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1.0 INTRODUCTION

Propeller aircraft noise reduction has been studied since the early days of aviation, Initially
the need for noise reduction was coupled to the need for reduced detectability in military
operations, As the number of airplanes increased and their size and horsepower increased
there was a need to reduce their noise because of annoyance to the residents near airports
or near areas where there were significant numbers of overflights. In Europe where there
is a higher population density.and a quiet living environment is considered highly desirable,
there is more need for propeller aircraft noise reduction than in the America's where there
is more open space and higher noise levels in the environment are accepted. This level of
acceptance, however, is deteriorating, particularly near the National Parks where the noise
of tourist flights degrade the isolated nature of the environment that the park visitors desire.
Also, the General Aviation airplane market that has deteriorated for more than 10 years is
beginning to recover. This recovery will increase the number of airplanes and therefore,
unless noise is reduced, the annoyance caused by these airplanes will increase.

This report is an assessment of the current state-of-the-art of propeller aircraft noise
reduction technology. It consists of: (1) an assessment of the probable potential noise
reduction gains that might be achieved, and (2) a review of past and current propeller
aircraft noise reduction research programs to determine their acceptability.

In assessing the noise reduction concepts, cost and manufacturability is considered. In
particular, the technology that can be applied to existing propeller driven airplanes is
evaluated. Since piston engine noise is known to be a factor in aircraft noise (when the
propeller noise is reduced), this report also includes a review of engine noise reduction
concepts.

In reviewing the literature, it was not possible to review all of the noise reduction work that
has been reported in the past 65 years. It is hoped that the reports reviewed will provide
sufficient information to assess the potential for practical methods to satisfy noise reduction
needs for the future.

The report is organized into the following sections:

1.0 Introduction
2.0 Propeller Noise Reduction Literature Review
3.0 Piston Engine Noise Reduction Literature Review
4.0 Summary and Concluding Remarks
5.0 Recommendations



2.0 PROPELLER AND PROPELLER AIRCRAFT NOISE REDUCTION

LITERATURE REVIEW ,'

In this section the important results from various propeller noise reduction analyses and
tests are reviewed. It should be noted that experimental programs that relied on static tests

have not been included as these results are not a reliable indicator of flight test results.

Also the literature on the Prop-Fan, the muttibtade advanced high cruise speed turboprop
is not included as its geometry (very high power absorption, relatively small diameter, wide

chord, highly swept planform, many blades) is quite inconsistent with the geometry of the
propellers in current use or likely to be in wide spread use in the near future.

It should also be noted that some of the experimental programs made use of engine
mufflers. Where they were used, they are discussed in the context of the airplane noise
reduction. Some of these mufflers are discussed in reviews of separate reports in section
3.0 of this report.

- This report 2-_describes the noise reduction achieved by changing the
number of blades and RPM of the propeller on a high wing reconnaissance airplane.

Engine exhaust muffling is also used. This was a modification of a Stinson L-5 liaison type
airplane selected as being representative of personal type airplanes in the 150 to 200

horsepower class. Although the experiments were conducted with a military
reconnaissance airplane, it appears that the motivation for this work was the reduction of

noise around general aviation airports. Table 2.1 lists the characteristics of the standard

and modified aircraft. The most obvious change is shown in Fig. 2.1. Here are the two
relatively narrow blades are seen to have been replaced by five paddle type blades. As

Table 2.1 shows, the propeller of the standard aircraft was directly driven off the engine
while the propeller of the modified aircraft was gear driven. Also the engine exhaust noise
was reduced by use of a tuned chamber muffler. The remarkable reduction in noise of this
modification is shown in Fig. 2.2 where it can be seen that as much as 20 dB reduction was

achieved. Even more impressive is the comparison of the noise of the modified airplane
with power on and power off shown in Figure. 2.2. The aircraft with power on is seen to be

only 5 dB noisier with power on than it is with power off. The propeller noise reduction was
so effective that the airframe noise of this small aircraft was a significant factor in the total

aircraft noise. Performance of this installation was claimed to be as good or better than the
standard aircraft, but the weight penalty was not acceptable.

With respect to the above mentioned weight penalty, Vogeley states that "the five-blade
propeller as tested, was very heavy but only because the hub was designed for wind-tunnel
work and no consideration had been given to weight. Actually, the wooden blades each

weigh only 6 pounds and it is estimated that, if a complete wooden propeller had been built,

the total weight would have been less than 50 pounds as compared with approximately 25
pounds for the two-blade propeller.
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The modified airplane included an exhaust muffler of the "acoustical-filter-type". From

Vogeley's description this was fairly large and was not optimized from a size and weight
standpoint. In use it appeared to be mounted aft of the pilot's compartment inside the

fuselage with the exhaust pipe from the engine to the muffler outside the fuselage. The
exhaust from the muffler exited the upper surface of the fuselage near the leading edge of
the vertical stabilizer. Test stand results showed the maximum noise at 300 ft for the

engine without muffler operating at full throttle at 2790 RPM to be 89 dB (unweighted).
With the muffler installed the level was 67 dB (unweighted). Some tests done during the

program indicated that the valves, gears and intake noise in the muffled engine could have
been dominant,

Beranek, et al, 1950 - In this report Z2the effect on flyover noise of reducing propeller RPM

and changing the propeller design (particularly the number of blades) is evaluated
experimentally. Tests were conducted on two airplanes, standard and modified versions

of a Stinson Voyager 165 shown in Figure 2.3 and a Piper Cub J-3 shown in Figure 2.4.

Tests were conducted statically on the ground, and at takeoff and flyover. Data is reported
in unweighted and weighted dB. The data of most interest was obtained during 500 ft
flyovers and reported in dB with a 40 dB weighting. This weighting is shown in Figure 2.5
along with the A-Weighting currently used in General Aviation noise certification. Because

of the similarities of these two weightings, the results of the reported tests are a good
indication of the certification noise benefits of reducing RPM and changing number of
blades.

The standard Stinson was a 1948 Voyager 165 equipped with a Franklin six-cylinder direct
drive engine rated at 165 hp at 2800 RPM. The modified Stinson was a 1946 Stinson

Voyager 150 equipped with an experimental geared Franklin engine rated at 180 hp at
3050 RPM. This engine had a planetary gearbox with a gear ratio of 0.632 to 1. The
exhaust system of the modified Stinson had two Maxim silencers installed. Each muffler

weighed 12 pounds with supporting brackets weighing 2.5 pounds. The back pressure of

the mufflers as measured at 2900 RPM at full throttle was 4 inches of Hg.

The standard Piper Cub J-3 shown in the upper photograph of Figure 2.4 was equipped
with a Continental four-cylinder direct-drive engine rated at 65 hp at 2300 RPM. The
modified Cub shown in the lower photograph of Figure 2.4 is essentially the same as a

standard configuration except for a new larger vertical fin and rudder. The engine in this
airplane is a Lycoming four-cylinder, direct-drive rated at 108 hp at 2600 RPM. It was
modified with a belt drive to reduce propeller RPM. The exhaust noise was reduced by an
ejector system that fed into a perforated tube lined with a bulk absorber material. This

system also kept engine temperatures at an acceptable level for all tests. The ejector
system weighed 9 pounds and caused a back pressure of 10 inches of Hg at 2500 RPM at
full throttle.

Figure 2.6 shows the time history of the maximum power 500 ft flyover noise for the
Stinson airplane with the different propeller and engine configurations. All of the
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experimentalconfigurationsshow a dramatic reduction in maximum flyover noise relative

to noise of the standard configuration (configuration 1). The peak levels from Figure 2.6
are listed in Table 2.2 along with the geometry of the configurations. Photographs of the
propeller tested are shown in Figure 2.7. Also in Table 2.2, the information on a standard

and modified Piper Cub are listed. The photographs of these configurations are shown in
Figure 2.4.

All of the experimental configurations show a reduction in noise relative to the standard

configurations. The table shows the following:

1. The Stinson geared 2 blade configuration shows a reduction of 11 dB.

2. Additional reductions can be seen as number of blades increases.

. Three of the four propellers with four blades show similar levels when operated at the

higher power level. One four blade configuration (2H) shows a level 3 dB higher than
configurations 2F or 2G at the lower power level. The reason for this is not discussed.

4. The modified Cub is 9 dB lower in level than the standard Cub.

The performance penalties in cruise for the different configurations is not discussed. The
penalties in takeoff run are listed in Table 2.2. Some penalties exist in the modified

configurations but it is not clear whether these penalizes would exist of variable pitch was
included in the modified configurations.

Roberts and Beranek, 1952 - In this repo_ 3 various propeller configurations were tested
to reduce noise on the pusher-type amphibian airplane sh_nwn at the ton of Fi0um 28. The
,'==,,_= were rnrnnenc_l uuifh fhn¢== ohf=in=_! in a n =,'_di_-,r nrnnr=m On fh=_ tr=e, fnr insf=ll=flnn

=.h,, .... at the _,,.,4,,,,,_ of c;,.,,,,.,_ ,_ _ =A,,o, ,,_ phibi•_,,,,,.,, ,,,,,,v,,, , ,uu,,. ,.-.,.,.... ,.,.,, ,,, the '_'_*_ ,,k,_;,,,_ ,,,i,h.... on the am an .-'-as ...............
a gear._, engine. However, a reference case with a direct drive engine is included.

Extensive flight and ground si_i]ui_i_ w_,u _u,,duuiud. Af, i,,dk_iiu,, ui" iJ,u pui¢,,ii=i ,,ui_¢
reduction of the various configurations can be seen by reviewing maximum measured levels
of the maximum power flyover noise at an altitude of 500 ft. The data of most interest is

that which was acquired using the 40 dB weighting filter. This filter characteristic is the

same used in the earlier tractor airplane test series described above. The similarity of the
A-Weighting and 40 dB weighting characteristics allows the results of these early tests to

be used as an indication of the A-Weighting noise reduction potential of the various
configurations.

The results of the tests are summarized in Table 2.3. The pmpe!!er c.onfigur__tions __re
shown in Figures 2.9 and 2.10. All pertinent parameters are included. Note that most of

the pusher tests used a muffler on the engine. This is shown in Figure 2.11.
Configurations 9A, 9B, 9C, and 9D positioned the muffler immediately above the engine so
the exhaust gases passed through the area swept out by the propeller. In configuration 10
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the muffler was moved close to the fuselage so the exhaust would not pass through the
area swept out by the propeller.

The propellers were operated in three ways regarding the blade pitch. Where "solid

propellers" (no pitch variation capability) were used, only one pitch angle was possible at

takeoff and flyover. The standard pusher (configuration 6)uses a propeller that

automatically changes pitch. The other test configurations (8, 9A, 9B, 9C, 9D and 10) were

run with one pitch angle for takeoff and a second pitch angle for the high speed flyovers.

This is equivalent to a system that would automatically change pitch for different operating
conditions.

The noise levels (40 dB weighting) of Table 2.3 show the following:

a.

The standard tractor (Configuration 1) is 11 dB noisier than the standard pusher

(Configuration 6). The reason for this is not known. However, the shielding of the
pusher installation by the fuselage and wing and the variable pitch of the standard

pusher may hold the explanation. Also, interaction of the engine pylon wake with the
propeller could be another explanation.

b.

The modified pusher with a geared engine and a 4-blade propeller set to simulate

variable pitch (2 fixed pitch settings) is 2.5 dB lower in level than the fixed pitch 4 blade

propeller on the direct drive engine. This is probably due to the reduction in tip speed
from 815 ft/sec to 537 ft/sec.

C.

With the geared engine the lowest noise was achieved with a 4-blade simulated
variable pitch propeller with a muffler installed on the engine. This level was 4.5 dB
lower than the same propeller and engine without the muffler. It was 9.5 dB lower in
level than the direct drive 2 blade variable pitch configuration.

d. The weight impact of the various beneficial changes were:

1. an added 97 pounds of changing from a fixed pitch 2 blade propeller on direct

drive engine to a 4-blade variable pitch propeller on a geared drive engine;
2. an increase of 17 pounds for a muffler;

3. a change of about 4 dB/blade to 7 dB/blade as number of blades increased up to
4 blades. Further increase in number of blades increased the noise.

e.

In general, the maximum level flight speed and average takeoff run before liftoff were

similar for the different propeller and engine combinations except for the solid fixed

pitch propeller or the direct drive engine where the takeoff run increased substantially.
It appears that satisfactorily performance coupled with reduced noise requires a
variable pitch propeller.

The variation in weight impact of adding blades which was described in item 3 above
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deserves further discussion. It appears that the experimental blades were not designed as

a family but instead were in some cases commercial propellers (e.g. configuration 6) and
in other cases experimental propellers (e.g. configurations 9C and 9D). In general, as the
number of blades increases, the blade chord decreases up to point where structural

problems are created by the desire for all the blades to retain the same maximum airfoil

thickness divided by chord. This thickness ratio is needed to retain aerodynamic
performance, it can be seen in figures 2.9 and 2.10 that there is considerable difference

in the blade designs for the propellers tested. Therefore it is not surprising that the weight
per blade varied from 1 to 7 pounds per blade.

Figure 2.12 is an example of the time history of the 500 ft max power flyover of the standard

tractor and standard pusher with 2 blade propellers. It can be seen that the maximum level

of the tractor propeller exceeds that of the pusher. However the pusher remains high in
level before and after the peak. The pusher characteristic was found for all of the
configurations tried (see Figure 2.13). The pusher noise characteristics as also considered

more objectionable than the tractor. In the light of more recent research on propeller noise,
this more objectionable characteristic is undoubtedly due to the interaction of the wake from
the engine support pylon with the propeller.

