
N96-14901

Engineering Intelligent Tutoring systems

Kimberly C. Warren Bradley A. Goodman
Artificial Intelligence Center1

The MITRE Corporation
202 Burlington Road

Bedford, MA 01730-1420
kim@linus.mitre.org

bgoodman@linus.mitre.org

ABSTRACT. We have defined an object-oriented software architecture for Intelligent
Tutoring Systems (ITSs)2 to facilitate the rapid development, testing, and fielding of ITSs.
This software architecture partitions the functionality of the ITS into a collection of
software components with well-defined interfaces and execution concept. The
architecture was designed to isolate advanced technology components, partition domain
dependencies, take advantage of the increased availability of commercial software
packages, and reduce the risks involved in acquiring ITSs. A key component of the
architecture, the Executive, is a publish and subscribe message handling component that
coordinates all communication between ITS components.

We implemented critical components of the architecture as a simple hypermedia
training system, the Macintosh Maintenance Training System (MMTS). The domain for
the prototype training system is the maintenance of Apple Macintosh Ilex computers.

This project has shown that the use of a modular software architecture for the
development of ITSs, and complex integrated artificial intelligence applications in
general, has several important benefits. Its use allows for rapid development,

' incremental integration and testing of components, and a more maintainable, extensible,
and reusable end-product. Even more evident was the benefit of an Executive
component that facilitated the integration of commercial software packages with custom
developed software in a well-defined manner.

INTRODUCTION

This paper describes the design and implementation of a generic architecture for Intelligent Tutoring
Systems (ITS). The architecture uses object-oriented technology to provide the ITS developer with a solid,
reusable framework for the development and testing of particular functional modules of an ITS and the
ability to easily integrate COTS products with custom-developed software.

Prior to the selection and use of Commercial Off-the-Shelf (COTS) products, custom-developed
functionality, and non-developmental software, software system designers benefit from a systematic
definition of functions and subsequent interfaces that will be required of them, i.e., the definition of a
software architecture. In the case of an ITS to be run on a single CPU with media-providing peripherals,
a software architecture partitions the functionality of the ITS into a series of software components with
well-defined interfaces and execution concept. The development of a robust software architecture can
improve the overall software quality of a system.

1 This work was supported by the Computer-Based Training Specialty group as a MITRE technical overhead project.

2 © The MITRE Corporation, 1993

235

https://ntrs.nasa.gov/search.jsp?R=19960007735 2020-06-16T05:16:43+00:00Z

BACKGROUND

We identified the need for a reusable and extensible software architecture to be used across multiple ITS
for various reasons. For example, a considerable savings in the development cost of multiple tutors will
result if common software components are identified, developed once or assigned to an existing COTS or
non-developmental software (NDS) product, and incorporated into all tutors. Large scale software reuse
also means that the tutors can have a similar "feel" to the student and would be less expensive to
maintain. The use of appropriate COTS products also provides the users/developers with emerging
COTS interface look and feel standards. An extensible architecture attempts to achieve goals including
making it possible to incorporate changes in technology, in such areas as multimedia interfaces, student
modeling, expert modeling, and instructional strategy, without having to re-implement the entire system.
We felt that building tutors on a generic framework of loosely-coupled software components had the best
chance of achieving these goals. We developed such an architecture and specified it in terms of
functional components, detailing the function, interfaces, and suggested behavior of each [1].

Other ITS researchers have defined what they call an "architecture" for an ITS to address issues of easing
the cost associated with developing ITS. Most of this work relies on their particular definition of the term
"architecture." Work done by John Anderson (with Boyle and Yost [3], Reiser and Farrell [4], and Corbett
[5]) on the Geometry, Lisp and ACT tutors is likely the most advanced application of a reusable
architecture to date. However, as Yazdani observed (in [6]), these tutors suffer from limited student
modeling and instructional design strategies. These strategies are prescribed (even required) by the
"architecture" and do not allow for modifications that would allow them to better deal with each
individual domain. Also, none of these implementations used COTS, they relied upon custom developed
software.

