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ABSTRACT model-basedcontrolalgorithmwhichoptimizesaircraft
propulsionsystemperformancein flight.Theadaptive

Preliminaryresultsarepresentedonthe developmentof nature of the controlsystemenablesit to accountfor
an adaptiveneuralnetworkbasedcontrolalgorithmto engineto enginemanufacturingvariations,offnominal
enhanceaircraftengineperformance.Thisworkbuilds enginecomponentperformance,or deteriorationwhich
upon a previous National Aeronantiesand Space mayoccurto theengineovertime.Thistechnologywas
Administration('NASA)effortknownas Performance ajointNASA,McDonnellDouglas,andPratt&Whitney
Seeking Control(PSC). PSC is an adaptivecontrol effort.The PSCalgorithmhasbeenflight testedon a
algorithm which containsa model of the aircraft's NASA researchaircraftat the NASAAmes/Dryden
propulsionsystemwhichisupdatedon-lineto matchthe FlightResearchFacility[1,2, 3].
operationof the aircraft'sactual propulsionsystem.
Informationfromthe on-linemodelis usedto adaptthe A NASA Small Businessand InnovativeResearch
eonlrolsystemduringflightto allowoptimaloperationof (SBIR)contractwhichbuildsuponthepreviousNASA
theaircraftspropulsionsystem(inlet,engine,andnozzle) PSCefforthasbeenestablishedwithNeuroDyneInc.The
to improve aircraft engine performance without objectiveofthiseffortis to investigatetheuseofneural
compromisingreliabilityor operability.Performance networks for the implementationof a model-based
SeekingControlhasbeenshownto yieldreductionsin adaptivecontrolalgorithm.Preliminaryprogressunder
fuelflow,increasesinthrust,andreductionsin enginefan thiseffortispresented.
turbine inlet temperature.The neural networkbased
adaptivecontrol,like PSC,willcontaina modelofthe Neuralnetworksare computationalrepresentationsof
propulsionsystemwhichwillbeusedtocalculateoptimal biologicalneuronsin the humanbrain. Consistingof
controlcommandson-line.Hopesarethatitwillbe able severallayersofnodescouneetedbyweightedsynaptical
to providesomeadditionalbenefitsaboveand beyond connections,neuralnetworkscanbe trainedtorecognize
those of PSC.The PSC algorithmis computationally apatternofinputsandprovidedesiredoutputs.Theylend
intensive,it is valid only at near steady-stateflight themselvesverywelltopatternrecognitionproblems,or
conditions,andit hasnowayto adaptor learnon-line, for thisapplication,estimationofsystemparameters.
Theseissuesare beingaddressedinthe developmentof
theoptimalneuralcontroller.Specializedneuralnetwork Neuralnetworkshave thepromiseof beingfasterand
processinghardwareis beingdevelopedto runthesoft- requiring less memorYthan traditionalcomputer
ware, the algorithmwill be validat steady-stateand algorithmswhenimplementedin specializedhardware.
transientconditions,andwilltakeadvantageofthe on- Theoriginalperformanceseekingcontrolalgorithmis
lineleamingeapabilityofneuralnetworks.Futureplans only valid at near-steady-stateconditionsdue to the
includetestingtheneuralnetworksoftwareandhardware computationalburdenof modelingtransientmaneuvers.

,_ prototypeagainstan aircraftenginesimulation.In this A neural network implementationmay be able to
paper the proposed neural network software and overcomethislimitation.Neuralnetworksalsohavethe
hardwareis describedandpreliminaryneuralnetwork addedbenefitof beingableto learnon line.Thusthey

, trainingresultsare presented, maybe able to adaptto newor unexpectedconditions
thatthetraditionalPSCimplementationcouldnotaccount

INTRODUCTION for.