Johnston and Law. 1957-1958 - These reports 2.4,2.5summarize a program similar to that

reported by Vogeley 2.1. However the objective of this work was to reduce detectability in
a military mission. The characteristics of the standard and modified Otter used in this
program are listed in Table 2.4. The similarity to the approach taken in the Stinson L-5

modification of reference 2.1 can be seen in Table 2.4 and in the photographs of the

standard and modified aircraft of Fig. 2.14. A sample of the noise data from this program
shown in Fig. 2.15 indicates that the propeller noise for the Otter has (like that of the L-5)
been reduced to a level close to the airframe noise. This once again demonstrates the
beneficial effect of increasing number of blades and lowering rpm and tip speed on noise

level. Also in the case of the Otter, the mechanical gearbox noise is seen in Fig. 2.15 to
contdbuteat higher frequencies.

.Hoffman and Muhlbauer, 197 _. - These two papers 26,2.7appear almost identical and

describe noise reduction concepts that the authors consider practical for General Aviation

airplanes. A basic suggestion is reduction in tip speed by reduced diameter at a given
RPM or by reducing propeller RPM with a gearbox on the engine. They endorse the idea

of increasing propeller performance to allow reducing diameter and also reducing airplane
drag so the propeller thrust required can be reduced. In their opinion even propeller RPM
as low as 2000 may not be sufficient to reach future noise requirements.

In terms of future requirements the authors state that "if a 65 dB (level flyover) propeller
noise level is to be achieved, it will be necessary to use engines with gearboxes. The

development of three blade propellers must be extended to the order of magnitude 130 to

300 hp, and four blade propellers for the 300 to 500 hp output range must be developed."

Hadamert, 1974 - The development of a five-blade propeller to reduce noise pollution is
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discussed in this repo_ .8. This propeller was developed for use on relatively high
horsepower turbine engines at low propeller RPM. A performance tradeoff study showed

that acceptable takeoff and cruise performance could be achieved with a 5 blade propeller.

The use of supercritical airfoil sections is suggested for the tip region of a propeller to allow
the blade chord to be reduced. Noise benefits are mentioned for the use of round or

elliptical tip shape rather than a square tip shape. -.

DinaeideiniHiit;0n/Conner, 1975 - In this series of five reports 2-9-2.13, an evaluation of the

noise reduction potential for five airplanes is evaluated. The objective of this noise

reduction was reduced detectability for military applications. Thus the information is only
generally applicable to certification.

The aircraft characteristics are listed in Table 2.5. The 0-1 and U-10 are high wing
airplanes very similar to typical General Aviation airplanes. The 0-2 is fairly large twin
engine airplane of the General Aviation type but with an unusual powerplant configuration.
One powerplant is mounted in the nose and the second is mounted as a pusher behind the

cabin. The OV-1 is a twin turboprop which does not have a civilian counterpart. It is of
interest as there are twin turboprop civilian airplanes where noise reduction features found

practical in the OV-1 could be applied. The A-6 is a twin turbojet so it will not be discussed
further as it is beyond the scope of the present report.

For each of the airplanes described above and in Table 2.5 the flyover noise of the

unmodified airplane was measured. This was then used as a reference for calculating the
reduced noise level that might be achieved by changes in the engine and propeller.

For the 0-1 the modifications are summarized in Table 2.6. The associated performance
is summarized in Table 2.7. The approximate A-Weighted levels for these configurations
are follows:

78 dB for the unmodified configuration, 69.5 dB for Mod. I, 62 dB for Mod. II, and
56.5 dB for Mod. III.

As shown in Table 2.6, the unmodified 0-1 had a 2 blade fixed pitch propeller on a direct
drive engine. Mod. I retained the direct drive engine but used a 6 blade reduced diameter

controllable pitch propeller and an external muffler. Table 2.6 shows that Mod. II used a

geared engine with a large diameter 5 blade controllable pitch propeller and a muffler
mounted inside the fuselage aft of the passenger compartment. Table 2.6 shows that Mod.
III used an engine geared to reduce propeller RPM even lower than Modo I1. Mod. III used

a 5 blade controllable pitch propeller of higher solidity than Mod. I1. Mod. III included a very
large (6.15 ft3) internally mounted muffler.

The performance and weight impact of the different modifications can be seen in Table 2.7.

The impact of Mod. I on weight and performance appears quite acceptable. It is believed

that the cost of a muffler and 6 blade controllable pitch propeller would be significant. The
Mod. II impact on performance and a weighted would probably be acceptable but there
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may bea furthercost for a gearedengine. The Mod. III impacton performanceand weight
is quite significant and would probably not be acceptable.

1

For the U10, the modifications are summarized in Table 2.8. The associated performance

is summarized in Table 2.9. Note that the unmodified configuration has a geared engine.
Mod. I changes the propeller to 5 blades and adds a muffler. Table 2.9 shows that the

impact on weight and performance appears acceptable. However cost would be a factor

in assessing whether the noise benefit is worthwhile. Mod. II changes the engine gear ratio
and increases the diameter of the 5 blade propeller. The muffler of Mod. II is retained. The

approximate A-Weighted levels for these configurations are as follows:

85.5 dB for the unmodified configuration, 82 dB for Mod. I, and 74 dB for Mod. II.

Again, the weight and performance impact appear acceptable but the cost impact would be
a consideration.

For the 0-2 the modifications are summarized in Table 2.10. The associated performance

is summarized in Table 2.11. The unmodified configuration has a 2-blade propeller
mounted on a direct drive engine. Mod. IA and IB changes the propeller to 6 blades with
a reduced diameter. Both Mod. IA and IB include mufflers; that of IB is larger than IA.

Table 2.11 shows that the impact on weight is not significant but there is some impact on
performance that may or may not be acceptable. MOd. II uses a geared engine with a 6

blade propeller the same diameter as the unmodified 0-2. There is further degradation in
performance and weight that may not be acceptable.

The approximate A-Weighted levels for these configurations are as follows:

81 dB for the unmodified configuration, 77.5 dB for Mod. IA and MOd. IB, and
75 dB for Mod. I1.

As in the other airplanes discussed previously, there is a weight and cost associated with
more blades, a muffler, and a geared engine.

For the OV-1 the modifications are summarized in Table 2.12. The associated performance

is summarized in Table 2.13. This is a turbine powered aircraft where engine muffling was
not considered in the study. The octave band noise levels for the various modifications are

shown in Figure 2.16 It can be seen that the high frequency noise is not significantly
reduced by the propeller changes. This is because this part of the noise spectrum is engine
noise controlled. The approximate A-Weighted levels for the various configurations shown
in Figure 2.16 are as follows:

82.8 dB for the unmodified airplane, 80.7 dB for Mod. !, 77.5 dB for Mod. II, and
74.4 for Mod. III.

Mod. I uses a 5 blade smaller diameter propeller on the existing engine. Mod. II changes
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the gear ratio on the engine to reduce the tip speed with a 5 blade propeller. Mod. III
changes the gear ratio further and uses a 6 blade propeller to reduce noise. The

performance and weight penalties may or my not be acceptable. As in other configurations,
adding blades and changing gear ratios probably affects cost.

Based on the above study it appears that some noise reduction is possible without
significantly affecting weight or performance. This is based on analysis so would have to

be proved experimentally. The cost of the changes may or may not be acceptable. If

geared engines are used, their cost and reliability must be considered.

Rathgeber and $ipes, 1977 - In this report TM the effects of various parameters on 305 m

(1000 ft) flyover noise is documented. The effect of helical tip Mach number (MH) on A-

Weighted noise is shown in Figure 2.17. The increasing effect of MH on A-Weighted as
MH increases can be seen. The effect of engine exhaust configuration can also be seen

in Figure 2.17 Data presented show that turbocharged engines are lower in noise than
naturally aspirated engines. Although details are not presented, it appears that the

turbocharged 3 blade installations can be I to 5 dBA lower than naturally aspirated 3 blade
installations at tip helical Mach number (MH) between 0.83 and 0.87.

Tip thickness effects are also documented. Figure 2.18 shows the A-Weighted noise as

a function of MH for three different tip thicknesses. There is the suggestion in this figure
that the effect of tip thickness on noise increases with increasing MH.

The authors indicate that climb performance is degraded as number of blades increases.
Cruise performance is less affected.

The use of reduction drives to reduce MH is discussed. In one case a two stage reduction
drive on a rotary-combustion was used. The resulting noise levels were very low, however,

because of the added weight, the aircraft had zero payload. A system with a single
reduction drive was tried but did not appear to provide a worthwhile benefit for the added
weight.

Shrouded propellers as a means to reduce noise are discussed briefly. No significant
benefits were found for the configurations tested.

Muhlbauer, 1978 - In this report zl_ some general comments on noise reduction are provided
in the context of the author's experience with propellers made of wood composite (wood
blades covered with fiberglass with metal tips). Various noise reductions were measured

when the existing fixed pitch propellers were replaced by variable pitch propellers with wood
composite blades. However, the test conditions are not included so exact noise reduction

values are not relevant. The existing propellers have 3 blades and are slightly smaller in
diameter. The weight of the 3 blade propeller can be equal to or less than the weight of a

current 2 blade metal propeller. The cost of the 3 blade propeller is approximately two
times that of the 2 blade metal propeller.
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Regarding engine exhaust noise, Muhlbauer states that "the exhaust (muffler) system of

general aviation aircraft is far behind the state-of-the art in cars. Considering weight and
dimensional limitations, real research and development is needed to bring the engine noise
down to the present car values.":

Masefield, 1978 - A review of the work done in Germany and Switzerland to reduce light
aircraft noise is described in this paper 218. Only the A-Weighted overall noise is reported

along with general parameters of the blade geometry. Noise is found to increase with tip
Mach number. The slope of noise with tip Mach number is noted to be different for different
propellers but the reasons for this are not presented. The following closing comment of this

paper is of interest as it may still, to a great extent, be true 17 years after it was written:

"For the long term therefore it should be investigated to manufacture a
completely new generation of propellers possibly using the supercritical profile

techniques. The govemmental pressure is apparent in Europe, but by far the

greatest manufacturers of propellers are in the United States and as yet there
are no products on the market with advanced designs for low noise."

Davis, 1979 - In this paper 2.17,the impact of using airfoils with performance better than that

of NACA Series 16 or 65 airfoils is described. With this new airfoil section the propeller

blade loading can be increased so performance can be maintained without a weight penalty
at a lower RPM, thus reducing noise. These new propellers were designed for use on
turbine engines. The baseline propeller had the following characteristics: takeoff power,
650 hp; propeller diameter, 90 inches; propeller speed, 2200 RPM; and blade number, 3.

it is claimed that the use of the new airfoil sections allows the propeller to be run at a
reduced RPM of 2000 with a resultant reduction of 3 dB (note that the text does not indicate

whether this is weighted or unweighted). The weight of the new propeller is stated to be
85.6% of the original design using older airfoil designs.

The same type of study was done for a typical piston engine installation. Here the baseline

propeller had 2 blades, a diameter of 80 inches, an RPM of 2700 and engine power of 300.

A study is reported that indicates that cruise efficiency can be maintained while reducing
diameter to 74 inches. This is claimed to reduce noise to 80.6 dBA from the 85 dBA level
of the baseline propeller.

It should be noted that the above information is based on analytical studies, not

experiments. However, the idea of improving propeller performance by improving the airfoil
performance may be feasible. This would then allow a reduction in propeller diameter with
an associated reduction in noise. Also, it should be noted that the advanced airfoils of the

type discussed in this report are now in common use on larger commuter airplanes. These
may also be in use on recent propeller designs, particularly those in Europe.

Klatte and Metzger, 1979 - 1981 - These reports 21s-2-19 describe an extensive study of the
influence of noise reduction and weight and cost of propellers used in the General Aviation
aircraft. Only propeller modifications were considered. Engine modifications such as the
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addition of a gearbox to reduce RPM were not considered. This study is unique in that it

attempts to deal with the practical aspects of propeller design where noise, performance,
weight and cost are all considered.

Prediction methods were needed in the study for noise, performance, weight, cost and

required thrust. Noise predictions were done with a frequency domain method based on

work by Hanson. This method was originally developed for Prop-Fan noise prediction. It

includes methods for predicting tone and broadband noise components. Noise due to
loading, thickness and quadruple (non-linear) sources are predicted. The effect of the
blade sweep can be assessed with the method.

Performance was predicted by a proven method used to design many propellers in common

use. The method uses two dimensional empirical airfoil data to compute lift and drag
distribution on a series of blade elements along the blade radius.

Weight was predicted based on a generalization of the catalog of 1970 manufacturer's
weights for solid metal propellers. Evaluation of this method showed that existing propeller
weights were calculated with no more than a ±12% error.

Cost was predicted based on a generalization of the catalog of 1978 manufacturer's prices
for solid metal propellers.

Reducing the propeller diameter is one common method for reducing propeller noise.
However, as the propeller diameter is reduced the slipstream velocity increases so the
aircraft drag increases. Therefore, propeller thrust must be increased to maintain a fixed

level of airplane performance. The study used a method to predict the required increase
in thrust to provide a realistic assessment of the noise reduction that could be achieved with
reduced diameter propellers.

Engine noise for the piston engines used was predicted using an empirical generalization.
The noise reductions achieved with various propeller configurations is reported with and
without the engine noise contribution.

