View metadata, citation and similar papers at core.ac.uk brought to you by iCORE

provided by NASA Technical Reports Server

NASA Contractor Report 198412 NASA-CR-198412

19960008042

Software Safety Progress in NASA

Charles F. Radley
Raytheon Engineers and Constructors
Brook Park, Ohio

October 1995

Prepared for L.
Lewis Research Center
Under Contract NAS3-26764 '

'LnFn |~ 1995

LAN’GLE{\;_RE,S_EARC@ CENTER

National Aeronautics and
Space Administration

I

https://core.ac.uk/display/42779233?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

llllllIHlllllllliIH!llWI!llHll|||||I||IIHIIIIUIHWHNI

31176 01423

Software Safety Progress in NASA

Charles F. Radley
Raytheon Engineers and Constructors
2001 Aerospace Parkway
Brook Park, Ohio 44142
Tel (216) 977-1492
Internet: charles.radley@lerc.nasa.gov
Fax: (216) 977-1495.

Abstract:

November 1995 is the scheduled publication date for the NASA Guidebook for Analysis
and Development of Safety Critical Software. Development of the guidebook has
substantially focused the thinking of the NASA Software Assurance community with
respect to high risk/high value software applications. The guidebook has been developed
as a practical "how to" guide, to assist in the implementation of the recent NASA
Software Safety Standard NSS-1740.13 which was released as "Interim" version in June
1994, scheduled for formal adoption late 1995.

The Guidebook is in four main parts:

Section 2) System safety context

Section 3) Software Safety planning

Section 4) Development of Safety Critical Software
Section 5) Analysis of Safety critical software.

In addition there is an extensive glossary, appendices and list of references.

Each section is subdivided into a section for each of the following software lifecycle
phases: concept, requirements, architectural design, detailed design, and implementation.

Two complementary philosophies were adopted, a) elimination/reduction of faults/errors,
and b) fault tolerant techniques.

Both techniques are essential, because it is impossible to eliminate all faults and errors, so
some degree of fault tolerance will always be required. However, fault tolerance and
redundancy is expensive to implement, so elimination and reduction of faults should be
attempted to avoid unnecessary redundancy.

The earlier a fault is corrected in the lifecycle, the lower the cost. Faults identified late are
expensive to correct. So emphasis is given to correctness of requirements prior to their
implementation in design The most rigorous method of developing requirements is
"Formal Methods" which are discussed in some depth in an Appendix. However, Formal

Methods are expensive to implement, so discussion is provided of less costly but less
rigorous techniques, and when it is appropriate to use them. Formal Methods requires a
substantial investment in training, and procurement of logical tools. It translates traditional
human language (e.g., English) specifications into "High Order Logic" (HOL) lemmas
The HOL representation reveals defects such as ambiguity, contradictions, double
meanings, circular definitions and missing requirements.

Fault tolerance requires hardware redundancy, either parallel paths for "Must-work
Functions" (MWFs) or series inhibits for "Must-Not-Work Functions" (MNWFs). To
avoid common cause faults, the redundant paths or inhibits must be independent, using
dissimilar redundancy. For software to be independent, N-version programming should be
used, but this is expensive Different types of N-version programming protect against
different types of faults

Analysis techniques include Hazards Analysis, Fault Trees, Petri Nets, Dynamic
Flowgraphs, and Resources Guidance is provided on software design techniques and
practices.

Software safety costs money, and its value is poorly understood by financial managers.
The Guidebook provides guidelines for assessing how much of a program's resources
should be devoted to Software Safety as a function of the risk of system failure. These
guidelines are intended to assist decision makers to make an informed risk versus cost
assessment. Subsequently it will assist software developers and safety analysts to achieve
and verify the most appropriate degree of software safety.

Table 1. Guidebook Table of Contents

1. INTRODUCTIONccocurrirurrernuenares cer v cuvsesssessesesssessessassassns see sesenen o 7
L1 SCOPE..... it ettt e v et e e et e e e e e e e T
L2 PUIPOSC.....e iiiiiieiieies e e e crceeereeveesreseesees seee see e ae eee e aeens . 8
1.3 Acknowledgmentscccce cee oot ot it e e e et e e .. 8
2 SYSTEM SAFETY PROGRAMcccc. vt ctv v v cot eeveveee e ee e et e o el .8
2.1 Preliminary Hazards Analysis (PHA)..o.. v0 coeveee e et e e et e e e 209
2 1.1 PHA APProach.cccc. co coeiveeireiieeciies v v et e et e e v te ete et e 9
2.1.1.1 Identifying Hazards:..........c.cc.. cec cev et cee ettt 10
2.1.1.2 Risk ASSESSMENLc..cc. eveerererererernenereies cereverens seietes en oe one e sevenens 10
2.1.2 Preliminary Hazards Analysis Processccoeecvee ev cee seeven cve cee cee e A2
2.1.3 Tools and Methods for PHA ccccocoes ceeveeiens cen eee e cetenen cae s veveenas 14
2 2 Safety Requirements Flowdown..ot oot o ceiiien e o 17
2 2.1 Relating Software to Hazardscccooevveiviniinnens vee eeeierine e aen e o 17
2.3 Software Subsystem Hazards Analysis.........c.ccoceeer vv cov vere veveeveees ce e v+ 19
3. SOFTWARE SAFETY PLANNING........... cccoorverrrerereeiererenes creee e eee one 21
3.1 Software Development Lifecycle Approach cocevivies et ceevvienens oo 21
3.2 Scoping the Effort - Value vS Cost.........cccoovvee cee v cev et e cee e o 25

