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Abstract
The construction of Intelligent Computer Aided Training (ICAT) systems is
critically dependent on the ability to define and encode knowledge. This
knowledge engineering effort can be broadly divided into two categories domain
knowledge and expert or task knowledge. Domain knowledge refers to the
physical environment or system with which the expert interacts. Expert
knowledge consists of the set of procedures and heuristics employed by the
expert in performing their task. Both these areas are a significant bottleneck in
the acquisition of knowledge for ICAT systems. This paper presents a research
project in the area of autonomous knowledge acquisition using a passive
observation concept. The system observes an expert and then generalizes the
observations into production rules representing the domain expert's knowledge.

INTRODUCTION

Knowledge acquisition remains a bottleneck in the construction of expert systems. There have been a number of
projects which have sought to automate the process of knowledge acquisition but have typically focused on the
acquisition of knowledge as machine learning. From early systems such as AM [4] to more recent projects such as
Cyc [6] investigating the construction of new knowledge has been based primarily on reasoning and discovery
within the system.

Acquisition of knowledge for an ICAT system has a somewhat different perspective. Rather than covering a wide
range of concepts, domain knowledge acquisition is concerned primarily with the capture and codification of the
set of heuristics required for expert performance in that domain. While this does lead to system brittleness as
problems are encountered which are on the fringe of the knowledge base or require commonsense reasoning
based on real-world experiences or knowledge, it remains a proven and viable approach for special-purpose
expert systems in the diagnosis, control, and procedural task oriented domains.

The focus of this effort has been on the capture and codification of knowledge relating to procedural and
diagnostic tasks. These domains provide systems which are typically physical and, therefore, can be instrumented
and the expert performs some action as part of performing their tasks. These two concepts, instrumentation and
actions are key to enabling t'Shadow to autonomously acquire knowledge.

Knowledge Acquisition Bottleneck

The knowledge acquisition process is a human intensive effort representing a serious impediment in the
development of knowledge bases for expert systems and ICAT systems [5]. The knowledge engineer must work
with the expert for extended periods of time. The domain of the expert must be learned by the knowledge
engineer such that the knowledge engineer may encode the necessary domain information. Effective transfer of
the acquired knowledge is a critical component [1] but continues to require significant human involvement

The current methodology for acquiring knowledge requires the dedication of an individual to gather the
knowledge from the expert and codify it into a set of rules or other form which can be interpreted by a machine.
This involves conversations and interviews with the expert, observing the expert perform the task, eliciting
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additional information or rationale for the behaviors observed, and then encoding the collected interviews,
observations, rationale, and behaviors into a knowledge representation language.

Clearly this continues to be a significant bottleneck in constructing knowledge bases. It presents a significant
problem for ICAT systems in NASA and the military because it is difficult to obtain uninterrupted time for the
domain experts during which the knowledge engineer can extract the knowledge base. Yet, with downsizing of
the military, limited government funds, and increased workload, more efficient methods must be found for
extracting and encoding the knowledge applied by experts in performing their tasks.

Alternative Approaches

Other approaches to knowledge acquisition focus primarily on discovery [6] or pattern recognition in sets of data
(i.e. database mining) [3]. These approaches rely on a dosed world in the former and a broad base of facts in the
latter. (Shadow follows the same general tactics as discovery-based learning in that it generalizes empirical
observations to ascertain general domain rules. This approach relies on inductive reasoning and the related
explanation-based reasoning.

Knowledge generation from databases typically applies abductive reasoning in attempting to develop knowledge
which fits a particular set of data.

KNOWLEDGE CLASSIFICATION

Expert knowledge can be broadly classified into one of three categories:

1. Declarative
2. Process
3. Meta-Knowledge

These three categories reflect the domain in which the expert performs their task, the actual task actions, and the
strategic knowledge applied to the performance of the task.

Declarative Knowledge

Declarative knowledge forms the basis of the domain in which the knowledge acquisition must be performed.
This portion of the (Shadow knowledge base is developed using the object and relation editors defined within the
(Shadow system. It is not necessary to build a "high-fidelity" model of the domain which is capable of simulation.
Rather, a basic definition of the different classes of object in the domain and then the creation of instances of those
classes within (Shadow that map to the external system.

The key is that (Shadow uses the states and relationships of the various objects in the domain to build a rule base.
Representation of complex interactions and simulation is not needed to develop a set of rules.