Three airplanes were used in the study, the Beechcraft 35-B33 Deboniar (a single engine
example), the Beechcraft 76 Duchess (a light twin engine example) and the deHavilland
DHC6 Twin Otter (a heavy twin turbine engine example).

The initial studies concentrated on the approaches to reduce the noise of the single engine
Debonair. Initial calculations showed that the existing Debonair propeller noise was

dominated by noise due to thickness. Therefore the effect on noise of changes in tip shape
were explored. Figure 2.19 shows the planforms of the blade that were evaluated. It was

found that the lowest noise was produced by the elliptical tip blade.

Next the effect on noise of unloading the tip was evaluated by changing the twist distribution
of the blade. This showed some further reduction.
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Nextthe influenceon noiseof changingfrom RAF-6 airfoils to NACA Series 16 airfoils was

evaluated. It was found that the performance of the existing propeller with RAF-6 airfoils

was lower than a propeller with NACA Series 16 airfoils of equal diameter. Therefore, some
reduction in diameter was possible with a resulting reduction in noise. The amount of

reduction was predicated on equalling the performance of the existing propeller at both

takeoff and 1000 ft flyover. It was found that the existing 7 ft diameter propeller could be
reduced by 0.5 ft while still retaining the required performance.

Tip sweep as shown in Figure 2.20 was also considered. The figure shows a rather

extreme tip sweep of 52 ° which is predicted to reduce flyover noise by 5.5 dBA. It was
concluded that the reduction achieved by sweep could probably be obtained with less cost

and weight impact by alternate noise reduction methods. Also the structural implications
of such sweep were not assessed.

The results of the Debonair study are summarized in Figure 2.21. The configurations are

arranged in decreasing noise level from left to right. Two noise levels are presented, (1)
the noise of the propeller alone (the lower bars of the upper bar graph), and (2) the noise
of the propeller plus engine (the upper bar of the upper bar graph). It was found that

configuration 15 of Figure 2.21 showed the greatest noise reduction without a weight or cost
penalty. This propeller is a 2 blade thin elliptical tip configuration with a smaller diameter

than the exiting propeller. Further reduction can be obtained using a 3 blade propeller with
an even smaller diameter and thin elliptical tips. While there is no weight penalty, there is

a 24% cost penalty for this configuration. Also a 3 blade propeller with a high degree of tip
sweep produced less noise but these require further structural study. It appears that 4
blade propellers were not acceptable because they could not achieve the performance of
the existing 2 blade propeller.

The results of the Beech 76 Duchess study are shown in Figure 2.22. Again the

configurations are arranged in decreasing noise level from left to right and both propeller
alone and propeller plus engine noise are shown. Note that the Duchess propeller planform
already incorporates most of the elliptical shape found to be desirable in the Debonair

study. Also, it should be noted that the Clark Y airfoils of the existing propeller were

predicted to perform worse than the NACA Series 16 airfoils of the study propellers.
Therefore, the diameter of the study propellers could be reduced with attendant noise
reductions.

Configuration 5, with 2 thin elliptical tip blades shows the best noise reduction without a cost

or weight penalty. Further reduction can be obtained without a weight penalty with
configuration 7, with 3 thin nominal tip shape blades of smaller diameter but there is a 22%

cost penalty. The lowest noise predicted was obtained for a 4 blade propeller with thin

elliptical tips. The weight penalty for this propeller was 11%. The cost penalty for this
propeller was 57%. Note that exhaust muffling is required to take advantage of the
reduction in propeller noise to achieve a reduction in overall airplane noise.
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The resultsof the deHavillandTwin Otterstudyareshownin Figure2.23. The enginenoise
usedin the studywas basedon unpublishedanalysisof Twin Otter flyover noise. It can be

seen that noise can be reduced by using thin elliptical tip blades in 3, 4, .and 5 bla_
configurations. There is no cost or weight penalty predicted for the 3 and 4 blade

replacement propellers. The 5 bade configuration shows no weight penalty but a 26

percent cost penalty. One of the 3 blade propellers evaluated was based on a propeller
designed for the OV-10 nor the American Rockwell (see Figure 2.24). It has a narrow tip
and wide inboard section and has the spanwise load moved inboard.

It was concluded in this report that the most productive approaches to reduce noise are:

1. use of elliptical tip blade planforms;

2. use of the smaller tip airfoil thickness consistent with structural integrity and
manufacturing technology.

3. optimization of propeller performance to reduce propeller diameter to a minimum; and

4. use of the largest number of blades consistent with performance, weight, and cost
requirements.

Wilbv and Galloway, 1979 - This report 2.2° reviews the cost/benefit tradeoffs for applying
noise technology to airplanes. One of the airplane types considered is the General Aviation

twin piston engine powered class. Three noise reduction concepts are recommended to
reduce the noise of the propeller driven aircraft: (1) increase the number of blades on the

propeller and reduce its diameter; (2) reduce propeller RPM, and (3) improve the noise
reduction performance of exhaust mufflers.

The baseline propeller for this study had 3 blades. The reduced noise propellers were
either a 4 blade with 7.7% smaller diameter or 5 blade with 11.5% smaller diameter. The
weight impact was estimated to be 20 Ib per additional blade. An additional reduction of 3

dB was considered possible with redesigned blade tip shape and blade airfoils.

It was the authors' opinion that an exhaust muffler could be designed to reduce engine
noise by 10 dB without performance penalties. The weight impact was estimated to be 5
Ib per propeller.

The beneficial effect of using a geared engine to reduce RPM was not considered clear as

a noise reduction technique at the time of this report. The authors considered that the

addition of external gearboxes to existing engines in order to achieve lower propeller

speeds was not reasonable due to the additional weight (50 to 100 Ibs per engine) and the
complexity of the installation. On the other hand, they considered that a new geared drive

engine might be built with no change in weight relative to existing direct drive engines.

Botchers, 1980 - This document is a series of figures used in a specialist meeting on
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propeller noise2-21.Of must interest is the flyover noise levels of airplanes equipped with
different propellers. These propellers are shown in Figure 2.25. The measured noise levels

in dBA for level flyovers at 305 m altitude at 2700 RPM (and presumably maximum power)
are shown in Figure 2.26. The measurements were obtained using a microphone mounted
1.2 m above the ground.

The figure shows the two more standard propellers, the Hoffmann H027 made of wood

composite and the Sensenich SE76 made of duraluminum produced the highest noise and
flew at the highest speed. The Hoffman HOB27 152 BiBlade showed a reduction in noise

relative to the more standard propellers with some loss in airplane speed. The other

Hoffmann BiBlade, the HOB27 137, showed further noise reduction accompanied by a more
significant loss in airplane speed. The two wide blade propellers, the HO165's, were similar

in noise level to the HOB27 137 BiBlade and also similar in flight speed attained. The

HO165BG four blade propeller produced the lowest noise with some loss in maximum flight
speed relative to the more standard propellers and the HOB27 BiBlade.

From the above discussion it appears that there is some performance benefit to the BiBlade

relative to a wide blade propeller but there is also a noise penalty. The four blade propeller
shows a small performance penalty but a large noise benefit relative to more standard 2
blade propellers or the HOB27 BiBlade propeller.

K0rkan et 61, 1980 - An extensive acoustic sensitivity study is reported in this pape r2._
which uses analytical methods to explore the effect of various geometric variables when

applied to four different candidate airplanes. The four airplanes were (1) the Cessna 172N,
a small single piston engine driven high wing airplane, (2) the Cessna 210M, a mid size

single piston engine driven high wing airplane, (3) the Cessna 441, twin turbine engine
driven low wing executive transport, and (4) the STAT, a hypothetical twin turbine engine
driven low wing 19 passenger commuter transport.

The study was conducted by holding all variables constant except the one of interest. The
effect, on 1000 ft A-Weighted flyover noise, of varying the variable of interest was
calculated.

Figure 2.27 shows the effect on noise of varying the number of blades. It can be seen that

the reductions in noise for increasing the number of blades is fairly small; about 2 dB for a
change from two to four blades in the C172N and less than 1 dB for increasing the number
of blades from three to four for the other airplanes.

The effect on noise of reducing RPM is shown in Figure 2.28. The reduction in noise is

fairly significant in all cases but the engine in each case must be modified to produce the
full horsepower at reduced RPM. Furthermore there is an efficiency penalty with reduced
RPM that may be difficult to recover by propeller redesign.

The effect on noise of reducing blade thickness is shown in Figure 2.29. Some worthwhile
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reductions can be seen. However, it may not be structurally acceptable to reduce the
thickness past some minimum.

The effect on noise of reducing activity factor (a function of blade width), shoWn in Figure
2.30, is detrimental for all but the Cessna 441. Again there may be structural limits to

reduction in activity factor. There may be efficiency changes with activity factor that are

unacceptable. In general activity factor is one of the parameters that is optimized to
achieve the best compromise between cruise and takeoff performance.

The effect on noise of adding proplets (like winglets on a wing tip) is shown in Figure 2.31.
The basic assumption is that this device allows the propeller tip to carry a finite load instead

of going to zero as in a conventional propeller. The reductions in noise shown are fairly
significant. It is greatest in propellers with lightly loaded tips like those on the Cessna 172N
and least on the heavily tip loaded Cessna 441. The authors note that these results must

be further evaluated. Since the time of this study, few applications of proplets are known

to exist. It is not known whether the noise benefits are less than expected or there are
structural reasons for this concept not receiving wider application.

The effect of airfoil improvement was not assessed quantitatively, instead the effect of

thickness distribution at zero angle of attack, the thickness distribution at the actual angle
of attack and the camber line effect was evaluated separately. The camber line was found

to be most significant, i.e. how the airfoil section is pressure loaded. Finding airfoil shapes
with higher performance and low noise would require and extensive optimization study
which, the authors say, was being examined at the time of the report.

The effect of sweep at the blade tip was studied and found to be beneficial where the tip
loading is high as in the Cessna 441 propeller. The other propellers, where tip loading is
low, show little effect or can possibly show an increase in the overall level.

Figure 2.32 shows the effect of moving the spanwise peak loading inboard. In the case of

the lightly loaded 172N some benefit can be seen. For the 210M and STAT the loading
peak must be brought inboard of 80% radius before noise is reduced. The heavily tip
loaded 441 (not shown) was found to increase in noise as the peak loading was moved
inboard.

The effect on noise of diameter reduction is shown in Figure 2.33. It can be seen that
diameter reduction is beneficial except in heavily tip loaded propellers like those on the 441.

In their summary the authors state that "from an acoustic point of view, variation of a

propeller parameter may result in a reduction in noise for one aircraft/propeller combination
and an increase in noise for another aircraft/propeller combination, the result of which is

dependent on the predominant noise source." The approach used in this study can be used
to identify the component with the largest noise reduction without an efficiency loss. This
can then be the starting point for further design refinement.
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Sullivan et al, 1981 - This paper 2-23presents a summary of theoretical studies of General

Aviation propeller with proplets on the blade tips and propellers consisting of two blades

oriented in parallel like the wings of a biplane (biblades). In general these configurations

showed some potential for improving efficiency (1 to 5%) but noise was in general higher.
The authors suggest that there may be a combination of a reduced diameter propeller with
a tip device that maintains aerodynamic efficiency while obtaining a noise reduction
because of the reduced tip Mach number.

Succi, 1981 - In this paper 2.24the experimental flight test results of an extensive analytical
and model experimental program are shown. The basic concept demonstrated is to move

the peak propeller loading inboard on the blade and increase the chord on the inboard
sections of the blade to minimize performance losses.

The propeller was designed for the Cessna 172, a 150 hp single engine airplane. The
performance and noise of the airplane with the experimental propeller was compared with
that having a production propeller. The experimental propeller was designed to match the

power absorption of the production propeller at the design flyover condition. Since off
design calculations indicated hat the initial design configuration would absorb too much

power at low speeds the radius was reduced to 92.5% of that of the production propeller.
Another factor considered was the danger of overspeeding the engine. To avoid this
problem the experimental propeller was designed to turn 100 RPM slower than the
production propeller at full throttle. The limited performance information in the reference

showed that the rate of climb was slightly lower for the experimental propeller relative to the
production propeller over most of the flight speed range. This is shown in Figure 2.34. The

average measured noise reduction of the experimental propeller relative to the production
propeller was 4.8 dBA at 1000 ft and 4.4 dBA at 500 ft flyover.

Greaorek et al, 198_ - This paper reports the results of flight tests of four different
propellers on a single engine airplane. The planforms for the four blade tested are shown

in Figure 2.35. It can be seen that the baseline propeller has two blades and an elliptical
tip planform. It is 74 inches in diameter. The OSU 2 blade and 4 blade propeller were both

68 inches diameter and used high lift airfoil sections designed specifically for these
propellers. The MIT 3 blade propeller was 69 inches in diameter and used NACA 64000
Series airfoils.

The section thickness/chord and blade angle as a function of radial location is shown in
Figure 2.36 for the propellers tested.

Noise data was obtained by using a microphone mounted on a boom attached to the

landing gear of the test aircraft. The distance from the microphone to the propeller
centerline was 6.3 ft.

The noise data shown in Figure 2.37 indicate that the increase in number of blades reduces

noise The performance information was more difficult to interpret as the blade pitch was
fixed. The authors state that:

16



"All propellers tested showed acceptable performance in takeoff, climb, and

maximum speed. The MIT-designed three-blade propeller was optimized for

high-speed flight, and showed slightly better climb and maximum-speed
performance than the other propellers, at the expense of takeoff acceleration.

