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Optimal Control of Thermally Coupled
Navier Stokes Equations

Kazufumi Ito, Jeffrey S. Scroggs, and Hien T. Tran
Center for Research in Scientific Computation

North Carolina State University
Raleigh NC 27695-8205, USA

1
r tfiermall'The optimal boundary temperature control of the stationary tfiermally coupled incompressible Navier-

Stokes equation is considered. Well-posedness and existence of the optimal control and a necessary op-
timal iry condition are obtained. Optimization algorithms based on the augmented Lagrangian method
with second order update are discussed. A test example motivated by control of transport process in
the high pressure vapor transport (HPVT) reactor is presented to demonstrate the applicability of our
theoretical results and proposed algorithm.

1. Introduction

In this paper we discuss the optimal control problem of the stationary thermally
coupled incompressible Nayier-Stokes equations. Consider the following optimal
control problem

ftminimize J(g) = <p(u, T - T0) + - \g - 7b|£2(ri (1)

subject to

u • Vu + Vp = v Aw + y (T - T0) ed + f ,
V- u = 0, u\ r =0,
u • VT = V • (K VT),

T = TQ on r0 and n • VT = H (g - T) on

(2)

where / e Z,2(£2)J is a source field, u, p, T stand for the nondimensionalized
velocity vector in Rd with d = 2, 3, pressure, and temperature, respectively and
C is the closed convex set in L2(Fi) such that

Here,
_
TO U

7i < g < T2 on F, (3)

< TO < fi and F,, i = 0, 1 are disjoint open sets in F such that F =

. The constant y is given by y = — where TO > 0 is a constant reference
TO

temperature and g is the gravitational constant, and e</ denotes the d— th unit vector
of Rd. Throughout this paper we assume that £2 is sufficiently smooth and v, K
and H are positive constants.

This control problem is motivated by control of transport and growth processes
in the high pressure vapor transport (HPVT) reactor [13]. For example, we may
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200 K. Ito, J. Scroggs, and H. Tran

consider the Scholz geometry (Figure 1 in [ 13]). The source material and the grow-
ing crystal are sealed in a fused silica ampoule that is heated by a furnace liner at its
outer cylindrical surface. The substrate TO (the single crystal) is located on a fused
silica window (the bottom of the ampoule) which is cooled by a jet of helium gas
from the outer surface. HPVT processes are based on physical vapor transport and
can be described very roughly as proceeding via evaporation at the polycrystalline
source and condensation at the surface of the cooler substrate. The system (l)-(2)
is called the Boussinesq equations, where we assume tfeat the flow is incompress-
ible and the transport phenomena of a single (carrier) g0s is modeled. At the wall
we assume Newton's law of cooling holds.

The cost-functional can be of tracking type

(« , r -7b)= / |«-iid
Jn

\T- Td\2dx

where (u^, Tj) is the desired state, or minimization of friction force of flow in a
subregion £2] of £2

<p(u,T -T0)= f |V x u f d x .
JQi

2. Well-posedness

In this section, we discuss existence and uniqueness of solutions to (2). Let U —
L2(Fi) be the control space, V = VQ x V\ where VQ is the divergence-free subspace
of (//' (Q))d [7] and

and set H = HQX L2(£l). HO is the closure of VQ with respect to the L2(J2)<*-norm,
and is defined by

H0 = {0 6 L2(J2)d : V • 0 = 0 and n • 0 = 0 on T}.

// is equipped with the natural L2-norm and V is equipped with the norm

where

(4)

for 0- = (0, x) 6 V- Define the trilinear form b on H l(n)d by

for 0,- € //' W, i = 1, 2, 3. Then we have
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Thermally Coupled Navier Stokes Equations

Lemma 1 The trilinear form b satisfies

20 1

(a) |6(0i.02,03)| < I0 l l f

(b) 6(0]. 02. 0?) -T- b(( j>\ , 03, <p:) = 0
provided that V • q>} = f) tj/jj (« • 0|

