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ABSTRACT

A prototype real-time flush airdata sensing (RT-FADS)

system has been developed and flight tested at the NASA

Dryden Flight Research Center. This system uses a matrix of

pressure orifices on the vehicle nose to estimate airdata

parameters in real time using nonlinear regression. The algo-
rithm is robust to sensor failures and noise in the measured

pressures. The RT-FADS system has been calibrated using
inertial trajectory measurements that were bootstrapped for

atmospheric conditions using meteorological data. Mach

numbers as high as 1.6 and angles of attack greater than 45 °
have been tested. The system performance has been evalu-

ated by comparing the RT-FADS to the ship system airdata

computer measurements to give a quantitative evaluation rel-

ative to an accepted measurement standard. Nominal agree-

ments of approximately 0.003 in Mach number and 0.20 ° in

angle of attack and angle of sideslip have been achieved.
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INTRODUCTION

Airdata have always been critical parameters for the flight
test community. Conventionally, airdata measurements are

performed using intrusive booms that extend beyond the
local flow field. These booms measure airmass velocities and

incidence angles by direct stagnation of the flow using a pitot
tube I and mechanical vanes. Although excellent at making

steady measurements at low-to-moderate angles of attack,

booms are sensitive to vibration and alignment error and are

susceptible to damage in flight and on the ground. Airdata

measurements have typically been used for research analyses
and gain scheduling for flight control systems, but modem

multivariable flight control architectures are requiring that

airdata be used more extensively for direct flight control or
outer-loop guidance.

Specialized requirements of advanced vehicles make use

of conventional intrusive airdata measurement systems



highlyundesirable.For example,on theX-31Enhanced
ManeuverabilityFighteraircraft,thepresenceoftheairdata
noseboomcausedunsteadinessin theprimaryforebodyvor-
texcoresandinducedlateralinstabilitiesathighanglesof
attack.Theseinstabilitiesresultedindegradedaircrafthan-
dlingqualitiesand,in theworstcases,inducedaircraft
departures.2

Inotherapplications,suchashypersonicaircraft,thehos-
tility of thehypersonicenvironmentmandatestheuseof
nonintrusiveairdatasystems.Onstealthvehicleswherea
minimalradarcrosssectionis required,suchastheB-2
bomberor theF-22fighter,conventionalintrusivesystems
arehighlyvisible.Eliminatingthesesystemsfromthebasic
vehicledesignisdesirable.

Theflushairdatasensing(FADS)systemconceptwas
developedasameansof circumventingmanyof theafore-
mentioneddifficultieswithintrusiveairdatasystems.Using
thisconcept,airdataareinferredfromnonintrusivesurface
pressuremeasurements.Theoriginalsystemprototypewas
developedfortheX-15programanduseda hemispherical
nosethatwasactivelysteeredintothelocalrelativewind
vectorto measurestagnationpressureandflowincidence
angles)Themechanicaldesignofthissystemwasextremely
complicated,andthesteered-noseconceptwasabandoned
aftertheX-15programended.

Amoremodernapproach,theshuttleentryairdatasystem,
wasdevelopedattheNASALangleyResearchCenterforthe
spaceshuttleprogram.4Thisapproachusedamatrixoffixed
static-pressuremeasurementsandnomechanicalactuation
of thenosewasrequired.Theshuttleentryairdatasystem
techniquelaterwasadaptedtoaeronauticalapplications,and
severaldemonstrationprogramswereperformedintheearly
1980sattheNASADrydenFlightResearchCenter.5,6

Fortheseearlyprograms,measurementandpresentation
of individual pressure coefficient data and their empirical

relationships to the airdata parameters were emphasized.
These tests verified the feasibility of the fixed-orifice concept

but did not attempt to derive algorithms for estimating the

airdata from the pressure measurements.

A more advanced program, the high-angle-of-attack flush

airdata sensing (HI-FADS) system, was developed and has

recently concluded flight testing at NASA Dryden. 7,8 The

system was required for the F-18 High Alpha Research Vehi-

cle flight tests because the noseboom installation altered the
flow characteristics on the aircraft nose at high incidence

angles and adversely affected the vehicle flight dynamics.

The HI-FADS design, as with the earlier fixed-

orifice FADS systems, used a matrix of flush static-pressure
orifices arranged on the nose of the vehicle. This design,

however, incorporated the pressure measurements into an

overdetermined estimation algorithm where all surface pres-

sure observations were used simultaneously to infer the air-

data parameters using nonlinear regression.

