
Abstract

A multiple scales approach is used to approximate the e�ects of nonparallelism and

streamwise curvature on the stability of three-dimensional disturbances in incompressible

ow. The multiple scales approach is implemented with the full second-order system of

equations. A detailed exposition of the source of all terms is provided.

1 Introduction

Multiple scales analysis is a useful tool in uid mechanics. It is often used to derive weakly

nonlinear and weakly nonparallel corrections to eigenvalue problems that arise in the study of

the stability of laminar ows. Although the general procedures are well-known [1, 2], the novice

can easily become bogged down in the derivation of the appropriate equations. This note is

intended to clarify the detailed steps that are needed in the analysis.

Previous analyses of the weakly nonparallel and curvature e�ects have been based on a

reduction of the governing equations to a �rst-order system of equations [1, 2, 3]. This reduction

in order was accomplished with the introduction of many additional variables; although these

additional variables are mathematically well-de�ned, the physical importance of their adjoint

counterparts, which are required for the solution of the problem, is nonintuitive. Historically,

the �rst-order formulation of stability equations was popularized at a time when the numerical

methods for the solution of linear eigenvalue problems were �rst being developed. With the

addition of orthonormalization, previously developed marching techniques for �rst-order systems

of di�erential equations could be applied to eigenvalue problems that were formulated as �rst-

order systems. As computing power has increased, matrix methods, which are more suitable for

obtaining the global eigenvalue spectrum, have largely superseded marching methods. However,

to compute nonparallel e�ects, researchers have continued to use the �rst-order formulation

[4, 5]. We show that the multiple scales analysis can also be performed easily in the context of

the original equations, with the original, physically meaningful variables.

Masad and Malik [4] previously used multiple scales analysis to include surface curvature

for the case of ow over a swept circular cylinder, hence a cylindrical coordinate system was

appropriate for their application. Our goal is to extend the analysis to a wider range of bound-

ary layers, hence the analysis is presented in surface-�tted coordinates. The mathematics are

presented in section 2; numerical veri�cation is provided in section 3.

2 Mathematical Model

For expository purposes, we focus on the linear stability of a three-dimensional, incompressible

boundary layer. However, apart from the speci�cation of the operators involved, most of the

analysis is directly applicable to compressible ows as well. All lengths are nondimensionalized

by a length scale L�; all velocities, by a velocity scale U�; time, by the ratio L�=U�; and pressure,

by ��U�2, where �� is the density. The ow Reynolds number is R = U�L�=��, where �� is the

dimensional kinematic viscosity. The streamwise direction is denoted by x; the wall-normal

direction, by y; and the spanwise direction, by z. The base ow

Q0 = (U0; �V1;W0) (1)
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consists of O(1) streamwise and spanwise components and a small O(�) surface-normal com-

ponent. For the zero-pressure-gradient boundary layer, only the surface-normal component of

mean velocity has an O(�) term; other velocity component corrections enter at higher orders.

To simplify the exposition, we assume that the mean ows considered here can be approximated

in a similar manner. All mean-ow components are invariant in both time t and spanwise di-

rection. The mean ow varies rapidly in the surface-normal direction and changes slowly in the

streamwise direction. The slow variation in the streamwise direction suggests that a slow scale

x1 = �x should be introduced. We consider the disturbance quantities

q(x; y; z; t) = [A(x1)q0(x1; y) + �q1(x1; y) + :::]ei� (2)

where q = [u; v; w; p]T represents the vector of the streamwise, surface-normal, and spanwise

disturbance velocities, and the disturbance pressure, respectively. The variable A(x1) represents

the amplitude of the disturbance, and q0(x1; y) denotes the vector of the normalized quasi-

parallel eigenfunctions. The O(�) term in Eq. (2) denotes the nonparallel correction to the

disturbance. The argument � of the exponential function is de�ned in terms of the streamwise

and spanwise wave numbers and the circular frequency of the disturbance. That is,

