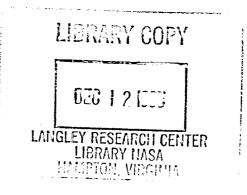
NASA Technical Memorandum 110372

NASA-TM-110372


## Lower Body Negative Pressure Chamber: Design and Specifications for Tilt-Table Mounting

Laura Salamacha, D. Gundo, G. M. Mulenburg, and J. E. Greenleaf

November 1995



National Aeronautics and Space Administration



.

•



NASA Technical Memorandum 110372

# Lower Body Negative Pressure Chamber: Design and Specifications for Tilt-Table Mounting

Laura Salamacha, D. Gundo, G. M. Mulenburg, and J. E. Greenleaf, Ames Research Center, Moffett Field, California

November 1995



National Aeronautics and Space Administration

Ames Research Center Moffett Field, California 94035-1000

--· \_

## Contents

.

.

.

.

|                                                 | Page |
|-------------------------------------------------|------|
| Summary                                         | 1    |
| Vacuum Chamber: Main Plate and Plexiglass Top   | 3    |
| Plexiglass Stress Analysis                      | 4    |
| HEXEL Board Specifications                      | 5    |
| HEXEL Bending Moment                            | 6    |
| Bending Moment Calculation                      | 7    |
| Support Beams Moment of Inertia                 | 12   |
| Crush Stress on HEXEL Board at Support Beams    | 13   |
| HEXEL Board Bending Stress: End Section         | 14   |
| HEXEL Board Stress Analysis: C-Channel Centered | 15   |
| HEXEL Board Bending Stress Analysis: Summary    | 16   |
| LBNP Pressure Regulation System                 | 17   |
|                                                 |      |

-

:

•

.

-

.

## Lower Body Negative Pressure Chamber: Design and Specifications for Tilt-Table Mounting

LAURA SALAMACHA, D. GUNDO, G. M. MULENBURG, AND J. E. GREENLEAF

Ames Research Center

#### Summary

The tendency to faint (syncope) is increased when a person moves from a horizontal or sitting position to a standing position. Most people have appropriate compensatory physiological responses that maintain systemic blood pressure to inhibit fainting. About 10 percent of the population are "fainters"; i.e., they have low fainting tolerance (less than 3 min standing) due to hereditary (genetic) predisposition. Illness and neurological abnormalities will also induce early fainting. In normal healthy people, exposure to prolonged bed rest or spaceflight deconditioning can result in early fainting when they assume the upright posture after rest or landing, respectively. Some endurance-trained runners and other athletes appear to have significantly reduced syncopal tolerance.

In spite of extensive research over the past 100 years, the mechanism (cause) of fainting is unknown. One problem encountered with the conduct of human research studies is difficulty in reproducing and attenuating the sequence of physiological responses leading up to the fainting episode. Current testing procedures include prolonged standing, hanging, or standing on a foot-plate on a tilting table; i.e., head-up tilt (HUT), total body acceleration in the +Gz (head-to-foot) direction, and exposure of the lower body to reduced atmospheric pressure induced within an air-tight chamber surrounding the waist and lower limbs; i.e., lower body negative pressure (LBNP). However, each of these stress procedures has disadvantages, one being difficulty in controlling the rate of the onset of pre-syncopal physiological responses such as lower blood pressure and cardiac output, and higher heart rate, peripheral vascular resistance, and vasoactive hormone responses.

Use of LBNP and HUT simultaneously should allow for greater control of the pre-syncopal response parameters. This combination has been used by at least two research groups:

- 1. Newberry, P. D., A. W. Hatch, and J. M. MacDonald. Cardio-respiratory events preceding syncope induced by a combination of lower body negative pressure and head-up tilt. Aerospace Med. 41:373-378, 1970.
- 2. El-Bedawi, K. M., and R. Hainsworth. Combined head-up tilt and lower body suction: a test of orthostatic tolerance. Clin. Auton. Res. 4:41-47, 1994.