Performance Seeking Control (PSC) is an adaptive



PERFORMANCE SEEKING CONTROL propulsionsystemandthe optimizationmode selected.
The performance seeking control algorithm has been

The objective of PerformanceSeeking Control is to flighttested attheNASA Ames/DrydonFlightResearch
adaptivelyoptimize the near steady-stateperformanceof Facilityon aNASA F-15 researchvehicle. This aircraft
an aircraftpropulsion systemin real-timeby calculating is equippedwithtwo Pratt& Whitney1128 aflerbuming
engine controltrims which are appliedto thenominal turbofanengines.The results fromthistestinghas shown
engine schedules. Performance Seeking Control can that Performance Seeking Control does indeed yield ,
selectone ofthreemodesforoptimization.Themodes are significant improvements over traditional control
minimizingfuel consumptionwhile maintainingnominal technique_Thrust increasesup to 15% atmilitarypower,
thrust,minimizing fan turbineinlet temperature(FTIT) turbinetemperaturedecreases up to 120°F at mifitary i
while maintainingnominalthrust,or maximizing thrust power, and Specific Fuel Consumption (SFC)
whilemaintainingenginenominalFTIT. A block diagram improvementsup to 2.0% atcruise have been achieved
ofthe PSCarchitecture is shownin Figure 1. It includes [4].
an estimator,a model of the propulsionsystem,andan
optimizer. The estimator consists of a Kalman Filter A limitationwiththePSC algorithmis the speed atwhich
using flight measurements to estimate five component it can be executed. The algorithm is rather
deviation parameters. These component deviation computationallycomplex and is not ableto achievereal-
parameters are those of the low pressure turbine time performance when implemented in conventional
eflidency (DELPT), thehighpressure turbineefficiency computerprocessorswhere the calculationstake place in
(DEHPT), the fan airflow(DWFAN),the highpressure a serialfashion. Thereforeit is valid only atnear steady
compressor airflow (DWHPC), and the high pressure state conditions. Also the accuracyof the algorithmis
turbine area (AAHT). The propulsion system model dependenton theaccuracyof the adaptivemodel.Neural
consists of linear and nonlinear modelsused to estimate networks, because of their parallel natureandability to
unmeasured engine parameter based on flight learnon-linemayhelp to overcomesuch limitations.
measurements and the five component deviation
parametersestimatedbythe Kalmanfilter. The model is OPTIMAL NEURAL CONTROLLER
continuously updated to adaptivelymodelthe dynamics
oftheactualpropulsionsystem.The optimizer uses linear The proposed optimal neural controller is being
programmingtechniquesto optimizecontrol trim settings developed to control a Pratt & Whitney 1128 engine
based upon the present operating condition of the simulation.Theproposedarehitecture is shown inFigure
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Figure1.PerformanceSeekingControlArchitecture
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Figure 2. OptimalNeural Controller

2. It consistsof a propulsionsystemmodel,a controller of the updatedpropulsionsystemdynamicsand the new
model, and a nonlinear optimizer. Plans call for trial controlsequences.Thenew optimalcontrolis fed
implementing each of these components as neural back to the inner loop controlto updatecontroltrims.It
networks.The propulsionsystemandcontrollermodels is alsoused toupdatethe controller modelneural net on-
are used to generatetrial control sequencesn time steps line.
into the future spanningthe range of admissiblecontrol
based on the present operating conditions and the Preliminary neural network versions of the propulsion
scheduledthrml.Thesetrialcontrolsequences alongwith system model and the controller model have been
thedynamicsofthe propulsionsystemmodelare used by developed. The optimization routine is currently being
theoptimizationalgorithmtoperforman iterativeoptimal coded in a higher level language, however future plans
gradient search. After convergence, the optimizer , call for implementing this routine in a neural network
produces the optimal control accordingthe desiredcost also. Special purpose neural processing hardware is
function.Logic is includedto insurethat the control and beingdeveloped for future implementationof the entire
dynamic constraints are not exceeded. Prior to on-line algorithm_Bydoingso we hope to demonstratereal-time
operationthepropulsionsystemmodeland thecontroller operation. The development of the elements of the
model neuralnetworksare trainedusing simulationdata. optimal neural controller are further disenssed in the
Thecontrollermodelis furtherrefinedoff-linebytraining followingsections.
on the optimizer outputs.On-line, the error betweenthe
propulsion system modal predicted outputs and the The Propulsion System and the ControllerModels
measured outputsof the actualengine are monitored.If