@�

@x
= �0(x1);

@�

@z
= �;

@�

@t
= �! (3)

Logarithmic di�erentiation of Eq. (2) with respect to x yields the growth rate of the disturbance:

� Imag (�) = �Imag [�0(x1) + ��1] + O(�2) (4)

The term �Imag [�0(x1)] is the quasi-parallel growth rate. The ��1 term is given by

��1 = �i

�
1

A

@A(x1)

@x1
+

1

q0(x1; y1)

@q0(x1; y1)

@x1

�
(5)

of which the negative of the imaginary part represents the nonparallel growth of the amplitude

function A and the change in shape of the quasi-parallel eigenfunction. Unlike the quasi-parallel

case, the growth rate in the nonparallel context depends on both the particular disturbance

quantity q0 and the surface-normal location y1. Here, we choose q0(x1; y1) to represent u0 (i.e.,

the streamwise velocity component of q0 at the surface-normal location at which u0 is at a

maximum). This location varies with x1.

To obtain the nonparallel equations, the mean and disturbance quantities are substituted

into the Navier-Stokes equations. Equations for the mean ow Q0(x1; y) are solved separately.

The disturbance equations are obtained by linearizing and equating like powers of �. The O(1)

set of equations can be written as a multivariable second-order form of the Orr-Sommerfeld

equation:

Losq0 = 0 (6)

with boundary conditions,

u0 = v0 = w0 = 0 at y = 0 (7)

and

u0; v0; w0; p0! 0 as y !1 (8)
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With the notation D = d=dy, k2 = (�20 + �2), and S = k2 + iR(�0U0 � !) � D2, the Orr-

Sommerfeld operator for incompressible ow is

Los =

0
BB@

S RDU0 0 i�0R

0 S 0 RD

0 0 S �i�R

i�0 D i� 0

1
CCA (9)

Note that Los is a matrix operator that can be expressed as

Los = L0 + (i�0)L1 + (i�0)
2L2 (10)

where L0, L1, and L2 are independent of �0 and depend only on the mean ow and the stability

parameters ! and �. The operator L0 can be thought of as arising from those terms in the

primitive-variable equations that do not contain any x derivatives. Similarly, the operators L1
and L2 are the coe�cient matrices for terms that contain only �rst and second x derivatives

respectively. The multiple scales analysis indicates that the �rst derivative of the assumed

zeroth-order solution Aq0e
i� with respect to x can be written as

@(Aq0e
i�)

@x
=

�
i�0Aq0 + �

�
@A

@x1
q0 +A

@q0

@x1

��
ei� (11)

and the second derivative with respect to x can be written as

@2(Aq0e
i�)

@x2
= (i�0)

2Aq0e
i�

+ �

�
2i�0

�
@A

@x1
q0 +A

@q0

@x1

�
+Aq0

@(i�0)

@x1

�
ei� + O(�2) (12)

The O(�) problem is obtained by substituting Eqs. (2), (11), and (12) into the Navier-Stokes

and continuity equations. Thus we �nd,

Losq1 = �
@A

@x1
M0q0 �A

�
M0

@q0

@x1
+
@i�0

@x1
M1q0 +Nq0

�
(13)

where M0 = L1 + 2i�0L2;M1 = L2; and N contains nonparallel mean-ow terms:

N =

0
BB@
�R(@U0

@x1
+ V1D) 0 0 0

0 �R(DV1 + V1D) 0 0

�R@W0

@x1
0 �RV1D 0

0 0 0 0

1
CCA (14)

The boundary conditions on the O(�) problem are

u1 = v1 = w1 = 0 at y = 0 (15)

and

u1; v1; w1; p1! 0 as y !1 (16)

Because the homogeneous part of the O(�) problem is the same as the O(1) problem, the O(�)

problem has a solution if and only if a special condition (known as the solvability condition) is
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satis�ed [6]. For the solvability condition to be satis�ed, the right-hand side of Eq. (13) must be

orthogonal to every member within the null space of the adjoint of Los. Hence, if we dot-multiply

the adjoint solution qH0 with the right-hand side of Eq. (13), integrate over the domain, and set

the result equal to zero, we obtain the expression

1

A

@A

@x1
= �

1R
0

qH0 �
�
M0

@q0
@x1

+ @i�0
@x1

M1q0 +Nq0

�
dy

1R
0

qH
0
� (M0q0)dy

(17)

The imposition of the solvability condition ensures that no secular terms exist in the solution.