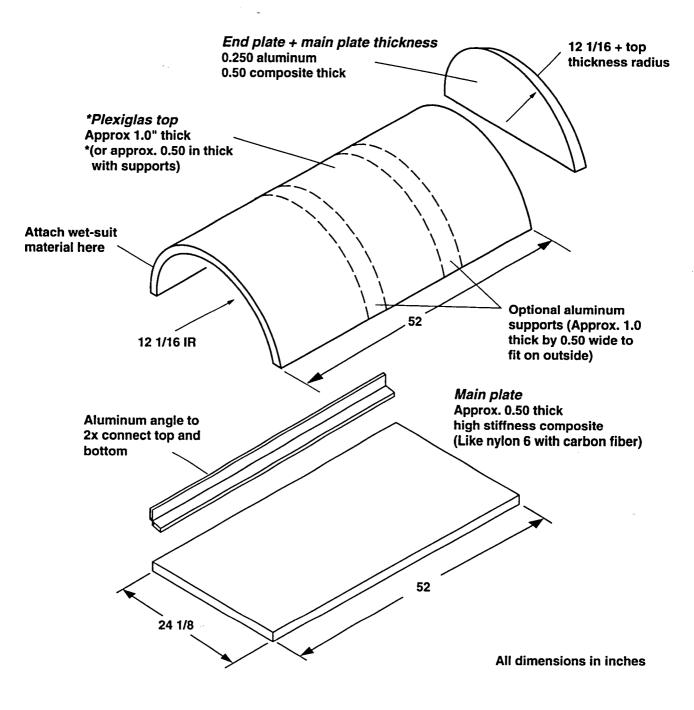
Specifications for a lower body negative pressure chamber for mounting on a tilting table are presented. The main plate is made from HEXEL honeycomb board 1.0 inch thick. The plate, supported at three edges, will be subjected to a uniform pressure differential of -4.7 lb/in<sup>2</sup>. A semi-cylindrical Plexiglass top (chamber) is attached to the main plate; the pressure within the chamber will be about 10 lb/in<sup>2</sup> during operation. The stresses incurred by the main plate with this partial vacuum were calculated. All linear dimensions are in inches.

. .

•

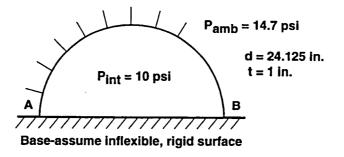
•

•


.

. .

. .


٠

Vacuum Chamber



Keep weight to a minimum (max 180 lbs.) Keep large plate deflections under 3/8 in

### Plexiglas Stress Analysis



• The calculation of forces of reaction at points A & B

There is an equal pressure differential across the hemi-cylindrical surface of the tube material.

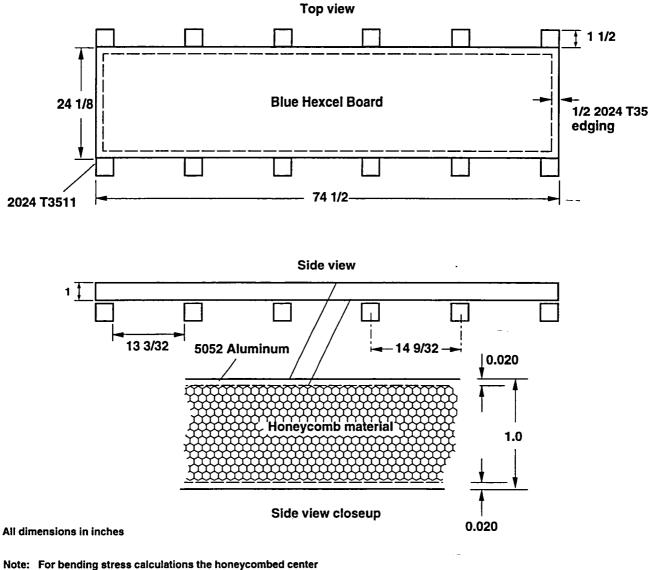
Collapsing pressure of the cylinder is

$$W_c = KE \left(\frac{t}{D}\right)^3$$
 psi where;  $K = a \text{ constant}$   
 $E = elastic \text{ modules} = 480,000 \text{ psi}$   
 $t = thickness of material$   
 $D = diameter of cylinder$ 

CASE 1:

