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Introduction

Microwave reflectometry can be used to make dis-
tance measurements between a directional antenna and a
reflecting target. Distance is derived from the complex
reflection coefficient,Γ(ω, d), which is measured at the
input of the antenna and is a function of both distanced
and the radian frequencyω. Such a technique was pro-
posed and developed for measuring the “stand-off” dis-
tance between the highly ionized plasma that occurs in
front of the heat shield of a reentry vehicle. In this appli-
cation the plasma may form a highly conductive target
parallel to the metallic spacecraft skin. This paper con-
siders the measurement problem in which the reflectome-
ter target is a highly conductive surface parallel to the
antenna ground plane, as illustrated in figure 1. These
parallel surfaces constitute a parallel-plate waveguide
(PPWG) which can contribute parasitic perturbations to
Γ(ω, d) that, if ignored, seriously degrade the accuracy of
reflectometer measurements (ref. 1). Two distinct PPWG
phenomena are described, and their effects on both fre-
quency and time-domain reflectometers are discussed.
Techniques for defeating these deleterious mechanisms
are presented. Experimental results (of measurements
made in a controlled PPWG environment) are presented
that yielded distance-measurement accuracies on the
order of 0.025 cm (0.01 in.) after the application of these
corrective measures.

Symbols

c velocity of propagation

d distance

du unambiguous full-scale range

d0 fixed distance

F(ω) transfer function

f frequency

f (t) inverse Fourier transform ofF(ω)

g(t) impulse response

k multiplicative constant

M magnitude ofΓ

m an integer, 1, 2, 3, ...

n an integer, 1, 2, 3, ...

Sinc ( ) sin ( )/( )

Tp propagation time delay,

Vi (i = 0, 1, 2, ...)

W(ω) rectangular frequency domain window∆ω
wide centered atω0

X,Y,Z axial coordinates

β imaginary part of complex propagation
constant

Γ(ω, d) complex reflection coefficient dependent on
radian frequency and distance

λ wavelength

λ0 wavelength ofω0

ω radian frequency

ωm radian frequency of modulation signal

ω0 constant radian frequency

Φ(ω, d) phase ofΓ(ω, d)

ΦD differential phase between signals atω0 − ωm
andω0 + ωm

dΦ
dω
-------–

Abstract

This report presents an analytic and experimental investigation of the measure-
ment problem in which a reflectometer is used to determine the distance to a target
that is a highly conductive surface parallel to the reflectometer antenna ground plane.
These parallel surfaces constitute a waveguide (WG) which can contribute parasitic
perturbations that seriously degrade the accuracy of the measurements. Two distinct
parallel-plate-waveguide (PPWG) phenomena are described, and their effects on
both frequency and time-domain reflectometers are considered. The time-domain pro-
cessing approach was found to be superior to a representative frequency-domain
phase-measurement approach because of less susceptibility to perturbations pro-
duced by edge reflections and immunity to phase capture. Experimental results are
presented which show that a simple radiating system modification can suppress
parallel-plate (PP) propagation. The addition of a thin layer of lossy mu-metal “mag-
netic absorber” to the antenna ground plane allowed a measurement accuracy of
0.025 cm (0.01 in.) when a vector network analyzer (VNA) is used as a time-domain
reflectometer.
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Abbreviations:

CW continuous wave

PP parallel plate

TEM transverse electromagnetic

TM transverse magnetic

VES vector error subtraction
VNA vector network analyzer

WG waveguide

Ideal Reflectometer Concept

A reflectometer distance measurement is based on
transverse electromagnetic (TEM) wave propagation
along the Z-axis (fig. 1). With no reflections except the
one from the plate and with no parallel-plate (PP) propa-
gation, the phase ofΓ(ω, d) at the aperture plane is a lin-
ear function of frequency and plate spacing,ω and d,
given by

(1)

whereβ is the imaginary part of the complex propaga-
tion constant,λ is the wavelength, andc is the velocity
of wave propagation. A fixed-frequency (ω = ω0) reflec-
tometer distance measurement based onΦ(ω0, d)
becomes ambiguous whend > λ/2 and Φ exceeds 2π.
Whend < λ/2, only the TEM mode can propagate along
theX- or Y-axis and contribute toΓ(ω0, d). This propaga-
tion mode is often ignored in theoretical models because
energy loss via radiation is very small if the aperture
diameter is at least 1λ (refs. 2 and 3); the measurement of
d throughΦ(ω, d) is nearly ideal.