For the High Alpha Research Vehicle flight tests, the HI-

FADS computations were performed postflight using pres-

sure data telemetered to the ground. To allow autonomous

operation as part of an actual flight system, the HI-FADS

algorithm was integrated into a real-time system that

included pressure sensors, computational hardware, onboard

program data storage, and an interface to the aircraft instru-
mentation system. This system, the real-time flush airdata

sensing (RT-FADS) system, was flight tested on the NASA

Dryden F-18 Systems Research Aircraft (SRA). This paper
describes the RT-FADS measurement system, including the

basic measurement hardware, the airdata parameter estima-

tion algorithm, and redundancy management schemes that

ensure algorithm tolerance to sensor failures. System cali-
bration methods and evaluations of the system performance

for subsonic, high-angle-of-attack, and supersonic flight

regimes are presented.

THE F-18 SYSTEMS RESEARCH

AIRCRAFT

The F-18 SRA is a flight test bed intended for commercial
and military systems development and evaluation. The SRA

is an F/A-18B aircraft featuring two-place pilot seating, dual

engines, and a midwing with leading- and trailing-edge flaps.

A primary objective of the SRA test bed is to identify and

flight-test high-leverage technologies beneficial to subsonic,

supersonic, hypersonic, or space applications. The SRA

flight test bed enables government and industry to focus on

the integration, ground test, and flight validation of these

technologies.

THE REAL-TIME FLUSH AIRDATA

SENSING SYSTEM HARDWARE

Figure 1 shows a basic system overview. The various hard-

ware components, including the flight test radome, the RT-

FADS pressure port matrix, and the measurement transduc-
ers, are described in the following subsections. The Airborne

Research Test System (ARTS) computer used to perform the

data logging, onboard computations, and interface to the

research instrumentation system is also described.

Radome Configuration

The transducers and the electrical interface unit are

mounted on a palette in the SRA radome. The radome for the

RT-FADS system is a preproduction sheet metal unit with
the flight test noseboom removed that is canted downward at

2
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an angle of 5.6 ° relative to the longitudinal axis of the air-

craft. A composite matrix nosecap with 11 pressure orifices

molded into the structure was attached at the radome tip and

faired flush to the surface. The locations of the nosecap ports

are defined using cone and clock coordinate angles, <_ and

_., respectively. Figure 2 shows the clock and cone angles

and the pressure port locations on the radome.

The Airborne Research Test System

For the RT-FADS flight tests, the fire-control radar system

was removed from the vehicle and the ARTS computer was

mounted on a shelf built into the radar mounting rack behind

the RT-FADS radome. The ARTS, designed and built at

NASA Dryden, is an advanced computer architecture incor-

porating a VME computer chassis that has been ruggedized

for high-stress flight environments. The ARTS architecture

links processor boards with multiple functionalities through

a backplane using a commercially available real-time operat-

ing system and allows simultaneous multiprocessor, multi-

function capability.

Data collection and algorithm computations are performed

by two commercially available Motorola 68040-based

(Motorola Inc. Microprocessor and Memory Technologies

Group; Austin, Texas) single-board computers inserted in the

flight-ruggedized chassis (fig. 1). The two processor boards

act as slave and master. The master processor acts as the sys-

tem controller (SC) and manages the data flow through the

system. The SC services the slave RT-FADS processor,

which in turn communicates to measurement transducers and

performs the airdata calculations. Outputs from

the RT-FADS processor are passed to the master pro-

cessor through the ARTS backplane. The SC processor



135

180°

I0

8

/
I1

---2 in.

Front view looking aft Left side view looking inboard
950230

Figure 2. Schematic of port locations on the RT-FADS nosecap.

communicates with the aircraft data system through a
1553 bus controller card and a dedicated bus to the instru-

mentation system.

Other cards in the system include a nonvolatile random

access memory (NVRAM) for program and data storage and

an IRIG-B time decoder for data time tags. The system has

slots to allow for expansion to 8 individual computer boards.

An industry-standard high-speed interface unit built into the

ARTS chassis allows code updates to be loaded in directly

from a remotely located workstation. Manual reset switches

in the cockpit allow the pilot to turn off power to the system

and reboot the central processing units on demand while in

flight. With the exception of the interfaces to the real-time

operating system, all code modules were written in the

"C" programming language.

Measurement Transducers

Pressures at the FADS ports are sensed by

11 miniaturized, digital absolute-pressure transducers. Each

absolute-pressure transducer incorporates a 4-arm active

strain-gage bridge for data sensing; internal signal condition-

ing with a 20 Hz anti-aliasing low-pass filter and output sig-

nal amplification; and a 20-bit analog-to-digital conversion.

The transducers have a repeatability that exceeds :L-0.01 per-

cent of full scale and have a measurement range from 1.50 to

40.00 psia. The digital transducers use nonstandard asychro-

nous serial communication logically similar to the industry-

standard RS-485/422/232 protocol. 9 This protocol allows all

of the transducers to be connected through a single common-

data bus.

Specifically, the pressure transducers have the capability
of serial communication at two Bd rates: a low-speed rate of

9600 Bd, and a special high-speed rate of 375,000 Bd.
Because the 9600-Bd rate was considered too slow for the

required throughput of the system, the 375,000-Bd capability

was exploited in the application. With this high-speed

serial-Bd rate, polling a single transducer takes only 0.35 ms.

