Propellants LH2 LOX OMS Propellants LH2 LOX 24.0 Cargo Discharged 25.0 Ascent Reserve and Unusable Propellants LH2 reserves and unusables	134 78 314 366	392 2,564 1,234	6,233 1,513
LH2 LOX Aft RCS Propellants LH2 LOX OMS Propellants LH2 LOX 24.0 Cargo Discharged 25.0 Ascent Reserve and Unusable Propellants LH2 reserves and unusables LOX reserves and unusables 26.0 Inflight Losses and Vents	134 78 314 366	392 2,564 1,234	6,233
LH2 LOX Aft RCS Propellants LH2 LOX OMS Propellants LH2 LOX 24.0 Cargo Discharged 25.0 Ascent Reserve and Unusable Propellants LH2 reserves and unusables LOX reserves and unusables	134 78 314 366	392 2,564 1,234	6.233 1.513 <b>162,134</b>
LH2 LOX Aft RCS Propellants LH2 LOX OMS Propeliants LH2 LOX 24.0 Cargo Discharged 25.0 Ascent Reserve and Unusable Propellants LH2 reserves and unusables LOX reserves and unusables 26.0 Inflight Losses and Vents	134 78 314 366	392 2.564 1.234 4.998	6,233 1,513
LH2 LOX Att RCS Propellants LH2 LOX OMS Propellants LH2 LOX 24.0 Cargo Discharged 25.0 Ascent Reserve and Unusable Propellants LH2 reserves and unusables LOX reserves and unusables 26.0 Inflight Losses and Vents Insertion Weight 27.0 Ascent Propellants LH2 ascent	134 78 314 366	392 2.564 1,234 4,998 164.538	6.233 1.513 <b>162,134</b>
LH2 LOX Att RCS Propellants LH2 LOX OMS Propellants LH2 LOX 24.0 Cargo Discharged 25.0 Ascent Reserve and Unusable Propellants LH2 reserves and unusables LOX reserves and unusables 26.0 Inflight Losses and Vents Insertion Weight 27.0 Ascent Propellants	134 78 314 366	392 2.564 1.234 4.998	6.233 1.513 <b>162,134</b>
LH2 LOX Aft RCS Propellants LH2 LOX OMS Propellants LH2 LOX 24.0 Cargo Discharged 25.0 Ascent Reserve and Unusable Propellants LH2 reserves and unusables LOX reserves and unusables 26.0 Inflight Losses and Vents Insertion Weight 27.0 Ascent Propellants LH2 ascent LOX ascent	134 78 314 366	392 2.564 1,234 4,998 164.538	6.233 1.513 <b>162,134</b>
LH2 LOX Att RCS Propellants LH2 LOX OMS Propellants LH2 LOX 24.0 Cargo Discharged 25.0 Ascent Reserve and Unusable Propellants LH2 reserves and unusables LOX reserves and unusables 26.0 Inflight Losses and Vents Insertion Weight 27.0 Ascent Propellants LH2 ascent	134 78 314 366	392 2.564 1,234 4,998 164.538	6.233 1.513 <b>162,134</b> 831.000
LH2 LOX Att RCS Propellants LH2 LOX OMS Propellants LH2 LOX 24.0 Cargo Discharged 25.0 Ascent Reserve and Unusable Propellants LH2 reserves and unusables LOX reserves and unusables 26.0 Inflight Losses and Vents Insertion Weight 27.0 Ascent Propellants LH2 ascent LOX ascent Gross Littoff Weight	134 78 314 366	392 2.564 1,234 4,998 164.538	6.233 1.513 <b>162,134</b> 831.000
LH2 LOX Att RCS Propellants LH2 LOX OMS Propellants LH2 LOX 24.0 Cargo Discharged 25.0 Ascent Reserve and Unusable Propellants LH2 reserves and unusables LOX reserves and unusables 26.0 Inflight Losses and Vents Insertion Weight 27.0 Ascent Propellants LH2 ascent LOX ascent COX ascent 28.0 Startup Losses	134 78 314 366	392 2.564 1,234 4,998 164.538	6,233 1,513 162,134 831.000 993,134
LH2 LOX Att RCS Propellants LH2 LOX OMS Propellants LH2 LOX 24.0 Cargo Discharged 25.0 Ascent Reserve and Unusable Propellants LH2 reserves and unusables LOX reserves and unusables 26.0 Inflight Losses and Vents Insertion Weight 27.0 Ascent Propellants LH2 ascent LOX ascent LH2 ascent LH2 ascent	134 78 314 366	392 2.564 1.234 4.998 164.538 666.462	6,233 1,513 162,134 831.000 993,134
LH2 LOX Att RCS Propellants LH2 LOX OMS Propellants LH2 LOX 24.0 Cargo Discharged 25.0 Ascent Reserve and Unusable Propellants LH2 reserves and unusables LOX reserves and unusables 26.0 Inflight Losses and Vents Insertion Weight 27.0 Ascent Propellants LH2 ascent LOX ascent COX ascent Reserves and unusables 26.0 Inflight Losses	134 78 314 366	392 2.564 1,234 4,998 164.538 666.462 339	6,233 1,513 162,134 831.000 993,134 2,375
LH2 LOX Att RCS Propellants LH2 LOX OMS Propellants LH2 LOX 24.0 Cargo Discharged 25.0 Ascent Reserve and Unusable Propellants LH2 reserves and unusables LOX reserves and unusables 26.0 Inflight Losses and Vents Insertion Weight 27.0 Ascent Propellants LH2 ascent LOX ascent COX ascent LH2 tastup	134 78 314 366	392 2.564 1,234 4,998 164.538 666.462 339	6,233 1,513 162,134 831.000 993,134