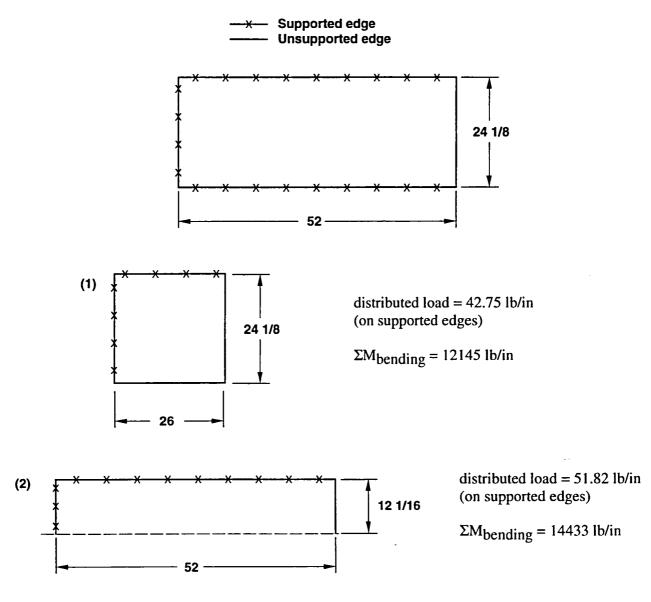
For radial external pressure with simply supported edges

CASE 2:


For radial external pressure with fixed edges

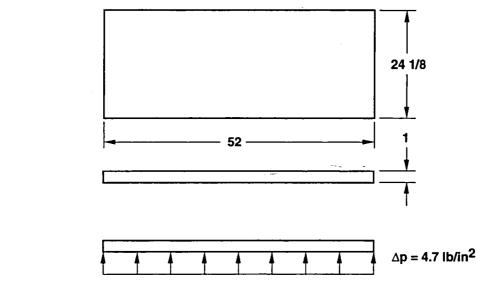
$$\frac{\text{length}}{\text{radius}} = 4.3, \quad \frac{D}{T} = 28, \text{ from above K} = 9.5$$
$$W_{c} = (9.5) (480,000 \text{ psi}) (\frac{1 \text{ in}}{24,125 \text{ in}})^{3}$$
$$\frac{W_{c} = 324 \text{ psi}}{24 \text{ psi}} \qquad \frac{W_{c} = 137 \text{ psi} \text{ for } t = 0.75 \text{ in}}{24 \text{ psi}}$$

-


 $\implies$  Margin of safety is large for working pressure differentials near 5 lb/in<sup>2</sup>.

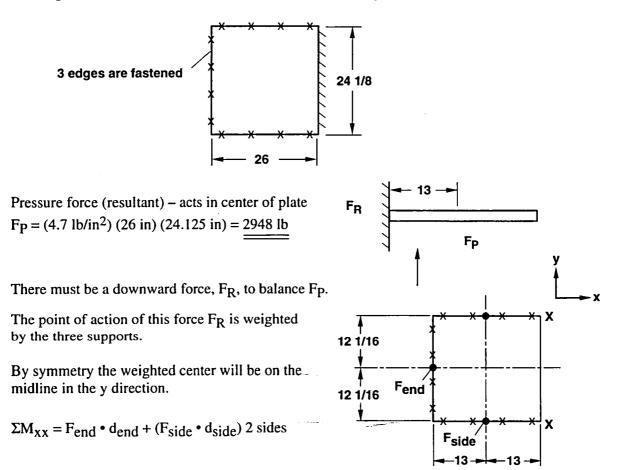
## **HEXEL Board Specifications**




Note: For bending stress calculations the honeycombed center of the Hexcel board was ignored and the cross section used for analysis assumed a hollow center section.

## HEXEL Bending Moment




All dimensions in inches

#### **Bending Moment Calculation**



Loading

Looking at half of the board in order to calculate the bending moment:



#### LBNP Tilt Table

The loading of the supports can be found from the total load.

