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Optimal Control of Thermally Coupled
Navier Stokes Equations

J. Haslinger

‘gamon, Oxford,
Kazufumi Ito, Jeffrey S. Scroggs, and Hien T. Tran

Gasiswinient it

*$ in contact, in Center for Research in Scientific Computation )
y E. Haugh and ’ North Carolina State University ! N
Raleigh NC 27695-8205, USA TN N
. .
bution by shape
. i
. . The optimal boundary temperature control of the stationary germally coupled incompressible Navier- ~
vity analysis for . Stokes equation is considered. Well-posedness and existence of the optimal control and a necessary op- ;
2, 1992, 13-25. i timality condition are obtained. Optimization algorithms based on the augmented Lagrangian method
al with second order update are discussed. A test example motivated by control of transport process in
al contact prob- ; ; o
onal. J. Nonli the high pressure vapor transport (HPVT) reactor is presented to demonstrate the applicability of our :
» J. Nonun- theoretical results and proposed algorithm. l ;
on between two 1. Introduction I
to appear.
In this paper we discuss the optimal control problem of the stationary thermally

coupled incompressible Navier-Stokes equations. Consider the following optimal |

ration control problem
"""""" minimize J@) =pw, T —Ty) + -'g g — T0|2L=(r.) , g€cC )
......... subject 1o i
""""" u-Vu+Vp=vAu+y T ~Toes+ f,
.......... V-u=0, ulr=0, :
(2) :
u-Vi =V.«VT), :
"""" 1 T=T, onlgand n- VT =H(g—T) onTy,
Tt es e 4
where f € L%(£2)4 is a source field, u, p, T stand for the nondimensionalized |
v, | velocity vector in R4 withd = 2, 3, pressure, and temperature, respectively and i
' C is the closed convex set in L2(I";) such that :
=LK ) . !
1.5 4 Ti<g=<T, onl, 3) i

Here, f’l <Ty < T_'z andI;, i =0, 1 are_disjoint open sets in I" such that ' =
ToUT,. The constant y is givenby y = % where Tp > 0 is a constant reference

temperature and g is the gravitational constzfnt, and ey denotes the d —th unit vector
of RY. Throughout this paper we assume that Q2 is sufficiently smooth and v, «
and H are positive constants.

This control problem is motivated by control of transport and growth processes
in the high pressure vapor transport (HPVT) reactor [13]. For example, we may
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200 K. Ito, J. Scroggs, and H. Tran

consider the Scholz geometry (Figure 1 in [13]). The source material and the grow-
ing crystal are sealed in a fused silica ampoule that is heated by a furnace liner at its
outer cylindrical surface. The substrate I'g (the single crystal) is located on a fused
silica window (the bottom of the ampoule) which is cooled by a jet of helium gas
from the outer surface. HPVT processes are based on physical vapor transport and
can be described very roughly as proceeding via evaporation at the polycrystalline

&
S
3
o
¥
g,

source and condensation at the surface of the cooler substrate. The system (1)-(2) ,%
is called the Boussinesq equations, where we assume tat the flow is incompress- T“
ible and the transport phenomena of a single (carrier) is modeled. At the wall e

- we assume Newton’s law of cooling holds. b
The cost-functional can be of tracking type :f

o, T ~To) = / | — ua)* + 1T — Tl dx
Q

where (uq, Ty) is the desired state, or minimization of friction force of flow in a
subregion Q2; of

o, T —Tp) =/ |V x ul*dx .
Q)

2. Well-posedness

nE AU s S R R bl

In this section, we discuss existence and uniqueness of solutions to (2). Let U =
L?(T";) be the control space, V = V, x V| where Vj is the divergence-free subspace
of (Hy (2))* [7) and

kb

Vi =Hf, =1{¢ € H(Q): ¢Ir, = 0}

and set H = Hox L%(2). Hypis the closure of V; with respect to the L2(2)¢-norm,
and is defined by .

x

Hy={pecL¥(Q)¥: V-¢ =0andn-¢ =0o0nT).

