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Introduction

The interactions between flames spreading over parallel solid sheets of paper are being studied
in normal gravity and in microgravity. This geometry is of practical importance since in most
heterogeneous combustion systems, the condensed phase is non-continuous and spatially
distributed. This spatial distribution can strongly affect bumning and/or spread rate. This is due to
radiant and diffusive interactions between the surface and the flames above the surfaces. Tests
were conducted over a variety of pressures and separation distances to expose the infiluence of the
parallel sheets on oxidizer fransport and on radiative feedback.

Owing largely to their practical importance, flame interactions have been an area of active research,
however microgravity research has been largely limited to candles (Ref. 1) and droplets, (Refs.
2 & 3 ). Consideration of parallel solid surfaces has been limited to 1-g studies (Refs. 4 -
9). Of these works, (Refs. 4, 6 and 7) considered flame spread.

Emmons and Shen (Ref 4.) studied horizontal flame spread over an array of vertically oriented
paper sheets. The flame spread rate was found to be proportional to the fuel sheet aspect ratio
(height/separation) for small and large values of the aspect ratio. However, the proportionality
was different in these two cases and, at intermediate values, the correlation broke down. Using
a simple model for the energy transport ahead of the flame and a value for the buming zone width
estimated from the data, acceptable agreement was obtained with the experimental data.

Kim, De Ris and Kroesser (Ref. 5) performed a theoretical and experimental analysis of the
downward buming rate between two parallel fuel surfaces. Assumptions similar to those in the
work of De Ris (Ref. 10) were made (unity Lewis number, infinite gas phase reaction rate and
insignificant radiative transport). Buming rate was found to be controlied by the product of the
Grashof number and the channel aspect ratio (b (channel half width/length) ). Good agreement
was found between the theoretical formulation and the burning rate for methanol-soaked slabs.
The selection of methanol as the test fuel increased the suitability of the assumption that radiation
could be neglected since methanol flames produce little soot and consequently the radiative
transport from the flames can be expected to be small. Three buming regimes were found
depending upon the ratio /b*. For small values of lb¢, the burning rate was independent of b; for
larger values, the burning rate is independent of | but proportional to the b®. Atintermediate values
a simple parameter dependence was not observed.
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Ohlemiller -and Villa (Ref. 11) and Ohlemiller (Ref. 12) suggest the importance of considering the
radiant interaction between two surfaces in NASA's flammability assessment of materials. The
current flammability standard for materials to be used on spacecraft (Ref. 13) is an upward burning
test with a single sheet of material. As Ohlemiller (Ref. 12) suggests, this is a geometry that is not
necessarily the worst case it is intended to be. Without radiant preheating of the unburned
material, the lammability hazard is lower than with modest radiative feedback. The radiant
interaction between surfaces is also very important in terrestrial fire safety; the classic example is
wood, which is nonflammable as a single large sheet but very flammable if multiple pieces are
arranged to aliow radiant interaction.

Experiment Description

The tests were conducted for downward flame spread over parallel sheets of paper. The fuel was
stored in a desiccator and the chamber filling process exposed the fuel to vacuum or dry air for at
least two hours. The low gravity tests were conducted in the NASA LeRC 2.2 second drop tower
in a 45 liter quiescent chamber. The normal gravity tests were either conducted in the 45 liter
chamber or a new 27 liter chamber. The fuel was Kimwipe™ laboratory wipes, selected because
of their uniform thickness and low mass/area (1.9 mg/cm?) The sample frame opening was S cm
wide and the flame spread rate and flame structure were observed using a color video camera on
the edge view. The oxidant was either mixed in the chamber using partial pressures or supplied
directly from a gas bottle, in either case the mixture error was less than 0.5 mole %. The bulk of
the low gravity tests were conducted at 30% oxygen because a value within the quiescent
microgravity flammability range for Kimwipe™ was desired, while the normal gravity tests were
conducted at 21% oxygen. The diluent was either helium or nitrogen. Test pressures ranged from
100 to 1000 Torr, with the majority conducted at 760 Torr, and separation distances varied from
6.4 to 50 mm. Unlike single sheet tests, it was learned that the ignition process must be carefully

controlied to prevent the ignition products from filling the gap between the fuels, thereby preventing
development of internal flame(s).