-_'1 the error exceeds a certain threshold, the propulsion Pratt & Whitneyhasprovided NeuroDyne data from an
system model will be updated to maintain an accurate 1128 engine simulation for development of the
representation of the engine dynamics.A change in the propulsionsystemandcontrollerneural networkmodels.

• propulsion system model will of course impact the The data sets provided were collected from the engine
response of the controllermodel as it's outputs adjust to simulation by perturbing the inputs around steady state
allow the propulsionsystem to continue to provide the operating points throughoutthe state space. This data
scheduled thrusL The optimizer then calculatesa new consists of 8 measurable engine states and 6 control
optimal control for this condition using knowledge inputs. The engine state vector, x, is definedas



x = [PS20 T20 PB T45 P60 N1 N2 PAM]T sensor as provided by Pratt & Whimey. On-line, the
propulsionsystemmodel accuracywill be limited bythe

PS20 : Engine Inlet Pressure accuracyofthe sensormeasurementswhich are provided
T20 : Engine Inlet Temperature as inputs.
PB : BurnerPressure
T45 : LowPressureTurbineInletTemperature Table I Propulsion System Model (NN1)
P60 • Nozzle Inlet Pressure Estimation Error I

N1 : Low Rotor Speed
N2 : High RotorSpeed state Estimatior Sensor
PAM" AmbientPressure lerror (%) error(%)

PS20 +0.34 +0.86
The controlvector,u, consists of 6 elements T20 +0.21 +0.41

PB +0.61 +0.56
u = [WF AJ FW CVV HPX BLD]T T45 +1.5 +1.59

WF • MainBurner FuelFlow P60 :!:0.55 +0.45
AJ • ExhaustNozzle Area N1 +0.13 +0.13
FVV" Fan VariableVanes N2 +0.10 +0.10
CVV : Compressor VariableVanes PAM +0.20 +2.00
HPX : HorsepowerExtraction
BLD : Bleed Flow Figure3 showsthe P&W simulatoroutput ofT45 and

NN1 estimatedT45 for a steadystate flight at rail

ThePropulsion System Model power, 1.05 operating line, 60,000 fl altitude and Math
2.0. As expected the neural net closelytracked the

The propulsion systemmodel 0qN1) estimatesthe state response of the simulator.Althoughthe neuralnet was
at timek+l from the states and control inputs at time k. trainedon steady state data it was desirableto cheek the
Thereare 14 inputs to NNI (8 states, 6 controls),and8 networks abilityto handle transientconditions.Figure4
outputsfrom NN1 (8 states).An initial propulsionsystem shows the simulatorand NNI estimatedT45 for a
model has been developed by training a 1-hiddenlayer transientconditionof accelerationat 30,000 ft altitude
feedforwardneural net consisting of 50 hidden nodes, andMath 0.9. Once again the neural networkwas able
The performance of this neural network inmatchingthe to closelymatchthe outputs of the simulatiom
responseofthePratt& Whitneyengine simulationis very
good. The average generalization error is 1.00%where The ControllerModel
the average generalization error is definedas:

The controllermodel (NN2) estimatesthe required
control (Uk)based on the present state (Xk)and

n scheduledthrust (T). NN2 has 9 inputs (8 states, and

[xi'-x_]r[xl'-x_] 1thrust), and 6 outputs ( 6 controls). Once againa 1-
i-1 hidden layerneuralnet having 50 hidden nodeswas

selected for initial development. The controllermodel

_ [xT]r[x, "] (NN2) will eventuallybe trainedon the optimal control1-1 commands generatedby the optimizer,but for an initial
starting guess of the model weightsthe networkwas
trained on thePratt & Whitneyengine simulationdata.