•

مالحح 7-20 will crew. Revised May !. Sher calcs. Vi= 800 F.ps. MR = <u>889370</u> = 6.254 (12% = 1 - 595029 - .204

POST triton

 $W_{900} = \frac{599631}{889370} = .574$   $W_{900} = \frac{35289}{889370} = .714$ 

¥

*

G-08- - 1065470 Suc = 3776.1 enque = 169 193 = 3.464 Lox = 3.464 + 312 89 = 1083.7  $A_{c} = \frac{192.21}{207} = .9286$ Reeted: 794308 14 (84.5 512)

1065470 172503 = 6.177 HR =  $LU27_{0} = 1 - \frac{713734}{872967} - 201$  $\frac{716186}{1065470} - 672$ Wing 10 - <u>781866</u> = 1065470 - .734 Was

Gross = 1023756 5ref = 3673.8 engine = 169193 = 3328 (1×= 10413  $A_{c} = \frac{64.69}{27} = .8922$ 

Raded = 784709 (835)

$$HR = \frac{1023756}{167905} = 6.126$$

$$HR = \frac{693126}{1023756} = .198$$

$$HR = \frac{693126}{1023756} = .077$$

...

so change de 6,10 ho 1.3

Grass = 99764]  
Sief = 3605.9  
enque = 
$$\frac{548703}{169.93}$$
 = 3.243 (ox = 1014.72)  
A_c =  $\frac{11997}{2c7}$  = .869  
Recket = 769930 (82)

$$MR = \frac{997141}{162890} = 6.125$$

$$Lu27_{0} = 1 - \frac{669295}{934751} = .198$$

$$Min_{1}7. = \frac{675484}{997641} = .677$$

$$Mago = \frac{732879}{997641} = .735$$

 $\bigcirc$ 

.