. R
o R

H is equipped with the natural L?-norm and V is equipped with the norm

S

18, XI5 = 1813, + 1x13,

where
815, = VBl and (X[}, = Vxlhag + H X2y

for y = (¢, x) € V. Define the trilinear form » on H'(Q)4 by

D R e S SR o)
OUIEARE S RN LIENE NG $ S LI

b(d1, ¢2, $3) = (¢1 - V2, P3) @
for¢; € H'(Q)!, i = 1,2, 3. Then we have '
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Lemma 1 Thae rriiinear form b satisfies

(@ 160y, dr, &) < |l IVl zldsls < My igilaidatn Il
(b) budy.dr. 9) + 0(Py1, P32, §2) =0
provided that V - ¢y =D and (n - $ ) (- 93) =0on T

(©) 161, b2, 6)] < Maldil Sl 1osl L1l lonl s for d = 2
@) 1bidr, 2, 6] < Malon] )il 10315 1300 |onlan for d =3

forgi e H'(Q)¥. i=1.2.3

Proof: By Green’s formula
b(r. ¢, B3) + 6(P1, b3, 92) = (@1, V{2 - b)) = (n -y, &1 - d3)r

for ¢» € C'(2) and V - ¢y = 0. Hence (b) foilows from the continuity of 5. The

. - . YT ]
last two assertions follow from the fact that ||, < ¢ l'-”lL/r {W|, ford = 2and

Wl <c l’ﬂiﬁ’,ﬂ;ﬁ tfor ¥ € H'(Q) and some constant ¢. &

In particular, Lemma | implies that
bu.d.d) =0 for u. p € V. S))]
The weak or variational form of (2) is given. by
v(Vu, Vo) +ou. u. ) = (f + vy (T — To)eq. &) (6)
torall ¢ € Vp and |

K(V(T —Tp). V) + (u-V(T=To). X)vrxw,
+ < (H(T =To). or, =« (H (g =To), X)r,. (7)
forall x € V. The pair (u. T — Tp) € V is said to be a weak solution of (2) if (6),
(7) holds for all = (¢, x) € V. Then we have the following theorem.

Theorem 2 Given g € L3(T"y) there exists a weak solution (u. T — Ty) € V 10
(2) and

[(u. T —To)ly < const (| fle:+ l8lexry) -
Moreover, ifﬂ < g(x) £ 7-'2 a.e. inx € I'y then fl < T(x) < f’g a.e in Q2 for
every solution (u,. T —Tp) € V.

Step 1. (Existence) We show that (6), (7) has a solution z = (u.T — Tp) € V.
Given i € V,, we consider the linear equation

v(Vu. Vo) +o(a.u, @)=y (T —Ty)eg + f, ¢) forp = Vy (&)
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202 K. Ito, J. Scroggs, and H. Tran

k(V(T -T), VX)+@-V(T - To), x) + «x(H(T —To), x)
= «(H@E-To), Xr,, 9
for x € V;. First, we show that (8),(9) has the unique solution (u, T — Tp) €
V. Then, we show that the solution map S on Vj defined by S(a) = u where
(u, T —Tp) € V is the unique solution to (8),(9) has a fixed point by Schauder fixed

point theorem. The fixed point # € Vj and the corresponding solution T — T € V;
define a solution to (6), (7). By Green’s formula ’

(w-VO, x)+(@-Vy,0) =0 andinparticular (z-x,x)=0 (10)
foriz € Vy,and 8, x € H'(R). Hence, from Lemma | the sesquilinear form
K (Vxi, V) +{a-Vxi, x2) + H X1, x2)r, =0

on V| x V) is bounded and V) —coercive. It thus follows from the Lax-Milgram
theorem that equation (9) has a unique solution T — 7T € Vi. Choosing x = T~Tp
in (9), we have (independent of u € Vy)

\T —Tol}, < Hig — Toliar, - a1
Next, the sesquilinear form on ¥y x V defined by

v(Vey, Vo) +b(a, ¢1, ¢2)

" is bounded and Vy—coercive from Lemma 1 and (5). Thus, by the Lax-Milgram

theorem, equation (8) has a unique solution « € Vj, and we have

M;
luly, < -v—(lfle+y|T-TolL2) (12)
where |9y, < M;)dly, ¢ € V. Let C be a closed convex subspace of Vp,

defined by

M
C={peV:ldly = _vZ Ufl2 +yMaH |g — Tolrary},

where |x|z2 < M4|x|v, for x € V,. Then it follows from (11)-(12) that S maps
from C into C. Moreover, the solution map S is compact. In fact, if iy converges
weakly to # in Vj then {i; — [« — O since H'(S) is compactly embedded into
LY. Let (ug, Ty — Ty) € Vand (u, T — Tp) € V be the corresponding solution
of (8),(9), respectively to uy € Vp and & € V4. Then we have

K (T =T, vy + (e =) V(T = To) +ux - V(T =T), x) =0

for x € V; from Lemma 1 and (10)

k|\Te = Tly, < My i — a)4|T — Ty,
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which implies |T; — T|y, — 0. Similarly, we have

Viue — uly, < My e — afpsluly, + y M3 1T — Tz
and thus |u - uly, — 0. Now, by the Schauder fixed point theorem (e.g, see [19])
there exists at least one solution to (6), (7).