3 2.1 Full Scale Development Effort ot oot e e e 25
3.2 2 Partial Development Effort . . reee e v vee e e e 26
3.2 3 Categorizing Safety-Critical Soﬁware Sub-systems 26
3.3 Scoping of Software Subystem Safety Effortcccceeverveniinieenieenienne veeee 28
3.3 1 Full Software Safety Effort cccoovviiies o0 ottt s s cveiees ceeeann, 29
3 3 2 Moderate Software Safety Effort. o cceeieet cveet ceveeees e v W31
3.3 3 Minimum Software Safety Effortccccoce vt ot rirreniireccereerecceeee e 31
3.4 Software Safety Assurance Techniques for Software Development Phases.... ..32
4 SAFETY CRITICAL SOFTWARE DEVELOPMENTcccoocvveeee ee e . 40
4 1 Software Concept and Initiation Phase.. oo oo oo o e s oen .. .40
4 2 Software Requirements Phase... cccoccoeiees oo v ien tnvenieiieieereene e e 42
4.2 1 Development of Software Safety Requirements...........cccceveeveevveees e veee o 43
4 2 2 Generic Software Safety Requirements oo o0 veer v e .. .44
4.2 2 1 Fault Tolerance/Independence.. e e vt ceceee e e ee eee eee . 245
4.2 2 2 Hazardous Commands............c.cecevverereerurrueruesueneesieniens cousveessessesseons oo eee 46
4 2 2 3 Coding Standards .. . T ¥ |
4 2.2 4 Timing, Sizing and Throughput Consxderatlons 47
4 2.3 Formal Methods - Specification Development.............. coceet cevvveecveeceennn . .48
43 Architectural Design Phase.............cccceviet coeviereen ceree ot e e e e e 50
4.3.1.1 N-Version Programming......... ...ccceceveerrvervenneerneeruenvenseersessvessaesssensees oo oo 52
43 1.2Recoveryblocks L e . 52
4.3 1 3 Resourcefulness53
4.3 1 4 Abbott-Neuman Components .. 53
4.3 15 Self Checks. . PR PR 1
4 4 Detailed Design Phase ... 56
4.4 1 Formal specification Developmentccccees e ieiier cevvcveiees cr cveieninns 57
4 5 Software Implementation.... 58

451 Coding Checklists.. oot i o e e e

4 5.2 Coding Standards... 59
4 6 Software Integration and Test.59
4 6 1 Testing TechniqUesccccoveeces v v ciee o ee e ecees ceeeee et 2 e e 0 39
4.6 2 Software Safety TeStiNg.cccc. v oot et et er et et rrrene e et e s 60
4 6.3 Test Witnessing:61
4.7 Software Acceptance and Dehvery Phase e e e e e e e e 262
5. SOFTWARE SAFETY ANALYSIS coooieeireiies ceres et et e e e 63
5.1 Analysis of the Software Requirements for Potential Hazards..ccccouo.... 63
5 1.1 Software Safety Requirements Flowdown Analysis..........c.c. cev coeeee oo o .. 64
511 1 Checklists and cross references..ccoeeveverveeveveresiens veen vee ee cee een oo 64
5.1 2 Requirements Criticality Analysis.. oo eveeeeen s .. 65
5.1.2 1 Critical Software Characteristics67
5.1.3 Formal Specification Analysis oo v cee e et et e e e e e .. 69
51 3.1 Hierarchy analysis.....ccccceeet oo ot evveceesrerecrie e ecneesiee o reeee nes 69
5 1.3.2 Control-flow analysis... covceis e v vv e e e e e e e et e e 70
51 3.3 Information-flow analysiscccoovevrerivrinirieiniiiies e e e e 70
513 4 Functional simulation modelsc.ccoccet vevee v e ve e s e e .70