NASA/Johnson Space Center has followed a different path by making an attempt at developing a
"generic architecture" for ITS in the form of a set of integrated tools [7]. Their general-purpose ITS design
uses a COTS knowledge engineering tool, CLIPS, for encoding and manipulating production rules and a
blackboard system component, custom-developed, for coordinating communication between modules.
The developer of an ITS can build on top of the kernel provided by the NASA general architecture to
reduce development time and to provide some consistency across ITS. However, their selection of
specific tools constrain the ITS designers/developers to those methodologies supported by those tools.
For example, the particular COTS knowledge engineering tool that they selected requires knowledge to
be encoded in terms of production rules. Additional design and architecture changes would be required
if the ITS designer required an alternative formalism, and/or alternative COTS tool, for the representation
of expert, student, or instructional knowledge. Also, most of the ITS must be re-built for each new
domain.

In contrast to other ITS architecture efforts, we proposed that general interfaces to the required
functionality of an ITS could be specified and implemented. Components of an ITS such as an expert
model, student model, and instructional environment could be specified in terms of their required
functionality and that, indeed, when knowledge representation and implementation details are set aside,
standard interfaces to the specified functionality emerge. Such encapsulation of functionality allows
particular components to be "unplugged" and replaced by alternative components conforming to the
same interfaces. This proves to be a very powerful capability in the development of ITS.

Although knowledge representation schema differ widely in ITS research into expert modeling, student
modeling, and instructional design, the conditions under which such functional components are
activated, i.e., their input, and the responses that are expected from them, i.e., their output remain similar
across knowledge representation and manipulation methodologies. For example, expert modeling
functionality receives input that includes student action/statements and will generate output that
includes expert evaluations of those actions as part of its function as the expert problem solver in an ITS.
In the case of student modeling, "higher" level measurement of the student's ability (e.g., "higher" than a
simple recounting of student actions during problem solving) is expected to be available from the student
modeling functional component during the lesson. For example, student modeling functionality usually

236

receives student action/statements as input and generates some measurement of overall student ability as
output. Knowledge representation, manipulation, and presentation differ widely in ITS research into
instructional environments. However, the conditions under which an Instructional Environment
operates and the responses that are expected from it, e.g., student action/statements and individualized
responses/feedback to the student, respectively, remain similar across methodologies. These similarities
allow general interfaces to these functional components in an ITS to be specified [2]. With these general
interfaces, we have opened the door to the use of appropriate COTS products to implement the specified
functionality.

APPROACH

The architecture of a digital system consists of the hardware and software components, their interfaces,
and the execution control that underlies system processing [8]. A software architecture should partition
the functionality of ITS into a collection of software components with well-defined interfaces and
execution concept. A software architecture for an ITS should be designed (i.e., ITS functionality should be
partitioned) to meet the following goals:

a. Technology insertion and isolation: The architecture should provide logical functional separation
to allow the insertion of relevant new technologies as they become available and provide a way of
isolating dependencies on existing technologies.

b. Ease of acquisition: The architecture should reduce the overall development and maintenance
costs associated with designing and building multiple ITS.

c Domain dependency isolation: The architecture should isolate domain dependencies of the ITS.
While this isolation will not be complete, it should at least define and localize the effects of any
domain changes on the remainder of the ITS.

d. Isolation of instructional design strategies: The architecture should allow differing instructional
strategies to be implemented and tested, with minimal impact on the rest of the ITS.

In order to achieve the above goals, we specified and began implementing a generic ITS architecture in
terms of an object-oriented design for the functional components of an ITS. The highest level objects in
the ITS architecture correspond to the software components that support the individualized training
environment. Each of these components is assumed to be an independent entity that can act on its own
accord. As an object-oriented system, the software components communicate with each other by sending
and receiving messages that either contain control information that affect components' operation (e.g.,
starting or stopping a simulation) or queries for data about some aspect of the course (e.g., state of a
simulated system component.)