 $F_{\text{total}} = 2948 \text{ lb}$   $l_{\text{load}} = 2 \cdot 26 + 24.125 = 76.125 \text{ in}$ for 1/2 of the pressurized section Distribution bad =  $\frac{F_{\text{total}}}{l_{\text{load}}} = \frac{2948 \text{ lb}}{76.125 \text{ in}}$  38.7 lb/in along perimeter(assuming equal load distribution)

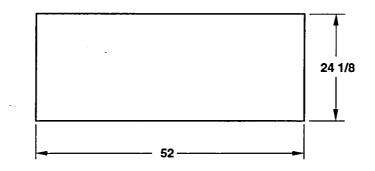
From the moment equation on the previous page:

$$\Sigma M_{XX} = F_{end} \cdot d_{end} + (F_{side} \cdot d_{side}) 2 \quad \text{where} \quad F_{side} = (\text{dist.} \cdot \text{load}) (d_{side})$$
$$= (38.7 \text{ lb/in}) (24.125 \text{ in}) (26 \text{ in}) + (38.7 \text{ lb/in}) (26 \text{ in}) (13 \text{ in}) (2)$$

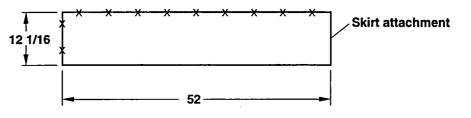
 $\Sigma M_{XX} = 50469 \text{ lb/in}$ 

The center of moment (CM) measured from from the "cut" edge is

$$CM = \frac{\Sigma M_{XX}}{F_P} = \frac{50469 \text{ lb/in}}{2948 \text{ in}}$$


$$CM = 17.12$$
 in

Free-body diagram:  $F_{R}$  17.12 M $F_{P}$  All dimensions in inches.


 $\Sigma F_{X} = 0 \qquad \Sigma F_{y} = 0 \qquad \therefore \qquad F_{P} = F_{R} = 2948 \text{ lb}$  $\Sigma M = F_{P} \cdot d_{P} - F_{R} \cdot d_{R}$ = (2948 lb) (17.12 in) - (2948 lb) (13 in) $\Sigma M = 12145 \text{ lb/in}$ 

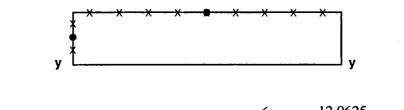
Next, it was decided to look at the board from another perspective: cutting it longitudinally

-



cutting the board lengthwise this time:




All dimensions in inches

 $F_P = P.A.$ 

 $= (4.7 \text{ lb/in}^2) (52 \text{ in}) (12.0625 \text{ in})$ 

 $F_P = 2948$  lb as found previously

find location of reaction force  $(F_R)$ :



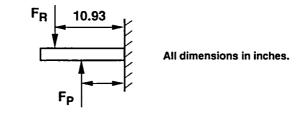
$$\Sigma M_{yy} = F_{end} d_{end} + F_{side} d_{side}$$
 dist from  
y-y to force  $d_{end} = \frac{12.0625}{2} = 6.03125$  in  
 $d_{side} = 12.0625$  in

find distributed load

dist. load = 
$$\frac{F_P}{l \text{ supported}}$$
  
=  $\frac{(2948 \text{ lb})}{(12.0625 + 52) \text{ in}}$  = 46.02 lb/in along perimeter  
(Again assuming equal load distribution along sides/end.)

 $F_{end} = (dist. load) (l_{end}) = (46.02 lb/in) (12.0625 in)$ = 555 lb  $F_{side} = (dist. load) (l_{side}) = (46.02 lb/in) (52 in)$ 

Substituting:


$$\Sigma M_{yy} = F_{end} d_{end} + F_{side} d_{side}$$
  
= (555 lb/in) (6.03125 in) + (2393 lb) (12.0625 in)

 $\Sigma M_{yy} = 32213 \text{ lb/in}$ 

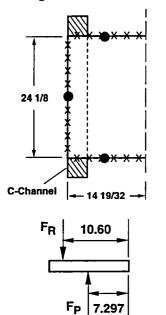
to find the center of moment (CM)