Step 2: (L*™° estimate) We show that if T, < g _<_-.LZ:§ then
T,<T<Th e xeQ.

for all solutions (u, T — Tp) € V to (6), (7). In fact, let x = inf(T, T;). Then
X € Vi [19] and we have from (6), (7)

Kk (VT, V) + - VT, x) + «H (T —g), x)r, =0.
Since from (10) {(u - VT, x) = 0 we have
«(Vx, V) + «H(T —8), x)r, =0
where B
(T-gx=T~-Ti—(-T)x 2Ix> on I.

Thus, we obtain ])(]%,l = 0 which implies x = Oand hence T > Ty. Similarly, one
can prove that T < Ty, choosing the test function x = sup(7, To).

We have also the uniqueness of solutions under the smallness assumption on
fand g — Tp.

Theorem 3 If|f|;: and Tio|g — Tolr2ry) are sufficiently small then (6), (7) has a
unique solution in V.

Proof: Suppose (u;, T; —~ Tg) € V, i =1, 2 are two solutions to (6), (7). Then we
have

v(Vi, Vo) + (uy - Vii+ i -Vuy, ¢) =y (Tey, ¢)
K (VT, V) + - VT +a - V(T —To), x) + «kHT, )r, =0

for¢ € Voand x_€ Vi, where s = u; — u; € Vp and T = T, — T, € V. Setting
¢ = u and x = T we obtain from (5) and (10)

v1aly, < My lualvlidly, + y MsMy IT |y lily,
k (IVTI? + HITIE) < MiTs — Tolw lalv,I Ty, -

If weset X = |ijy, and ¥ = lf‘lyl then this implies

(v— My luzlv) X2 < yMsMs XY and kY2 < My{|Ty - Tolv, XY .
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204 K. Ito, J. Scroggs. and H. Tran

Hence if k(v — M luz|v,) —y M1 M3M,4 |T, — Toly, > Othen X = Y = 0 and thus
(uy, 1) = (42, Tz). From (11)-(12) we have

|Ta — Toly, < Hlg — Tolryry

M (13)
lualy, < 73 (fley + ¥y MaH |g = Tol 2ry)-

Thus, if | f],2 and -};Jg — Tolryr,; are sufficiently small then (6), (7) has a unique
solution. O

Moreover, we can make the following demonstration of the regularity of the
solution (u, T — Ty) € V. Define the Stokes operator A on Hp by

(Au, P, = (Vu, V¢) forp e Vo (14)
with domain
dom(A) ={u € Vo : |(Vu, V@}| < cl@ly, forall ¢ € Vo). (1%

Then it is known [18] that A is a positive self-adjoint operator on Hp, dom(A) C
H?(§2)? and Vy =dom(A/?) = [Hg,dom(A)) 2. Letd = 3. Since

[{u - Vu, ¢} < lulrs|Vulr:lol
foru, ¢ € Vp and
H'(Q) cLSQ) and V5 CcL3(Q),
where Vi3 = [Vo, Holij2, uVu € V-2 =dom(A~'/%) for u € V,. Thus,
u= A~ (p(T~Tp) es+f—u-Vu) € dom(A¥*) = [V, dom(A)]1, C HY*(Q).

Hence, u - Vu € L(Q) and u edom(A) C H*(Q).

3. Necessary optimality condition

We now show the existence of solutions to the optimal control problem (1)-(2). Let
us denote by S(g), the solution set of (6), (7) for g € L*(I'}).
Theorem 4 Consider the minimization problem (1)-(2):

minimize J(g) =, T — To) + % lg - TOI%-Z(FI)

16
over (u, T — Ty) € S(g) and g € C. (16)
Assume that ¢ satisfies

@) : 2=, T —Ty) € V= R is convex and lower semicontinous
and ¢(z) < by |z|% + by for by, by € RY.

ek
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= 0 and thus Then Problem (1)-(2) has a solution.