(For a discussion of secular terms, see, for example, Ref. [7].)

Typically, the adjoint problem is obtained by �rst transforming Eq. (6) into a set of �rst-

order di�erential equations [1, 2]. However, here we show that the adjoint problem is easily

obtained from the governing equations in their natural form. First, premultiply Eq. (6) by qH0
and then integrate over the surface-normal direction. The adjoint operator is obtained by using

integration by parts and the linear-algebra identity, (yPx)T = xTPTyT , where the superscript

T denotes transpose. The adjoint operator can be written as

LHos = ATD2
�BTD + (C�DBT ) (18)

where

Los = AD2 +BD +C (19)

The component matrices A, B, and C are de�ned as

A =

0
BB@
�1 0 0 0

0 �1 0 0

0 0 �1 0

0 0 0 0

1
CCA

B =

0
BB@
0 0 0 0

0 0 0 R

0 0 0 0

0 1 0 0

1
CCA (20)

C =

0
BB@
k2 + iR(�0U0 � !) RDU0 0 i�0R

0 k2 + iR(�0U0 � !) 0 0

0 0 k2 + iR(�0U0 � !) �i�R

i�0 0 i� 0

1
CCA

Note that A = AT ; and for incompressible ow, DBT = 0 so that the adjoint operator can be

simpli�ed.

Two terms on the right-hand side of Eq. (13) must be determined before the solvability

condition can be applied. These terms are the x1 derivatives of i�0 and q0. Note that the

partial derivative of the O(1) equation Eq. (6) with respect to x1 must satisfy

@Losq0

@x1
=

@Los

@Q0

@Q0

@x1
q0 +

@Los

@(i�0)

@(i�0)

@x1
q0 + Los

@q0

@x1
= 0 (21)
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After the known terms are moved to the right-hand side, Eq. (21) can be rewritten as

Los
@q0

@x1
= �

�
@Los

@Q0

@Q0

@x1
q0 +

@Los

@(i�0)

@(i�0)

@x1
q0

�
(22)

As in Eq. (13), this expression has a nontrivial solution if and only if the right-hand side is

orthogonal to every solution of the homogeneous adjoint problem. The solvability condition

that determines @(i�0)=@x1 is obtained in the same manner as described previously to obtain

the result in Eq. (17). With @(i�0)=@x1 being known, equation (22) can then be solved for

@q0=@x1. Finally, both terms are available to evaluate 1

A
@A
@x1

using Eq. (17).

To obtain the complete O(�) correction to the growth rate in Eq. (5), one must make a

speci�c choice for @q0=@x1, i.e., chose the physical quantity q0 of interest and the surface normal

location, y1 where the growth rate is to be determined. The term @q0=@x1 accounts for the

slow change in the shape of the eigenfunction with downstream distance. Two commonly used

choices for q0(x1; y1) are (1) u0 at the y1 value at which u0 is at its maximum (referred to as the

umax choice below) and (2) u0 at a prede�ned y1 location. In both cases, @q0=@x1 from Eq. (22)

de�nes the value of @q0=@x1 after the selection of variable and surface-normal location has been

made.

As shown by Masad and Malik [4], weak surface curvature can be treated as a small per-

turbation to the problem without curvature. The modi�cations that are needed to incorporate

curvature e�ects into the equations above are minor and are easily implemented. First, the

curvature introduces terms that are proportional to 1

r+y
where r is the local radius of curvature.