where The average generalizationerror for this networkis
7.54%. It should be noted that the accuracy

is the targetoutputfor the ith data point of the training requirement for the initial controllermodel is not as
or testing set. stringentas the propulsion systemmodel NN1 because

the controllermodelweights will be further refined by
x_is the neuralnet estimate of the ith data point of the the optimizer.Table 2 showsthe generalizationerror

trainingor testing set. for each output of NN2 as a percentage of the outputs ,
operating range. Measurement accuracyinformationis

n is the totalnumberof points in the training or testing unavailable.
set •

Table1showsthegeneralizationerrorforeachoutputof
NN1asapercentageoftheoutputsoperatingrange.Also
shownin the tableis the approximateaccuracyof each
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Table 2 Controller Model (NN2) Estimation
Error x_.,

Control Estimation u= __ J ^_,,___
Input error (o/_) xl= '_ [_1)
WF 1.14 __"'" '

/ I

AJ 122 _-.............
FW 6.19
CW 3.51 ,,oreop_,n_

¢ HPX 4.86 u;

BLD 8.00 r*' _ _.

x=..._.lM°c_P'_21 =
Ell Figure5 showstheP&W simulatoroutputof WF (fuel ,. '=flow rate) andNN2 estimatedWF for a steadystate ..............

flight atmil power, 1.05operatingline, 60,000 ft
altitudeand Mach 2.0. Figure6 showsthesimulator
andNN2 estimatedWFfor thetransientacceleration Flgura7. NeuralNetworksOn-LirmUpdate
conditionat30,000 ft altitudeand Mach0.9. Both

I figuresshow that NN2 didafairjob of trackingthe Witheachof the m thrusts,astartingvalue ofu_can be
simulatoroutput, computed using NN2. All the u='s arechecked against

constraintssuch as bounds and rate limit, and
On-Line Learning corrections are madeto stay withinthe constraints.We

will followthrough the calculationsforone of them
Figure7 illustratesthe on-line learningof thesetwo u's. The rest wouldbe similar.At time stagek, given

g neural networks. The propulsionsystemmodelwill be the startingvalueof uk(generatedby NN2), the
updated based on the error between its outputand the estimatednext statex_l canbe predicted using the
actual measuredpropulsion systemoutput.This will propulsion systemmodel (NN1). Moving onto time
allow it to adapt to accountfor anyoff nominal engine stage k+l using the NN1 estimated x_t and the next
behavioror anydeteriorationwhichmayoccur over stage scheduledthrust (Tt_z)as the inputs,the next
time.The controllermodelwill be updatedbased on stage estimatecontrol input u_v=can be computed

B the error between its outputand thatof nonlinear from NN2. Thiscontinuesuntil the end of the horizon
optimizer allowingit to update to accountfor any is reached, thus obtaininga sequence of statesand
changes in the optimal control.The onehidden layer control inputs as a starting guess.
feed forward neural networkused to obtainthe initial

results is probably not the best neuralnet architecture Nonlinear Optimizer
for on-line learning.Laterin the paper alternative

neural network architectureswhich areundergoing The nonlinearoptimizationroutine is currentlybeing
evaluationwill be discussed, developedin the "C" language on a workstation

computer.The calculations involved arehighly parallel
Generating Trial Control and State Sequences innature and are dependent on the architectureof the

propulsion systemmodel (NN1) and the outputs of

The nonlinearoptimization routinerequires an initial both thepropulsion systemmodel (lqN1) and the
starting guess for the sequence of states and control controllermodel (NN1). NeuroDyne plans to
inputs to meet the required constraints.Thiscan be investigatethe implementationof the optimization