In one instantiation of our architecture, each ITS can consist of the ten software components shown in
figure 1. (A software component is defined to be an independent functional entity that performs a logical
set of functions. Each software component communicates with other software components via well-
defined interfaces. One can come up with many different partitions of the functionality found in an ITS
as the basis for an architecture definition; however, the resulting architecture should follow the guidelines
and goals stated above for modularity of advanced technological (i.e.. Artificially Intelligent),
instructional strategic, COTS integration, and domain-dependent components. If this is the case, it
should adapt to changes in implementation and domain gracefully, i.e., without requiring the re-coding
of all components.)

The Executive is the core of the ITS architecture. It is the software component that implements the
execution control that underlies system processing and fosters ease of COTS integration. The Executive
provides one of the basic functionalities that is characteristic of object-oriented architectures, message
passing between encapsulated processing entities.

237

The functionality of an ITS student interface, i.e., process student actions in order to generate
individualized feedback, has been refined into multiple components in our architecture: Multimedia
Interface, Presentation Controller, Explanation Generator, and Instructional Environment. This
refinement was meant to leave the Instructional Environment to deal with high level instructional design
strategy processing. With the availability of COTS tools for multimedia graphical user interface
development and delivery, we isolated the Multimedia Interface to allow for the use of COTS. The
Multimedia Interface provides the physical means by which the student interacts with the Instructional
Environment. Specifically, the Multimedia Interface processes multimodal input from the student, via
such devices as keyboard and mouse, and generates and displays multimedia presentations including
text, graphics, sound, and video. Input in terms of input events (mouse dicks, key input) is passed on to
the Presentation Controller for further refinement. Output requests in terms that the particular
multimedia tools can interpret are generated by the Presentation Controller.

Depending upon the tools used to implement the
Multimedia Interface, a particular "language" will
be required to control presentation of information.
The Presentation Controller organizes and
sequences the information to be presented to the
student. Given an Explanation Generator script
containing several display directives such as "AT
THE SAME TIME: Display video indices 1230 to
1259 and text 'This is how you ...' ," the
Presentation Controller synchronizes the execution
of requests for their physical display by the
Multimedia Interface. The Presentation Controller
is also responsible for the translation of the
physical user interactions (e.g., mouse movement,
keyboard input, etc.) supplied by the Multimedia
Interface into actions on the problem domain
elements for the Instructional Environment.

EXPLANATION
GENERATOR

PRESENTATION
CONTROLLER

Figure 1 Components of the ITS Architecture

Considerable research and development is ongoing in the area of tailored explanations and multimedia
explanation generation (see [9,10] for examples). For this reason, we isolated the functionality that
generates the content and sequence of explanations given to the student in the Explanation Generation
component The Explanation Generator, in conjunction with the Instructional Environment, is the part of
the training system responsible for generating individualized advice. The output of the Explanation
Generator is a script denoting information to be displayed in terms of media items organized in terms of
temporal and spatial relationships.

While the Instructional Environment and its related components control the presentation of material to
the student within a given exercise, the Curriculum Manager governs problem selection with respect to
the entire course or group of exercises. Like the other modules, the Curriculum Manager uses
information about the student's current problem solving skills and knowledge to generate appropriate
interactions with the student. This information is compiled and maintained by the Student Model. The
Student Model gathers data from the student's problem solving actions. It should map these actions into
a representation that summarizes and abstracts relevant student performance measurements.

A Simulator component was broken out of the standard ITS Expert Model component. This isolates as
much of the domain dependencies associated with a tutor's domain simulation and allows for the use of
COTS simulation and expert modeling tools. The Expert Model contains knowledge that includes the
general methods or procedures that an expert would use to solve problems in the domain. It is possible
that the expert problem solving knowledge used by one ITS, or the COTS tools used to implement it,
could fairly easily carry over to additional domains. This is not the case for tutor domain simulations.

238

Finally, the Training Administrator collects and stores measurements of ITS usage and students' problem
solving skills. The maintainers of the software may use standard COTS analysis tools, such as
spreadsheets, to evaluate the usage information.