For a large r, these additional terms are simply proportional to the small surface curvature

�� = 1

r
. Because the terms are of O(�), they can be easily added to the matrix N in Eq. (13).

In body-�tted coordinates, the necessary additional terms can be surmised from Lin and Reed

[8] and are given as matrix Nc:

Nc =

0
BB@

RV1� RU0� 0 0

�2RU0� 0 0 0

0 0 0 0

0 � 0 0

1
CCA (23)

Secondly, the curvature modi�es the x derivative terms so that they are proportional to r
r+y

.

For large r, r
r+y

can be approximated by 1� y
r
= 1� ��y. If we keep only those terms that are

�rst order in ��, then the additional O(�) terms are Mcq0, where

Mc = i�0�yL1 (24)

Hence, the modi�ed O(�) equation that must satisfy the solvability condition is

Losq1 = �
@A

@x1
M0q0 �A

�
M0

@q0

@x1
+

@i�0

@x1
M1q0 + (Mc +N+Nc)q0

�
(25)

This equation is solved with the same procedures that are required for Eq. (13).

The numerical solution of these equations involves the discretization of the equations with

the use of Chebyshev polynomials. A staggered grid is used for the pressure variable and, hence,

the continuity equation. An iterative procedure is used to determine the quasi-parallel eigenvalue

and the eigenfunction. Direct solves are used to solve the systems of equations. The computer

code used for the calculations is a modi�ed version of SPECLS [9].
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3 Veri�cation

Figure 1 shows pointwise comparisons of the nonparallel results with the multiple scales results

obtained by El-Hady [2] for incompressible ow at R = 1000, for a variety of nondimensional

frequencies (F = 2�f���=U�2, where f� is the dimensional frequency). The surface-normal axis

represents the change in the growth rate (�Imag(��1)) due to the nonparallel e�ects at the

wave number of maximum quasi-parallel growth rate. Both our results and those of El-Hady

are based on the streamwise component of velocity at the surface-normal location at which the

linearized solution is maximum. The only signi�cant di�erence between the approaches used

involves the order of the system of equations. El-Hady used a �rst-order system of equations;

we use the second-order system. The agreement of the two sets of results strongly suggests that

both approaches are correctly implemented.

A similar comparison was made to test the implementation of the weak curvature terms.

In this case, we consider the incompressible ow over a circular cylinder that is swept at an

angle of 60:5� relative to the free stream. The Reynolds number, based on the free-stream speed

and the radius of the cylinder, is 2:0 � 106. We consider only steady (F = 0) disturbances

with a spanwise wave number of 0:8 (normalized with the radius). Weakly nonparallel e�ects

are neglected. The comparisons are made with earlier data from Masad and Malik [4]. Masad

and Malik [4] also used a multiple scales analysis to incorporate the curvature e�ect; however,

because their work focused only on the cylinder case, they used a cylindrical coordinate system

to derive the perturbation equations. They also used a somewhat less accurate numerical scheme

that employed �nite di�erences. However, as shown below, the results that we obtained are in

excellent agreement with their results. In Fig. 2(a), the real part of the streamwise wave number

� is shown both with and without curvature for various angles �� relative to the stagnation

point on the cylinder. The e�ect of the curvature terms is relatively small here, but the results

obtained with our multiple scales analysis essentially duplicate those obtained by Masad and

Malik [4]. A comparison of the results for the imaginary part of � in Fig. 2(b) show the same

excellent agreement.
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Figure 1. Nonparallel correction to growth rate at R = 1000 in a Blasius boundary layer:

comparison with El-Hady [2].
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(a) Real part of �.

(b) Imaginary part of �.

Figure 2. Multiple scales approach for weak surface curvature: comparison with data from

Masad [4]. R = 2:0� 106; ow angle 60�; F = 0:0. � current quasi-parallel; current with

curvature; 4 Masad quasi-parallel; � Masad with curvature.
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