_ accomplishedby cascadingtogether the propulsion routine in a neural network in the future.
systemmodel 0qN1) and the controllermodel(NN2)

as shown in Figure 8. For illustrationpurposes a The optimizationroutine uses a receding horizon cost
constant net thrust constraint is used. Theconstraint functionwhich is a functionof engine states, x, and

._ can be alteredto be an accelerationor deceleration control inputs, u, over a finitenumber of time stages,n,
schedule forthrust. Figure 8 shows thatat timestage k into the future. The cost functionhas the following form
given anext stage scheduledthrust, T_t, and the atthe present timestage k

, current measured state,xk,the necessarycontrol,th,,
., canbecomputedfrom the controllermodel. Therefore,

having selecteda constantthrust value T, and an
acoeptablevariationfor the thrust (AT), m increments
of thrust between T-AT and T+AT canbe created.
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,,_--1 aJ/aU is dependent on the propulsionsystemmodel
Jk= _:: .Kxt,ut) (l) neuralnetwork architecture.

where a is a step sealing factor between 0 and 1

xi is the state at time i Each time UNv_is computed it is applied to NNI to
ui is the control input at time i generatea new estimated sequence of states. These
n is the size of the look ahead horizon, estimated states and Ur_-ware then used as inputs to the

thrustmodel. If the resulting net thrust at each time
One of the designissues of this optimizationapproach stage is stillwithin T_AT, Ur_wis saved as U, andthe
is selection of the horizon size used in the objective algorithmproceeds to the next iteration. Otherwise, the
function.Theoretically,onlyan in/mite horizon offendingindividualu_is corrected, or the step size ,, in
produces a global optimum.For a nonlinear system, it equation (2) is reduced and Us,zwis recomputect
is necessary to use a receding (or limited)horizon. The
size of the horizon depends heavilyon the accuracyof After convergence, the final J is computed and saved
the model. Therefore it is essential that the neural nets for this sequence of U. We then proceed to the next
used for implementationprovide good accuracy, initial U. At each time stage k, there will exist m

sequences of U and m J's. The optimal control
AfterNN1 and NN2 havebe used to obtainan estimate sequence will be the sequence which minimizes the
of the propulsionsystem dynamicsand an initial cost functionJ. The optimal control,u'k, at the current
estimated sequence of state and control over the time stage is the first control vector of that optimal
horizon of n, the sequence of estimatedcontrol inputs is control sequence. This is analogous toplaying chess.
corrected iterativelyaccording to At each point of the game, the player has an optimal

sequencecomputed but onlyplays the first move of that t,

Ux,gw=U- = 0J (2) sequence.OU
An example isprovided below to illustrateoperation of

where the optimizationroutine.

U is a sequenceof[u_k,u'k.,...... u^_+_,]

8



Theoptimizationalgorithmissetupsothatvarious auk axk.l] I_Ouk]
formsofthecostfunctioncanbeused.Fortheir

f /"preliminarywork N.uroDyne hasbeen workingwith a 8gk.2 Ox_tcost functionsuggestedby Pratt& Whitneywhich _ *
., penalizes high fuel usage andhigh low pressureturbine _ axk.2} k Oxk.z/ _ auk )

r r f / IEquation (3) shows the instantaneous (1 stage)cost
functionJ_,_. The recedinghorizon costfunctionof _ Ox_.3) k Oxk'a] k axk.l ] Ouk )
horizon n wouldbe a sum of n of such functions.