THE MACINTOSH MAINTENANCE TRAINING SYSTEM

We implemented critical components of the architecture as a simple training system, the Macintosh
Maintenance Training System (MMTS). The domain for the prototype training system is the maintenance
of Apple Macintosh^ Doc computers. The initial capability for the implementation described in this paper
came from a multimedia explanation generation component for an intelligent help system developed by
Bradley Goodman [11]. We encapsulated this system's functionality into separate software components
in accordance with our architecture. We also augmented this system with student modeling capabilities
that were lacking in the original Macintosh repair system. Our development approach made use of
commercially-available software products and object-oriented technology. The implementation used the
DOS/Microsoft Windows operating system running on an IBM PC-compatible hardware platform. We
used a combination of C, C++ and Asymetrix Toolbook to develop our prototype.

The MMTS prototype is made up of four software components that provide the initial, critical
functionality required by an ITS for Macintosh maintenance: Executive, Instructional Environment,
Expert Model, and Student Model. The MMTS uses separate executables for the software components
(implemented using different languages and COTS products) that make up the tutoring system. The
following paragraphs describe the MMTS design and implementation in some detail.

The Executive has responsibility for the dynamic coordination of all message passing between software
components in the object-oriented architecture. A message is an object that has attributes (fields) that may
include: message class, contents, priority, sender, and time stamp.

In keeping with the strategy to use object-oriented techniques to maintain a loose coupling of components
in the ITS, the Executive employs a subscription-based message handling approach wherein software
components request message handler permission to publish messages on selected message classes. A
message class is, for example, "student action" which specifies messages containing descriptions of
student actions during problem solving with the tutor. Conversely, a software component can subscribe
to the various message classes from which it wants to receive information.

Software components publish and subscribe to messages via I/O ports created for one or more message
classes. The use of I/O ports for the sending and receiving of messages allow software components to
easily suspend multiple message classes with a single call to suspend a port. Messages sent by a software
component through an I/O port for publication are broadcast to all software components that subscribe
to the message class. Message sending can be accomplished in any of the following ways:^
asynchronous, synchronous, or synchronously timed. The flexibility allowed by these types of sends
allows the ITS developer to control processing at many different levels. For example, if a particular
component of the system wants to interrupt another component's processing, an asynchronous send to
the relevant component(s) would be required. Message receipt can be accomplished in any one of the
following ways:^ unconditionally with wait, typed, timed, or typed and timed. These types of receipt
allow the various components of the system to selectively process requests from other components.

3 Apple and Macintosh are trademarks of Apple Computer, Inc.

4 Currently, we are only handling the asynchronous passing of messages between processes under Microsoft Windows. We

believe that, of the three types, this is the most complex to implement given a focus on incorporating COTS software into

any implementation of the architecture.

5 Currently, we are only handling the unconditional receipt of messages from within the Executive.

239

The Executive was implemented in C as a Dynamic Link Library**. It functions as a layer of message
publication and subscription handling on top of Microsoft Windows. This layer maintains tables of
software components, messages that they subscribe to, and messages that they will publish. Software
components are provided with the various send and receive capabilities described above, with the
Executive handling all of the Microsoft Windows communication issues. Software components that wish
to communicate need only link with the Executive and publish on and subscribe to appropriate messages.
The availability of the Executive defining a standard interface between COTS and custom developed
products simplified their integration to one of assuring communication with the Executive. Systems that
employ multiple COTS products communicating in complex conversations require the developer to
implement multiple interfaces between COTS and custom developed software, one per communicating
pair of system components. When the Executive is used, however, the interface implementation is
reduced to the implementation of one interface to the Executive for each COTS and custom developed
component. Finally, the use of Windows allowed us to take advantage of non-preemptive multi-tasking
to control the order in which messages were both sent to and received from applications linked to the
Executive.

The graphical user interface of the MMTS, the Instructional Environment, is shown in figure 2. This
interface was built using Multimedia Toolbook? . The scrolling menus on the left enumerate the actions
that the student can take. The buttons down the middle of the screen provide the student with access to
any of the three views of the Macintosh Ilex. The buttons on the right provide the student with textual,
graphical, and video help during problem solving. The scrolling window at the bottom of the screen
shows the plan that the student is creating during problem solving and allows him/her to select any of
the actions in the plan for video display. This particular display shows the results of appropriate student
actions in the MMTS as the listing of the English text in the "Actions to be Performed:" window.