Multiple Z-Axis Reflections

In practice, additionalZ-axis reflections will occur,
as indicated in figure 2. The “local” or first aperture
plane reflectionV0 and multiple reflections between the
plates (withV2 the largest) contribute toΓ(ω0, d). The
magnitude and phase functions become nonlinear ind
and vary about−2ωd/c with λ/2 periodicity (refs. 3
and 4). The local reflectionV0 remains constant asd
increases, whileV1 and the multiple reflections decrease.
ThusV0/V1 increases andV2/V1 decreases withd.

Parallel-Plate-Waveguide Effects

When d > λ/2, a modulated excitation signal can
eliminate ambiguity, but PPWG propagation occurs
along theX- or Y-axis. This PPWG propagation affects
Γ(ω) and a distance measurement. The effect of PPWG
propagation onΓ(ω, d) has been well documented for
fixed-frequency (ω = ω0) excitation of infinite parallel

Φ ω, d( ) 2βd– 2
2π
λ

------ 
  d– 2ωd

c
----------–= = =

plates (refs. 1 and 2). It was shown that energy is most
efficiently radiated from such systems at plate separa-
tions within about±λ0/8 of

(2)

and that radiation is ideally zero at the “critical points”
that are defined by equation (3).

(3)

With ω constant, variations in the magnitude and
phase of Γ(ω0, d), which are periodic inλ0/2 are
observed as d is varied (as sketched in fig. 3). Similar
behavior is observed inΓ(ω, d0), with d fixed andω var-
ied. The latter case, withω variable, is of interest here
because it is applicable to measuring distances greater
thanλ/2.

Each critical point corresponds to the introduction of
a new PPWG transverse magnetic (TM) mode (ref. 1). At
those points, the new mode in the waveguide (WG) chan-
nel presents such a poor match to the aperture plane that
the incident wave is largely reflected and radiation is
squelched. Withd fixed, varyingf changesλ. As equa-
tions (2) and (3) are alternately satisfied,Φ(ω, d) and
M(ω, d) ≡ Γ(ω, d) exhibit large periodic variations as
the 1-way electrical path length changes byλ/2. Thus,
PPWG propagation imposes a characteristic “signature”
(modulation) onΓ(ω, d). This modulation is periodic in
λ/2 and much larger than the modulation that is produced
by Z-axis multiple reflections. These effects are demon-
strated in figure 4. Removal of the ground plane elimi-
nated the PP propagation channel and reduced theλ/2
variations inM(ω0, d) from 17 to 3 dB atd = 20 cm.
Although PPWG propagation and Z-axis multiple reflec-
tions disturbΓ(ω, d) with the same periodicity, the wave
forms are quite different. Figure 5 compares a typical
PPWG response (ref. 2) with the computed vector sum of
a primary reflection plus the first multiple reflection (cor-
responding toV1 andV2 in fig. 2).

In theory the PPWG signature intensifies asd and
the number of WG modes increase; however, this
increase is partially offset in practice by reduced peaks in
M(ω0, d), as illustrated in figure 4. Reduced deviation of
Φ(ω, d) from linear was observed to accompany a reduc-
tion of PPWG variations inM(ω, d).