(c) |6(0,, «:.03)| < ^ i^i l t r l^ i l^f^l l

(d) |6(0i, 02, 03)| < A/2l0ll^4i0litfi*!03i#

- <p-,) = 0 <;/i F

=

fortpj € H l(n)d . i = 1.2,3

Proof: By Green's formula

6(01, 02, 03) T- 6(01, 03, 02) = (01, V(02 • 0;.J) = (tl '01 ,01 • 0j)r

for 02 S C'(^) and V • 0j =0. Hencs (b) follows from the continuity of 6. The
I

w|t:" |i/f |w," for d = 2 andlast two assertions follow from the fact that \ \ j r \ i * ;

l^lf — c l 'AI/;4 | 'Ai//i tor'A € / / '(£2) and some constant c. D

In particular, Lemma 1 implies that

6(H.0.0) = 0 for u. 0 s V0. (5)

The weak or variational form of (2) is given by

v (V«, V<2>) + b(u, u. 0) = (/ -f x (7 - 70)cu-. 0) • (6)

for all 0 e VQ and

K (V(7 - 70), VX) + (u • V(7 - 70). x ) v - x V l

+ K ( H ( T - 70) ,x)r, = * (#C? -70), x)rv (")

for all x e Vj. The pair (u, 7 — 7o) e V is said to be a weak solution of (2) if (6),
(7) holds for all \jr = (0, x) £ V• Then we have the following theorem.

Theorem 2 Given g e L2(F|) there exists a weak solution (u. T — 7o) e V to

|(«. 7 - 70)|v < const ( \ f \ c - + |£k-(r,)) •

Moreover, iff\ < g(x) < 72 a.e. in x e FI then f\ < 7(.r) < 72 a.e m fi/b/-
every solution (u. T — TO) e V.

Step I: (Existence) We show that (6), (7) has a solution ; = (u. T - T0) e V.
Given u e Vo, we consider the linear equation

v (V«. V0) -i- b(u. u, 0) = (y (7 - T0)ej + /, 0) for 0 € V0 (8)
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(V(T - To),

K. Ito, J. Scroggs, and H. Tran

- 70), x> + K(H(T- T0), X)

= K (H(g-T 0 ) , x)r, , (9)

for x € Vi- First, we show that (8),(9) has the unique solution (u, T - TQ) e
V. Then, we show that the solution map 5 on VQ defined by 5(w) = u where
(a, T — TQ) € V is the unique solution to (8),(9) has a fixed point by Schauder fixed
point theorem. The fixed point u € V0 and the corresponding solution T — TO e V\
define a solution to (6), (7). By Green's formula ^

'*
«

(u • V0,x) + {« • Vx,0) =0 and in particular ( « - x . X ) = 0 (10)

for « € V0, and &, x £ H}(&'). Hence, from Lemma 1 the sesquilinear form

Xi, X2)r, =0

on Vi x Vi is bounded and V\ —coercive. It thus follows from the Lax-Milgram
theorem that equation (9) has a unique solution T — TQ € V\ . Choosing x = T - TO
in (9), we have (independent of « € V0)

IT1 - 7b|2v, < H \ g - 7

Next, the sesquilinear form on V0 x VQ defined by

(U)

is bounded and VQ— coercive from Lemma 1 and (5). Thus, by the Lax-Milgram
theorem, equation (8) has a unique solution u e VQ, and we have

, I ^ M*
I«lv0 < (12)

where \<f>\H0 ^
defined by

\<p \v a , <t> e ^b- Let C be a closed convex subspace of V0,

C = {* € V0 : \g -

where Ixli ' < A/4 Ixlv, for x € ^. Then it follows from (11)-(12) that S maps
from C into C. Moreover, the solution map S is compact. In fact, if «& converges
weakly to « in VQ then (£& — u\ L * -»• 0 since //' (^) is compactly embedded into
L4(Q). Let (w t, rt - TQ) e V and («, T - T0) e V be the corresponding solution
of (8),(9), respectively to Uk e VQ and u 6 V0. Then we have

« (7* - T, x)v, +•((«* ~ «) ' V(T - To) + uk • V(Tk - T), x) = 0

for x e V] from Lemma 1 and (10)

K \ T k - T \ v , <Mi \u k - t \ L >\T-T 0 \ V l
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which implies \Tk — T\v t — > 0. Similarly, we have

v |«t - u \ V o < MI \uk - «|f|«|v0 +

203

\Tk - T\C-

and thus \uk — u \v 0 -> 0. Now, by the Schauder fixed point theorem (e.g, see [19])
there exists at least one solution to (6), (7).