5.1.4 Formal Inspections of Specifications. ccee cer evvet cevvveee e o 71
5.1.5 Timing, Throughput And Sizing Analysisccccc. cee e cev e v veee oo .73
5.1 6 CONCIUSION.ooueimiieieeeneereeerereteteenenteeeetecnnecnnens cateeaes ses eer aave suee sesues 74
5.2 ARCHITECTURAL DESIGN ANALYSIS........ccccc. coerverreerrrcresenseesuessnsneeseenns 75
5.2.1 Update Criticality Analysis........cccocceveereruenes oo con coe ver cen cene vereene serveseesneene 76
5 2 2 Conduct Hazard Risk ASSESSMENL..........cccceveee vt ver vevrevvenncs vevterees ceveenvesseens 76
5.2.3 Analyze Architectural Design........+ « e coiies et cvtcer e e e 1T
5.2.3.1 Design ReVIEWSc. coceeeee v cv et et ettt et e et et e e 77
5.2.3.2 Animation/Simulation cco et et coeeviees ce ver cerree et e et cervees e 77
5.2.4 Interdependence ANalysis............cccocereririiininnsisesicnssiennunssoseonessnsssessesssessesnes 78
5.2 5 Independence Analysis cccccoeet vt vt vt vt vt e vies ee et e e e e o T8
5.3 Detailed Design Analysis ccccc. o0 coeeces ceveet et e et e e e e e 79
5 3.1 Design LogiC ANalysis cccceeies cevervieeneeniies cer vees vees vees vesesreessneesseees 79
5.3 2 Software Fault Tree Analysis (SFTA)c.ccooevemremmrnniiincnieeienne eee e a0 80
5.3.2 1 Software Fault Tree Analysis Description cccccecceeet veee ceeevierveeevueennens 80
5.3.2.2 Goal of Software Fault Tree Analysis...... .. .81
5.3.2 3 Use of Software Fault Tree Analysis...........cccc. cevervveeverneineenienenneesees wone 82
5.3 2 4 Benefits Of Software Fault Tree Analysis. 84
5 3.3 Petri-Nets... . e e .88
5.3.3. IIntroductlontoPetn-Nets e e e e eeveee e e eee ee e e 2088
53.3.2Inverse Petri-Nets oo coe vt et vt et ceve et e e e e eee e e e e e 89
53 3.3 Petri-Net Examples.. cccccocivveie cet et ceeee e vt et et eee eee eee e e . 90
5 3.4 Dynamic Flowgraph Analysis o v vt cevie or et ceneretrneene e 98
53.5MarkovModeling... it i e e e e e e 2 99

5.3.6 Design Data Analysis...

5.3.7 Design Interface Analysis..o v vt v vie vt et et e o

5.3.8 Measurement of Complexity101
5.3.9 Design Constraint Analysis .. . v ee e e e e ee e veesrees an eeeen 102
5.3.10 Safe Subsets of Programming languages .. 103
5 3.10.1 Insecurities Common to All Languagesco..o103
53.10 2 Method of AssesSment....... cce e cee ot cer ceveceiees e e et - e 104
53.10.3 CLANGUAGEccceeeeer o e et ee et ceee et ee ee een ee ke ae een sreeeraes cerrreeens .106
53.10.4 Pascal Language cecee cvv cee v cerveriveenns ce cee et e vreernee ee aree e 106
53.10.5 AdaLanguagecccc.. ceveeeeeeieesienieiseeeestesteeteesesenesestens oee aees aeens 106
5 3.10 6 Insecurities in the Ada Languagecccoveeieveereecees cee ceeeee veane 108
53.10.7 Subset Ada..t it et e e, 111
5.3.10.8 CoNCIUSIONSccuet cover ee ceres e en creee e cveeveeerereeereeeessesene e ben s eees 112
5.3.11 Formal Methods and Safety-Critical Considerations... ec. cee cvee ... 112
5.3.12 Requirements State Machines ccccce cecveceeeereereieieeneesteeereees es cevens 115
5.3.12.1 Characteristics of State Machines............c.ccoee eve e v et cvee cee e e 115
5.3.12 2 Properties of Safe State Machines....ccccoeee e et covereerecieeeeeeeene, .118
5.3.12 3 Input/Output Variables 119
5.3.12.4 State Attributesccccoovviiis v e e et et s s e e 119
5.3.12.5 Trigger Predicates..cccocvvvivviviries oo cer vevee cee veen eve e o e 121
53126 O0utput Predicates..cccccoet veveiivieiecreeie et veeireenee 122

53.12 7 Degraded Mode Operation.............. .. «. vt coevee e coveevercrces cone ver o 123
5.3 12 8 Feedback Loop ANalysisccocee vv ceve et ve vt teene coe e v cveneeane 123
5.3 12.9 Transition Characteristics....« v o v+ cvrvcnes vt cevernee wee oo 124
5.3.12.10 ConCIUSIONS oot et covee ven e ceeen ce ven er een cenres ces corueeseenne cones 125
5.3 13 Formal InSpections+ ot vt vt vt ve cvnet e v e e eee e eee <126
54 CODE ANALYSISoos iiiricniiireiiteienres cverae cevvveneenee con cvvevees oo e 127
5.4.1 Code Logic Analysis....... coccceies cor or ceveees cvvvereeseens cvvenies ae coveseens aas 128
5.4 2 FaUlt trees..... ccoccveet coen cot et ettt e et crereeetene eeaes teteresees ceseeseens 128
543 PetriNets. ... cooeueeieieieiee e ee et ee et e e e veee e centeae e cveeaens 128
5.4.4 Code Data ANalysiscc.c. v vee v weceveen ee ev veeine ee erreen cen cesreeneenee a 128
5.4.5 Code Interface ANalysiS......... .covveereire seervveeerreertineesensneeseesaessees ceons 129
5.4 6 Measurement of Complexityo vevvee vt veever cer et crvveereereennas 129
5.4 7 Design Constraint Analysis129
5 4.8 Code Inspection Checklists (mcludmg codmg standards) e eee e 2130
54.9 Formal Methods coocovieees + ciies et ertieecies et e e e 130
5.4.10 Unused Code ANalysiS........c.c. .o+ covveeves ceves o vevee covveevees covennns 130
5.5 TEST ANALYSIS e 131
551 Test COVErage cece v v oo et et e e reeee e eervee e ve e ee e el 131
552 Test Results ANalysiS........ccceeveriine e covee ce svenee e corenae cee venne vee venues 131
5.5.3 Independent Verification and Validation . . . 132
56 SOFTWARE OPERATIONS&MAINTENANCE e e e . 2132
6. REFERENCESoociviiiiiiieiees rvvvenee veen on cvvesvenses oo evee een sone oo 133