Edge effects in finite PP fixtures produce the rapid
fluctuations (“trough ripple”) inΓ(ω0, d) evident in fig-
ure 4 and which can affect a distance measurement. Just
above its cutoff, the electrical length of a WG for a new
mode is very sensitive tod or f. Wave propagation along
the X- or Y-axis in a PPWG is highly mismatched near

d 2m 1+( )
λ0

4
----- 

 
= m 1 2 3 …, , ,=( )

d n
λ0

2
----- 

 
= n 1 2 3 …, , ,=( )
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WG cutoff (ref. 5). Reflections at the edges of a PP fix-
ture impose a series of “resonant loops” onΓ(ω, d)
between critical points. Figures 6 and 7 are from a nar-
row span which includes only two critical points to illus-
trate these effects. Dispersion in the interconnecting WG
(and horn) and the linear-phase term were empirically
removed fromΦ(ω, d) by using processing features of
the Hewlett Packard (HP 8510C) vector network ana-
lyzer (VNA). The result shows the remaining deviations
of Φ(ω, d0) from linear.

Resonant loops occur when the PPWG presents a
high shunt conductance to the aperture plane. This shunt
conductance strongly modifies the aperture plane admit-
tance produced byZ-axis transverse electromagnetic
(TEM) propagation. Complementary (low-conductance)
resonances have relatively little shunting effect on the
Z-axis response. The loops may be over coupled (encir-
cling the origin) or under coupled (nonencircling), as in
figure 6 and impose step changes onΦ(ω, d0) and large
impulsive “spikes” on the phase delay−dΦ/dω, as is evi-
dent in figures 7(a) and 7(b). If the trough ripple is
ignored, figures 7(a) and 7(b) show the same general
behavior that is sketched in figure 5. Therefore, distance
measurements whered > λ/2 based onΦ(ω, d0) or dΦ/
dω are affected adversely by PPWG propagation in a
way that cannot be completely “averaged out.”

In summary, the impediments to making accurate
distance measurements beyondd = λ/2 with a PP reflec-
tometer are (a) local reflections from the aperture plane,
(b) multiple reflections between the reflecting plate and
the antenna, and (c) two PPWG propagation effects. All
impart nonlinearity toΦ(ω, d) that is periodic inλ/2. In
addition, dispersion in the interconnecting waveguide
adds additional phase nonlinearity.

Local reflections can be negated with a tuner at the
input port in a fixed-frequency system (ref. 2). Vector
subtraction of the “free-space” response (with no reflect-
ing plate) from a measured response, defined here as
vector error subtraction (VES), can negate the contribu-
tion of local reflections toΓ(ω) over the operating band-
width of a modulated system—provided the system is
linear in the sense that if inputx produces outputy, then
inputkx producesky. More complex error-correcting cal-
ibration schemes have been developed that effectively
compensate for bothZ-axis multiple reflections and local
reflections (ref. 6).

Numerous systems that have different modulation
formats are applicable to making distance measurements
when d > λ/2. Some systems are less susceptible than
others to PPWG effects. This difference is shown here by
a comparison of two approaches: a frequency-domain
phase-measurement approach and the inverse Fourier

transform time-domain approach that is used in modern
VNA’s.

Frequency-Domain Approach

A simple way to extend unambiguous range in the
phase-measurement approach is to use double sideband-
suppressed carrier modulation (atω = ωm) to generate
two continuous wave (CW) signals separated by 2ωm and
measure the differential phaseΦD that is accumulated by
those signals in traversing the path to and from the
reflecting plate (ref. 7). In the ideal case of a reflection
from one target in a nondispersive media, the phase
difference,

(4)

can be determined without ambiguity when 0 <ΦD < 2π.
It can be seen in equation (4) thatΦD/2ωm is the two-way
time delayTp.