Step 2: (L°° estimate) We show that if fj < g <•&_ then
*

T\ < T < T2 a.e. x e Q .

for all solutions (u, T - 7b) € V to (6), (7). In fact, let x = inf(7", 7\). Then
X e V, [19] and we have from (6), (7)

- 5). X)r, = 0 .

X)r, =0

<„ . V7, x> +

Since from (10) (« • V7", x) = 0 we have

where
> \ x \ 2 on'r, .

Thus, we obtain |x | \ =0 which implies x = 0 and hence T > f \ . Similarly, one
can prove that T < TZ, choosing the test function x = sup(T, TT).

We have also the uniqueness of solutions under the smallness assumption on
/ and g - T0.

Theorem 3 If \ f \ i i and Y\§ ~
unique solution in V.

are sufficiently small then (6), (7) has a

Proof: Suppose («,-, 7] • ~ TO) € V, i = 1, 2 are two solutions to (6), (7). Then we
have

T, x)r, - 0

v(Vu, V0) + (H, . VU + M • V«2, 0) = y

K (Vf, VX) + {«, • Vf + « • V(T2 - To), x) +

for 0 € V0 and x e V\ , where u = u\ - u2 6 V0 and f = TI - 72 6 V\ . Setting
0 = « and x = T we obtain from (5) and (10)

v l « l v b . < Wi I«2lv 0 l« | 2v 0

K (|Vf |2 + // |f |2 () < Af,|T2 - Tolv,

If we set X = \u \ V t t and 7 = \ f ] V t then this implies

Y and «: Y2

'ORIGINAL PAGE IS
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204 K. Ito, J. Scroggs. and H. Iran

Henceif*(v-A/, \u2 \V a)- .yMiMiM4 \T2-TQ \V t > O t h e n X = Y =0 and thus
(«,, 7"i) = («2, T2). From (11)-(12) we have

\T2 — TO\VI < H \g — 7b|L2(r,)
, , , M3

Thus, if |/liz and ^|£ —
solution, d

(13)
\8 — 7blti(r,))-

are sufficiently small then (6), (7) has a unique

Moreover, we can make the following demonstration of tfie regularity of the
solution (u, T — ,7b) 6 V. Define the Stokes operator A on //o by

(Au, <(>)Ho = (V«, V0) for 0 € V0

with domain

dom(M) = {« € V0 : |(V«, V<£)| < c \<p\Htl for all ̂  e K0} .

(14)

(15)

Then it is known [18] that A is a positive self-adjoint operator on HO, dom(<4) c
)3 and V0 =dom(/!1/2) = [H0,dom(A)]i/2. Letd = 3. Since

for M, 0 € V0
 and

«' (£2) C L6(£2) and V,/2 C

where Vi/2 = [V0, //oli/2, «V« e V_i/2 =dom(A~1/4) for u e V0. Thus,

u = X-'(p(r-7b)e3+/-«-V«) 6 dom(/l3/4) = [V, dom(A)]1/2 c

Hence, u - V u € L2(Q)d and u edom(A) C

3. Necessary optimality condition

We now show the existence of solutions to the optimal control problem (l)-(2). Let
us denote by S(g), the solution set of (6), (7) forg e L2(Fi).

Theorem 4 Consider the minimization problem (I)-(2):

minimize J(g) = <p(u, T - T0) + f \g - 7b|22(ro

over (u, T — TO) € S(g) and g e C.

Assume that <p satisfies

<p(z) : z = (u, T — TQ) e V -> R+ is convex and lower semicontinous
andcp(z) < b i \ z \ 2

v +

Then Problem

where the eq

Theorem 5
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Then Problem (I)-(2) has a solution.