Appendix-1: Restrictions on the Use of the Ada Language
Appendix-2- Formal Methods and Safety-Critical Considerations
Appendix-3: Acronyms and Glossary

Table of Tables

TABLE 2-1 HAZARD PRIORITIZATION - SYSTEM RISK INDEX..
TABLE 2-2 HAZARD CAUSES AND CONTROLS - EXAMPLES.

TABLE 3-1 NASA SOFTWARE LIFECYCLE PHASES - REVIEWS

TABLE 3-2 SOFTWARE SUB-SYSTEM CATEGORIES

TABLE 3-3 REQUIRED SOFTWARE SAFETY EFFORTc..
TABLE 3-4 SOFTWARE REQUIREMENTS PHASE............. oot covvinnnee.
TABLE 3-5 SOFTWARE ARCHITECTURAL DESIGN PHASE
TABLE 3-6 SOFTWARE DETAILED DESIGN PHASE

TABLE 3-7 SOFTWARE IMPLEMENTATION PHASE ...
TABLE 3-8 SOFTWARE TESTINGPHASE

TABLE 3-9 DYNAMIC TESTING..oooooooooe oo oo
TABLE 3-10 SOFTWARE MODULE TESTING ... oo oo
TABLE 4-1 FAULT TOLERANT PROBLEMS AND SOLUTIONS.

.11

19

22

...30

31
34
35
35

vee .36
.37
38

39

.35

TABLE 5-1 SUBSYSTEM CRITICALITY MATRIX covveiees e+ o 68

TABLE 5-2 SUBSYSTEM CRITICALITY ANALYSIS REPORT FORM 72
TABLE OF FIGURES

FIGURE 2-1 PAYLOAD HAZARD REPORT FORM...........cccccvuevmnvrnneninne e 15
FIGURE 2-2 PAYLOAD HAZARD REPORT CONTINUATION SHEET 16
FIGURE 5-3 SFTA GRAPHICAL REPRESENTATION SYMBOLS.. 85
FIGURE 5-4 EXAMPLE OF HIGH LEVEL FAULT TREE.86
FIGURE 5-5 EXAMPLE CODE FAULTTREE... 87
FIGURE 5-6 A PETRI-NET GRAPH ... v 92
FIGURE 5-7 A PETRI-NET GRAPH WITH TI-IE NEXT STATE SHOWN e 93
FIGURE 5-8(A) REACHABILITY GRAPH.. oo o0 oo o . .. 94
FIGURE 5-9 INVERSE PETRINET... i e w95
FIGURE 5-10 EXAMPLE OF STATE TRANSITION DIAGRAM v eoe 117
FIGURE 5-11 EXAMPLE RSM AND SIGNALScccccociet mvevee v vee v e e . 120

1. INTRODUCTION

It is impossible to provide a complete synopsis of the 200 page guidebook in a single
conference paper Instead, we have selected a few key technical elements which are the
most significant recommendations for software developers and safety analysts

1.1 Scope

The NASA Guidebook for Safety Critical Software - Analysis and Development, was
prepared by the NASA Lewis Research Center, Office of Safety and Mission Assurance,
under a Research Topic (RTOP) task for the National Aeronautics and Space
Administration. The NASA Software Safety Standard NSS 1740 1 prepared by NASA
HQ addresses the "who, what, when and why" of Software Safety Analyses. This
Software Safety Analysis Guidebook addresses the "how to" The focus of this document
is on analysis and development of safety critical software The guidebook can also be
used for analysis and development of firmware which is software residing in non-volatile
memory, ¢ g., ROM or EPROM

There are many different techniques described in the literature. Here they are brought
together, evaluated, and compared The guidebook addresses the value added versus cost
of each technique with respect to the overall software safety goals.

1.2 Purpose

The purpose of the guidebook is to provide an aid to the various organizations involved in
the development and assurance of safety critical software.

1.3 Acknowledgments

The material presented in the guidebook has been based on a variety of sources These
sources are too numerous to list here.

A special acknowledgment is owed to the NASA/Caltech Jet Propulsion Laboratory of
Pasadena, California, whose draft "Software Systems Safety Handbook" has been used
verbatim or slightly modified in several sections of the guidebook.

We also thank the American Society of Safety Engineers for permission to reproduce
portions of the paper. Gowen, Lon D. and Collofello, James S "Design Phase
Considerations for Safety-Critical Software Systems". PROFESSIONAL SAFETY, April
1995.

2. System Safety Program

A system safety program is a prerequisite to performing analysis or development of safety
critical software

It is often claimed that "software cannot cause hazards", however this is only true where
the software resides on a non-hazardous platform and does not interface with any
hazardous hardware

2 1 Preliminary Hazards Analysis (PHA)

The PHA is the first of a series of system level hazards analyses, whose scope and
methodology is described in the NASA NHB 1700 series documents, and NSTS 13830
Implementation Procedure for NASA Payload System Safety Requirements.