For an unambiguous full-scale range ofdu, ΦD = 2π
andωm is given by

(5)

This approach was found to be highly vulnerable to
the effects described previously, and the approach per-
formed poorly in a PP configuration. The phase non-
linearity associated with each sideband caused large
variations inΦD(ω0, d) around the value given by equa-
tion (4). An analysis of two constant-amplitude reflec-
tions predicted a phase error given by

(6)

(See ref. 4.) This expression has the same compound
periodicity related toω0 andωm that is observed in labo-
ratory experiments. It was also shown that sweeping the
carrier frequency across a bandwidth∆ω >> ωm and
averaging the resulting phase measurements reduced
phase error by the factor Sinc(∆ωd/c) (ref. 4). This
reduction was verified experimentally by stepping the
carrier over 51 points within a band∆ω = 10ωm (ref. 6).

Examination of phase and phase-delay measure-
ments from several different PP laboratory fixtures
revealed that fluctuations inΦ(ω, d) and dΦ/dω that
were produced by edge reflections were seldom zero
mean and hence could not be eliminated completely by
averaging. The limited value of averaging is believed to
be one weakness of this approach to distance measure-
ment in a PP environment. Another weakness is that
amplitude limiting, normally used in a phase-only
measurement approach, makes VES inapplicable. This

ΦD( )
IDEAL

2ωm
2d
c

------ 
  2ωmTp= =

ωm( )
u

πc
2du
---------=

ΦD 4ωm
d
c
---– 

  k 2ωm
d
c
--- 

  2ω0
d
c
--- 

  …+cossin≈
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inapplicability is a severe limitation if the local reflection
is sizable compared with the primary reflection, as
occurs when the horn aperture is covered with a highly
reflective dielectric heat shield (ref. 7). The phase-
measurement approach described here is not linear, mak-
ing VES inapplicable; signal-to-interference ratios of
0 dB result in “phase capture” by the interfering signal,
and the average phase delay of the combined signal
becomes the one that is associated with the interference
instead of with the primary response. It has been shown
that a periodicity related to the primary response remains
in Φ(ω) after phase capture. That periodicity can be
exploited to extract target distance in the presence of the
larger interfering response (ref. 8).

Time-Domain Approach

Measured frequency response data that are obtained
from a real system (either continuous or discrete) over
the interval (ω2 − ω1) = ∆ω define a “transfer function”
F(ω), which is assumed to be zero elsewhere. (No physi-
cal system can have such a transfer function which pro-
duces an output before the input is applied.) The inverse
Fourier transformf (t) of the physically unrealizable
transfer functionF(ω) is then computed. This “time
response” would result if a unit impulse was applied to
the input of a system having the frequency response
function F(ω). The time-domain approach differs from
the previous approach because it is linear with respect to
the amplitude of the reflected signal and uses both the
magnitude and phase ofΓ(ω). Thus, VES can be used to
negate local reflections.

A unit impulse that passes through a purely real, uni-
form band-pass “window” functionW(ω) having a value
of unity within the bands±(ω0 ±ω/2) and zero elsewhere
produces the output:

(7)

Thus, f (t) can be interpreted as the response that
Sinc-pulse excitation of the real system would produce.
The output response of a system that has a transfer func-
tion with constant magnitudeM and linear phase across
∆ω (simple weighting and delay) tog(t) is Mg(t − Tp),
whereTp is the time for a pulse to propagate through the
system−dΦ/dω. The location of the output-pulse peak
t = Tp can be converted to distance if the propagation
velocity in the medium is known. In the time-domain dis-
tance measurement approach,Γ(ω, d0) can be thought of
as the transfer function between the reflected and for-
ward voltage waves, withTp the round-trip propagation
time 2d/c. WhenΓ(ω, d0) is inverse transformed, reflec-
tions V0 andV2 (fig. 2) produce interference pulses that
are separated from the primary pulse by multiples ofTp.

g t( ) 2∆f Sinc
∆ωt

2
---------- 

  ω0t( )cos=

Figure 8 is the corresponding time-response measure-
ment, without linear phase or dispersion extraction, from
which figures 6 and 7 were generated. Figure 9 is the
same case with linear phase and dispersion extracted.
The secondary reflections are easily identified. Increas-
ing ∆ω sharpens the time responses and increases time-
distance resolution. The time-distance discrimination and
linearity characteristics of this approach allow it to oper-
ate in the presence of local interference reflections that
are larger than the primary response. This discrimination
requires that Tp = 2d/c exceed 2/∆f, which is clearly true
in figure 8.