The OSU-designed propellers were optimized for lower speeds; they showed

the best takeoff performance of any of the experimental propellers, with
slightly reduced climb and cruise performance as compared to the MIT three-

blade propeller. All of the experimental propellers were slightly better than

the baseline propeller in climb performance, and slightly degraded in takeoff
and maximum speed. It may be seen that reductions in propeller noise at a
fixed RPM were achieved."

Salikuddin et al, 1984 - In this reportZ_the possibility of reducing propeller noise by adding
an active secondary noise source is explored. This work was prompted by an interest in
reducing cabin noise of advanced high speed turboprops (Prop-Fans). It is possible that
these concepts could also be used to reduce far field noise below the airplane but would
probably not reduce noise in all directions.

Initial tests used simulated propeller primary and secondary sources. Noise reduction of

a sinusoidal signal showed a reduction of 8 to 14 dB on a surface (fuselage) in the
frequency range form 200 to 1000 Hz. Tests conducted with a recording of the noise from
a 1/10 scale model propeller showed an average noise reduction of 15 dB at the first two

harmonics and a 5 dB at the third and fourth harmonics of blade passage frequency. When
the active noise control concept was applied to an actual 1110 scale model propeller

operated in an anechoic wind tunnel the reduction in noise on the fuselage has 8 dB at the
blade passage frequency and 2 dB at the second harmonic. The lower performance is

attributed by the authors to (a) the contamination of the primary source measurement by
the secondary noise and (b) distortion of the secondary signal due to the non-flat amplitude
and the non-linear phase responses of the acoustic driver and associated duct work (of the
secondary source)." This duct work can be seen in the test setup of Figure 2.38. It is the
tube with the curved end which leads from the secondary source to a location near the
propeller.

Dobrzvn,_ki, 1986 - This pape r:-27 is an evaluation of the tests done in the German Dutch

DNW tunnel on square tip and round tip 2 blade General Aviation propellers operated at
varying tip speeds, powers and angle of attack. Figure 2.39 summarizes the major findings
in this test program. Figure 2.39 is a plot of maximum A-Weighted sound pressure level
which has been normalized to a 4 meter distance between the axis of propeller rotation and

the measuring microphones and approximately adjusted to a constant power coefficient.

The A-Weighted levels are plotted versus the helical bade tip Mach number (the

combination of flight Mach number and flight speed) as corrected for the effect of the angle
of attack on the blade approaching the microphone. This correction increases the Helical

blade tip Mach number at simulated climb angle of attack. The effect of tip shape shown
in Figure 2.39 is approximately 5.5 dBA at 2700 RPM (the cluster of data between 0.83 and
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09 helical blade tip Mach number), 4 dBA at 2400 RPM (the cluster of data between 0.73

and 0.8 helical blade-tip Mach number), 3 dBA at 2100 RPM (the cluster of data between
0.65 and 0.69 helical blade-tip Mach number), and 2 dBA at 1800 RPM (the cluster of data
between 0.56 and 0.60 helical blade-tip Mach number).

The effect of downtilt of the propeller axis was also documented for the propellers tested.

It varied from approximately 0.7 dBA per degree of downtUt at 2700 RPM to approximately
0.4 dBA per degree of downtilt at 1800 RPM.

Jones, 1986- This report z28 summarizes a set of flyover noise measurements on the Piper
Cherokee Lance (PA-32R-300), a single engine monoplane with retractable landing gear.

The engine was a 300 hp Lycoming IO-540-KIG5 Flat 6 cylinder normally aspirated engine.
It was equipped with a Hartzell 2 blade metal constant speed propeller 80 inches in
diameter. This is the same round tip propeller earlier tested under isolated conditions in the
DNW wind tunnel.

The information of interest is (1) the engine noise contribution to the total aircraft noise; (2)
the reduction in noise with reduction in tip speed (RPM); and (3) the effect on noise of inflow
angle to the propeller.

Table 2.14 summarizes the pertinent information. Note that both takeoff (TO) and level
flyover (LFO) data was obtained. The RPM ranged from 2140 to 2780. At 2780 RPM it is

expected that transonic nonlinear noise (quadrupole) may be present. Data was also
obtained at intermediate RPM's between 2440 and 2640 which could be considered for

noise reduction in a derated engine. Noise data is shown for a ground microphone and a
microphone 4 ft above the ground (as used in certification).

The engine noise contribution to the total maximum A-Weighted level of the aircraft which

is shown in the table was obtained by analyzing narrow band noise spectra such as that
shown in the lower graph of Figure 2.40. The upper graph identifies the tones that are

produced by the engine (Labeled E) the propeller (labeled P) and a combination of propeller

and engine (labeled C). The same data with A-Weighting is shown in the lower graph.
Engine noise components can be extracted in the same way as they were in the upper
graph.

Figure 2.41 shows how the engine noise becomes a more significant part of the maximum
A-Weighed noise spectrum as the RPM of the propeller (engine) is reduced. The bottom

graph of Figure 2.41 shows the high RPM (2780) case with the propeller generated tones
at harmonics of 92.7 Hz at high levels over 70 dB extending from low frequencies to 1200

Hz. The engine tones at harmonics of 139 Hz are at lower levels beginning at 70 dB and
dropping to approximately 50 dB at 1200 Hz.

At the lowest RPM case (2460) shown at the top of Figure 2.41 the engine noise

components at harmonics of 123 Hz have a similar character to those of the high RPM
(2780) case in the bottom graph but the propeller tones at harmonics of 82 Hz drop rapidly
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with increasing frequency. The graph in the center of figure 2.41 shows an intermediate
case at 2630 RPM.

The result of the above evaluation is shown in Figure 2.42. The left figure shows the

maximum A-Weighted level for the data obtained with a microphone mounted 4 tl above the

ground. The right figure shows the data obtained with a microphone mounted very close
to the ground. Data is shown for 75% and 55% power. The upper curves in each case

show the level of engine plus propeller. The lower curves in each case show the level of
the propeller alone.

For the 75% power cases, the engine contribution is not significant for the highest RPM
(highest helical tip Mach number) cases F and K. When the RPM is reduced to 2440 at

case M it can be seen that engine noise makes a difference of almost 1 dB. Reducing the
RPM to 2240 at condition O shows the engine to make a difference of about 2 dB.

The 55% power cases show similar results, however the RPM's are lower (condition I at
2570 RPM, condition P at 2320 RPM and condition Q at 2140 RPM). The sacrifice in

performance at conditions P and Q would probably be unacceptable.

From the above discussion it appears that engine noise suppression may be useful in
installations with 2 blade propellers operating at 2400 RPM or less. If propellers are
modified to reduce noise, engine noise suppression may be required even at higher RPM.

Figure 2.43 shows the effect of changing the inflow angle to the propeller axis of rotation.
A negative angle in this figure indicates that the axis is rotated down in the forward

direction. As in Figure 2.42, the left graph sows data obtained with a microphone mounted

4 ft above the ground while the right graph shows data obtained with a microphone
mounted close'to the ground. The line formed using conditions A, B, C, and D for 96%
power and 2780 RPM show a reduction of about 3 dB for a downtilt of 4 ° from 0 °. The line

formed using conditions E, F, G, and H for 77% power and 2780 RPM show a reduction of

about 2 dB for a downtilt of 4 ° from 0° . At the line formed by conditions K and L for 77%
power and 2630 RPM similar reductions are seen. However at the 55% power 2570 RPM

conditions (I and J) and 2450 RPM conditions (M and N) the reductions are less. It appears
from this data that downtilt is more beneficial at the higher RPM and power conditions.

Raisbeck and Mills, 1987 - This pape r229 reports the effects of replacing the standard 3
blade propellers on the Beech Super King Air 200 and the deHavilland DHC6-300 Twin
Otter with 4 blade propellers. The characteristics of the standard and replacement

propellers are shown in Table 2.15. It can be seen that the diameter of the replacement
propellers is less than the standard propellers. In the case of the Beech Super King Air 200

a weight penalty of 11 pounds is seen for the installation of the replacement propeller. The
flyover certification noise is reduced by 4.2 dBA for the Beech Super King Air 200 and by
5.1 dBA for the deHavilland DHC6-300 Twin Otter.
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Also it is of interest to note that the replacement propellers reduce the large blockage
effects of round blade shanks on inlet flow to the engine. On the Super King Air with the
replacement propeller, the twin engine rate of climb is increased by 480 ft/min, the initial

cruise altitude is increased by 2000 ft and block fuel consumption is reduced by
approximately 9%. On the Twin Otter the increased ram air recovery of the replacement

propeller installation boosted engine output horsepower by 5% and increased its fiat rating

by 9° F for 1400 ft in altitude. Therefore the noise reduction achieved by the replacement
propellers in this case was accompanied by an increase in airplane performance. There
was a small weight penalty. The cost penalty is not known. Also, it is not known whether

there was any change in durability for the replacement propeller installation.

Dobrzyn_,ki, 1990 -1993 - In these reports z_2._ the concept of unsymmetrical blade spacing
of a propeller with four or more blades is discussed. Only even blade number

configurations are considered in order to avoid balancing problems. The typical propeller

geometry considered is shown in Figure 2.44 for a 6 blade propeller made by stacking 2
blade propellers with a spacing of x and with the angle between them of e.

Analytical predictions of the noise reduction potential of a 6 blade propeller 3 meters in
diameter operating at a 0.7 tip helical Mach number (MH) are shown in Figure 2.45. It can
be seen that the maximum reduction in A-Weighted noise is achieved at an e of 20 °.
Dobrzynski states that other calculations for 4 and 6 blade propellers were run to determine

the maximum reduction in A-Weighted noise. These are summarized in Figure 2.46. The
best 6 blade configuration achieves a reduction of 4.3 dB at a 0.65 MH. The best 4 blade
configuration achieves a reduction of 4.3 dB at a 0.52 MH. These reductions were

calculated for a propeller diameter of 3 meters (9.843 tl). Figure 2.47 shows how diameter
affects the calculated reductions at 0.7 MH. for the 6 blade configuration the reduction

calculated increases with increasing diameter, it appears that the larger commuter aircraft,
where diameters.exceed the reference 3 meter diameter, would benefit the most from the

unsymmetrical propeller geometry. The 4 blade configuration does not show as much noise

reduction dependence on diameter in Figure 2.47 but the reference MH of 0.7 is higher than
optimum for the four blade configuration (see Figure 2.46). Tests were run an a 1.7 meter

diameter 6 blade configuration in the DNW wind tunnel. Results generally confirm the
analytical work discussed above. No detrimental effect on propeller performance was
observed at the test conditions.

Kallergis, 1990-1995 - In these papers 2,33-2.3sthe reduction of flyover noise from piston

engine propeller driven General Aviation airplanes by superposition of the propeller and
exhaust noise is discussed. Tests were conducted on a Cessna 207A with a 3 blade

propeller and a 6 cylinder 4 stroke engine. The phase relationship of the propeller and

exhaust noise was adjusted using a plate between the engine shaft and propeller that could
by physically rotated in small angular increments. In order to obtain the maximum noise

reduction by phase cancellation the engine exhaust port and the downgoing blade must be
less than a half wavelength distance apart for the lowest frequency of interest. Also the

exhaust pipes from the 6 cylinders of the engine must be collected into one exhaust port
to obtain equal timing and noise level for each firing pulse. The measured reductions in
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flyover noise were 1 dBA for a microphonemountedflush with the ground and 2 dBA for
a microphonemounted1.2m above the ground. It is possible that larger noise reductions

may be achieved with further optimization of the configuration. In particular, if the propeller
noise is reduced to same level as the engine exhaust, then greater reductions should be
possible.

- This report 2._ reviews the experience of one propeller manufacturer in
Germany in reducing noise of propeller driven airplanes. The approach often used is to

replace the existing fixed pitch propellerwith a variable pitch propeller with more blades.
The new propellers have high performance airfoils on the outer portion of the blades and

Clark Y airfoils on the thicker inner portions of the blades. The replacement propellers are
built from wood with a fibreglass covering..

It is noted in this report than the pressure distribution along the blade radius normally has
its maximum at 70 to 80 percent of the blade radius. The modified designs have an altered
blade planform, angle of attack and airfoils that produce the highest lift between 50 to 80
percent of the blade radius.

Based on test experience, Weiblen concludes that the following noise reduction benefits
are possible:

a. 2 -3 dB/100 RPM for propeller speed reduction;

b. 2 dB/10 cm for propeller diameter reduction;

c. 2 dBIblade for increased blade number and reduced diameter. Noise is not reduced
unless diameter is reduced;

d. Noise is reduced for a change from fixed to variable pitch in conjunction with changes
listed above.

D0brzynski and Gehlhar, 1993 - In this paper 2.37 the effect on certification noise of
increasing the number of blades of a propeller is documented. The characteristics of the

blades used in the program are shown in Table 2.16. The diameter is reduced by about 5%
par additional blade based on experience of the propeller manufacturer. The blades used

were not uniform in profile and contour since the propellers were made form available blade
configurations. Note that the increase in propeller mass (weight) does not increase

dramatically as number of blades increases. The worst case is the 6 blade propeller with

a mass 35% greater than the 2 blade propeller. In fact, the 4 blade propeller is 8% lighter
than the 2 blade propeller.