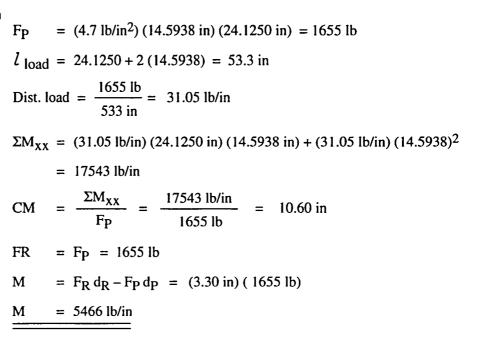
$$CM = \frac{\Sigma M_{yy}}{F_P} = \frac{32213 \text{ lb/in}}{2948 \text{ in}}$$
  
 $CM = 10.93 \text{ in}$ 

Free-body diagram:

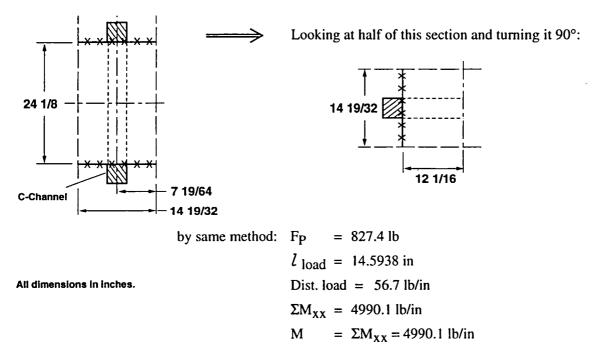


$$\Sigma F_{X} = 0 \qquad \Sigma F_{y} = 0 \qquad \therefore \qquad F_{P} = F_{R} = 2948 \text{ lb}$$
  
$$\Sigma M = F_{R} \cdot d_{R} - F_{P} \cdot d_{P}$$
  
$$= (2948 \text{ lb}) (10.93 \text{ in}) - (2948 \text{ lb}) (6.03125 \text{ in})$$
  
$$\Sigma M = 14433 \text{ lb/in}$$

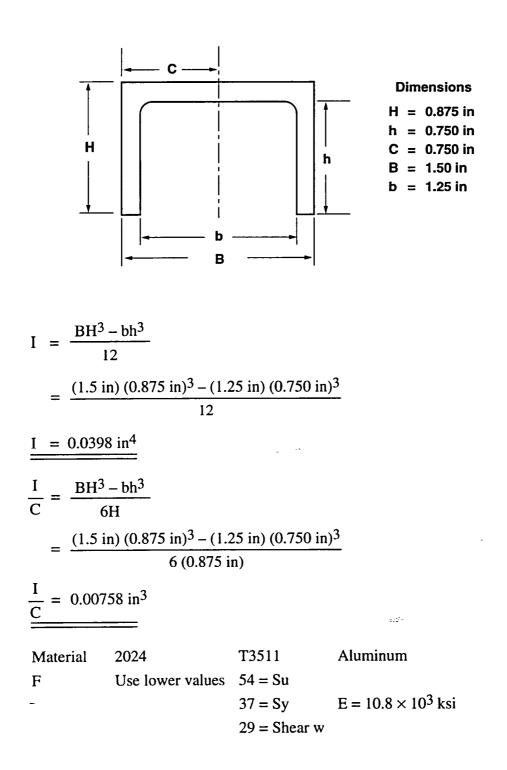

At this point, channels were added to the design to provide stability to the board. The subsequent analyses were on the channels and subsections of the board.


#### LBNP Tilt Table

Considering a smaller section:


**BENDING MOMENT - 14 in sections** 

Configuration A - end section






**Configuration B – centered section** 



Support Beams Moment of Inertia



#### LBNP Tilt Table

•

#### Crush Stress on HEXEL Board at Support Beams

Configuration A – end section

| Total load on C-Channel    | = (distributed load) • (length of channel)                       |
|----------------------------|------------------------------------------------------------------|
|                            | = (31.05 lb/in) (24.125 in)                                      |
|                            | $= \frac{749.1 \text{ lb}}{100000000000000000000000000000000000$ |
| Total channel contact area | = (channel length) • (channel width)                             |
|                            | = (24.125 in) (1.50 in)                                          |
|                            | = <u>36.2 in<sup>2</sup></u>                                     |