3 Software Safety Planning

This section discusses the level of effort for both software development support tasks, and
software analysis tasks to be performed by software development personnel, and software
safety personnel respectively. On the development side, the software safety engineer flows
safety requirements to the software developers and monitors their implementation On the
analysis side, the software safety engineer analyses software products and artifacts to
identify new hazards and new hazard causes to be controlled. The analysis and
development tasks follow the software development

lifecycle.

The level of effort required is related to the system risk index, based on severity and
probability of occurrence of hazards.

Table 3-4 Software Requirements Phase through Table 3-10 Software Module Testing
are modifications of tables that appear in the International Electrotechnical Committee
(IEC) draft standard IEC 1508, "Software For Computers In The Application Of
Industrial Safety-Related Systems". Their set of tables is the best known (but unpublished)
planning guide in existence for software safety.

LifeCycle Tasks and How to: How to
Phase Priorities Development Analysis

Tasks Tasks
Concept

Initiation Table 3-4 Software Requirements Phase Section4 1 Section 5.1

Software Table 3-4 Software Requirements Phase Section42 Section5 1
Requirements

Software Table 3-5 Software Architectural Design ~ Section43 Section 5.2
Architectural Design

Software Table 3-6 Software Detailed Design Phase Section44 Section 5 3
Detailed Design

Software Table 3-7 Software Implementation Phase Section4 5 Section 5 4
Implementation

Software Table 3-8 Software Testing Phase Section4.6 Section5 5
Test Table 3-9 Dynamic Testing

Table 3-10 Software Module Testing
4 Safety Critical Software Development
Software safety activities which should be incorporated into the software development
phases of a project.

4.1 Software Concept and Initiation Phase

For most NASA projects this lifecycle phase involves system level requirements and
design development.

4.2 Software Requirements Phase

The cost of correcting software faults and errors escalates dramatically as the development
life cycle progresses. Thus it is important to correct errors and implement correct software

requirements from the very beginning However it is generally impossible to eliminate all
errors Hence two goals or philosophies are continuously required-

1) Development of complete and correct requirements and correct code

2) Development of fault-tolerant designs, which will detect and compensate for
software faults "on the fly".

Both these thought processes must begin during initial requirements development.

4.2.1 Development of Software Safety Requirements

Software safety requirements are obtained from several sources, and are of two types,
generic and specific The generic category of software safety requirements are derived
from sets of requirements which are commonly used in different programs and
environments to solve common software safety problems Specific software safety
requirements are system unique functional capabilities or constraints which are identified
in three ways:

1) Through top down analysis of system design requirements

2) From the PHA

3) Through bottom up analysis of design data

4 2 2 Generic Software Safety Requirements

Sources of generic software safety requirements

NSTS 19943 Command Requirements and Guidelines for NSTS Customers

STANAG 4404 (Draft) NATO Standardization Agreement (STANAG) Safety Design
Requirements and Guidelines for Munition Related Safety Critical Computing Systems

EWRR (Eastern and Western Range Regulation) 127-1, Section 3.16 4 Safety Critical
Computing System Software Design Requirements.

AFISC SSH 1-1 System Safety Handbook - Software System Safety , Headquarters Air
Force Inspection and Safety Center.

EIA Bulletin SEB6-A System Safety Engineering in Software Development (Electrical
Industries Association)

NASA Marshall Space Flight Center (MSFC) Software Safety standard

Underwriters Laboratory - UL 1998 Standard for Safety - Safety-Related Software,
January 4th, 1994

4.2 2.1 Fault Tolerance/Independence

Most NASA space systems employ failure tolerance to achieve an acceptable degree of
safety. This is primarily achieved via hardware, but software is also important, because
improper software design can defeat the hardware failure tolerance.

"Must-Work Functions" (MWFs) achieve failure tolerance through independent parallel
redundancy. For parallel redundancy to be truly independent there must be dissimilar
software in each parallel path Software can be considered "dissimilar" if N-Version
programming is used. N-version programming is discussed below in Section 4 3.1.1 N-
Version Programming.

"Must-Not-Work Functions" (MNWFs) achieve failure tolerance through independent
multiple series inhibits For series inhibits to be considered independent they must be
generally controlled by different processors containing dissimilar software.

4 2 2 2 Hazardous Commands
4 2 2 3 Coding Standards

One class of generic software requirements are coding standards, these are in practice
“safe" subsets of programming languages. These are needed because most compilers can
be unpredictable in how they work For example, dynamic memory allocation, the defaults
chosen by the compiler might be unsafe See 4 5 Software Implementation.

4.2 2.4 Timing, Sizing and Throughput Considerations

System design should properly consider real-world parameters and constraints, including
human operator response times, and control system response times, and flow these down
to software appropriately. Adequate margins of capacity should be provided for all these
critical resources.

Automatic safing is often required if the time to criticality is shorter than the realistic
human operator response time, or if there is no human in the loop

Control system design should be based on the established body of control theory, such as
dynamic control system design, and multivariable design in the s-domain for analog
continuous processes Sampled analog processes should make use of Z-transforms to
develop difference equations to implement the control laws This will also make most
efficient use of real-time computing resources

10

Quantization: Digitized systems should select wordlengths long enough to reduce the
effects of quantization noise to ensure stability of the system.