205

Proof: Let ((uk , Tt — T0),gt) e S(gjt) x C be a minimizing sequence. Since
ft > 0- \§k ~ 7"olr-(r,) is uniformly bounded in k and thus from (11)-(12) so is
KM*, T/c — T0)\v. Hence there exists a subsequence of {k}, which wi l l be denoted
by the same index, such that (uk , Tk — TO, £;.) converges weakly to (u, T — T0 ,g) e
V x C since V x L 2(F\) is a Hilbert space and C is closed and convex. Define the
trilinear form b on V3 by

b ( Z \ , Z 2 , tfr) = &(«!, "2, 0) + £<l

for;,- = (ui ,di) , i = 1,2, V = (#• X) ^ ^- Since //'(Q) is compactly em-
bedded into L4(£2) it follows from Lemma 1 that b(Zk, Zt, VO ~^ ^(2. z, i/O for
V 6 V, where;:* = («t, 74-r0)andz = (u, T-T0). Hence, for^ = (tf>, x) € V
the limit (z, g) satisfies (6), (7) and thus z e S(g). Now, since tp is convex and
lower semicontinuous, it follows from [5] that (z, g) minimizes (16). D

Problem (16) is equivalently written as a constrained minimization on x =
((u, T - TQ), g) e X = V x L2(P,) with

minimize J(x) = <p(u, T - TO) + f \g - Tbl^r,) over.r e X
subject to e(x) = 0 and g g C

where the equality constraint e : X -> Y = V* is defined by (6), (7); i.e.,

(17)

- K (18)- 7b). x)r, -(/,*)

for \/r = (<p, x) £ V ', where

a(z, t/r) = v (Vu. V0)-y ((r-r0)ej, 0)+^ (V(7"-To), VX )+KW (r-T0, x)r,

for: = (u, T-70), ^ = (0, x) e V. Assume that** = (z' = («*, T*-r0),g*)
denotes the optimal pair of (16). Then we have

Theorem 5 Assume that x* is a regular point in the sense [14] that

0 € int {e'(x*)(v, h - g'} : v 6 V and h € C} .

Then there exists a Lagrange multiplier A.* e V such that

a(r , i/O + bW, z". A.*) + 6(z*f ^r, r) + (<p'(O, ^) = 0

/or ijr e V and

( P g ' - K H X ^ , /i-g*)r, >0 fo ra l l heC . a

(19)

(20)

(21)

>f: It follows from [14] that if (19) is satisfied, then there exists a Lagrange
multiplier A,* = (A.*, A.p € V such that

(cp'(z"), (g*, h - g*)r, + e'(^')(rA, A - g') > 0
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, z', A.') *) ->cH(h- 0
(22)

for all \jf € V and h e K. Setting ^ = 0, we obtain (21). Next, setting h — g* in
(22), we obtain (20). d

Concerning the regular point condition (19), \«e have
f

Lemma 6 If g* e int (C) then the regular point condition (19) is equivalent to the
condition that for v = (v\, v-i) e V

a(v, VO + b(if, z*, v) + b(z', \M) = 0
for all i/f e V and i>2 = 0 on F\

(23)

implies v = 0.

Proof: If g* € int(C) then (19) is equivalent to the condition that G = e'(x*) is
surjective. Define the linear map C e C(X, V) by C(v, h) = % where f e V is
the unique solution to

+ b(v, z", , x)r, =0 for t/r = € V.

Then, since 7/1 (£2) is embedded compactly to L4(£l), Lemma 1 implies that C is
compact. Thus, by the Banach closed range theorem and the Riesz-Schauder theo-
rem, e'(x*)(v, h) is surjective if and only if ker(G*) = {0} [4], which is equivalent
to (21). D

4. Augmented Lagrangian method

In this section we discuss applications of the augmented Lagrangian method for
the constrained minimization problem (17). The augmented Lagrangian method
[8], [15] is based on an equivalent formulation of (17):

minimize J(x) + - \e(x)\y over x e X and g € C. (24)

subject to e(x) = 0, where x = ((«, T - T0), g) e X = V x L2(Vi) and c >
0 is the penalty parameter. The augmented Lagrangian algorithm [8], [15] is the
multiplier method applied to (17), i.e., it involves a sequence of minimizations of
the functional