The theory of pulse distortion in linear networks can
be used to explain how phase and amplitude fluctuations
in Γ(ω, d), caused by secondary Z-axis reflections, PP
propagation, and dispersion affect the location and
amplitude of the time response to a hypothetical Sinc-
pulse input. Although the infinite plate PP signature is
not a reflection phenomenon, it influences the amplitude
and location of the time response much the same as mul-
tiple reflections do.

Periodic variations in eitherM(ω) or Φ(ω) that are
caused by multiple reflections, PPWG propagation, and
dispersion give rise in the inverse transform to “echo-
pulse” pairs which have the same envelope function as
the undistorted output pulseMg(t − Tp), but which are
displaced symmetrically aroundMg(t − Tp) by integral
multiples of a factork which defines the “periodicity” of
the frequency-domain variations (ref. 9); that factor isTp
for the variations caused by multiple reflections and
PPWG propagation and is therefored dependent.

Uncorrected phase dispersion in the interconnecting
waveguide, transition, and horn also introduces non-
linearity to Φ(ω)—unrelated toTp—which must be
largely eliminated either in hardware or software. When
the phase curvature that results from uncorrected disper-
sion exceeds approximately a radian at the band edges
of Φ(ω), relative to midband, the time response becomes
noticeably smeared, the side-lobe levels increase, and
side-lobe symmetry and null depth are reduced, as illus-
trated in figures 8 and 9. It will be shown that odd-order
dispersion produces a fixed-time shift of the envelope
peak. These effects did not discernibly degrade the accu-
racy of time-domain measurements when the total resid-
ual dispersion did not exceed a radian; however,
dispersion on the order of 4 to 5 rad significantly
degraded measurement accuracy.

In a physically realizable, time-invariant linear sys-
tem, variations inM(ω) are accompanied by variations in
Φ(ω). Both variations contribute to time response; their
combined effect is to reduce one echo pulse and increase
the other. The side lobes of the echo-pulse envelopes
interact with the main lobe of the primary pulse to
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produce a sum response in which both the amplitude and
position of the envelope peak can vary, relative to the
primary pulse alone (ref. 9). The PPWG propagation was
consistently observed to affectΓ(ω, d) much more
strongly than could be attributed solely toZ-axis multiple
reflections and is therefore the largest contributor to side-
lobe interference and measurement error.

A previous study (ref. 9) of the effects of small vari-
ations inM(ω) andΦ(ω) on the time response revealed
that variations inM(ω) do not produce time shift, but
variations inΦ(ω) can. An approximate time response
for a frequency-response function havingM(ω) = 1 and

(8)

can be derived symbolically when∆Φ < 1. The basic
form of the result depends on whether the variation term
in equation (8) has even or odd symmetry over∆ω with
respect to midband (ω1 + ω2)/2 and that symmetry
changes whenω0Tp changes byπ/2, as illustrated in fig-
ure 10. With even symmetryω0Tp = (2n + 1)(π/2), and

(9)

The echo-pulse and primary-pulse carriers are
orthogonal, and the two echo pulses have a combined
envelope function that has even symmetry aboutt = Tp.
Therefore, the root-squared sum envelope function of
f (t) has even symmetry aboutt = Tp, and there is no time
shift.