4 2.3 Formal Methods - Specification Development

Formal Methods is a process which translates all requirements into a quasi-mathematical
language of logical expressions. This forces a singular interpretation of all the
requirements, and makes it easier to find missing, incomplete or conflicting/inconsistent
requirements. This ensures that the specification analysis is thorough, accurate, and
consistent Ad hoc specification analysis is unlikely to screen all the requirements errors,
except for relatively simple systems However, Formal Methods are expensive to
implement and require a substantial investment in training in order to be effective, so they
are not appropriate for low risk systems or where the developers and analysts have no
prior experience. The first step in the process of Formal Methods is to develop
Requirements State Machines or State Transition Diagrams.

A broad range of subtasks comprises Formal Methods. Those subtasks performed during
software requirements development phase include the following:

Finite state machine/State Transition charts
Transaction Analysis
Proofs of Correctness

An introduction to Formal Methods is provided as Appendix-2 of the guidebook Detailed
descriptions of Formal methods and state machines are given in the NASA Formal
Methods Guidebook ."

4 3 Architectural Design Phase

The main safety objective of architectural design phase is to define the strategy for
achieving the required level of fault tolerance in the different parts of the system. The
degree of fault tolerance required can be inversely related to the degree of fault reduction
used, e.g , Formal Methods. However, even the most rigorous level of fault reduction will
not prevent all faults, and some degree of fault tolerance is generally required.

Independence / Failure Tolerance

NASA currently uses mostly hardware failure tolerance to control hazards The degree of
hardware or system failure tolerance required varies with the severity of the hazard as
follows.

Catastrophic Hazards. two- failure tolerance required

Critical Hazards single failure tolerance required.

11

These criteria are based on extensive experience of spacecraft flight operations which led
to an accepted understanding of failure probabilities, and these levels of failure tolerance
are accepted as necessary and sufficient to achieve an acceptable (low) level of risk

However, because of the unpredictable number of latent errors which might exists in
software, software failure tolerance cannot be relied upon or verified in the same way
Different hazard control approaches must be used for software versus hardware

To prevent fault propagation from uncontrolled software, SSCSCs must be fully
independent of non-safety critical components

One approach is to establish "Fault Containment Regions" (FCRs) to prevent propagation
of software faults. This attempts to prevent fault propagation such as from non-critical
software to SCCSCs; from one redundant software unit to another, or from one SCCSC
to another Techniques known as "firewalling" should be used to provide sufficient
isolation of FCRs to prevent hazardous fault propagation.

Methods of achieving independence are discussed in more detail in Reference [1] "The
Computer Control of Hazardous Payloads", NASA/JSC/FDSD, 24 July 1991. FCRs are
defined in reference [2]2 SSP 50038 Computer Based Control System Safety
Requirements - International Space Station Alpha

[11] Gowen, Lon D. and Collofello, James S. "Design Phase Considerations for Safety-
Critical Software Systems". PROFESSIONAL SAFETY, April 1995.

Gowen and Colldfield Reference [11] recommend four techniques for achieving fault-
tolerance. Their paper is summarized below with permission, because it contains an
excellent survey of the state of the art in these key areas.
Their five recommended techniques are*

N-Version programming

Recovery blocks

Resourcefulness

Abbott-Neuman Components.

Self-Checks

In addition, a summary of fault-tolerant solutions is given in Table 5.3.1 taken from
reference [11].

4.3.1 1 N-Version Programming

This technique uses multiple software versions to tolerate runtime faults

12

N-Version programming is time consuming and expensive, as is maintaining multiple
versions In addition, the different versions are not necessarily independent in their failures
because different programmers tend to make similar errors, especially when errors are due
to a flaw in the requirement's definition (Knight and Leveson [13], Brilliant, Knight and
Leveson [14,15]) Under such conditions, the majority vote may be wrong, thus causing a
hazard.

Despite its negative aspects, N-Version programming is useful for fault tolerance.
4.3.1.2 Recovery blocks

Like N-version programming, this technique uses multiple software versions to find and
recover from faults In contrast, recovery blocks use an (internal) acceptance test on each
version's output until output passes a test. The (internal) acceptance test uses reverse
engineering to determine whether output is acceptable.

4.3 1.3 Resourcefulness

Resourcefulness concentrates on achieving system goals and requires systems that are
functionally rich [21] Such a system can obtain its goals through multiple means For
example, an airplane can descend by using its flaps to increase drag or decreasing its speed
to reduce lift Resourcefulness is a system's ability to achieve goals via various known
means so that the system can handle failures by trying different sub-goals

4 3.1 4 Abbott-Neuman Components

This technique combines various ideas: Abbott's software-component concept, Neumann's
design criteria and software self-checks (Abbott [21], Neumann [22], Anderson [20], and
Lee [TBD]) Abbott suggested that software focus can be the component level (ie,
module, package, task, etc.). which is where complexity originates. To increase a
component's fault tolerance, Abbott applied Neumann's design criteria, which states that
each component must be self-protecting and self checking A self protecting component
does not allow other components to crash it, rather it returns an error indication to the
calling component A self-checking component detects its own errors and attempts to
recover from them.