Assuming the load is evenly distributed and compressive at the supports:

 $\sigma_c = \frac{\text{total load}}{\text{contact area}} = \frac{749.1 \text{ lb}}{36.2 \text{ in}^2} = 20.7 \text{ lb/in}^2$ 

 $\sigma_u$  = 330 lb/in<sup>2</sup> for Hexcel board in flat compression

**Configuration B** 

- Total load on C-Channel = (56.7 lb/in) (24.125 in)
  - = 1368 lb
- Total channel contact area

compressive stress

safety factor

 $= \frac{1368 \text{ lb}}{36.2 \text{ in}^2} = 37.8 \text{ lb/in}^2$ 

=  $36.2 \text{ in}^2$  (shown above)

$$= \frac{330 \text{ lb/in}^2}{37.8 \text{ lb/in}^2} = 8.7$$

## HEXEL Board Bending Stress: End Section

Moment of Inertia – Stress Analysis HEXEL Board – 14.5 in. sub-section (End Section) Configuration A

|                               |                    |                     |                |                                   | dist. CG to x-x static mom. moment @ x-x |                             |                                           | neutral mom.                              |
|-------------------------------|--------------------|---------------------|----------------|-----------------------------------|------------------------------------------|-----------------------------|-------------------------------------------|-------------------------------------------|
| Item                          | Number<br>of Items | Width<br>[in]       | Height<br>[in] | Area<br>(A)<br>[in <sup>2</sup> ] | y [in]                                   | (A*y)<br>[in <sup>3</sup> ] | (A*y <sup>2</sup> )<br>[in <sup>4</sup> ] | $(lo = w*h^{3/12})$<br>(in <sup>4</sup> ) |
| HEXEL upper<br>HEXEL lower    |                    | 24.125<br>24.125    | 0.02<br>0.02   | 0.4825<br>0.4825                  | 0.01<br>0.99                             | 0.00483<br>0.47768          | 0.00005<br>0.47290                        | 1.6083E-05<br>1.6083E-05                  |
|                               |                    |                     |                | ΣA =<br>0.965                     | 50                                       | Σ(A*y)=<br>0.4825           | $\Sigma(A^*y^2) = 0.4729$                 | Σ lo =<br>3.2167E-05                      |
| $Y(l) = \Sigma(A^*y)$         | )/ΣA =             | 0.5000 i            | n              | ]                                 |                                          |                             | 1                                         |                                           |
| $I(n) = \Sigma lo + \Sigma$   | C(A*y2) – ΣA       | *Y (I) <sup>2</sup> | =              | 0.2                               | 317 in <sup>4</sup>                      |                             | ,                                         |                                           |
| Stress Max. =                 | • M*Y(I)/I(I       | n)                  | М              | = 5465                            | b/in                                     | (from prev                  | vious calculations)                       |                                           |
| Stress Max. =                 | 11.79 ksi          |                     |                |                                   |                                          |                             |                                           |                                           |
| Max. allowab<br>Safety Factor |                    | 28 ksi<br>37        |                |                                   |                                          |                             |                                           |                                           |

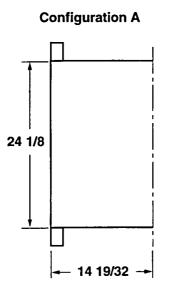
.

.

.

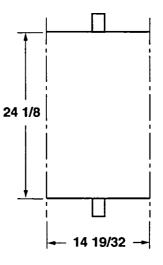
۰.

## HEXEL Board Stress Analysis: C-Channel Centered


| Moment of Inertia – Stress Analysis                   |  |  |  |  |  |  |  |
|-------------------------------------------------------|--|--|--|--|--|--|--|
| HEXEL Board – 14.5 in. sub-section (Center to Center) |  |  |  |  |  |  |  |
| Configuration B                                       |  |  |  |  |  |  |  |