The level flyover noise for the different propellers at a height of 300 meters is shown in
Figure 2.48. This data is obtained at a constant RPM of 2700 so the reduction in diameter

with increase in number of blades reduces the tip helical Mach number. Figure 2.48 shows
that increasing the number of blades reduces noise. The linear(unweighted) level and A-
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Weighted levels show fairly significant reductions for the 3 and 4 blade configurations. The
lack of further reductions for the 5 and 6 blade configurations is attributed to engine noise.

• i

The effect on A-Weighed climb out noise of increasing the number of blades is shown in
Figure 2.49. Here the noise is seen to be reduced as the number of blades increases from

2 to 4 with no further reduction for 6 blades. The 5 blade data is considered suspect.
Dobrzynski suggests that an interaction of the engine exhaust with the 5 blade data cause

the A-Weighted levels to be abnormally high. Also it can be seen in Figure 2.49 that
reducing engine RPM reduces noise by an additional amount.

In conclusion, Dobr-zynski states that test "results show a continuous degradation in aircraft

climb performance, up to 20% for a 6 blade propeller, when compared with the 2 blade

reference propeller. At the same time the A-Weighted flyover noise levels decrease by 9
dBA. However, the 4 blade propeller already achieves a noise reduction of almost 8 dB,
again compared with the reference propeller's noise radiation." He recommends the 4
blade propeller for retrofitting current aircraft.

Lohmann, 1993 - This report 2-38reviews the use of a computer code that acoustically
optimizes the configuration of a propeller consisting of blades with different and

asymmetrical sweep in the blade planform, i.e. each blade making up the propeller has a
different sweep. This concept extends that which was used in the development of the
swept blade planforms of the Prop-Fan advanced high speed turboprop. In the Prop-Fan

all blades making up a propeller were identical and had the same sweep. This caused the
noise to be reduced by interference of noise produced at different spanwise locations on
the blades. In the configurations studied by Lohmann the sweep of each blade making up

a propeller is allowed to have a different sweep. Therefore noise reduction occurs by
interference between the different blades making UP a propeller. In Lohmann's
configurations the usual harmonics occur plus a dense field of subharmonics.

Lohmann's report is theoretical in nature. It reviews the noise reduction potential of the

asymmetrical sweep concept without regard to difficulties in structural design and
aerodynamics. The approximate overall noise reduction potential calculated for various
blade numbers is 5 dB for 2 blades, 6 dB for 4 blades and 11 dB for 6 blades. To achieve

these reductions the sweep angles at the tip are as high as 45 °, a value not likely to be
acceptable from a structural design standpoint.

Figure 2.50 shows the calculated noise reductions for the first three harmonics of 4 blade

propellers. The configurations in the left chart use different sweep angles for each blade

making up the propeller. A sketch of the tip sweep is shown at the top of the figure. The
configurations in the right chart use the same sweep angle for each bade as in Prop-Fan
configurations. Lohmann points out that the reduction in the third harmonic for the

unsymmetrical configuration on the left is particularly beneficial for reducing A-Weighted
level.
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Chusseau, et. al, 1993 - This paper 2-39reports an acoustic and aerodynamic parametric
study of light propeller airplane noise. The study makes use of frequency domain method

where the monopole (thickness) and dipole (loading) sources are included. The

aerodynamic propeller performance needed for an acoustic and aerodynamic study is
predicted with a curved lifting line method.

It is well known that there is an optimum size blade for a given performance requirement
and number of blades. The authors evaluate this for 2, 3, 4, and 5 blades for the reference

airplane which has an engine operating at 2700 RPM at a power of 147.2 kw. The
reference propeller is 1.88 m in diameter with 2 blades The airplane is assumed to operate
in level flight at 300 meters altitude.

In scaling the blade diameter, the thickness and chord change, and the relative maximum
thickness remains the same. For maximum thrust, the blade scale is reduced as number
of blades increases. Also as number of blades increases the maximum achievable thrust

becomes less although on a percentage of reference thrust (2000 Newtons) the loss is fairly
small (0.75% for 3 blades, 1.5% for 4 blades, and 2.75% for 5 blades).

For a given blade number the study results showed that noise is less as blade size
becomes less. As blade number increases there is a further reduction in noise. The

reductions expected are as follows:

two to three blades
three to four blades
four to five blades

100 to 90 scale factor

90 to 85 scale factor
85 to 80 scale factor

-4 dB reduction

-4.5 dB reduction
~4.5 dB reduction

Cox, 1995 -In this article 24° the Rushmeyer R90 low wing, piston engine driven, 4 seat,
General Aviation airplane is discussed. This airplane is of interest because it is a new

design (certified in Europe under JAR 23 amendment 34 in 1990) and because it appears
to have been designed for low noise.

The propeller is a four blade wood/composite (covered with fiberglass) constant speed
propeller 75 inches in diameter. It also has a protective leading edge aluminum strip. The
engine is rated at 230 hp at takeoff. It has been derated from 2575 to 2400 for this

application. The engine also has a stainless steel muffler.

The noise level under International Civil Aviation Organization 1000 ft flyover certification
requirements quoted in this article is 66 dB as compared with a limit of 74 dB.
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3.0 PISTON ENGINE NOISE REDUCTION LITERATURE REVIEW

In this section, some of the extensive literature on mufflers as well as other piston engine

exhaust noise reduction methods are discussed. The reader interested in this subject can
find many more references in texts such as that of Munjal which is reviewed below.

Active noise control of exhaust noise by electronic control of loudspeakers is not discussed

in this literature review. It is known that Jt is a concept that is being tested on city buses.

It is also being explored as an alternate to an automobile muffler. The technical feasibility

of this concept has been well proven in other applications. However, there are still
questions about the cost, weight, size, and durability of such a system. The passive

systems appear to offer a more near term exhaust noise solution.

Air Commerce Bulletin, 1932 - The author of this report 31 by the U.S. Department of
Commerce Aeronautics Branch is not given. It reviews measurements of noise reduction
by ten different mufflers installed on a stationery 180 hp V-8 water cooled Hispano-Suiza

aircraft engine which drove a hydraulic dynamometer (to eliminate the noise that would
normally be produced by the propeller).

Reference tests were conducted in several ways: (1) with the engine exhaust ports open
to the atmosphere, (2) with the exhaust ports manifolded together on each side of the

engine; (3) with the manifolds connected together to form a single exhaust pipe; and (4)
with the single exhaust pipe passed through a muffler consisting of three barrels buried in
the ground to effectively eliminate all exhaust noise.

Several muffler concepts were investigated in this program. The Bureau of Standards

configurations consisted of multiple plates separated by washers to form narrow open
passages to restrict the expansion of expansion of exhaust gases. Three of these

configurations were tested: (1) B.S. 1 which was attached directly to each exhaust port (8
separate mufflers); (2) B.S. 3 which was attached to each bank of exhaust ports (2

separate mufflers); and (3) B.S. 2 which was attached to the single exhaust pipe at the end
of the manifolded exhaust pipes.

Two other mufflers were tested which were designed for attachment to the manifold exhaust

pipes. The Burgess was a straight through muffler consisting of a perforated pipe 3 inches
in diameter and 5 1121l long encased in a cylinder 7 inches in diameter and 5 ft long. The

space between the perforated pipe and the cylinder are filled with sound absorbing material
(the material is not identified in the report). Two of these mufflers together weighed 110
pounds but it was claimed that the weight could be considerably reduced. This muffler

appear to be an early version of the straight through bulk absorber type which has been
used recently on some General Aviation airplanes in Europe.

The Corless was the second muffler attached to a manifolded pipe attached to each tank
of the engine. It consisted of a rotor with a governor brake where the exhaust gases are
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directed to cause the rotor to turn. Two of these mufflerswere used (one for each side
manifold). The weightfor two mufflers was about 32 Ibs. It appears that this muffler is the
early concept of the turbocharger on modem engines, which is known to redLrce exhaust
noise.

In addition to the B.S. 2 muffler described earlier, four other muffler configurations were

tested when attached to the combined single exhaust from the manifolded exhaust pipes.
The first of these is the "Sikorsky" which according to the article:

"consists of a pipe 3 inches in diameter open to the atmosphere at both ends,
around which is a shell approximately 9 inches in diameter and 31 114 inches

long. The space between the pipe and the shell is divided into compartments
by baffles punched with holes. The entrance to the muffler is a 90 ° elbow ,4

112 inches in diameter so arranged that the gases enter the space between

the 3 inch pipe and the outer shell with a swirling motion. The gas is
discharged to the atmosphere through holes in a cone at the end of the

muffler and through holes in the 3 inch pipe. The muffler weighed 13.9
pounds."

This muffler appears to be an early version of the resonator muffler currently in use in
automobiles but with some unique features.

The second muffler was the "Watson" which consisted of a cartridge of loosely rolled
copper-wire mesh about 18 inches long and 2 718 inches in diameter. This was inserted

in the end of a 24 inch length of 3 inch pipe to form the muffler. This muffler weighed 2 1.2
pounds. In concept this muffler is similar to the B.S. types discussed eadier but would

probably produce higher pressure drop since the mesh restricted the exhaust pipe. In
modem versions of this muffler, the copper mesh would be replaced by a material such as
porous sintered metal and the diameter of the exhaust pipe might be increased to reduce
the pressure drop of the exhaust system.

The third muffler was the "Wolford" which consisted of a series of three egg-shaped
chambers of gradually increasing diameter in series. Within each egg shaped chamber a
hollow egg shaped body of smaller diameter was suspended. This muffler weighted 10 314
Ibs. It appears to be another tuned system but the role of the bodies suspended in the
three egg shaped chambers is not clear.

The fourth and fifth mufflers of different size were the "Rowan." The complex configuration
of these mufflers as described in the report is as follows:

"The outer shell of the large muffler is circular in cross section and tapers
from a diameter of 6 inches to a diameter of 5 inches in a length of 36 inches,
and then tapers to a diameter of 3 inches in a length of 18 inches. Louvers

or slots are provided in the 18-inch section for discharging the gases to the
atmosphere. The shell is flared at the large end in order to collect air from
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the slip streamfor cooling purposes. A rectangularbox4 112x 4 112by 40
inchesis inserted inthe 36 inch sectionof theshell. Theexhaustgasesenter
the rectangular box through a cylindrical section on the head end and are
discharged into the 18 inch section of theshell where the gases are mixed
with the air collectedfrom the slip stream. Inside the box there are a number

of deflectors which give a swirling notion to the gases. The (large) muffler

weighed 16 pounds. The small muffler is of the same general design but
constructed of slightly heavier material. The weight of the small muffler was
15 112 pounds."

The acoustic environment for the tests does not appear to be ideal based on the report.
Data was obtained at six microphone stations. As an indication of the effects of the

mufflers on airplane flyover noise, the data from microphones 80 ft from the engine will be

reviewed. This information is shown in Table 3.1. Note that the information is grouped by
exhaust port configuration, i.e. open ports, side manifolds, manifolds collected to a single

exhaust pipe, and barrels. For the category labelled barrels the exhaust form the single
exhaust pipe from the manifolds is passed through the underground barrels so the sound
levels listed are effectively the engine clatter that remains.

it can be seen that adding the side manifolds and collecting these to a single exhaust pipe
has beneficial effects on the noise level. Considering the open port configurations both the
B.S. configurations produce significant reductions in overall noise (15 dB for B.S. 1 and 15

dB for B.S. 3). Most of this reduction occurs at the higher frequencies above 5000 Hz.

Considering the side manifold configurations, the Burgess bulk absorber muffler is not very
effective as compared with the Codess spinning rotor configuration which reduces overall
noise by 11 dB and reduces noise in the 0 to 250 Hz band by 11 dB. The Corless muffler

also appears effective above 500 Hz as well. It was not a reliable configuration however.
Difficulty in lubricating the bearings was experienced and one of the rotors failed during test.

This could be compared with the early reliability difficulties with turbochargers when they
were introduced on automobiles. Today the more widespread use of turbochargers
indicates that these eadier reliability problems have been solved.

Considering the configurations with the manifolds collected to a single exhaust pipe. the

Watson wire mesh cartridge looks most attractive considering it weighted only 2 112 Ibs.
Again as in the open exhaust port muffler tests, the B.S. configuration can be seen to be
effective at frequencies above 1500 Hz. The Rowan data is incomplete as the filter set was
not available for the test.

In closing it should be noted that all of the mufflers tested were considered experimental.

It is interesting that some of the concepts tested have been used in recent muffler designs.

London. 1940 - In this general report of progress in noise reduction in airplanes 3-2, the

author includes a discussion of engine exhaust noise reduction. Apparently both the bulk

absorber and tuned cavity mufflers were considered at the time for aircraft engine muffling.
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Tests had been conductedby the National Bureauof Standardson various experimental
and commercialmufflers. Of the 10 mufflers tested, half reduced the exhaust noise by 5
dB and the otherhalf reducedthe exhaust noise by 10dB. The loss in horsepowerdue to
the mufflerswas less than 2%. _

In addition to muffler tests, the effectsof manifolds and exhaust tubes on engine exhaust
noise had been evaluated.. Reductions of 7 to 13 dB were reported for various manifold

and exhaust pipe configurations with horsepower losses from 1 to 3%.

Czamecki and Davis, 1948 - This report3.3 documents the evaluation of the muffler used in

the flight test reported by Vogeley zl where a light reconnaissance airplane with a six
cylinder four stroke 185 horsepower engine was modified to reduce flyover noise. The

muffler was designed using an early theory. It is a simple straight-through double
expansion chamber design as shown in Figure 3.1. No effort to reduce the size of the

muffler was made as the objective of the program was to demonstrate the possibility, not
feasibility, of quieting engine exhausts with reasonable back pressures.