unmanned ssv dual-fuel, rd-701, horz. 30 ft p/l bay, 25klb p/l - 51.6 inc.,

MH= 10

<pre>1.0 Wing 2.0 Tail 3.0 Body 4.0 Induced environment protection 5.0 Undercarriage and aux. systems 6.0 Propulsion, main 7.0 Propulsion, reaction control (RCS) 8.0 Propulsion, orbital maneuver (OMS) 9.0 Prime power 10.0 Electric conversion and distr. 11.0 Hydraulic conversion and distr. 12.0 Control surface actuation 13.0 Avionics 14.0 Environmental control 15.0 Personnel provisions 18.0 Payload provisions 19.0 Margin EMPTY</pre>	$\begin{array}{c} 10815.\\ 1899.\\ 62349.\\ 19573.\\ 7016.\\ 52919.\\ 3626.\\ 2275.\\ 2339.\\ 6331.\\ 0.\\ 1285.\\ 1314.\\ 2395.\\ 0.\\ 0.\\ 26121.\\ 200257.\\ \end{array}$
20.0 Personnel 21.0 Payload accomodations 22.0 Payload 23.0 Residual and unusable fluids 25.0 Reserve fluids 26.0 Inflight losses 27.0 Propellant, main 28.0 Propellant, reaction control 29.0 Propellant, orbital maneuver PRELAUNCH GROSS	$\begin{array}{c} 0.\\ 0.\\ 25000.\\ 13044.\\ 7289.\\ 3804.\\ 2143459.\\ 2886.\\ 19369.\\ 2415109.\\ 0.\\ 0.\\ 115100.\\ 0.\\ \end{array}$
Prelaunch gross Start-up losses Gross lift-off Ascent propellant Insertion Ascent reserves Ascent residuals	2415109. -32121. 2382988. -2111338. 271650. -5910. -10984. -3804.
Inflight losses Aux. propulsion propellant Payload delivered Payload accepted Entry RCS prop. (entry) Landed Payload (returned) Landed (p/l out)	-21561. -25000. 25000. 229391. -695. 228697. -25000. 203697. 0.
Personnel Payload accomodations Subsystem residuals Aux. propulsion residuals Aux. propulsion reserves Empty	0. -592. -1468. -1379. 200257.

unmanned ssv dual-fuel, rd-701, horz. 30 ft p/l bay, 25klb p/l - 51.6 inc.,

DESIGN DATA

	5300.0000
payload volume (cu. ft.)	25000.0000
payload weight (1b)	1100.0000
oms delta v req. (ft./sec.)	1.2000
lift-off t/w ratio	8.7723
mass ratio	0.0000
rocket reduction factor	185.6307
body_lengthtt_	28.5815
body_widthtt_	105695.2521
body_volumecu_ft_	

<pre>body_tps_wetted_areasq_ft_ nose_section_areasq_ft_ aft_body_areasq_ft_ engine_bay_areasq_ft_ lox_tank_wetted_areasq_ft_ lox_tank_volumecu_ft_ lh2_tank_volumecu_ft_ ker_tank_volumecu_ft_ wing_tps_wetted_areasq_ft_ carry_through_widthft_ exposed_wing_spanft_ exposed_wing_root_chordft_ exposed_wing_taper_ratio body flap length (ft) tip fins (2) planform_area (ft2)</pre>	$\begin{array}{c} 15562.2168\\ 415.3967\\ 4771.9390\\ 907.3516\\ 1075.3585\\ 4831.3502\\ 25893.2187\\ 6494.1135\\ 39414.3510\\ 4361.0188\\ 5061.8321\\ 25.7999\\ 67.1504\\ 59.4901\\ 2441.9017\\ 0.2324\\ 1.8472\\ 8.1338\\ 271.3015\end{array}$
SIZING PARAMETERS Mass ratio Propellant mass fraction Body length (ft.) Wing span (ft.) Theoretical wing area (sq. ft.) Wing loading at design wt (psf) Wing planform ratio, sexp/sref Sensitivity of volume to burnout wt ( Burnout weight growth factor (lb/lb)	8.7723 0.8860 185.6 93.0 4188.6 54.6 0.58 383.9 4.36
Total volume (cu. ft.) Tank volume (cu. ft.) Fixed volume (cu. ft.) Tank efficiency factor Ullage volume fraction	BODY WING 105695. 13351. 63875. 0. 0. 0. 0.6516 0.0000 0.0300 0.0300
DENSIT PROPELLANT FRACTION (lb/cu. 1) lh2 0.0782 4.42 hc 0.0983 50.50 lox 0.8235 71.14 lox (Wing) 0.0000 71.14	ft.) (cu. ft.) (cu. fc.) 37377. 38983. 4108. 4317. 24440. 25575.

.

unmanned ssv, ssme-50 der. - 25 klb p/1, 51.6 deg incl.