With odd symmetryω0TP = mπ and

(10)

The envelope functions of the echo and primary
pulses add directly because they have inphase carriers.
Figure 11 shows the pulse orientations withm even and
∆ωTp/2 = 3π. At t = Tp the combined echo-pulse enve-
lope function changes sign and adds to the primary-pulse
envelope on the high side ofTp and subtracts on the low
side, producing a positive time shift of the sum-process
envelope. WhenTp is increased so that∆ωTp/2 = 4π, the

Φ ω Tp,( ) ωTp– ∆Φ ωTp( )sin+=

f t( ) 2∆f Sinc
∆ω t Tp–( )

2
----------------------------- ω0 t Tp–( )[ ]cos=

1–( ) m ∆Φ
2

-------- 
  Sinc

∆ωt
2

---------- 
 





+

Sinc
∆ω t 2Tp–( )

2
--------------------------------





ω0 t Tp–( )[ ]sin+

f t( ) 2∆f Sinc
∆ω t Tp–( )

2
----------------------------=

1–( ) m 1+ ∆Φ
2

-------- 
  Sinc

∆ωt
2

---------- 
 





+

Sinc
∆ω t 2Tp–( )

2
--------------------------------





– ω0 t Tp–( )[ ]cos

time shift is negative. Time shift can be quantified by
representing the three components of the envelope func-
tion in equation (10) as Taylor series approximations
about t = Tp, carrying terms only through the second
order. The resulting quadratic approximation forf (t) has
a maximum at

(11)

wheren is the order of the echo-pulse zero crossing at
t = Tp.

When ∆ωTp/2 = (2n + 1)π/2, the echo pulses have
local extremes att = Tp; time shift is zero but the sum-
pulse amplitude has a local extreme value. The extremes
of the amplitude and position errors alternate and follow
a downward trend asTp increases.

In summary, asTp = 2d/c changes, the measurement
error exhibits compound periodicity as the parameters
that control the relative orientation of the primary and
echo-pulse lobes∆ωTp/2, and the phase difference
between the primary and echo-pulse carriersω0Tp
change by 2π. Increasing∆ω causes the measurement
error to follow a downward trend. These are the same
general conclusions that were drawn earlier for the fre-
quency-domain approach.

Time-domain measurements were affected less by
trough ripple than frequency-domain measurements
were. This difference probably occurs because the varia-
tions in Γ(ω) that are produced by trough ripple change
rapidly with ω and are widely dispersed in the time-
domain transformation; relatively little interference is
contributed to the critical region that contains the main
lobe of the primary pulse.

Reduction of PPWG Effects

Any measure that can reduce PPWG disturbances
without significantly affecting the primaryZ-axis reflec-
tion reduces the periodic variations ofΦ(ω) from linear,
the resulting time-shift of the time-domain sum pulse,
and therefore the measurement error. Two effective
methods for reducing PP effects were found. First, add-
ing a slight curvature to one of the surfaces can corrupt
the PP geometry sufficiently to completely squelch
PPWG propagation—with negligible reduction of the
primary response. This suppression was demonstrated
with a 25.4-cm (10-in.) square PP fixture operating at
16 ± 2 GHz that was modified to have a curvature radius
of 58.4 cm (23 in.) on the reflecting plate. For any value
of d, there was a circular locus in theX-Y plane along
which the plate spacingd would satisfy equation (3) and
squelch propagation.

tM Tp 1–( ) n 12∆Φ
nπ∆ω
---------------+≈



6

Secondly, a 10-mm (0.04-in.) layer of commercially
available magnetic absorber on the ground plane was
used to negate substantially the electrical effect of the
ground plane. This absorber consists of lossy mu-metal
particles suspended in Rutile and also is available in a
paint-on medium (ref. 10). Measurements with several
different test fixtures operating in the 14- to 26-GHz
region showed that applying this material around the
horn aperture reduced the secondary pulse by 6 to 14 dB
while reducing the primary pulse amplitude only 0.2 dB.
When the aperture plane reflection, inV0 figure 2, is
negligibly small or when VES is used, distance-
measurement error was observed to be closely propor-
tional toV2/V1. A ring of magnetic absorber that covered
the ground plane to about 6λ beyond the perimeter of a
5λ horn effectively suppressed PPWG contributions to
Γ(ω, d), leaving onlyZ-axis local and multiple reflec-
tions to corrupt the measurement. These tests were not
extensive; even less absorber coverage might adequately
suppress PPWG propagation.