Proof: Let ((ug, Tr — To), gx) € S(gx) x C be a minimizing sequence. Since

B > 0.lgx — Toliyr,y is uniformly bounded in & and thus from (11)-(12) so is

|(ue, Te — To)lv. Hence there exists a subsequence of (k}, which will be denoted

by the same index, such that (uy, Tx — To, gx) converges weaklyto (u,. T — Ty, g) € 4

V x Csince V x L*(I")) is a Hilbert space and C is closed and convex. Define the

13s a unique trilinear form & on V3 by - ’

b(z1, 22, ¥) = b(uy, uz, d) +

(13)

L
Guy - Vo, x)

forz; = (i, 6), i = 1,2, ¥ = (¢, x) € V. Since H' () is compactly em-
bedded into L*() it follows from Lemma 1 that b(zy, 2, ¥) — b(z, 2, W) for
(14) Y eV, wherez; = (uy, Ty —To)and z = (u. T —Ty). Hence, fory = (¢, x) € V
the limit (z, g) satisfies (6), (7) and thus z € S(g). Now, since ¢ is convex and
lower semicontinuous, it follows from [5] that (z, g) minimizes (16). O

larity of the

o

(15) ~ Problem (16) is equivalently written as a constrained minimization on x =
_ (u, T —Tp),8) € X =V x L¥I"}) with
.dom(A) C
minimize J(x) = o(u, T — Tp) + g lg — Toliz(m overx € X (17
subjectto e(x) =0and g € C
where the equality constraint e : X — Y = V™ is defined by (6), (7); i.e.,
(e(x), ¥) = a(z, ¥) +b(z, 2, ¥) —k (H(g ~ To). X)r, = (f, $) (18) !
for ¥ = (¢, x) € V, where §
ws, _
az, ¥) =v(Vu, Vg)—y (T—To) es, )+« (V(T =To), Vx)+x H (T =Ty, X)r,
H?(Q)* .
forz=(u, T~To), ¥ = (¢, x) € V. Assume thatx* = (z* = w*, T*-Tp), g%
denotes the optimal pair of (16). Then we have
Theorem 5 Assume that x* is a regular point in the sense [14] that
Ocint (¢ (x)w.h—g":veVandheCl). (19) j
(1)-(2). Let Then there exists a Lagrange multiplier A* € V such that :
a(*, ) + bW, 7, A+ b YA + (9@, ¥) =0 (20)
fory € Vand
(16) B . .
(B8 —«xHX, h—g )y, =0 forallhe(. O 2n :
Proof: Tt follows from [14] that if (19) is satisfied, then there exists a Lagrange ;
] multiplier A* = (A7, A3) € V such that ;
winous {

@@+ B8 h—8)r + @)W, h—g) >0
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\ 206 K. Ito, J. Scroggs. and H. Tran "
forall y € V and & € C, that is w
'i 7 £ 3 * ® » ‘
I (@), ¥)+BE" h—g5r, +all’, ¥) 22)
‘ +o(¢, 25, A7)+ b, Y, M%) ~kH (h—g", A3)r, >0 fc.
forall ¢ € V and h € K. Setting y = 0, we obtain (21). Next, setting h = g* in ot
(22), we obtain (20). O er
, Concerning the regular point condition (19), we have ¢
. cc
, Lemma 6 If g* € int (C) then the regular point condition (19) is equivalent to the L:
gl condition that for v = (v, v2) € V lic
=
t - - the
%’.i a(v, ¥) + by, 2%, v) + b(z*, ¥, v) = 0 23 an
g forally €V and v; =0 on T, m
1 is
implies v = 0. or.
Proof: If g* € int (C) then (19) is equivalent to the condition that G = ¢&'(x*) is
surjective. Define the linear map C € £(X, V) by C(v, h) = § where § € V is
the unique solution to
> - Lro» . :’ f
a6, ¥) + b, 2, 9) + 5@ v, ¥) = kH (1. )r, =0 fory =(p. x) € V. : o
Then, since H!(2) is embedded compactly to L*(2), Lemma 1 implies that C is E ft*.
compact. Thus, by the Banach closed range theorem and the Riesz-Schauder theo- : 183
rem, ¢’(x*)(v, h) is surjective if and only if ker (G*) = {0} [4], which is equivalent E _ be’:
to(21). O (1
3 firs
| : 3 we
4. Augmented Lagrangian method : me
In this section we discuss application§ of the augmented Lagrangian method for ¢ 155
the constrained minimization problem (17). The augmented Lagrangian method !
[8], [15] is based on an equivalent formulation of (17): ;%
EL for
2
minimize J(x) + % le(x)2 overx e X and g €C. 24) 2 '(I’h
: 2 B x.:
’ subject to e(x) = 0, where x = (4, T — Tp), g) € X = V x L*(}) and ¢ > 3
0 is the penalty parameter. The augmented Lagrangian algorithm [8], [15] is the
multiplier method applied to (17), i.e., it involves a sequence of minimizations of
the functional
No:
Lo (A% = J@) + (5, e(x) + 5 le()(}
@ - 2 (25)
subjectto g € C, anc