<pre>1.0 Wing 2.0 Tail 3.0 Body 4.0 Induced environment protection 5.0 Undercarriage and aux. systems 6.0 Propulsion, main 7.0 Propulsion, reaction control (RCS) 8.0 Propulsion, orbital maneuver (OMS) 9.0 Prime power 10.0 Electric conversion and distr. 11.0 Hydraulic conversion and distr. 12.0 Control surface actuation 13.0 Avionics 14.0 Environmental control 15.0 Personnel provisions 18.0 Payload provisions 19.0 Margin 20.0 Personnel 21.0 Payload accomodations 22.0 Payload 23.0 Residual and unusable fluids 25.0 Reserve fluids 26.0 Inflight losses 27.0 Propellant, main</pre>	$\begin{array}{c} 13855.\\ 2000.\\ 85702.\\ 23370.\\ 8910.\\ 81834.\\ 4039.\\ 2851.\\ 2339.\\ 9483.\\ 0.\\ 1631.\\ 1314.\\ 2348.\\ 0.\\ 0.\\ 35951.\\ 275627.\\ 0.\\ 0.\\ 35951.\\ 275627.\\ 0.\\ 0.\\ 35951.\\ 275627.\\ 0.\\ 5688.\\ 260305.\\ 3847. \end{array}$
29.0 Propellant, reaction control	25807.
29.0 Propellant, orbital maneuver	2965244.
PRELAUNCH GROSS	0.
Prelaunch gross Start-up losses	2965244. -36014. 2929230.
Gross lift-off	-2567291.
Ascent propellant	361939.
Insertion	-7959.
Ascent reserves	-13421.
Ascent residuals	-5688.
Inflight losses	-28727.
Aux. propulsion propellant	-25000.
Payload delivered	25000.
Payload accepted	306144.
Entry	-927.
RCS prop. (entry)	305217.
Landed	-25000.
Payload (returned)	280217.
Landed (p/l out)	0.
Payload accomodations	0.
Personnel	-790.
Subsystem residuals	-1959.
Aux. propulsion residuals	-1841.
Aux. propulsion reserves	275627.
Empty	

unmanned ssv, ssme-50 der. - 25 klb p/l, 51.6 deg incl.

DESIGN DATA

DESIGN DATA	
	5300.0000
payload volume (cu. ft.)	25000.0000
payload weight (lb)	1100.0000
oms delta v req. (ft./sec.)	8.0932
mass ratio	0.0000
rocket reduction factor	181.8398
body_lengthft_	36.3160
body_widthft_	71.2390
exp_wing_spanft_	64.6798
exp_wing_root_chordft_	

nose_section_ard intertank_area_ aft_skirt_area_ engine_bay_area body_tps_wetted wing_tps_wetted exposed_wing_pl theo_wing_planf body_volume carry_through_w exposed_wing_ta exposed_wing_as	sq_ft_ sq_ft_ area_sq_ft_ area_sq_ft_ anform_sq_ft_ ormsq_ft_ cu_ft idth_ft per_ratio	· · · · ·			$\begin{array}{r} 346.2860\\ 5008.5921\\ 1430.1457\\ 1353.7546\\ 19534.1742\\ 5872.5821\\ 2945.3984\\ 4817.4159\\ 168203.1476\\ 29.3881\\ 0.2359\\ 1.7836\end{array}$
SIZING PA Mass ratio Propellant mass Body length (ft Wing span (ft.) Theoretical wir Wing loading at Wing planform I Sensitivity of Burnout weight	fraction ) dg area (sq. design wt () ratio, sexp/s volume to bu	ref rnout wt (cu.		BODY	8.0932 0.8764 181.3 101.1 5087.0 60.0 0.56 458.3 5.57 WING
Total volume ( Tank volume (C Fixed volume ( Tank efficiency Ullage volume	1. ft.) cu. ft.) / factor		11 0	(8203. (9103. 0. ().7081 ().0300	19426. 0. 0.0000 0.0300
PROPELLANT 1h2	FRACTION 0.1429 0.8571 ng) 0.0000	DENSITY (1b/cu. ft.) 4.42 71.14 71.14	FLUID VOLUME (cu. ft.) 83001. 30931. 0.	(cu. 8	OLUME ft.) 6768. 2335. 0.

____

_