J_,_ CIEF _ Ca alk Ogk+a Oxk'2(3) --=[1 0 0 0 00] r + a -- +
e ['cstr4s-r'd]-1 auk-l k 8X_a/ _ auntJ

WF:fuel flow

T45 :LPT inlet temperature !, 0xk.3j Oxk.a) Ou_._)j
Tref = Reference temperatureprovidedby Pratt

By dividingby C1 the coefficientof WFbecomesone. [( )r[ )_I( 7
Thenbydefminga=C2/Cl,b=C3, ande=C3"T=f a/k =[1 0 0 0 0 0]r+a Og_3 ask.3 )
youobtain: auk.a tk 0u,.=)

a For a horizonof n, thenumber of multiplicationsfor

J_t= WF_ e [-t,.r4s.,]_1 (3a) equation set (7) would be O(n3)x (matrix
multiplicationfor 1 timestage). The matrix
multiplicationfor I timestage is a functionof the size

Let us assumefor multiple lookahead, a horizon size of ofthe neural net, the state vector, andthe control
3 is used soall the terms canbe shown in expanded vector. But a simple approximationfor 1timestage
form. costfor a 1hidden layernet would be O(L3),where L =

max(N,,R, P), with
define N, :size of the controlvector u

R : size of the state vectorx

1 P : # of hidden nodes for a 1hidden layernet.

gk= t-t,.r45,*,l_1 (4)
e Reeursivecalculationmethodsare being investigatedto

help reduce the computingcost of the gradientsin
where the indexk indicates timestage k. equation set (7).

The cost functionat time stage k is: The architectureof the propulsion systemmodel(NNI)
determines the calculationof the Jaeobians used in

dk=lrgFk+tF'Fl_.l+tlz12tc.2+a(gk.l+gk.2+gtc.3) (5) OJ/OO.Assuminga 1hidden layer net as shown in
Figure 9 the Jacobians used in equation set (7) canbe

Since T45 is the fourth elementof x, and WF is the first calculatedas shownin equations (8) and (9).
element of U we obtain the following:

ox o)
Ox_.l=W0)"'_ WO) (8)

"_ 0gt%[0 0 0 b.e [-br,5,< 0 0 0 01r (6) ax---7 0sO)Oxk (e [-br4s_.¢]_1)2

9
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a,.t = (9) (I +Ix,(')(ithnode)l)=.Theyformthe

Ou, osO) [a_lO)] diagonalof aPxP matrix.

NEURAL NETWORK ARCHITECTURES
where

Threeimportantconsiderationsfor the selectionof the
x_O): hidden layeroutput at time stage i neural networkarchitecturesused for the

implementationof the optimalneural controllerare :
s/_): input to the hidden layer at time stage i

1. Accuracy,specificallythe generalization abilityof
Wo): weight matrixcoming out of the hidden the neuralnetworks.

layernodes to the output layernodes, but 2. Speedof Computation: Thisoftenmeans the size
the weights from the bias node is not of the network should be as small aspossible.
included, dim.R x P 3. Redundancy :The redundancyhelps to'increase the

stabilityor memory retention of the neural network.
W_*): weight matrix comingout of the state input

(Xk)nodes to the hidden layer nodes,note The accuracy of the propulsion systemmodel aft'eeLs
that the weights from the bias node are not the accuracyof the control command,as well as the
included. _ P x R size of the lookahead horizon.As an example, if the
note also that R + Nu = N at the input network has a 98% accuracy inpredicting the outcome

at time stage k+l, based on informationgathered up to
W_) : weight matrix coming outof the control time stage k (the current stage), then to predict the

input (Uk)nodes to the hidden layernodes, outcomeat time stage k+10, we can repeat the same
note that the weightsfrom the bias node are process 10times, each time using the predicted
not included, dim_P x Nu with Nu the outcome as the input for further forward prediction, p.
dimension of the control u vector. The accuracyof the prediction at time stage k+l 0

wouldbe proportional to 0.981°, which is about 80%
The sigmoidnodes of the neural netused in this project accuracy.On the otherhand, if the one stage prediction •
will use an Elliottnodal function of the form x/(1 + Ixl). accuracy is about 90%accurate thenthe 10thstage
This implementationcomputesfaster than the prediction is onlyabout 35% accurate. So the accuracy
frequentlyused hyperbolic tangent, and achieves of the neural network limitshow far the controllercan
similar accuracy.Therefore, look ahead in selecting an optimal control policy. It