The muffler installed on the airplane with and without a surrounding heat shield is shown
in Figure 3.2. The engine back pressure caused by the muffler was 4.7 inches Hg at an

engine RPM of 2790. This compares with a back pressure of 3.5 inches Hg for the
unmodified exhaust system, the muffler reduced the noise of the engine by 10 decibels at

2790 RPM and 15 decibels at 1650 RPM. The addition of the long tail pipe with a right
angle bend reduced the noise further by 5 decibels at some engine speeds.

Davis and Czamecki. 1949 - This report summarizes the results of tests of a wide variety
of mufflers (68 test configurations) installed on a six cylinder, direct drive, four stroke of 435

cubic-inch displacement rated at 185 hp at 2550 RPM. In general the mufflers that
provided significant noise reduction were fairly large so they would be difficult to integrate
into a production airplane. It is noted that smaller mufflers could be designed if the

operating RPM range was restricted. One attempt to design an expansion chamber muffler
to fit within the space available within the engine cavity was unsuccessful as the flat
surfaces of the muffler vibrated as a result of engine firing pulses.

One of the most effective mufflers consisted of a singe expansion chamber and a single
resonant chamber in combination. It provided excellent attenuation with a reasonable back

pressure and was only 30 inches long (considerably shorter than many of the other mufflers
tested in this program). Conclusions of interest included:

a° Both resonant-chamber and expansion-chamber mufflers require large chamber

volumes to reduce low-frequency noise (the dominant noise is at the lowest firing
frequency of the engine).

b. Mufflers of a given cross-sectional area of either circular or oval cross section, with

other dimensions the same, appear to give equal (noise reduction) results.
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c. The lower the required back pressure, the larger the muffler must be.

d. The straight-through or resonant-chamber mufflers have lower back .pressure,
general, than the expansion-chambermufflers.

in

e. The tail-pipe configuration (length or bends) may have a large effect on the exhaust
system noise characteristics.

Parrott. 1973 -This report 3-sdescribes a method for designing expansion chamber mufflers.

It is an improvement of transmission-line theory to account for the effect of exhaust gas flow
on the properties of the muffler. The computer program for this method includes an

optimization procedure that adjusts muffler parameters within specified geometric

constraints to achieve a minimum specified transmission loss over a specified frequency
range.

A test case is discussed where a muffler was designed to reduce the engine noise of a
helicopter. This is the helicopter discussed by Pegg and Hilton in experiments with five
different mufflers 3.6. One of these mufflers was the same as that discussed in this report
by Parrott.

Parrott found that the muffler shown in Figure 3.3 which was designed by the computer
program reduced the engine exhaust noise by 11 dBA although the desired reduction was

15 to 20 dBA. He found that the noise in the 320 to 520 Hz frequency range increased
when the muffler was installed, which he attributed to self noise generated by the muffler
system.

Parrott states that the weight of the entire system was 21.3 kg (47 Ibs.).

Peaa and Hilton, 1974 - This report 3.8summarizes the study of noise reduction of a six
cylinder horizontally opposed engine at 3200 RPM when mounted on a helicopter. The

expansion chamber mufflers tested were designed using a technique for optimizing muffler
configuration and minimizing performance penalties 3-5. An automotive muffler was also

tested for comparison. The configurations tested are shown in Figure 3.4. It can be seen
that the overall length of the chambers in these mufflers is between 30 and 36 inches. The

noise reduction performance of the mufflers derived from figures in the report are shown

in Table 3.2. The noise reduction of configurations A and B can be seen to be quite similar.
Configuration C provided useful noise reduction but was not as effective as Configurations
A or B. Configuration D was an attempt to improve the acoustic and structural

characteristics of the muffler and make it more suitable for a flight vehicle. This muffler
performed worse than Configuration A, B or C. The reason for this is not presented in the
report. Configuration E, the commercial automotive muffler, provided useful noise
reductions but was not as effective as Configuration A or B.
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The mufflerback pressurefor ConfigurationsD and E were similarand were less than 12
112 cm Hg at maximum power. The standard exhaust system did not produce any
appreciable back pressure. The engine manufacturerguarantees rated power at back
pressures up to 5 cm Hg. The limited flight tests conducted during the program did not
show any noticeable loss in helicopterperformance.

MaQlieri and Hubbard, 1975 - This paper 37 reviews the results from several other papers
where propeller and engine noise reduction concepts for General Aviation airplanes were

evaluated. Propeller noise is identified as the most important contributor to total aircraft
noise. Piston engine exhaust noise is identified as another significant source. Airframe

noise is not considered significant.

Figure 3.5 indicates the significance of piston engine noise. The upper plot in Figure 3.5
shows the noise spectrum for a 3 blade turbine powered reconnaissance airplane. This can

be compared with the noise spectrum of a 2 blade piston engine powered version of the

same airplane in the lower plot of Figure 3.5. It can be seen that the piston engine
produces very high levels of tone harmonics while the turbine produces a lower level and
more random spectrum with dominant components between 200 and 400 Hz.

Muffling of piston engines is shown to have a significant effect on noise. Figure 3.6 shows

the effect of installing a tuned expansion chamber type muffler on a helicopter. It can be
seen that the muffler reduces tone noise significantly in the 50 to 250 Hz frequency range
and also provides substantial benefits in more broadband type noise in the 600 to 1600 Hz
range.

The weight penalty for piston engine exhaust mufflers is summarized in Figure 3.7. The
information presented was derived from detectability studies of military airplanes 2.9-z1_. The
noise reductions.shown are unweighted. The equivalent A-Weighted noise reductions for

these mufflers would be less according to the authors of this paper. It can be seen in this
figure that there is a wide range of weight penalties possible as the noise reduction

increases. The weight associated with the upper edge of the uncertainty band would
undoubtedly be unacceptable. However the weight associated with the lower edge of the

band may be reasonable. For example, if 10 dB of noise reduction in a 200 hp (149 kw)
engine is desired, the lower edge of the uncertainty and would indicate a muffler weight of
about 9 pounds (3.8 kg).

The estimated weight and performance penalty trends for noise reduction in dBA are shown

in Figure 3.8 for the 0-1 reconnaissance aircraft. Weight increases as noise is reduced as
shown in the left plot of Figure 3.8. It can be seen that a reduction of more than 10 dBA

produces very large weight penalties. Since these are estimates, the actual penalties could

be larger or smaller. The middle and right plots of Figure 3.8 show the estimated penalties
in takeoff distance and cruise speed. If noise reduction less than 16 dBA is desired, there

is no takeoff performance penalty. The cruise performance penalty for any noise reduction
in the right plot is small.
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The authors suggest in their conclusions, that "the required noise reductions for future
certification should be possible with potentially small penalties." They do admit however that

"there are, at present, no generally accepted engineering methods for development of

optimized propellers and exhaust muffler designs from weight and performance penalty
standpoints."

Sullivan, 1979 - in two papers 3>3.9the author discusses a method for modeling perforated
tube muffler components. The first paper describes the theory and the second describes

the applications of the theory. This work is of interest for aircraft engine muffler design as
the concentric tube muffler with a central perforated tube is considered desirable for low

engine back pressure. Good agreement is shown between measurements and predictions

of transmission loss of two mufflers. The first was a simple resonator consisting of a
cylindrical cavity surrounding a perforated pipe passing through the resonator. The second
was similar to the first except a plug was installed in the perforated tube to force the flow

and sound to pass through the perforate and the cavity surrounding the perforated reach

the outlet. Of particular interest was the finding that "contrary to popular opinion these
devices can be very dissipative, even thought they contain no recognizable dissipative
materials(such as bulk absorbers). The controlling mechanism is the high resistivity of the
perforation induced by the acoustic/flow environment."

Munial. 1987 - In this book titled "Acoustics of Ducts and Mufflers: with Application to
Exhaust and Ventilation System D¢sicjn ''3'° , the general subject of the design of mufflers
is discussed in depth. This book is an excellent source of references to work done by many
researchers over a long period of time. The fundamental concepts and theories for mufflers

are discussed in depth but a chapter on the design of mufflers provides more general
information on the characteristics of various concepts for muffling piston engines. The

following points made in Munjars book are of particular interest for aircraft engine muffling:

1. Expansion chamber mufflers with inlet and outlet tubes extended within the chamber are

better than those with simple expansion chambers;

2. The greater the number of chambers the better the noise reduction;

3. For a given muffler length, the greater the number of chambers the greater the noise

reduction at higher frequencies but the lower the noise reduction at lower frequencies;

4. The concentric-tube resonator is a desirable muffler configuration to reduce back
pressure on the engine;

5. In practice the total muffler volume is proportional to the total piston displacement of the
engine;

6. The A-Weighted noise reduction of a muffler generally increases with the ratio of muffler
volume to engine displacement.
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Galaitsis and Ver, 1992 - This is a chapter in the book "Noise and Vibration Control

Engineering - Principle and Applications" which was edited by Beranek and Ver "311. The
chapter of interest is titled "Passive Silencers and Lined Ducts." Both resonator and bulk

absorber concepts are reviewed. Of particular interest is the discussion of the effect of
basic geometric parameters on the noise reduction of resonator elements. The authors

caution that this is only an introduction to a complex subject. They provide a fairly
extensive list of references.

- In this private communication3.12the aircraft engine mufflers manufactured
by the Gomolzig company in Germany are shown and the effect of these mufflers on

certification noise of various aircraft are summarized. This company has developed a wide

variety of mufflers specifically for various General Aviation airplanes. The objective is to
retrofit existing airplanes so that they meet the German certification limits which are more

stringent than FAA or ICAO limits. Certification levels show that the airplanes with the
Gomolzig mufflers meet the German limits and many meet an even more stringent limit 4
dbA lower.

The muffler principles used by Gomolzig include absorption and expansion cavities. Most
mufflers appear to be of the straight through type with a central perforated tube surrounded
by a concentric cavity filled with absorption material. Most mufflers are mounted outside

the fuselage on the bottom of the aircraft because the space needed is not available inside

the engine compartment. There are, however, some muffler configurations that do appear
to fit within the engine compartment.

The information in this communication indicates that not only do these mufflers reduce the
maximum noise of the aircraft flying over but they reduce the noise before and after the
maximum even more, thus further reducing the annoyance.
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4.0 SUMMARY AND CONCLUDING REMARKS

There is a substantial body of literature documenting the experimental and analytical
programs that have attempted to show the means to reduce propeller and engine noise of
piston engine propeller driven airplanes. Analytical procedures for acoustic and
aerodynamic propeller designltradeoff studies are also available although these are
generally complex and require a highly experienced aeroacoustician for their use.

As the noise of the propeller is reduced the piston engine exhaust soon becomes a factor
in the flyover noise of the airplane. Experimental and analytical work has been conducted
since the early days of aviation to develop effective, low back pressure mufflers. The
design procedure for mufflers appears to be in an advanced stage of development.

Based on the above comments, it is surprising that there is a noise problem with current
airplanes. In fact, while concepts for reducing propeller and engine exhaust noise do exist
they are not widely used because of the cost and weight penalties and the structural limits
of existing propeller materials. Reducing propeller RPM, one of the most valuable noise

reduction features, requires some type of reduction gear or belt system so that the engine
can continue to operate at peak efficiency at high RPM. As an alternative, some airplanes
use oversize engines and derate them to operate at lower RPM (which may cause some
penalty in weight and fuel consumption).

Another reason for the lack of noise reduction in current aircraft is the lack of new airplane
designs in the United States which is the result of reduced sales of new airplanes since
1978.

Finally, there is little incentive to reduce noise as penalties are common in cost weight and
reduced performance. If regulations are adopted that force limits on the noise that an
airplane can make, then all of industry will comply and all will suffer the penalties equally.
This has been called "leveling the playing field".

As evidenced by the list of references, the situation in Europe is somewhat different. There,
the public has demanded that airplane noise be reduced so certification limits have been

tightened. The airplanes that satisfy FAA and ICAO limits cannot be flown in many
European countries without modifications to propellers or engine exhausts. It appears that
these European limits may become even more stringent in the future. This scenario has
prompted the support of propeller airplane noise reduction research for more than 15 years
in the European Economic Community. The result is the manufacture of quiet propellers,
mufflers, and, more recently, complete airplanes to satisfy the stringent noise requirements.

The propeller noise reduction concepts found in the literature and discussed in Section 2.0
are listed in Table 4.1. The objective of most work summarized in Table 4.1 was the
experimental or analytical demonstration of the noise reduction achievable for General
Aviation applications. References 2.9 through 2.13 describe a test series to reduce the
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detectability of propeller driven airplanes in military reconnaissance missions. It can be
seen that most of the references considered reduced RPM, reduced diameter and

increased blade number to reduce noise. In some early test programs the reduced RPM

and increased number of blades was coupled with increased diameter in an effort to

maintain aerodynamic performance while reducing noise. Changes in tip geometry were
also popular areas of investigation. Not only rounded or elliptical tip planforms but thinner

airfoils near the tip were found to reduce noise. Blade sweep was considered in two
analytical studies (references 2.19 - 2.20 and 2.22). Some promise was seen but there is
a question of the tradeoff between noise reduction and structure to be settled. Reduced

tip load was also found in these two studies and in two test references (2.24 and 2.36) to
reduce noise when the propeller was operated in such a manner that the thickness related
noise was not dominant.