The experiment imaging was recorded in S-VHS video format. After the tests, the video frames
were digitized using a frame grabber and the flame spread rate was determined using object
tracking software which stepped through the video images and determined the position of the
leading edge of the flame. The spread rates were very stable throughout the tests with correlation
coefficients greater than 0.99. Where there was a flame between the sheets of paper (intemal
flame), the reported spread rates are the average of the spread rates of the internal and extemal
flames on at least one of the sheets. The camera was centered on the edge of one of the sheets
to provide optimum imaging of one pair of flames. At large separation distances the flames on the
second sheet were sufficiently distorted that they were not trackabile; for these cases the spread
was determined from only the sheet aligned with the camera.

in process of these tests, numerous deficiencies were observed in the 20 year old generic
combustion drop package that was being used. The most important of these was infiexibility
concerning sample size and separation distances. In addition, it was found to be unsuitable for
normal gravity testing due to the support hardware needed to support the samples impeding
buoyant air flow. A new drop package was designed and fabricated. it was used for limited normal
gravity testing and is now ready for use in the drop tower. This apparatus allows more systematic
sample configuration variation and also improves the quality of the recorded images.
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Results and Discussion

It was found that flame interactions occur in a manner similar to that reported for normal gravity
downward spread. The microgravity flames, however, exhibit greater interaction for a given
separation distance, the difference being attributed to the influence of the buoyant flow. Similar
to the nomal gravity case, the interaction displays four phases as separation distance is
increased(Fig. 1): 1. no flame between the sheets of paper (internal flame), 2. an unstable internal
flame, 3. a single internal flame which becomes more deeply notched with separation distance, 4.
individual internal flames on each surface which in the limit of large separation become independent
of each other. These results are similar to those reported for normal gravity flames by Kurosaki,
lto and Chiba (Ref. 6) who reported, as separation distance was reduced, a progression from
independent flames through increasing flame interaction to ultimate extinguishment of the internal
flame. The range of separation distances over which the interaction was apparent was much
greater than that seen in normal gravity tests where separate flames are observed at 10 mm
separation while the low-g flames were still connected at 40 mm separation. (Fig 2.)

Figure 3 contains the low-gravity spread rates for parallel sheets at various separation distances
with helium and nitrogen diluents. As expected, the spread rate is higher for helium for all cases;
this is consistent with the thin fuel spread model of De Ris (Ref. 10) which shows linear
dependence on gas phase thermal conductivity. The greater dependence on separation distance
for the helium case is also consistent with helium’s larger thermal diffusivity, which was also evident
in the fact that the helium flames were much larger than the corresponding nitrogen flames, and
interacted over greater separation distances. The tendency of the intemal flame to extinguish at
larger separations for helium is most likely due to increased conductive losses to the paper. The
limited change in the spread rate with nitrogen diluent is surprising given the evident interaction in
the video record.

Kurosaki, ito and Chiba (Ref. 6), in similar normal gravity tests, reported that as separation was
increased, after passing through a maximum value, the spread rate decreased asymptotically to
the single sheet value. In this work, for nitrogen, the spread rate for multiple sheets was very
close to that of the single sheet; for the case of helium diluent, test chamber limitations prevented
increasing the separation distance enough to see the low-gravity spread rate return to the single
sheet values. The flames were largely blue and therefore the radiant contribution is likely to be
low, however at this pointitis not possible to determine whether the increased spread rate was due
to the increased radiant transport due to the higher flame temperature or due to the increased
thermal conductivity of the helium diluent. In their work Kurosaki, Ito and Chiba (Ref. 6) found (by
analysis) that radiation from the ember section of the opposing sheet was of the same order as
conduction; their fuel was computer cards which can be expected to produce a more significant
ember section than the thin paper used in these tests. Their results showed that the interaction
increased with sample width (consistent with radiation view factors). Due to access limitations, the
sample width could not be significantly varied in the old drop rig, however the new drop rig will
accommodate a variety of sample sizes and this parameter will be varied in future tests.