PRI i St
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Tran Thermally Coupled Navier Stokes Equations 207

where the multiplier sequence (A} in Y™ is generated by the first order update

AL = 3k + cpe(xe). 26)
(22)
for & > 1. where x; is a minimizer of L (-. A*) and we assumed that ¥~ = Y,
ot in otherwise each element in Y™ hab its Riesz representation. To carry out this it- .
> eration, a sequence of monotonically nondecreasing, positive real aumbers {c;}. i
c1 > ¢o > 0and a start up value A' for the Lagrange multiplier for the equality j
constraint e(x) = 0 need to be chosen. The convergence fesults of the augmented :
1o the Lagrangian method for the infinite dimensional optimization problem are estab-
lished, for example, in [9], [16]. The augmented Lagrangian method is a hybrid of
the penalty method (i.e., A* = 0) and the Lagrange muitiplier method (i.e.. ¢, = 0)
(23) and combines good properties of both. It overcomes the difficulty of the penaity
method which requires a large value of ¢,. The augmented functonal L, (x. ) )
is locally strictly convex provided that A* is sufficiently close to »™ and the second :
order optimality condition i
xy - H
e LYC A (. h). (. 1) 2 o (0l + 113) -
for all (v, &) € X satisfying ¢’ (x*)(v. h) = 0.
~ for some o > 0, is satistied. Here, Lg(x™, A*) denotes the bilinear form that char-
- acterizes the second derivative of Lo(x, A) = J(x)+ (A, e(x)) with respect to .x at
(Cis x*. That is, it is not necessary that the cost functional J be (locally) convex, which
theo- is required for convergence of the multiplier method. The algorithm (25)-(26) has
salent been successfully applied to parameter estimation probiems in eiliptic PDEs [10], !
[12] and optimal control problems for 2-D incompressible Navier-Stokes [4]. The §
first order update (26) provides Q-linear convergence of the iterates x; in X. In[11]
we have investigated a second order update scheme for the augmented Lagrangian
method. In what follows we assume that g* int (C). Thus. (19) reduces to &' (x™)
d for is surjective (see Lemma 6). Hence the necessary condition implies that
:thod L.(x*,A") =0 and e(x*) =0, (28)

for all ¢ > 0. An algorithm proposed in [11] applies Newton’s method to (28).

(24) The resulting algorithm is stated as: given a current iterate (x, A) the next iterate
(x4, A4) satisfies

R PPV VSIS RONT I

te > L) €00\ [ xe—x Lo 0

is the - - . (29)
s Of el(x) 0 A.+ —- A. e(.‘() -
Note that ‘
(25) LC("C’ }\.) = LO(X, A+c e(x)) §
and . :

L7(x, &) = Lg(x, A +ce(x)) +cle'(x0)(), €@)()- (30)
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Consequently, suppose |(x, A) — (x*, A*)| is suffictently small. Then it follows
from (27) [11] that LY(x, A) is coercive on X x Y. Thus equation (29) can be re-
garded as a general Stokes equation. Following an argument due to Bertsekes [2],
| we can avoid forming L during the iteration. From the second equation of (29)
we have ¢/(x)(x; — x) = —e(x). Thus the first equation can be written as

LUGe, A+ ce())(xy —x) + € x) (g — (A + ce(x))) = —Li(x, A + c e(x))

3
*

’F and hence (29) is equivalent to kY
f

Lix, %) €(x)* Xy —x Li(x, %)
e'(x) 0 Ay — A e(x) (31)

where A = A + ce(x).