43 1 5 Self Checks

Self-checks are not a fault-tolerant technique, but a classification of dynamic fault-
detection categories, which various fault-tolerant techniques use. For example, N-version
programming uses a replicative self-check, while recovery blocks use replication and either
a reversal or reasonableness self-check.

Structural self-check is one that requires more explanation, it uses redundant data and
checks to ensure that components manipulate complex data structures correctly.

13

(This concludes the summary of [11] Gowen, Lon D. and Collofello, James S "Design
Phase Considerations for Safety-Critical Software Systems". PROFESSIONAL SAFETY,
April 1995.)

4.4 Detailed Design Phase

The following tasks during the detailed design phases should support software safety
activities.

1. Program Set Architecture.

2, Internal Program Set Interfaces.

3. Shared Data.

4, Functional Allocation

S. Error Detection and Recovery.

6. Inherited or Reused Software and COTS.

7. Design Feasibility, Performance, and Margins.

8. Integration

9. Interface Design.

10. Formal Methods - Formal specification Development (see 4 2 3)

4.5 Software Implementation

It is during software coding that software controls of safety hazards are actually
implemented. Programmers must recognize not only the explicit safety-related design
elements but should also be cognizant of the types of errors which can be introduced into
non-safety-critical code which can compromise safety controls

4.6 Software Integration and Test

The safety testing effort should be limited to those software requirements classed as

safety-critical items. Safety testing can be performed as an independent series of tests or as
an integral part of the developer's test effort.

14

4.6 1 Testing Techniques

Testing should be performed in a controlled environment in which execution is controlled
and monitored or in a demonstration environment where the software is exercised without
interference.

4 7 Software Acceptance and Delivery Phase

Once the software has completed its acceptance testing it can be released either as a stand-
alone item, or as part of a larger system acceptance.

Accompanying release of the software should be an Acceptance Data Package (ADP)
This package as a minimum should contain a user manual.

5. Software Safety Analysis

During the software lifecycle, the software safety organization performs various analysis
tasks, employing a variety of techniques. This section describes techniques which have
been useful in NASA activities and some from elsewhere Some discussion on the cost and

value of each technique is provided.

As software controls become more defined software hazard analyses will identify
individual program sets, modules, units, etc which are safety-critical

5 1 Analysis of the Software Requirements for Potential Hazards

The requirements analysis activity clarifies and codifies safety requirements for the
software and makes them consistent and complete

5 1.1 Software Safety Requirements Flowdown Analysis
5.1 2 Requirements Criticality Analysis
5.1 3 Formal Specification Analysis

Specification analysis evaluates the completeness, correctness, consistency, and testability
of software requirements. Techniques used to perform specification analysis are:

hierarchy analysis,
control-flow analysis,
information-flow analysis, and
functional simulation

15

For the latter three techniques a large, well established body of literature exists describing
in detail these methods, and many others, and background for each Instead of
reproducing those lengthy texts the reader is directed to these excellent references

Beizer, Boris, "Software Testing Techniques”, Van Nostrand Reinhold, 1990. - (Note:
Despite its title, the book mostly addresses analysis techniques).

Beizer, Boris, "Software System Testing and Quality Assurance", Van Nostrand Reinhold,
1987. (Also includes many analysis techniques).

Yourdon Inc., "Yourdon Systems Method - model driven systems development", Yourdon
Press, N 1., 1993.

DeMarco, Tom, "Software State of the Art. selected papers', Dorset House, NY, 1990.

5.1 4 Formal Inspections of Specifications

Formal inspections and formal analysis are different. Formal inspections are otherwise
known as Fagan Inspections, named after John Fagan of IBM who devised the method
NASA has published a standard and guidebook for implementing the Formal Inspection
(FI) Process, Software Formal Inspections Standard (NASA-STD-2202-93) and
Software Formal Inspections Guidebook (NASA-GB-A302) . FIs can and should be
performed within every major step in the software development process However, they
have the most value during the earlier requirements development phases, and decreasingly
less value in later design and coding phases.

5.2 ARCHITECTURAL DESIGN ANALYSIS

The software architectural design process develops the high level design that will
implement the software requirements

After allocation of the software safety requirements to the software design, Safety Critical
Computer Software Components (SCCSCs) are identified

Analyses described for Architectural Design Phase are as follows

Update Criticality Analysis
Conduct Hazard Risk Assessment
Analyze Architectural Design
Interdependence Analysis
Independence Analysis

5.3 Detailed Design Analysis
During Detailed Design phase more detailed software artifacts are available, permitting

rigorous analyses to be performed. Detailed Design Analyses can make use of artifacts
such as the following' detailed design specifications, Pseudo-Code, emulators and

16

Program Description Language products (PDL). Preliminary code produced by code
generators within case tools should be evaluated.

Many analysis techniques to be used on the final code can be "dry run" on these design
products. In fact, it is recommended that all analyses planned on the final code should
undergo their first iteration on the code-like products of the detailed design. This will
catch many errors before they reach the final code where they are more expensive to
correct. The following techniques can be used during this design phase.