Process Knowledge

Process knowledge is the set of observations collected by iShadow as it observes the expert performing their task.
The process knowledge is divided into two categories, monitoring actions and state-change actions. Monitoring
actions are those actions performed by the expert which does not alter the state of the domain or domain
simulation. Examples of monitoring actions would be inspecting a gauge, observing the state of a switch, or
querying the value of an ohm meter.

State-change actions are those actions performed by the expert which alter the state of the domain simulation or
the domain itself. These might be opening or dosing a valve, turning a rheostat, or flipping a switch on or off.

409



Data Stream
Conversion
Program

iShadow
Observation

Module

Domain
Object

Specification

Phase I

• r

< •

Execution 1 /
History 1 /

iShadow /
Elicitation / »•
Module /

Rule 1
Instances 1

Phase II

Phase III

Rule
Generation

Module

Phase IV

CUPS !
Rules I

Figure 1: f Shadow Operational Flow

Figure 2: Organization of Rule Tuples in Object SimBioSys

410



Meta-Knowledge

Meta-knowledge refers to the set of heuristics applied by the expert which lead them to perform actions in a
particular order. While /Shadow does not capture this class of knowledge automatically, it does elicit
explanations and rationale from the expert regarding their selection of actions to perform

PASSIVE KNOWLEDGE ACQUISITION

The focus of this work has been in the development of a knowledge acquisition approach based on passive
observation. Passive acquisition was chosen as the acquisition paradigm to emulate the observation process
performed by a human knowledge engineer. The system is called /Shadow for an intelligent Shadow of the
expert's actions.

Since the projects initiation, other efforts, such as [2], have also investigated the automated learning of diagnostic
knowledge. These have focused on the automated acquisition of knowledge for a expert system as opposed to an
ICAT system.

Project Goals

The goals of this effort have been refined as the project progressed and a better understanding of the problem and
feasibility of the approach became more clear. At first our goal was to capture all classifications of knowledge but
it soon became apparent that certain tasks were not easily captured in a passive scenario. Tasks such as solving
differential equations, or psycho-motor tasks, such as controlling the remote manipulator arm of the Shuttle were
difficult or impossible to instrument.

The focus of this effort has homed in on the generation of initial knowledge bases. The goal is to obtain
approximately 75% of the initial knowledge base required for system operation. Coupled with the above
coverage goal is the goal to achieve this initial set of knowledge in approximately 25% of the time it would take to
build the knowledge base with a knowledge engineer.

Prerequisites to Passive Acquisition

The iShadow approach, as mentioned previosly is not amenable to all types of knowledge acquisition. Knowledge
domains which are highly cognitive in nature and those requiring psycho-motor skills, for example, are not
suitable to this approach. The domain must consist of a combination of physical environment that can either be
instrumented or simulated and a set of actions performed by the expert which can be observed through the
system instrumentation

While these requisites limit the range of domains to iShadow can be applied, they also represent a significant
portion of the types of domains and tasks for which ICAT systems are developed.

Four Phase Process

The automated acquisition process followed by /Shadow is divided into four distinct phases, as illustrated in
Figure 1. These are:

1. Domain Object Specification
2. Expert Observation
3. Elicitation and Rule Construction
4. CLIPS Rule Generation
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Phase I: Domain Object Specification

In the first phase, a specification of the objects which comprise the expert's domain is developed. These objects
are defined using the iShadow domain class editor. These classes define the generic set of entities and their states
for the domain. Individual instances are then created to mirror the particular configuration of the system. Each
configuration is called a model instance within iShadow. Multiple models may be defined for a given domain.

Phase II: Expert Observation

In the second phase iShadow connects to the instrumented system with which the expert interacts. As the expert
performs activities in solving the domain problem, these are captured by the instrumentation and sent to the
observation component. The activities captured are logged by iShadow and form a temporal chain of events
performed by the expert. Multiple observations may be captured for a single model.

Phase ni: Elicitation and Rule Construction

After a set of observations have been performed, iShadow then performs an elicitation and rule construction
process. The elicitation consists of playing back the various sets of observations and querying the expert for
rationale regarding their decision process, why certain actions were performed before others, and any strategy
explanations they may have. These comments help to describe the meta-knowledge regarding the domain and the
task ordering performed by the expert. iShadow does not perform any generation of rules based on these
elititations but does embed mem within the generated rules as comments. Thus enabling the knowledge engineer
to add such strategic knowledge to the generated knowledge base.