Note that A is nothing but the first order update of the Lagrange multiplier if the cur-
rent iterate x minimizes L.(x, A). Equation (31) is more advantageous than (29)
since the squaring term ¢ ¢’(x)*e’(x) is absorbed and less calculation is involved.
If we define a matrix operator S on X x Y by

Lij(x,A) €(x)*
S(x,A) = ,
e'(x) 0

then it follows from (27) that S(x*, A*) is boundedly invertible. Thus, if (x, A) is
sufficiently close to (x*, A*), then equation (31) has a unique solution. We sum-
marize our discussions as

Algorithm 1
(1)Choose Al €Y, c>é>0,andseté =c—¢, k=1.

(2) Determine x = ((u, T — Tp), g) € V x C such that

Lo(x, A% < Lo(x*, A%) = f(x").
(3) Set A = Ak + Ge(x).
(4) Solve for (x4, Ay) € X x ¥:

ETRE: Ly(x, 1)
S(x, A) A = -
Ay —A e(x)

(5) Set x41 = x4 and AF*+! = .. If the convergence criterion is not satisfied then
setk =k + 1 and go to (2). '
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|
ailows Remark. A variant of Algorithm ! is obtained by skipping step (2). Then it is re- i
oe re- duced to the Newton method applied to equation (28). Step (2) implies a sufficient
es [2], reduction of the merit functional (the augmented Lagrange functional). For ex-
iF (29) ampie, if x = (z. g) minimizes L (-, A¥) over V x C then step (2) is completed.

Assume that (19) and (27) hold. It is proved in [11] that if |A' — 1*|y is suffi-
' ciently small. then Algorithm 1 is well-posed and (x*. A*) converges to (x*. A %)
2x)) : Q-quadraticaily.

L eaAA SammARp s

<Y

3. Hybrid method and test exampie

In this section we present an example to demonstrate the applicability of our theo-
31 retical results and proposed algorithm. We consider the optimal control of the two
dimensional stationary thermally driven cavity flow

minimize  J(g) =4 folu —ugl® +1T ~ TulPdx + §lg — Toid. 1|

over g € LX) (32

ecur-
1(29)

slved.

s ) b

subject to (2), where 2 = (0, L)z, 'y = (x;, 1). 0 <xy < Landyis the relative
interior of ' — I';. On [y we have the Dirichlet boundary condition:

TO,x2)=T(L,x3)=Ty, O0<x1<L o
T(x1.0) = To — S0 min(l, 3 2.5 — |35, =250, O<x<L. O
with a reference temperature Ty = 1350° K, and the temperature on the substrate
A) is {x1.0), '—fL <y < 35+SL is 1300°X. The desired state (14, T,) appearing in
sum- (32) is chosen as follows. uy = L u® where (4®, T?) is the solution pair for the
flow with L = land g = Ty and T, = T! where (!, T') is the soiution pair
for the flow with L = 5 and ¢ = T,. Here, our numerical calculation strongly
indicates that the solution to (2) is unique and (dynamically) stable for the range

of physical parameters that we chosen for our calculation.
The problem is scaled so that the velocity field u has dimension cm/sec and T ;
has dimension X”. The constants v, « are chosen for P, at 3arm pressure and are i
givenby v =.155and « = .110. H, B and L aresettobe H = 100, 8 = 1'3%05’2 = j
5.5 x 107 and L = 5 respectively. Figures 1 and 2 show the vector field of «°
and u', respectively. It can be observed that u® has more vertical transport than
u' does and u' is confined in the two bottom corners. Hence the cost-functional
(24) is formulated so that the thermal control g on the top Iy increases the vertical
transport of flow with L = 5 while retaining the temperature distribution 7! at the

reference temperature g = Tp.

[ERTRPPRL TP
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Figure 2. The uncontrolled flow.

The second order augmented Lagrangian method (Algorithm 1) described in
Section 4 is used to solve problem (32). To obtain a good starting value A' for
the Lagrange multiplier in Algorithm 1, we employed a few steps of the gradi-
ent method. The gradient of the cost functional can be calculated by the adjoint
equation as follows. Consider the cost functional J(z, g) subject to E(z, g) = 0
where z € V and g € U. Assume that V and U are Hilbert spaces, J(z,8): X =
VxU — RisFréchetdifferentiable and E(z, g) : X — Y is continuously Fréchet
differentiable in a neighborhood of xo = (zg, go). Suppose that E,(xg) € L(V, Y),
the F—derivative of E with respect to z at xq, has a bounded inverse. Then by the
implicit function theorem, there exists a unique C' mapping W defined in a neigh-
borhood N of ggin U, W : U — V such that W(gg) = zo and E(W¥(g),g) =0
for g € N. Then the F—derivative d of J(W¥(g), g) with respect to g in N exists
and is given by
d=J+E ¥ (34)
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where i € Y satisties the adjoint equation
EXp+J.=0. (35