10
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Figure10.CompetitiveNetArchiteaure

should be emphasized that the controller of interest contributionof each of the expert netsto the overall
here is for a nonlinear systemwhose dynamicsis output.Initialevaluationby NeuroDynehas shownthat
approximatedby the neuralnet, and there is no thisarchitectureexhibits increasedacouracyand
accurateanalyticalmodel to providean infinitehorizon, converges (learns) aboutan order of magnitudefaster

than a conventionalfeedforwardnet. Whenundergoing
The computation speedof a neural net is an important on-line learningat a particular region in the state space,
factor in a neurocontrollerwhich requires on-line one of the expertnetworkscanbe trained whilethe
learningand real-timeoptimization.The speed is very othernetworks remain relativelyunmodified.Thiswill
much relatedto the size of the network. Itis necessary allow thenetworkto maintainaccuracyin a local
to choosea network as small as possible while regionwithout compromisingaccuracy throughoutthe
achievingdesirableaccuracy, rest of the statespace. Anotheradvantageis the parallel

natureof thearchitecture.Each of theexpertnets and
A network withsome redundancy built in is generally gatingnets can be assigned to a separateprocessor and
morerobust in the face of achanging environment, work inparallel. A disadvantageof this architectureis
Redundancyhelps to increase the stabilityor the that it increasesthe complexityof themathematics
memoryretention of the network.During on-line necessaryin computingthe ffacobiansused by the
learning it is essential the networkbe able to learnnew optimizationroutine thatwere shown in equations (8)
dynamicsin one region of the state space without and (9).
compromisingaccuracyatanotherregion.

Globaland Local Models
To addressthe issues of accuracy,speed, and
redundancyNeuroDyne is considering alternative Another approach being considered is maintainingboth
neural networkarchitectures.Two of these globaland local versions of the neural networks on-

architectures,a hierarchicalmixture expert (lIME) line. The use of a global model and a local model in
network [5] or competitivenet, and the use of global tandem is designed tomaintain both good
and local neuralnetwork models in tandemare generalizationand model accuracy [6]. The global
discussedbelow, modeland local model are identical in terms of

architecturebut are updated and maintaineddifferently.
HierarchicalMixture Expert (lIME) Network The globalmodelisvalid throughoutthe statespace

whilethe local modelcan depict localizedphenomena
Figure 10 shows an H!VIEnetwork or a competitive more accuratelythanthe globalmodel, but can not be

.,._, network.It consistsof a gatingnetwork and multiple used anywhereelse except in a local region. Figure 11
expert networks.The input space is made up of several illustrates the differencebetween the generalmodeland
local regions separated by softboundarieswhere data its many local models.

• points may lie in multipleregions simultaneously.
Individualexpert nets provide accuratemodeling at The localmodels are used by the neural controller to
particular local regions throughout the input space. The produce accuratecontrol commandson-line.Since the
gatingnet, whose output is a functionof the input that local modelscan not be applied to input-outputpairs in
goes into the individualexpert nets, determines the differentparts of the state space they must be able to

11



learn on-line veryquicklyto track the systemdynamics environmentfor the CNAPS processor is very similar
throughvaryinglocal regions. If a new trajectoryis to to the C languagewhich shouldallow for easy
be tracked, the localizedmodel representing the end algorithmconversion.
point of a previous trajectoryis most likelya poor
startingguess for the first point of the new trajectory. Futureplans call for implementingthe neural network
The searchfor the network weightparameters generally algorithmin the CNAPS hardwarehoused in a PC
does not converge ifwe startwith this local model, chassis.Thishardware/softwareprototype, running the
Therefore,when a task is changed or when a trajectory optimal neuralcontrol algorithm,will be interfaced to a "
discontinuityoccurs, the general modelmust be used to real timeimplementationof thePW 1128state variable
start the evolutionof the local model. Because of the model.The performance of the neuralnetwork
fast on-line learningand accuracy requirements,the implementationin controllingthe 1128simulation will "
looalmodelneural networks have a faster learning rate be evaluated.
and a lower generalizationerror threshold.