Design Logic analysis
Software Fault Tree Analysis
Petri Nets

Dynamic Flowgraph Analysis
Markov Modeling

Design Data Analysis

Design Interface analysis
Measurement of Complexity
Design Constraint Analysis
Safe Subsets of Programming Languages
Formal Methods
Requirements State Machines
Formal Inspections

5.4 CODE ANALYSIS

Code analysis verifies that the coded program correctly implements the verified design and
does not violate safety requirements In addition at this phase of the development effort,
many unknown questions can be answered for the first time. For example, the number of
lines of code, memory resources and CPU loads can be seen and measured, where
previously they were only predicted, often with a low confidence level Sometimes
significant redesign is required based on the parameters of the actual code

Code permits real measurements of size, complexity and resource usage.

Some of the techniques used in the performance of code analysis mirror those used in
design analysis However, the results of the analysis techniques might be significantly
different than during earlier development phases, because the final code may differ
substantially from what was expected or predicted.

1 DESIGN LOGIC ANALYSIS

2 Software Fault Tree Analysis (SFTA)
3 Petri-Nets

4 Design Data Analysis

5 Design Interface Analysis

6 Measurement of Complexity

17

7 Design Constraint Analysis
8 Safe Subsets of Programming languages
9 Formal Methods and Safety-Critical Considerations

10 Requirements State Machines

Each of the analyses in this section should be undergoing their second iteration, since they
should have all been applied previously to the code-like products (PDL) of the detailed

design.

5.5 TEST ANALYSIS

Two sets of analyses should be performed during the testing phase.

1) analyses before the fact to assure validity of tests and, 2) analyses of the test results
5.6 SOFTWARE OPERATIONS & MAINTENANCE

Maintenance of software differs completely from hardware maintenance Unlike hardware,
software does not degrade or wear out over time, so the reasons for software maintenance

are different.
The main purposes for software maintenance are as follows:

to correct known defects

to correct defects discovered during operation

to add or remove features and capabilities (as requested by customer, user or
operator)

to compensate or adapt for hardware changes, wear out or failures

The most common safety problem during this phase is lack of configuration control,
resulting in undocumented and poorly understood code. "Patching" is a common improper
method used to "fix" software "on the fly". Software with multiple undocumented patches
has resulted in major problems where it has become completely impossible to understand
how the software really functions, and how it responds to its inputs.

18

Form Approved
REPORT DOCUMENTATION PAGE OMB No 0704-0188

Public reporting burden for this collection of hiormaxbn is estimated to average 1 hour per respanse, Includlng the time for revi ions, g exisling data sources,
J and of | end regarding zﬂu burden estimate or any other aspect of this

gathering and rnalntalnlnq the data pleting
collection of information, Including suggesti I ducing this burden, to Wa.shlngton Headquanors sgrvlces Divectorato for Information Operations and Reports, 1215 Jefferson
Davis Highway, Sulte 1204, Arlington, VA 22202-4302, and 1o the Office of g and Budget, P ion Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3 REPORT TYPE AND DATES COVERED
October 1995 Final Contractor Report
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
Software Safety Progress m NASA
WU-601-60-60
6. AUTHOR(S) C-NAS3-26764
Charles F. Radley
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Raytheon Engineers and Constructors

2001 Acrospace Parkway E-9899
Brook Park, Ohio 44142
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

National Aeronautics and Space Admnistration
Lewis Research Center NASA CR-198412
Cleveland, Ohio 44135-3191

11. SUPPLEMENTARY NOTES
Prepared for the Safety Through Quahty Conference cosponsored by NASA, BCS, and RTAL, Cape Canaveral, Flonda, October 23-25,
1995 and the Workshop on Safety and Reliability in Emerging Control Technologies, sponsored by the International Federation of
Automatic Control, Dayton Beach, Florida, November 1-3, 1995. Project Manager, Martha Wetherholt, Assurance Engmeering Office,
NASA Lewis Research Center, organization code 0520, (216) 433-2416

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassified - Unlimited
Subject Categories 01, 03, 12, 17, 18, 31, 38, 61, 62, and 66

This pubhication 1s available from the NASA Center for Aerospace Information, (301) 621-0390

13. ABSTRACT (Maximum 200 words)

NASA has developed guidelines for development and analysis of safety-critical software. These guidelines have been
documented in a Gmdebook for Safety Criucal Software—Development and Analysts The guidelines represent a
practical "how to" approach, to assist software developers and safety analysts 1n cost effecuve methods for software
safety. They provide guidance 1n the implementation of the recent NASA Software Safety Standard N§S-1740.13 which
was released as "Interim"” version 1n June 1994, scheduled for formal adoption late 1995. This paper 1s a survey of the
methods in general use, resulung in the NASA guidelines for safety critical software development and analysis

14. SUBJECT TERMS 15 NUMBER OF PAGES
. 20
Software; Safety; Assurance; Analysis; Verification, Systems; Development; Critical 6. PRICE CODE
A03
17. SECURITY CLASSIFICATION [18. SECURITY CLASSIFICATION |18 SECURITY CLASSIFICATION | 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified Unclassified
NSN 7540-01-280-5500 Standard Form 298 (Rev 2-89)

Prescribed by ANSI S1d 239-18
298-102

End of Document