|                                                   |                    |                                  |                | dist. CG to x-x static mom. moment @ x-x |                     |                             |                                           |                                                 |
|---------------------------------------------------|--------------------|----------------------------------|----------------|------------------------------------------|---------------------|-----------------------------|-------------------------------------------|-------------------------------------------------|
| Item                                              | Number<br>of Items | Width<br>[in]                    | Height<br>[in] | Area<br>(A)<br>[in <sup>2</sup> ]        | y [in]              | (A*y)<br>[in <sup>3</sup> ] | (A*y <sup>2</sup> )<br>[in <sup>4</sup> ] | neutral mom.<br>$(lo = w*h^{3/12})$<br>$(in^4)$ |
| HEXEL upper                                       | skin 1             | 14.5938                          | 0.02           | 0.2919                                   | 1.874               | 0.5497                      | 1.02503                                   | 9.7292E-06                                      |
| HEXEL lower                                       |                    | 14.5938                          | 0.02           | 0.2919                                   | 0.876               | 0.25568                     | 0.22398                                   | 9.7292E-06                                      |
| Channel B sect                                    | ions 1             | 1.5                              | 0.125          | 0.1875                                   | 0.8125              | 0.15234                     | 0.12378                                   | 0.00024                                         |
| Channel C Sect                                    | tions 2            | 0.125                            | 0.75           | 0.0938                                   | 0.375               | 0.3516                      | 0.01318                                   | 0.00439                                         |
|                                                   |                    |                                  |                | ΣA =                                     |                     | $\Sigma(A^*y)=$             | $\Sigma(A^*y^2) =$                        | $\Sigma$ lo =                                   |
|                                                   |                    |                                  |                | 0.958                                    | 8                   | 1.0253                      | 1.3992                                    | 0.0091                                          |
| $Y(l) = \Sigma(A^*y)$ $I(n) = \Sigma lo + \Sigma$ | ····               | 1.0694 i<br>A*Y (I) <sup>2</sup> | n              | 0.3                                      | 117 in <sup>4</sup> |                             |                                           |                                                 |
| Stress Max. =                                     | M*Y(I)/I           | (n)                              | М              | = 49901                                  | b/in                | (from prev                  | vious calculations                        | )                                               |
| Stress Max. =                                     | 17.12 ksi          |                                  |                |                                          |                     |                             |                                           |                                                 |
| Max. allowab<br>Safety Factor                     |                    | 28 ksi<br>64                     | :              |                                          |                     |                             |                                           |                                                 |
|                                                   |                    | ì                                | I              |                                          |                     |                             |                                           |                                                 |

|                          | Configuration A        | Configuration B        |
|--------------------------|------------------------|------------------------|
| Bending Moment           | 5465 lb/in             | 4990 lb/in             |
| Moment of Inertia        | 0.2317 in <sup>4</sup> | 0.3117 in <sup>4</sup> |
| Distance to Neutral Axis | 0.500 in               | 1.0694 in              |
| Max. Calculated Stress   | 11.79 ksi              | 17.12 ksi              |
| Max. Allowable Stress    | 28.0 ksi               | 28.0 ksi               |
| Safety Factor            | 2.37 S.F.              | 1.64 S.F.              |
| Compressive Stress       | 20.7 psi               | 37.8 psi               |
| Safety Factor            | 16 S.F.                | 8.7 S.F.               |


## HEXEL Board Bending Stress Analysis Summary

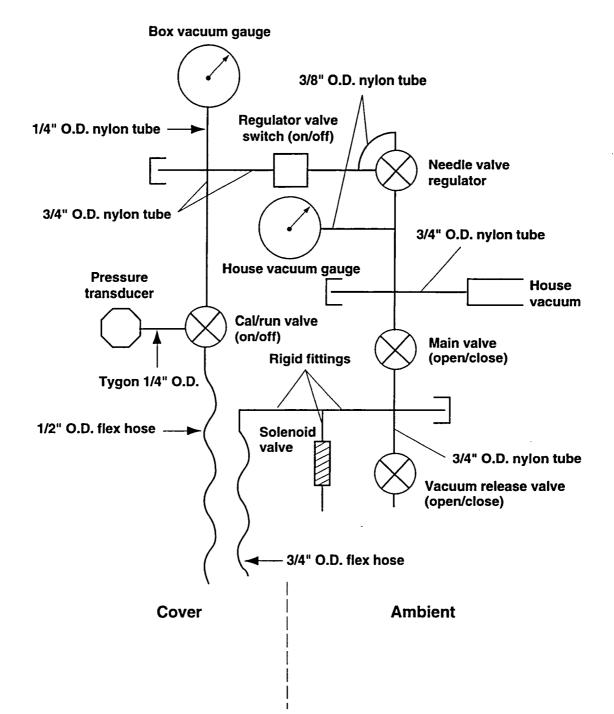
Note: The calculated safety factors for the bending moment are artificially low due to the absence of the aluminum honeycomb in the stress calculations.