LCk(x, A.*) =* = ) + (A.*, e(x)) + ^ \

subject to g e C ,
(25)
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Tran Thermally Coupled Nuvier Stokes Equations 207

where the multiplier sequence (A.*} in Y* is generated by the first order update

(22)

in

to the

(23)

*) is
V is

= V.

t C i s
theo-
/alent

.-d for
;thod

(24)

! c >
is the
ns of

(25)

\.k+] = A,* -i-cke(xk). (26i

for & > 1. where xk is a minimizer of L a(- . A.A') and we assumed that Y" = Y.
otherwise each element in Y* has its Riesz representation. To carry out this it-
eration, a sequence of monotonically nondecreasing, positive real numbers (t\).
c\ > CQ > 0 and a start up value A.1 for the Lagrange multiplier for the equality
constraint e(x) = 0 need to be chosen. The convergence-Jesuits of the augmented
Lagrangian method for the infinite dimensional optimization problem are estab-
lished, for example, in [9], [16]. The augmented Lagrangian method is a hybrid of
the penalty method (i.e., A.* = 0) and the Lagrange multiplier method (i.e.. ct = 0)
and combines good properties of both. It overcomes the difficulty of the penalty
method which requires a large value of Q. The augmented functional L^(x. A.A')
is locally strictly convex provided that A.* is sufficiently close to A." and the second
order optimality condition

\ r)((u. A), (v, h)) > a ( \ v \ 2
v + |

for all (v, h) eX satisfying /(.O(i>. h) = 0.
(27)

for some cr > 0, is satisfied. Here, Lg(.v*, A.*) denotes the bilinear form that char-
acterizes the second derivative of LQ(.V. A) = y(.r) + (A,. e(.t)) with respect to .r at
x*. That is, it is not necessary that the cost functional J be (locally) convex, which
is required for convergence of the multiplier method. The algorithm (25)-(26) has
been successfully applied to parameter estimation problems in elliptic PDEs [10],
[ 12] and optimal control problems for 2-D incompressible Navier-Stokes [4]. The
first order update (26) provides Q-linear convergence of the iterates xk in X. In [ 11 ]
we have investigated a second order update scheme for the augmented Lagrangian
method. In what follows we assume that g* sint (C). Thus. (19) reduces to e'(x*)
is surjective (see Lemma 6). Hence the necessary condition implies that

L'c(x*, k*) = Q and. e(x*) = 0, (28)

for all c > 0. An algorithm proposed in [11] applies Newton's method to (28).
The resulting algorithm is stated as: given a current iterate (x. A) the next iterate
(,r+, A+) satisfies

x+ -x
(29)

Note that

and
L"c(x, A.) = L%(x, A, + c e(jc)) + c {« (30)
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208 K. Ito. J. Scroggs, and H. Tran Thermally

Consequently, suppose |(:c. A.) — (x*, A.*)| is sufficiently small. Then it follows
from (27) [11] that L"(x, A.) is coercive on X x Y. Thus equation (29) can be re-
garded as a general Stokes equation. Following an argument due to Bertsekes [2],
we can avoid forming L" during the iteration. From the second equation of (29)
we have e'(x)(x+ — x) = — e(x). Thus the first equation can be written as

L'Q(X, A. + ce(x»(x+ -x) +

and hence (29) is equivalent to

- (A. + c e(.t))) - -L'0(x, A. + c e(x))

T

x+ — x

1 1e'(x) 0 / \ A.+ - A,

where A. = A. + c e(x).

e(x) (31)

Note that A. is nothing but the first order update of the Lagrange multiplier if the cur-
rent iterate x minimizes Lc(x, A.). Equation (31) is more advantageous than (29)
since the squaring term ce'(x)*e'(x) is absorbed and less calculation is involved.
If we define a matrix operator 5 on X x Y by

S(x, A.) =
e'(x) 0

then it follows from (27) that S(x*, A.*) is boundedly invertible. Thus, if (x. A.) is
sufficiently close to (x*, A.*), then equation (31) has a unique solution. We sum-
marize our discussions as

Algorithm 1

(1) Choose A.1 e Y, c > c > 0, and set c = c - c, k = 1.