The rule construction process begins by segregating the observed actions into sets of tuple pairs. These tuples
consist of expert actions which represent the components of a rule. Figure 2 illustrates the organization and
relationships between the various rule components.

The first element of the pair consists of observation tuples. Each observation action is encoded into an
observation tuple. A set of these tuples is constructed until a state-change action is encountered. This set of
observation tuples becomes the initial primitive set of antecedents for a rule.

iShadow then processes the state-change actions, collecting them into a set of action tuples until an observation
action is encountered. The current set of action tuples is then paired with the current set of observation tuples to
form a basic rule. This process continues until the end of the action list is encountered. If the end of the action list
is encountered during a observation tuple set then iShadow disregards the current set of observation tuples being
collected and stops processing. The basis for disregarding the observation set is that the previous tuple set had, in
fact, been the end of the problem set and the last set of observations with no associated action were simply
verification by the expert that the diagnosis and last action were indeed correct.

iShadow the adds to each set of observation tuples tests for the observed state of the objects references in the
observation tuples and the current state of the objects referenced in the action tuples. This ensures that the rule
will reflect the full set of states for all objects referenced within the rule.

The next step in the generation process takes the set of rule tuples and builds a symbol table consisting of all
specific object references within the tuples. For example, the expert may have inspected gauge-1 and closed valve-
2. While this level of specificity is appropriate for the selected model, the goal is to develop rules appropriate for
the domain in general and not a specific model instantiation. Thus a symbol table is built and a single variable
name is generated for all unique object names in the tuples. These variables names are then inserted into the
tuples, replacing the specific object references.

Once the specific names have been replaced by variables, iShadow then compares each rule in the generated rule
base to each of the other rules. The process identifies those rules which are duplicates, have common antecedents
or consequents. Duplicate rules are removed from the set. Rules with common antecedents but different
consequents are merged and a notice to the developer is generated identifying the merged rule and the two
original forms. Rules with different antecedents and common consequents are flagged for further inspection by
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the developer as they represent some potentially serious gap in the knowledge base. Typically these last
occurrences indicate some aspect of the model or domain has not been adequately captured and/or represented.
For example, there may be some connectivity relationship which was not specified in the original model which
reflects a distinct set of conditions.

Phase IV: CLIPS Rule Generation

The forth and final phase of the acquisition process is the generation of the CLIPS rule base from the internal rule
tuples. This component has been intentionally designed as a modular, back-end process to allow for the
generation of other rule syntaxes.

Implementation

(Shadow has been implemented on a SUN SPARC Station. It runs under either OpenWindows 3.0 or X Windows
with OSF/Motif 1.1 or later. The system core was developed using SimBioSys, a object-oriented programming
and knowledge representation system developed at SPS.

The current version uses the serial port of the SUN SPARC to provide an input channel for the observations
generated via the instrumentation of the expert's domain. The link to the input port is purely a software link and
the user can write any program required to provide input to iShadow.

To establish a communication link to the instrumentation, the user selects the Communication option in the
Acquisition menu of the main window. This brings up a dialog box in which the user specifies any UNIX
command which writes to standard output. The command is then executed in a background child process by
iShadow which also sets up a read pipe between the background child process and the main process. This
enables iShadow to simply read the output of the process.

CONCLUSIONS

The initial conclusions, based on observations of iShadow in operation on simple domains is that iShadow can
generate a set of rules based solely on observations of the expert performing their tasks. A critical issue is the
focus on procedural tasks, particularly in the diagnostic and troubleshooting area for physical systems and
domains in the computer software realm. These domains provide opportunity for instrumentation which is
critical to the success of the acquisition process.

More work is needed to refine the generation process. Initial work has been completed in the identification of
duplicate rules, merge rules, and conflicting rules. More data needs to be gathered which can be used to
determine the efficiency with which iShadow

Initial experiments have also been performed to test the feasibility of using iShadow to perform dynamic analysis
of a rule base in action. Because the domain objects, expert actions, inference engine components and internal rule
representations are all defined within SimBioSys, SimBioSys can control the execution of the rule set. This allows
SimBioSys to perform single step execution of the rule base. Between each step, the conflict set and working
memory can be examined and analyzed. This provides a significant capability not available in other expert
system shells. It, in effect, provides a introspection of the behavior of the rule set at run time.
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