Muffling of the engine exhaust was included in several test programs (references 2.1
through 2.5 and references 2.9 through 2.13) and opinions were expressed that muffling
is needed in a quiet propeller driven airplane (references 2.17 and 2.40).

References 2.18, 2.19, 2.20, 2.25, and 2.36 considered improved aerodynamic efficiency
as a means to reduce propeller diameter and/or RPM and increase number of blades while

maintaining efficiency and reducing noise. This would be achieved by incorporating new

airfoil designs in the propeller. A related concept in Reference 2.22 is the change in the
chordwise distribution of airfoil loading to reduce noise.

The BiBlade configuration where paired blades are joined at the tip were considered in
References 2.21 and 2.23. Proplets on blade tips were considered in References 2.22 and
2.23.

The reduction in flyover noise caused by downtilting the axis of propeller rotation was

considered in a wind tunnel test in Reference 2.27 and in a flight test in Reference 2.28.

The use of asymmetrical blade spacing to reduce flyover noise was investigated in a test

program reported in References 2.3 through 2.32. Asymmetrical blade sweep was
investigated analytically in Reference 2.38.

Three references (2.2,2.3, and 2.36) indicated that fixed pitch propellers must be replaced
with variable pitch propellers to achieve noise reductions.

Table 4.2 summarizes the type of information contained in the references for Section 3.0
regarding engine exhaust mufflers. It can be seen that test results from various mufflers

and design methods are well represented. The comprehensive test series by Davis and

Czemecki is particularly instructive. The general information in Reference 3.2 provides an
indication of the muffler performance in the late 1930's time period. The general information

in Reference 3.11 shows the configurations of mufflers used on European airplanes and
provides an indication of the certification noise achieved.
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Table 4.3 summarizes the approximate reductions in flyover noise that should be possible
based on the information reviewed in this report. Note that the reductions indicated
assume that engine noise has been reduced so it is not a factor in total aircraft noise. Note
also that the various reductions listed are not always additive. In addition, Table 4.3
indicates whether cost, weight, structural reliability/durability or performance is affected.

Most of the noise reduction concepts discussed above would have to be incorporated in
a new propeller installation. In terms of retrofit of a fixed pitch propeller to reduce noise of
an existing aircraft, only two of the above items are practical: 1) change from thick square
blade tips to thin round blade tips; and 2) the use of proplets. If the airplane being
retrofitted has a variable pitch propeller then increasing the number of blades and reducing
the diameter is feasible in addition to the use of thin round tip blades and proplets.
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5.0 RECOMMENDATIONS

It is obvious that the manufacturers of propeller driven airplanes would design 'for reduced

noise if therewere no penalties. In fact, there are many penalties associated with lower

noise propeller installations including cost, weight, structural reliability and performance.

Cost penalties are the result of increasing the number of blades, introducing variable pitch
on fixed pitch installations, reducing RPM, and using unusual configurations such as

proplets or asymmetrical blade spacing. Weight penalties are also the result of increasing
the number of blades and reducing RPM. Structural reliability may be affected as number

of blades is increased while attempting to maintain performance using narrower and thinner

blades. The structural reliability may also be affected as blades are made thinner, are
rounded at the tip, of if sweep is introduced at the blade tip. Performance penalties occur
when the number of blades is increased, the RPM is reduced, or the diameter is reduced.

Furthermore, if some significant propeller noise reduction is achieved, then the engine noise
becomes a factor in the total aircraft noise. This requires the installation of mufflers or

some other engine noise suppressor which increases cost and weight and may affect
engine performance.

The noise reduction payoff and penalties for the various concepts were summarized in

Table 4.3. Based on this, it appears that the highest priority should be given to reducing
the penalties for reducing RPM and propeller diameter while increasing the number of

blades. In conjunction with this, overcoming the penalties for (1) replacing a fixed pitch with
variable pitch propeller; and (2) adding an engine muffler(or using another engine noise
suppression strategy) should also be high priority tasks.

Overcoming the penalties of increasing the number of blades and reducing propeller

diameter requires investigating the use of new materials such as composites (including
wood/fiberglass) to reduce weight. To reduce cost or hold cost constant, new innovative

fabrication techniques must be explored. To maintain performance, new airfoils tailored
specifically to low tip speed propellers must be developed.

To reduce propeller RPM, new efficient innovative and reliable low cost engines are

required that inherently operate at low output RPM. Several possibilities are suggested for
exploration:

Oversize the displacement of existing aircraft engines and derate to produce maximum
horsepower at reduced RPM. Investigate means to eliminate any penalties in fuel
efficiency and weight of this concept.

• Develop aircraft versions of automotive engines with reliable output gearboxes or belt
drives for low output RPM.
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• Develop reliable gearbox systems for existing aircraft engines based on past experience
and recent advances. ,,

Efforts to reduce the cost, weight, and complexity of variable pitch propellers are needed.

For retrofit of fixed pitch installations, a "bolt-on" system that automatically changes pitch
as operating condition changes, would be desirable. Considering the advances made in

composite materials, this might be accomplished with a flexible blade that changes pitch as

RPM and flight speed changes. Also, systems like those developed in the past, in Europe,
with propeller hubs incorporating self contained hydraulically actuated variable pitch controls
might be considered.

It appears that muffler technology is well developed at this time. The problem for aircraft

is to design practical mufflers that have a low back pressure and are small enough to fit
within the engine enclosure while reducing A-Weighted noise level. Also the cost and

durability of these mufflers should be addressed. For retrofit of existing airplanes, these are

difficult tasks but should be conducted. Overcoming the experience in Europe where
mufflers are often mounted outside the fuselage and cause a loss in airplane performance,
should be a high priority. In new airplane designs, space should be made available for
mufflers.

If the number of blades is increased to 4 or 6 and variable pitch can be incorporated in low
noise propeller designs, then the use of asymmetrical configurations should also be

investigated as a means for noise reduction. The theory and experiments with this concept
show that some additional noise reduction should be possible with no additional penalties
or complication.

In conclusion, any work based on the above recommendations should emphasize practical
application. Also, the other noise reduction concepts of Table 4.3 should be considered in

any propeller aircraft design tradeoff study in order to achieve the lowest noise on the basis
of a system optimization.

41



ACKNOWLEDGEMENTS

The author gratefully acknowledges the encouragement and support of John'S. Preisser
and William Wilishire during the conduct of this study. The Library Staff of NASA Langley
Research Center is gratefully acknowledged for conducting literature searches and making
available many of the reports reviewed in this document.

42



Table 2.1 CHARACTERISTICS OF STANDARD AND MODIFIED RECONNAISSANCE

AIRCRAFT PROPULSION SYSTEMS

Standard Modified

Engine

Type Horizontally Opposed Horizontally Opposed
Number of Cylinders 6 6
Drive Direct Geared

Horsepower 185 200

Final Output RPM 2550 1000
Exhaust System Collector Stacks Tuned Chamber Muffler

Propeller

I Number of Blades 2 5

Diameter 85 Inches 96 Inches

Blade Planform Narrow Tapered Wide Paddle Blades

Blade Tip Elliptical Elliptical
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TABLE 2.2 SUMMARY OF STINSON AND CUB TESTS

(REF. 2.2)

Configuration

Max 40 dB
Noise Level
500 ft

Flyover

Horsepower

Aircraft

Weight in Lbs

Avg. Takeoff
Run in ft.

# of Blades

Blade Config.

Gear Ratio

Prop.
Diameter
Inches

Engine RPM

Prop Tip
Speed in
Ft/Sec

1 &5

82

153

1592

412

2

Skyblade
Wood

1.00

76

2600

862

STINSON TEST CONFIGURATIONS

2A 2B 2C 2D 2E 2F 2G 2H

70-72 69- 68-63 65 70 65-69 65-70 68
71

183 181

i

m

183-153 179 181 183-153 179-153 157

1591 - -- 1592 1593 1592

CUB

_> CONFIG.
i

STD. Mod.

70 61-62

63 80-63

1177 1177

471 - - 445 449 500 343 277

4 2 4

Solid Wood 2 Piece
Wood

.632 1.00 0.632

76 72 80

2 3 6 8 4 4 4

Wide Med. Thin - Thin Med. Wide

.632 .632 .632 .632 .632 0.632 0.632

84.5 76 76 76 76 76 84.5

3100 3050 3100 3000 3050 3100 3000 2650 2250 2550

720 638 645 627 638 645 697 554 707 562
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TABLE 2.3 SUMMARY OF PUSHER AMPHIBIAN TESTS

(REF. 2.3)

Parameter

Configuration

Aircraft Type

Muffler

Data

I Std

Tractor

No

I °
Std_
Pusher

No

7

Std
Pusher

No

I °
Mod.

Pusher

No

Mod
Pusher

Yes

Mod,
Pusher

Yes

_L,

Mod.
Pusher

Yes

_u

Mod,
Pusher

Yes

IU

Mod
Pusher

Yes

Relocated

# of Blades 2 2 4 4 3 4 6 6 8

Dia. in Inches 76 78 68 78 78 78 78 78 78

Pitch Control Fixed Variable 2 Fixed 2 Fixed 2 Fixed 2 Fixed 2 Fixed 2 Fixed 2 Fixed

Angles Angles Angles Angles Angles Angles Angles

Engine RPM 2600 2600 2750 2500 2500 2500 2500 2500 2500

Horsepower 155 145 145 140 140 145 145 140 140

Gear Ratio 1.00 1.00 1.00 0.632 0.632 0.632 0.632 0.632 0.632

Propeller Tip 862 885 815 537 537 537 537 537 537
Ft./Sec.

83 72 70,5 68 67,5 63,5 66,7 67.5 67.5

2005 20141898 19951892 20222012

Max 40 clB
Noise 500 ft

Flyover

Aircraft Wt. in

Lbs.

Max Level - 145 145 140 145 145 145 140 145
Flight HP

Max Level - 126 125 124 125 123 124 123 125

Flight MPH

Avg. Takeoff -- 499 779 565 554 569 560 553 566
Run in Ft.

2028
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TABLE 2.4 CHARACTERISTICS OF STANDARD AND MODIFIED DEHAVILLAND

OTTER PROPULSIONS

Standard Modified

Engine

Type Radial Radial

Number of Cylinders 9 9

Drive Geared Geared

Cruise RPM 1650 1650

Exhaust System Exterior Augmentor Collector Ring and

Tubes Tuned Chamber Muffler

Propeller

Number of Blades 3 5

Diameter 10.83 Ft 12 Ft

Propeller Cruise RPM 1100 550

Blade Planform Narrow Wide Paddle Blades

Blade Tip Round Rectangular
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TABLE 2.5 AIRCRAFT CHARACTERISTICS

(REF. 2.9)
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TABLE 2.SSUMMARYOF0-1 MODIFICATIONS
(REF. 2.9)

C_WF/_O_/70#

.a',a:r/eO-I,t

,,¢_/'o.p..-_

A'/oo.._"

/: I J_2SO

/: / IZ._O

I: / _ZSO

/: 2 //25

_OPEL LEA_

Y_,._e_ ,do. _ $ouo,,'v
pg, t #¢4oc Y_PE

90 Z 0.035 _xaD
_rc _v

P,,7"cM

78 6 .ozo3 d''='_

90 _" ,066 _,rca

.0,,,,..t' _t,t_
.rjr, wrr,"l/

/A). P';" $

7",4/¢ - _ f

,_a,:. ,_8.

_.TxSdJ /$4 F,raw_w_ /.&T $4

/$xZ6 6./5 JT,,nr,e_ 2.85 255

Jvoo.#o

_0o f_.

eaST

.gS.g

84.7

82.I

?8.?

T4_ 2



TABLE 2.7 ESTIMATED SEA-LEVEL PERFORMANCE OF THE O-I AIRCRAFT

(REF. 2.9)
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TABLE 2.8 SUMMARY OF U-10 MODIFICATIONS

(REF. 2.9)
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TABLE 2.9 ESTIMATED PERFORMANCE OF THE U-10 AIRCRAFT

(REF. 2.9)
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TABLE 2.10 SUMMARY OF 0-2 MODIFICATIONS

(REF. 2.9)
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TABLE 2.11 ESTIMATEDPERFORMANCEOF THE O-2 AIRCRAFT
(REF. 2.9)
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TABLE 2.12 SUMMARYOF OV-1 MODIFICATIONS
(REF. 2.9)
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TABLE 2.13 ESTIMATED PERFORMANCE OF THE OV-I AIRCRAFT

(REF. 2.9)
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TABLE 2.14 SUMMARY OF ACOUSTIC FLIGHT TEST RESULTS ON THE PIPER

LANCE

(REF. 2.9)

SERIES

A
R
C
D
g
P
C

.H
I
J
lq
L
M
N
O
P

q

TOI2780196ZI82 0.873
TO/2780/96Z/95 0.875
TO/2780/96Z/123 0.882

LFOI2780196XI167 0.896
TO/2780177XI82 0.868
TOI2780177ZI96 0.870
T0/2780/77ZI24 0.876
LIq3/2780/77Z/152 0.886
TO/2570/55Z/95 0.804
TOI2570155Z/123 0.812
TO/2640/77Z/97 0.824
LPO/2630/77Z/153 0.837
TO/2440/77Z/97 0.762
LFO/2460/77X/150 0.785
TO/2240/77Z/97 0.700
TO/2320/55Z/94 0.723
TO/2140/$SZ/95 0.669

INlq..OM GROUNDMINUS EXHAUST PROP ONLY PROP ON'[
ANGLE ELEVATED CONTRI- PRIHARY PRIMARY
(D_G_S) sen, MIceop_o_s B_ZO. ceomm 4 _.