An Expert Model, written in C++, models the procedures required to do Macintosh repairs. These
procedures were implemented as a finite state machine that encodes the rules for repair delineated in the
Macintosh Maintenance Manuals. During the course of problem solving, the Expert Model evaluates
student problem solving actions and responds to queries for appropriate (expert) actions in the context of
the problem being solved.

A Student Model, written in C, models the student's problem solving by tracking the errors and their
gravity during a problem solving session. During the course of problem solving, the Student Model may
require the Instructional Environment to display additional, unsolicited advice if the students errors are
of a type or frequency that the Student Model would find inappropriate.

The Instructional Environment coordinates instructional interaction with the student. For example,
the Instructional Environment publishes on the "student action" class of messages. Conversely, the Expert
Model and Student Model components subscribe to the "student action" class of messages. When a
student completes a maintenance action on the Macintosh Ilex (e.g., clicking on the video board graphic
and the menu action "pull up") via the Instructional Environment, the action is packaged into an instance
of the "student action" message class and broadcast to all components that subscribe to the class via the
Executive message handler. In this case, the Executive will route the message to both the Expert Model
and the Student Model for evaluation and retention, respectively.

6 A DLL allows applications to access functions in a library without having to include the library code in the source code of

the application. This also allows multiple applications to access a single copy of the library.

7 Toolbook is a registered trademark of the Asymetrix Corporation.

240

Lift
UnScrew
Screw
Unlatch
Latch

ParallelOp
AnyOrderOp

ParallelOp(Unlatch(Left Ud Tab,
Case Bottom), UnlatchfRight Ud
Tab, Case Bottom))

Unscrew top cover screw
Unlatch the lid tabs

ttawUCOOfUl
mni

Figure 2 MMTS user interface

The Expert Model will evaluate the action with respect to an expert's problem solution. This component
will then create and broadcast a message of class "student action evaluation" containing the evaluation
which will be received by both the Instructional Environment and the Student Model. The Instructional
Environment will process the evaluation with respect to its instructional design strategy (e.g., whether to
give immediate feedback, the type of feedback, etc.) For example, the Instructional Environment may
cause the creation of a multimedia display of a video board being removed with text overlayed describing
the action.

The Student Model will store the action, as
well as any Expert Model evaluation, and
make any inferences about the state of the
student's understanding that are possible. If
it is the case that the student's understanding
has dropped below a particular threshold, the
Student Model will broadcast a "student
evaluation" message which will be picked up
by the Instructional Environment. At this
time, the Instructional Environment may
provide the student with unsolicited advice,
depending upon the instructional strategy

Figure 3 Sample Message Passing

implemented. Figure 3 shows the message passing between software components that the Executive
facilitates in this particular example.

CONCLUSIONS

The work done on this project to date provides evidence that the use of a modular software architecture
for the development of ITS has several important benefits. Its use allowed for rapid development.

241
ORIGINAL PAGE IS
OF POOR QUALITY

incremental integration and testing of components, ease of COTS integration, and a more maintainable,
extensible, and reusable end-product. In particular, the Executive component facilitated the integration of
both COTS and custom developed software in a well-defined manner. Standard integration tasks require
the specification and development of multiple interfaces, one per communicating pair of components.
Software components, be they COTS or custom developed, that communicate via the Executive message
handler require only a single interface; that is, they need only be integrated with the Executive. Acting as
an abstraction of the message passing/process communication functionality provided by the operating
system, the Executive is able to take quite a bit of the integration burden away from the developers of the
system.

The use of COTS products allowed us to rapidly develop an initial training capability. The freedom to
choose multiple COTS tools in combination with more standard programming languages gave us the
ability to implement fairly complex algorithms in a short period of time. Many problems arise from the
use of COTS products (alone) in a rapid prototyping situation due to the limitations of any one particular
COTS product. Other problems arise from the range of different integration tasks that developers are
required to perform when combining the functionality of multiple COTS products. The availability of the
Executive defining a standard interface between COTS and non-COTS products simplified the integration
to one of assuring communication with the Executive.