Test Results

The results of time-domain delay measurements
using an HP 8510C as a reflectometer and a precision PP
fixture having 36λ square plates fed by a 5λ circular horn
are shown in figure 12. The local reflection was about
35 dB below the incident wave and 20 dB below the pri-
mary reflection; VES was therefore of little benefit. With
10-mm (0.04-in.) magnetic absorber over the ground
plane (using 801 points across a 4-GHz span), deviations
of the measured “round-trip” time delay from a straight
line of slope 0.067 ns/cm (0.1693 ns/in.) were no more
than ±3 ps for plate spacings between 0 and 38 cm
(15 in.)—a 1-way distance-measurement error of less
than 0.051 cm (0.02 in.). Removal of the absorber
increased that error fivefold.

These results were obtained without using non-
uniform windowing for side-lobe suppression. Window-
ing drastically increased measurement error below some
minimum value of pulse separation and plate spacing
(ref. 11). With a 4-GHz span, the HP 8510C “normal”
window increased measurement error for plate separa-
tions less than 8.26 cm (3.25 in.) but reduced error appre-
ciably for larger separations. This effect was interpreted
to be a consequence of the pulse broadening which
accompanies windowing. Windowing becomes detri-
mental when the “broadened” main lobes of the signal
and interference pulses interact with each other.

Conclusions

The accuracy of microwave reflectometer measure-
ments of the distance between conductive parallel plates
is reduced by parallel-plate-waveguide (PPWG) propa-

gation in the parallel-plate (PP) channels perpendicular
to the measurement axis. These additional propagation
channels influenceΓ(ω, d) and distance measurements
derived from it. A simple radiating system modification
which can suppress parallel-plate propagation is the addi-
tion of a thin layer of lossy mu-metal “magnetic
absorber” to the antenna ground plane. With this modifi-
cation, a measurement accuracy of 0.025 cm (0.01 in.)
was obtained using an HP 8510C as a time-domain
reflectometer.

The time-domain processing approach was supe-
rior to a representative frequency-domain phase-
measurement approach because of (a) less susceptibility
to the trough ripple that is produced by edge reflections
in a PP environment, (b) immunity to phase capture, and
(c) the applicability of vector error subtraction. Time did
not permit a thorough evaluation of the comparative
performance of the two approaches in the absence of
PPWG propagation; however, both approaches benefited
directly from increasing the operating bandwidth∆ω.

NASA Langley Research Center
Hampton, VA 23681-0001
August 11, 1995
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Figure 1.  Waveguide-fed, parallel-plate system.

Figure 2.  Local, primary, and secondary reflections in a PP reflectometer.
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Figure 3.  Characteristic behavior ofΓ(ω0, d) in an ideal parallel-plate system.

Figure 4.  Effect of antenna ground-plane removal on the reflection coefficient magnitude.
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Figure 5.  Comparison of PPWG and multiple-reflection signatures.
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Figure 6.  Smith-chart plot ofΓ(ω, d0) between critical points, with linear phase term extracted.
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(a)  Magnitude response.

Figure 7.  “Trough ripple” effects.
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(b)  Phase response with linear phase term extracted.

Figure 7.  Continued.
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(c)  Phase delay response with linear phase term extracted.

Figure 7.  Concluded.
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Figure 8.  Measured time response (without linear phase or dispersion removal);d = 25.9 cm (10.2 in.).
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Figure 9.  Measured time response with linear phase and dispersion extracted;d = 25.9 cm (10.2 in.).
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Figure 10.  Illustrations of the components of the phase functionΦ(ω,Tp) = −ωTp + ∆Φ sinωTp asTp is varied.
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Figure 11.  Echo-pulse side-lobe interference producing a positive time shift.
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Figure 12.  Delay measurements on a parallel-plate test fixture using an HP 8510C as a reflectometer.
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