(AU_) 'rOA_

4.3" 287 2.5 0.2 91.7
1.2* 287 2.5 0.3 91.1

-2.2" 287 2.5 0.3 90.2
-4.4" 287 2.3 0.4 89.4
4.0" 231 2.5 0.2 90.3

• 0.9" 231 2.6 0.3 89.6
-2.2" 231 2.2 0.3 88.9
-3.9" 231 2.1 0.3 88.4

1.2" 165 2.3 1.0 79.8
-2.2" 165 2.2 1.8 78,7

0.6" 231 2.2 0.9 83.5
-3.8" 231 1.8 1.0 81.8

0.6" 231 2.0 1.6 77.5
-9.6" 231 2.C 1.7 77.2
1.5" 231 2.2 3.9 73.8
1.9" 165 2.0 2.6 73.7
1.9" 165 2.2 3.6 70.7

89.4
88.7
87.8
87.2
87.8
87.1
87.0
86.5
77.9
76.6
81.4
80.6
75.9
75.5
71.8
71,8
69.0



TABLE 2.15 CHARACTERISTICS OF STANDARD AND REPLACEMENT

PROPELLERS

(REF. 2.29)

Super King Air 200
Standard Replacement

DHC6-300Twin Otter

Standard Replacement

-Number of Blades 3

-Diameter, inches 98.5
-Blade Material Aluminum
-Hub Material Steel

-Total Installed Weight 140 Ib
-1000 ft Max Power

Max RPM Flyover
Noise dBA 79.2

4 3 4

94.0 102.0 93.0
Aluminum ....

Aluminum ....
151 Ib ......

75.0 77.4 72.3
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TABLE 2.16 GEOMETRIC DATA FOR THE TEST PROPELLERS

(REF. 2.29)

Propeller

Config.

4

Diameter

(m)

1.927

1.825

1.735

Number

of blades

m

3

4

Solidity
%

8.6

11.4

13.9

Propeller

Mass (kg)

18.5

20.0

17.0

5 1.637 5 18.5 20.5

6 1.534 6 23.3 25.0
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TABLE 3.1 DATA FROM AIR COMMERCE BULLETIN TESTS

Sound Level at a Distance of 80 Feet(Decibels above 10 14 Watts per cm 2)
(REF. 3.1) ,'

Configuration

Open Ports

B.S. 1

B.S. 3

Side Manifolds

Burgess (bulk absorber)

None

Levels With Frequency Band Filters

0 to

250

250 to

500

500 to

1500
1500 to
3000

3000
to

83 63 53 67 78 77

67 60 47 52 62 60

68 59 53 55 63 64

75

73

72 53 61 68 66

72 54 56 58 51

Corless(spinning rotor) 64 61 50 49 57 56

Manifolds Colle_edto Single 69 61 52 58 63 64
Exhaust Pipe

B.S. 2 65 60 55 52 53

66 62 49 53 60

64 56 48 54 57 56

69 61 55 54 61 62

64 ..........

63 ..........

57

Sikorsky (resonator)

Watson (wire mesh)

Wolford (3 cavities in series)

Rowan Large

Rowan Small

Barrels(underground)

53

59

50 40 47 52 48
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TABLE 3.2 PERFORMANCE OF MUFFLERS TESTED BY PEGG

AND HILTON

(REF. 3.6)

Noise Reduction in dB at Harmonics of Firing
Frequency

Operating Power
Muffler kw 1 2 3

A 173 25 19 23

B 173 23 19 25

C 120 23 5 22

D 120 11 9 17

E 129 13 5 13

4 5 6 >6

26 25 15 -7-10

30 26 15 ~7-10

18 18 16 -5-12

10 15 7 -3-15

12 8 8 ~0-11
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TABLE 4.1 PROPELLER NOISE REDUCTION CONCEPTS CONSIDERED IN THE
LITERATURE

Ref.
No.

2.1

2.2

2.3

2.4-
2.5

2.6-

2.7

2.8

2.9-
2.13

2.14

2.15

2.16

2.17

2.18

2.19-
2.20

2.21

2.22

2.23

2.24

2.25

Author Date

Vogeley 1948

Beranek, et 1950
al

Roberts & 1952
Beranek

Johnston & 1957-
Law 1958

Hoffrnan & 1974
Muhlbauer

Hadamert 1974

Dingledein/ 1975
Hilton/
Conner

Rathgeber 1977
& Sipes

Muhlbauer 1978

Masefield 1978

Wilby & 1979
Galloway

Davis 1979

Klatte & 1979-

Metzger 1981

Borchers 1980

Korkan et 1980
al

Sullivan et 1981
al

Succi 1981

Gregorek 1983
et al

Reduce
RPM

T

T

T

Reduce
Diam

T

Noise Reduction Concepts Discussed

Incr. Incr. # Sweep Tip

Diam. of Geometry
Blades

T

T

T T T

0 0

X X

T

T

T

T*

0

C

C

C

T

T

T

0

C

T

T

T

O

X

T

T

O

C

T

C

T

C

T

C C

C C

Passive
Exhaust

Muffler

T

T

O

C

C

Other

2

3,4

2,3
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Ref. Author Date
No.

2.26 Salikuddin 1984
et al

2.27 Dobrzynski 1986

2.28 Jones 1986

2.29 Raisbeck & 1987

Mills

2.30- Dobr-zynski 1990-
2.32 1993

2.33- Kallergis 1990-
2.35 1993

2.36 Weiblen 1992

2.37 Dobrzynski 1993

2.38 Lohmann 1993

2.39 Chusseau 1993
et al

2.40 Cox 1995

Noise Reduction Concepts Discussed

Reduce Reduce Passive Other
RPM Diam Exhaust

Muffler

5

T*

m _

T

T T

T

C

O O O

Incr. Incr. #

Diam. of
Blades

T

T

C

O

Sweep Tip ,,
Geometry

T

T

C

O

7

1,9

10

Key:

T: Test
C Calculation

O: Opinions
*: Reduced Tip Mach Number
**: Engine Noise Contribution

Other Noise Reduction Concepts

1 Improved Propeller Efficiency
2 BiBlade Propeller
3 Proplets

4 Airfoil Chordwise Pressure Loading
5 Active Noise Cancellation

6 Angle of Attack

7 Asymmetric Blade Spacing
8 Noise Cancellation by Exhaust
9 Replace Fixed with VP Prop

10 Asymmetric Blade Sweep
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TABLE 4.2 TYPE OF INFORMATION IN MUFFLER REPORTS

Ref.

3.1

Author

Air

Commerce

Bulletin

Date

1932

Test Data

X

3.2 London 1940

3.3 1948 X XCzernecki &
Davis

Davis &
Czemecki

1949 X

Parro_ 1973

1974 X

3.4

3.5

Pegg &
Hilton

1975

3.6

3.7 Maglieri &
Hubbard

X

3.8 Sullivan 1979 X

3.9 M unjal 1987

Galaitis &

Vet
19923.10

3.11 Gomolzig 1995

Design
Method

X

X

X

X

General

Information

X

X
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TABLE 4.3 PENALTIES FOR VARIOUS NOISE REDUCTION CONCEPTS

Noise Reduction Concept

Reduce RPM & Diameter

Increase # of Blades

Reduce RPM & Increase
Diameter

Increase # of Blades

Cost
Increase

X

Weight
Increase

X

Penalties to Be Overcome

Structural

Reliability

X

Performance
Reduction

X

Noise

Reduction
Potential

H

X X Lto M

X X X X M

Sweep Blade Tips X X L

Change Tip Geometry X X L to M

Reduce Tip Load X L to M

Use BiBlades X X X L

Use Proplets X X L

Change Airfoil Chordwise X L
Pressure

Use Active Noise X X L to M
Cancellation

Change Angle of Attack L

Use Asymmetrical Blade X X L to M

Spacing

Cancel Prop Noise with X X L to M
Exhaust Noise

Replace Fixed Pitch with X X M

Variable Pitch Prop.

Use Asymmetric Blade X X X M
Sweep

Add an Engine Muffler X X X M

Key to Symbols:

H:

M:
L:

high noise reduction potential

medium noise reduction potential
low noise reduction potential

(5 to 8 dBA reduction)
(3 to 5 dBA reduction)
(1 to 3 dBA reduction)
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Standard Modified

\

FIGURE 2. i Comparison of Standard and Modified Reconnaissance Aircraft (Ref. 2. i)
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FIGURE 2.2 Noise Characteristics of Standard and Modified Reconnaissance Aircraft at

300 Ft. Altitude (Ref. 2.1)
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FIGURE2.3 StandardStinson Configuration1 (Ref.2.2)
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FIGURE2.4 Standard(top) and Modified (bottom)Cub (Ref. 2.2)
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(a) Two-bladed propeller, configuration 2A. (b) Three-bladed propeller, configuration 2B.

(c) Six-bladed propeller, configuration 2C. (d) Eight-bladed propeller, configuration 2D.

i

(e) Thin-bladed propeller, configuration 2E. (f) Medium-bladed propeller, configuration 2F.

(g) Wide-bladed propeller, configuration 2G. (h)

FIGURE 2.7 Stinson Propeller Configurations (Re£ 2.2)
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Solid-bladed propeller, configuration 2H.
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FIGURE 2.9 Modified Amphibian Propeller Configurations (Configuration 6 Upper Left,
Configuration 7 Upper Right, Configuration 8 Lower Left, Configuration 9A

Lower Right) (Ref. 2.3)
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FIGURE2.10 ModifiedAmphibian PropellerConfiguration (Configuration9B Upper
Left, Configuration 9C Upper Right Configuration 9D Lower Left,
Configuration10, Lower Right) (Ref. 2.3)
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Standard Modified

FIGURE 2.14 Comparisoi_ of Standard and Modified Otter (Ref. 2.4)
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Quiet

Design

Conventional
Design

FIGURE 2.24 Quiet Propeller Design for the OV-10 (Ref. 2.18)
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(a)

(b)

(c)

FIGURE 2 25

(d) (e)

Propeller Test Configurations, (a) Original Propeller H027HM-180-138,
(b) Original Propeller Se76EM8S-5-0-58, (c) Bi-Propeller, HOB 27-165

116 152 (bauahnlich HOB27-165 I03 I37), (d) Breitblatt-Propeiler HO
165BF (22 °) (bauahnlich H0165BF (23°)), (e) 4-Blatt-Propeller
H0165bg (Ref. 2.21)
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FIGURE 3.1 Configuration of Muffler Used in Vogeley's Flight Test (Ref. 3.3)
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FIGURE 3.2 Installation of Muffler Used in Vogeley's Flight Test (Overall View in Upper
Figure, Closeup of Installation with Heat Shield in Lower Figure) (Ref. 3.3)
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2
Component Length, m Area, m

1. Tailpipe 0.60 0.002

2. Extended outlet .06 .002

3. First chamber .25 .019

4. Extended inlet .04 .002

5. Connector .01 .002

6. Extended outlet .08 .002

7. Second chamber .51 .019

8. Extended inlet .30 .002

9. Connector .61 .002

10. Extended outlet .13 .002

11. Third chamber .76 .019

12. Extended inlet .44 .002

FIGURE 3.3 Schematic of Muffler Configuration (Ref. 3.5)
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(_) Extendedoutlet .058

/ (_) First chamber 253

(_) Second chamber

Length. m Equivalent
area, m2

(_ Tail pipe 0.475 0.00456

i ® endedout,et,55

_) First chamber .762 .0127

(_) Extended inlet .4,4 .00456

(_) Connector 326 .00456

_) Extendedoutlet 305 .00456

J

0.00317-m diameter (typical)

Length, m Equivalent
area, m2

(_) Tail pipe 0301 0.051

(_) Extended inlet .15Z .051

(_) First chamber 305 .]68

(_) Second chamber .3(;5 368

(_) Extendedoutlet 381 .051

(_) Connector 306 .051

(_ Extended inlet .0_0 .05]

(_) Third chamber .914 368

(_) Extendedoutlet .6_ .051

Equivalent Length, m Equivalent
area. m 2 area, m2

0.051 (_) Extendedinlet 0.301 0.051

.051 (_) Connector .610 .072

.155 (_) Extended outlet 330 .0"/2

.051 _) Third chamber 365 .184

355 (_ Extendedinlet .443 .072

Length, m Equivalent
area, mz

(_) Second chamber 0.162 0.0]?7

(_ Extended inlet 384 .00456

(_) Connector 393 .00456

Extended outlet .506 ,00456

(_) Third chamber 262 .0127

(_) Extended inlet .140 .00456

Length, m Equivalent
area. m z

(_) Tail pipe 0355 0.00457

® Extendedoutlet 241 .00457

_) First chamber 362 .0183

(_) Extendedinlet .5] .00457

(_) Connector .406 .00457

_) Extendedoutlet 343 .00457

(_) Second chamber .555 .0183

(_) Extended inlet .153 .00457

Length, m Area, m z

O Tail pipe 0.209 0.00457

® First chamber 216 .0365

(_ Second chamber 356 .0365

(_) Extended outlet .025 .00457

(_) Third chamber .]90 .0365

(_ Connector hole .00134

FIGURE 3.4 Helicopter Mufflers Tested (Ref. 3.6)
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