C-Channel on end of span






C-Channel on center of span

LBNP Tilt Table

ł

.

## LBNP Pressure Regulation System



| REPORT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Form Approved<br>OMB No. 0704-0188                          |                                                                                              |                                                                            |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--|--|--|--|
| Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503. |                                                             |                                                                                              |                                                                            |  |  |  |  |
| 1. AGENCY USE ONLY (Leave blan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                             | 3. REPORT TYPE AND<br>Technical Memo                                                         | DATES COVERED                                                              |  |  |  |  |
| 4. TITLE AND SUBTITLE<br>Lower Body Negative Pre<br>Tilt-Table Mounting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ssure Chamber: Design and S                                 |                                                                                              | 5. FUNDING NUMBERS                                                         |  |  |  |  |
| 6. AUTHOR(S)<br>Laura Salamacha, D. Gund                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 199-18-12-07                                                |                                                                                              |                                                                            |  |  |  |  |
| 7. PERFORMING ORGANIZATION N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3. PERFORMING ORGANIZATION<br>REPORT NUMBER                 |                                                                                              |                                                                            |  |  |  |  |
| Ames Research Center<br>Moffett Field, CA 94035-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A-960221                                                    |                                                                                              |                                                                            |  |  |  |  |
| 9. SPONSORING/MONITORING AGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ENCY NAME(S) AND ADDRESS(ES)                                | 1                                                                                            | 0. SPONSORING/MONITORING<br>AGENCY REPORT NUMBER                           |  |  |  |  |
| National Aeronautics and S<br>Washington, DC 20546-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NASA TM-110372                                              |                                                                                              |                                                                            |  |  |  |  |
| 11. SUPPLEMENTARY NOTES<br>Point of Contact: J. E. Gr<br>(415) 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | eenleaf, Ames Research Cent<br>04-6604                      | er, MS 239-11, Moffet                                                                        | t Field, CA 94035-1000                                                     |  |  |  |  |
| 12a. DISTRIBUTION/AVAILABILITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | STATEMENT                                                   | 1                                                                                            | 2b. DISTRIBUTION CODE                                                      |  |  |  |  |
| Unclassified — Unlimite<br>Subject Category 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                             |                                                                                              |                                                                            |  |  |  |  |
| The main plate is made fro<br>will be subjected to a unif<br>ber) is attached to the mai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                             | d 1.0 inch thick. The pl<br>4.7 lb/in <sup>2</sup> . A semi-cylin<br>le chamber will be abou | drical Plexiglass top (cham-<br>tt 10 lb/in <sup>2</sup> during operation. |  |  |  |  |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                             |                                                                                              |                                                                            |  |  |  |  |
| 14. SUBJECT TERMS<br>LBNP, Tilting, Humans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 15. NUMBER OF PAGES<br>20                                   |                                                                                              |                                                                            |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 16. PRICE CODE<br>A03                                       |                                                                                              |                                                                            |  |  |  |  |
| 17. SECURITY CLASSIFICATION<br>OF REPORT<br>Unclassified                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 18. SECURITY CLASSIFICATION<br>OF THIS PAGE<br>Unclassified | 19. SECURITY CLASSIFIC<br>OF ABSTRACT                                                        | ATION 20. LIMITATION OF ABSTRACT                                           |  |  |  |  |
| NSN 7540-01-280-5500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                             | L                                                                                            | Standard Form 298 (Rev. 2-89)<br>Prescribed by ANSI Std. Z39-18            |  |  |  |  |

.

٢

÷ ------. ' •



•

ι