The change in spread rate as a function of pressure is presented in figure 4. At pressures greater
than atmospheric, the limited change in spread rate with pressure is consistent with thin fuel flame
spread theory. However, below atmospheric pressure (600 to 700 Torr), there is a dramatic change
in the pressure dependence. In these cases, the internal flame does not extinguish until well below
the transition point. However, in some cases below the transition point, oscillation was seen in the
internal flame. Similar tests were conducted for 1-g flames (Fig. 5). In this case there was also a
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pressure below which spread rates dropped off, however the change in slope was less abrupt. In
1-g the intemal flame was the last to extinguish. This effect was attributed to the chimney effect
of the sheets of paper providing enhanced air flow. ’

In this work, an unstable region was observed in low-g flames for 30% oxygen in helium at 760
Torr for 15 mm separation. The flame between the sheets pulsated six times during the drop,
alternating between small pulsations and very large pulsations that filled the entire region between
the sheets behind the flame leading edge. The frequency was 2.5 to 3 Hz and the duration of the
pulsations was 0.1 to 0.2 s. All of the pulsations involved a flame propagating back from the
leading edge toward the ignitor. In another case, with nitrogen diluent (30% oxygen at 645 Torr,
10 mm separation), an unstable internal flame was also observed, however in this case it was a
flame bubble that oscillated in both directions as it trailed behind the leading edge of the external
flames. In addition to the instability causing the flame oscillation down the channel, it also appeared
that the instabilities were alternately starting at the near and far (with respect to the camera) edges
of the flame. With a single camera view, it is impossible to confirm this; further study of this
phenomenon will require 2 orthogonal camera views. Instability was found in normal gravity near
the low pressure extinction limit, however in this case the internal flame would pulsate forward
(opposite to the low-g pulsations). The frequency was again approximately 3 Hz but the duration
was approximately 0.03 seconds, much briefer than the low-g pulsations. Kurosaki, lto and Chiba
(Ref. 6), reported an intermittent internal flame in their tests in 1-g but little detail was provided.

instabilities (cellular flames) for flames spreading over single sheets of paper have been reported
forlow Lewis numbers (Ref. 14), however these instabilities were small scale flamelets meandering
across the burning edge of the fuel. In their helium dilution case (Lewis number of 1.4) instabilities
were not observed. A pulsating mode has been suggested for high Lewis number cases by Joulin
and Clavin (Ref. 15), with the critical Lewis number for pulsations decreasing with increasing heat
loss. The difference between this work and the work of Zhang, Ronney et al. (Ref. 14) may be the
increased heat loss due to the opposing sheets of paper. More work is needed to confirm this
effect and to determine whether the pulsations reported here are a Lewis number effect or an
artifact of the sample geometry.

Conclusjons

Interactions between flames spreading over parallel surfaces have been demonstrated in low-
gravity. There is an expanded spatial scale over which the flames interact compared to the normal
gravity case. These interactions change the response of the flame spread to pressure variation and
cause instabilities that have not been observed for normal gravity flames. Further work is needed
with a variety of sample geometries and sizes to clarify these results. '
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Figure 1. Edge view of flames propagating in microgravity over
parallel sheets of Kimwipe at different separation distances in 30%
oxygen, balance nitrogen, at 760 Torr. Separation distances in or-
der (top to bottom, left 1o right) are 6.4, 10, 20, 30, 40 and 50
mm. At 40 mm separation, the flames are nearly separate with
slight interaction. At 30 mm the flames have merged, producing a
notched blue flame compared to the more luminous external
flame. The internal flame is nearly flat at 20 mm and in the 10 mm
case the flatness is slightly skewed by slightly delayed ignition for
the left sheet. By 6.4 mm the internal flame has extinguished and
the fuel burns only on the outer surfaces.

Figure 2. Edge view of flames propagating in normal gravi-
ty over parallel sheets of Kimwipe at different separation
distances in dry air at 760 Torr. Separation distances in
order (top to bottom, left to right) are 3 mm, 4.7, 6.4, 10,
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Figure 3. Flame spread rate versus separation distance for
two paraliel sheets in microgravity in 30% oxygen, balance heli-
um or nitrogen at 760 Torr. Single sheet values are shown as
dashed lines. The sharp slope change below 20 mm separation
for helium and 10 mm for nitrogen, is a result of the extinction
of the internal flame.
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Figure 4. Flame spread rate versus pressure for two parallel
sheets at 10, 20 and 30 mm separation distances in 30% oxy-

gen, balance nitrogen, in microgravity.
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Figure 5. Flame spread rate versus pressure for single sheets
and parallel sheets 6.5 and 10 mm separation distances in dry
air in normal gravity. Flames were propagating downward.