(2) Determine x = ((u, T — T0), g) 6 V x C such that

(4) Solve for (x+, A.+) € X x K:

j:+ — j:
5(^, X) '

(5) Set Xk+1 = x+ and A.*+' = A.+. If the convergence criterion is not satisfied then
set k = k + 1 and go to (2).
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allows
be re-
es [2],
if (29)

Remark. A variant of Algorithm 1 is obtained by skipping step (2). Then it is re-
duced to the Newton method applied to equation (28). Step (2) implies a sufficient
reduction of the merit functional (the augmented Lagrange functional). For ex-
ample, if ,r = (z, g) minimizes L c ( - , A.*) over V x C then step (2) is completed.
Assume that (19) and (27) hold. It is proved in [11] that if |A.' - ,\"|>- is suffi-
ciently small, then Algorithm 1 is well-posed and (xk. A.*) converges to (.X*. A.")
Q-quadratically.

(31)

.e cur-
i(29)
)lved.

A.) is
sum-

5. Hybrid method and test example ^

In this section we present an example to demonstrate the applicability of our theo-
retical results and proposed algorithm. We consider the optimal control of the two
dimensional stationary thermally driven cavity flow

minimize J(g) = + I" -u<t \ 2 + \T -Td \2dx 4- fls -'
over g 6 L2(F,)

(32)

subject to (2), where <T2 = (0, L)2, FI = (x\ , 1), 0 < .x, < L and F0 is the relative
interior of F — FI. On TO we have the Dirichlet boundary condition:

7(0, .x2) = T(L, .x2) = TO, 0 < x2 < L

7(.x,,0) = 70-50mm(l, = (2.5-|z*i 0 < .x, < L.
(J

with a reference temperature 7o = 1350°^, and the temperature on the substrate
(,xi, 0), -yL < .r, < ^L is 1300°^. The desired state (ud, Td) appearing in
(32) is chosen as follows, uj = L u° where («°, 7°) is the solution pair for the
flow with L = 1 and g = 70 and Tj = 71 where («', 7') is the solution pair
for the flow with L = 5 and g = TQ. Here, our numerical calculation strongly
indicates that the solution to (2) is unique and (dynamically) stable for the range
of physical parameters that we chosen for our calculation.

The problem is scaled so that the velocity field u has dimension cm /sec and 7
has dimension K". The constants v, K are chosen for PI at 3atm pressure and are
given by v = .155 and K = .110. H, ft and L are set to be H = 100, ft = ^ =
5.5 x 10~5 and L = 5 respectively. Figures 1 and 2 show the vector field of u°
and u', respectively. It can be observed that u° has more vertical transport than
«' does and «' is confined in the two bottom corners. Hence the cost-functional
(24) is formulated so that the thermal control g on the top F| increases the vertical
transport of flow with L = 5 while retaining the temperature distribution 7' at the
reference temperature g = TQ.

then
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Figure 1. The desired flow.

A

(1

Figure 2. The uncontrolled flow.

The second order augmented Lagrangian method (Algorithm 1) described in
Section 4 is used to solve problem (32). To obtain a good starting value A.1 for
the Lagrange multiplier in Algorithm 1, we employed a few steps of the gradi-
ent method. The gradient of the cost functional can be calculated by the adjoint
equation as follows. Consider the cost functional J(z, g) subject to E(z, g) = 0
where z e V and g e U. Assume that V and U are Hilbert spaces, J(z, g) '. X =
VxU ->• /?isFrechetdifferentiableand£(z, g): X -+ Y is continuously Frechet
differentiable in a neighborhood of x0 = (ZQ, go). Suppose that EZ(XQ) e £(V, 7),
the F—derivative of E with respect to z at-c0. has a bounded inverse. Then by the
implicit function theorem, there exists a unique C1 mapping * defined in a neigh-
borhood N of go in f/, * : U -»• V such that *(g0) = Zo and E(*(g), g) = 0
for g 6 //. Then the F-derivative d of J(V(g),g) with respect to g in W exists
and is given by

d = Jg + E*gt (34)

wh
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where \jf e Y satisfies the adjoint equation

i in
for
.di-
nnt
: 0

net
O,
:he
ih-
= 0
ists

34)