With the savings in development afforded by the use of COTS, the increased supply of powerful COTS
software, and the increased demand for its use in government and private sector development efforts,
issues of maintainability of software systems that utilize these products are brought to the forefront.
Prior to the selection and use of COTS products, system designers benefit from a systematic definition of
functions and subsequent interfaces that will be required of them. The architecture specified for ITS in
this paper was designed to take advantage of the increased availability of COTS software. The
partitioning of components took into account COTS trends. For example, the separation of the
Multimedia Interface from the Instructional Environment allows developers/designers to take advantage
of the multitude of available COTS drivers for graphical user interface providing hardware. The
separation of the simulation functionality from the Expert Model provides one with the ability to either
develop a simulation given a COTS tool or the use of an existing simulation of the training domain.

The Executive emerged from this activity as a tool for the integration of software components for any
application, not limited to ITS, and a software engineering methodology enforcement mechanism to be
used during design and development of a system. The use of the Executive enforces "good" software
engineering practices by requiring all designers/developers to conform to a standard set of interfaces
defined in advance of full-scale development. It was clearly efficient to allow each of the developers to
ignore the implementation details of components for which he/she was not responsible. With the
Executive, the interface and communication issues must be addressed and resolved "up-front".

The generic ITS architecture and its Executive are not magic. As a matter of fact, the hard ITS design and
development work is yet to be done. This work includes the advanced technology design and
development issues involved in creating the various "intelligent" modules of the training system.
However, with the use of such an architecture for the implementation of ITS, and integrated COTS
systems in general, we feel that the users and developers will benefit. The addition of techniques,
products, and technologies has been anticipated. The reuse of complex components has been enabled.

Acknowledgments

The author would like to acknowledgement! Karcher for his extensive contributions to the design and
development of the Executive functionality, George Huff and Steve Litvintchouk for their extensive
Software Engineering advice, and Michael Sayko for his contributions to the design of the Intelligent
Tutoring System architecture.

242

References

[11 Warren, K. C, Karcher, G. W., Sayko, M. S., Goodman, B. A., The ITS Software Engineering
Reference Guide," (draft) MITRE Working Paper, WP-92B0000085,1992a.

[2] Warren, K. C, Huff, G. A., Michlowitz. E M., "A Generic Architecture for Intelligent Tutoring
Systems," MITRE Technical Paper, MTR 92B0000200,1992b.

13] Anderson, J., Boyle, C. F., and Yost, G., The Geometry Tutor," in Proceedings of the Ninth
International Joint Conference on Artificial Intelligence, Morgan Kaufmann, 1985

[4] Reiser, B. J., Anderson,]. It, and Farrell, R. G., "Dynamic Student Modeling in an Intelligent
Tutor for Lisp Programming", in Proceedings of the Ninth International Joint Conference on Artificial
Intelligence, Morgan Kaufmann, 1985

15] Corbett, A. T., and Anderson, I- R., "Student Modeling and Mastery Learning in a Computer*
Based Programming Tutor" in Intelligent Tutoring Systems, Second International Conference, US
W, Springer-Veriag, 1992.

[6] Yazdani, M.," Intelligent Tutoring Systems: An Overview," in Intelligence and Education, Volume
One, eds. R. W. Lawler and M. Yazdani, Ablex Publishing, 1987.

[7] Computer Sciences Corporation, "Programmer's Guide to the General Architecture of
Intelligent Computer-Aided Training Systems," Report CSC-A000154, December 1991.

[8] Horowitz, B. M., MITRE, The Importance of Architecture in DOD Software," MITRE Technical
Paper, M91-35, July 1991.

[9] Feiner, S. K. and McKeown, K. R., "Generating Coordinated Multimedia Explanations" in
Proceedings of the 6th International Conference on Artificial Intelligence Applications, Santa Barbara,
CA,1990.

[10, 11] Goodman, B. A., "Multimedia Explanations for Intelligent Training Systems," presented at
Conference on Intelligent Computer-Aided Training, Houston, TX, 1991.

243