Here we assume that V, U and Y are identified with their dual spaces. In fact. if
v=W(M), h =U ihen

(d h)U = (jj,'v h)U + (‘/:v ”)V-

and v € V sausfies

- S

DRl T

E.v+ Eh=0.
Hence. forh e U
d. h)y =g My —(EZY. v)v = Uy, My + (A Ech)y =g+ EZU D)
which implies (34). The projected gradient method can be written as:

Algorithm 2

re - ——A AT b o

(1) Choose g1 € U and set & = 1.

(2) Let 24 be a solution of E(z, gx) = 0, ¥ be the solution of E_(zx, gu)* v +
Jo(zk, g) = 0 and set dy = Jo(2k, 8x) + E¢(2k, g1)" W

(3) Setdy = Jg(zk, 8x) and determine a; > O such that J(W(g,), g4) is minimized
where g, = Projc(gr — a dy).

(4) Set grs1 = gx — o di. If the convergence criterion is not satisfied. then set
k =k + 1 and go to Step (2).

S\ manpane QWi s

In our specific example equation (35) is written as

fin —VAA—u - VA+AVu - (T —-Ty)Vu+Vg+u—uy; =0

tor A V.A=0 and Alr=0

di- g (36)
:int —/cA/,L—u-Vu—FAg+T—Td=O

- 0

_‘O u=0o0onTy and n-Vu+xHpu=0o0nT,,

het where y = (A, ) € V = Vo x Vi, g € L*(Q) and

),

the Elfy=-xHp onl. {37)
sh-

We used the mixed-finite element method [7] based on the Legendre polynomi-
als to approximate problem (1)-(2) numerically. Detailed discussions about the
method are given in [13]. In our implementation we calculated the adjoint system
34) for the approximated problem and solved equations (2) and (36) using GMRES
[3]. The specific implementation of GMRES applied to our example is described
in [13] in detail. Concerning the divergence-iree constraint V-4 = 0, we employed
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It as in [4], {6], [13]. The line search in Step 3 of Algorithm 2 was performed by the
1 linearization of the constraint E(z, g) = 0 at (z¢, g«) since the cost functional is
: quadratic. That is, if v is the solution to E,(zx, gu)Vk + E¢(2k, gx)dr = 0 then
a > 0 is chosen so that J(z; — & vy, g« — ¢ di) is minimized.

, For this specific example, three steps of Algorithm 2 were performed. We then
1 set x! and A! as x! = (z4, g4) and A! = 3 for Algorithm 1 without Step 2. The
1. matrix operator S(x, A) was calculated for the approximated system and the result-
it ing linear equation (31) was again solved by GMRES. N

| ] The calculations were performed using a 20 x 20 Cartesian product of Legendre
i polynomials, choosing ¢ = 1 and g; = 0. Algorithm 1 was terminated after three
!

Bl
! iy the feasible method, projecting the first equation onto the divergence—free space Vg

iterates, since the necessary and sufficient optimality condition (28) was satisfied
. within a residual norm of 1 x 1077,

\ We may compare this rapid convergence of the hybrid method with the results

‘; of using either algorithm by itself. Algorithm 2 did not fully converge after 50 Referen

| iterates. Algorithm 1, with the start-up x' = ((', T'),0) € X and A' = 0, ces

} also failed to converge. Thus, the use of the hybrid method combining the gradient (1] F. Abergel :
method and the second-order augmented Lagrangian was essential for the success

J of our numerical calculations. Figure 3 shows the iterates g, (the first three curves

from top to middle) for Algorithm 1 and the (calculated) optimal control g* (the

Theor. Com;

[2] D. Bertseka

lowest curve). The iterates for Algorithm 1 are not shown because they coincide Academic, |

i
1
L with g* within the accuracy of the plotting. Figure 4 shows the resulting vector {31 P.Brown an
field «* which corresponds to g*. It shows clearly that the vertical transport of’ tions, SIAM
R flow is increased. [4] M. Desai ar
it _ Cont., to ap:
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i Holland, Ar
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Figure 4. The controlled flow.
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