(35)

Here we assume that V, U and Y are identified with their dual spaces. In fact, if
v = vl/'(/i), h 6 U then

(d.h}u =(J,,h')u + (J.,,,)v -

E-v + EJi = 0.
and v e V satisfies

Hence, for h e U

(d, h)u = (Jg, h)u - (E'lfr, u)v = (J.., h)u + (A,. E-h)v = (J,, + E'.i//, h)

which implies (34). The projected gradient method can be written as:

Algorithm 2

(1) Choose g\ e U and set k = I.

(2) Let ~* be a solution of E(z, gk) = 0, tyk be the solution of E-(zk, gkY&k +
-/;(-;-, 3k) = 0 and set dk = Jg(zt, gk) + Es(~k, gk)*^rk.

(3)Setdk = Js(ik,.gk) and determine ak > Osuch that J(^(ga),ga) is minimized
where §a = Projc(gk - a dk~).

(4) Set . k. If the convergence criterion is not satisfied, then set
k = k + 1 and go to Step (2).

In our specific example equation (35) is written as

-v AA - u • VA. + A,'Vu - (T — TO) V/x + Vq
V - A . = 0 and A.|r = 0

—K Aii — M • ~

+ K - ud = 0

- u • V/z - — A,2 + T - Tj - 0
TO

/u. = 0 on TO and n • V/z + xH /j, = 0 on PI ,

(36)

where $ = (A., /x) € V = V0
 x and

on

We used the mixed-finite element method [7] based on the Legendre polynomi-
als to approximate problem (l)-(2) numerically. Detailed discussions about the
method are given in [13]. In our implementation we calculated the adjoint system
for the approximated problem and solved equations (2) and (36) using GMRES
[3]. The specific implementation of GMRES applied to our example is described
in [13] in detail. Concerning the divergence-free constraint V-« = 0, we employed
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the feasible method, projecting the first equation onto the divergence-free space V0

as in [4], [6], [13]. The line search in Step 3 of Algorithm 2 was performed by the
linearization of the constraint E(z, g) = 0 at (zt, £*) since the cost functional is
quadratic. That is, if U* is the solution to Ez(zt, gt)vt + Es(zk, g*)<4 = 0 then
a > 0 is chosen so that J(zt — a i>t, gk — <* *4) is minimized.

For this specific example, three steps of Algorithm 2 were performed. We then
set x1 and X1 as x1 = (z4, g4) and X1 = fa for Algorithm 1 without Step 2. The
matrix operator S(x, A.) was calculated for the approximated system and the result-
ing linear equation (31) was again solved by GMRES. |f

The calculations were performed using a 20 x 20 Cartesian product of Legendre
polynomials, choosing c = 1 and g\ = 0. Algorithm 1 was terminated after three
iterates, since the necessary and sufficient optimality condition (28) was satisfied
within a residual norm of 1 x 10~7.

We may compare this rapid convergence of the hybrid method with the results
of using either algorithm by itself. Algorithm 2 did not fully converge after 50
iterates. Algorithm 1, with the start-up x1 = ((w'.T1), 0) € X and A.1 = 0,
also failed to converge. Thus, the use of the hybrid method combining the gradient
method and the second-order augmented Lagrangian was essential for the success
of our numerical calculations. Figure 3 shows the iterates gk (the first three curves
from top to middle) for Algorithm 1 and the (calculated) optimal control g* (the
lowest curve). The iterates for Algorithm 1 are not shown because they coincide
with g* within the accuracy of the plotting. Figure 4 shows the resulting vector
field «* which corresponds to g*. It shows clearly that the vertical transport of
flow is increased.

Thermally Coup/

Figure 3. Optimal control iterates
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Figure 4. The controlled flow.
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