SUMMARY

The globalmodels are initiallytrained off-lineusing
simulationdata collectedfrom operating points The PerformanceSeeking Control (PSC) program has
throughout the state-space. On-line the global model demonstrated the benefits of model-based adaptive
will stillbe allowedto update but ata much slower control algorithms. Implementingsuch an algorithm
learning rate and a higher generalizationerror threshold using neuralnetworks offers the advantageof a faster
than that ofthe local model, implementationand theability to learn on-line.

Preliminarywork hasbegun on the use of neural
NEURAL NETWORK HARDWARE networksfor adaptiveoptimizationof aireraRengine

performance.Futureplans call for the refinementof the
To takefull advantage of the inherentlyparallel nature optimizationalgorithmand for the implementationof
of neural networks,they need to be implementedin the software algorithmin ahardware prototype
hardware designed specificallyfor their consisting of specialized neuralnetwork hardware.
implementation.Doing so will yield significant Capabilitieswhich need to be demonstratedincludethe
increases in executionspeed over traditional sequential algorithm'sability to adaptivelyoptimizethe control for
computing techniques. NeuroDyne has established a expected conditionsof deterioration or off-nominal
subcontractto develop the neural network hardware behavior. The speed at which the algorithmcan
which will run the neural networkalgorithm.This task accommodatethese conditionsalso needs to be
will be accomplishedthroughthe use of a commercially adequatelydemonstrated.
available digitalneural networkprocessor. Although
both analog anddigital neural networkhardware is REFERENCES
commerciallyavailable,it was determinedthat a digital
solutionwould best meet the needs of this program. [1] Orme,J. and Gilyard,G.,"SubsortieFlight Test
Analog implementationstend to be more susceptibleto Evaluationof a Propulsion System Parameter
temperaturevariations and also tend to have lower EstimationProcess for the F100 Engine",AIAA 92-
resolutionthan digital implementations.Although 3745, 1992.
analogneural network chips are faster thantheir digital
counterparts, they sufferfrom the need to communicate [2] Nobbs, S.G., Jaeobs, S.W., and Donahue, D.J.,
with the digitalworld. Because of the additionaldelays "Developmentof the Full-EnvelopePerformance
induced by the DIA and A/D eonvertors required for Seeking ControlAlgorithm",AIAA 92-3748, 1992.
I/O, an analog implementationonlypresents a speed
advantage when a large networkof 100 to 1000nodes [3] Mueller,F.D., Nobbs, S.G., Stewart, J.F., "Dual
is used.A digital implementationalso has the EngineApplicationof the Performance Seeking
advantage of being similar to current approved flight Control Algorithm",AIAA 93-1822, 1993.
hardware. Verificationthereforewould be more

straightforward.The digital neuralnetwork chip which [4] Chisholm,J.D., "In-FlightOptimizationof the
has been selected is the CNAPSchip from Adaptive Total Propulsion System,"AIAA 93-3744, 1992.
Solutions.Thishardwarecontains 64 nodes on a single j
chip and has 16bit resolution. The developed [5] Jordan, M.I., Jaeobs, R.A., "Hierarchical
architecturehas been purposely designed with this limit Mixtures ofExperts and the EM Algorithm",
in mind to insure implementationon a singlechip Neurocomputation,vol. 2, issue 2, March 1994. ,
would be possible. For a neural network with about60
nodes a feedforwardpass requires approximately1 [6] Long,T.W., "A LearningController for
mieroseeonctThe chipis provided on a processor Decentralized Nonlinear Systems", American Control
board which is PC bus compatible.The development Conference,June 2-4, 1993, San Francisco.
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