All 11 transducers can be polled in less than 4 ms, allowing

sufficient time for the FADS algorithm to achieve the target

throughput rate of 50 samples/sec required for flight control

feedback. The standard system serial driver on the RT-FADS

processor computer board was adapted to support the high-

speed serial-Bd rate by reprogramming the RT-FADS pro-
cessor to use an external clock for data bit timing instead of

the standard board system clock.

THE REAL-TIME FLUSH AIRDATA

SENSING COMPUTATIONAL

ALGORITHM

This section presents the computational algorithm.

Figure 3 shows data flow through the RT-FADS algorithm.
The FADS/ARTS interface is described. The aerodynamics

model that relates the measured pressure data to the airdata

parameters is presented. The nonlinear regression algorithm

used to solve the system equations and the stability of the
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Figure 3. Overview of RT-FADS executive algorithm
structure.

regression algorithm is discussed. Finally, algorithm startup

and redundancy management routines are developed.

Flush Airdata Sensing/Airborne Research Test System
Interface

As previously mentioned, the RT-FADS algorithm is
loaded into the modified RT-FADS slave processor from the

NVRAM and communicates with the SC processor through
the ARTS backplane. When the algorithm is booted, the first

function performed is the transducer reset. This function tells
the transducers to read and load their hard-wired addresses

into memory and to prepare to start delivering data. Next, the
transducers are polled sequentially until an entire initial

pressure data set is received, and the startup condition is
estimated.

When the algorithm has successfully been initialized, the

RT-FADS processing loop is entered and computational

cycles are performed. Each computational cycle is per-
formed as rapidly as transducer communications and airdata

computations allow. At the end of each computational cycle,

the RT-FADS processor sets a flag on the ARTS backplane
and waits for acknowledgment from the SC processor.

Acknowledgment instructs the algorithm to proceed with a

new set of computations; the transducers are polled again;

and a new set of computations are performed.

The SC processor performs time synchronization with the

data rate currently variable from 25 to 100 samples/see.

FADS throughput rates as high as 50 samples/see were

achieved. If the FADS has not completed a computation

cycle when the SC polls the FADS for new data, the SC

holds the last values from the previous RT-FADS computa-

tional cycles and flags the processing error.

Aerodynamics Model

A pressure model is used to relate the pressure measure-

ments to airdata quantities. The model prescribes measured
pressure in terms of four airdata parameters: dynamic pres-

sure, qc ; angle of attack, ct ; angle of sideslip, _ ; and static
pressure, P.o. Using these four basic parameters, most other

airdata quantities of interest may be directly calculated. As

previously reported, 4 the measured pressure data at the n th

pressure port is related to the desired airdata parameters by

the simple model

P(¢., _.n) = qc[COs2(On) + F. sin2(O.)] + P,_ (1)

In equation (1), On is the flow incidence angle between the
surface at the nth port and the velocity vector, e is an aerody-

namic calibration parameter that must be empirically deter-

mined and represents the "static source error" of the system

caused by the presence of the aircraft afterbody and the

supersonic bow shock wave. This static source error calibra-

tion parameter is analogous to the classic "position error"

calibration that must be identified for probe-based systems.

The incidence angle is related to the local angle of attack and

angle of sideslip by

cos(0.) = cos(a)cos(fl)cos(_..) +

sin (13)sin(C.) sin (X n) +

sin (c0 cos (_) cos(¢.) sin (_,n )

(2)

The parameters ct and [3 are local flow angles whose val-

ues are influenced by the aircraft-induced wash. Their rela-

tionships to the free-stream values must also be calibrated.

Values for the calibration parameters are presented in the

"Flight Test Results" section.

Nonlinear Regression Algorithm

Because the aerodynamic model is nonlinear and cannot
be directly inverted to allow calculation of airdata as a func-

tion of the measured pressures, the measurements must be

used to indirectly infer the airdata state using a nonlinear

least-squares regression. Within each computational cycle,
the algorithm is linearized about a starting airdata value for

each port location as follows:

8P(O n) = P(On)-F(otj,_j, qcj, Poo.,e,¢n,_.n)j (3)

OF OF _F Sqc + _--SP_ noise- --_(X+
<_j _--'_j<513+ +

oq_ _J

5



wherecxj,_j, qcj, and Po_j are the values about which the

algorithm is linearized. Applying equation (3) for all

11 pressure observations, the system may be written as a

system of the form:

PCOl )J

3F13F10F l 3F 1

3or 3[5 3qc3P_

9F113F113Fl13Fll _iq LVllJ

L P-Ij
J

(4)

This overdetermined system of perturbation equations is

solved using the weighted least-squares technique.l° As dis-

cussed later in the redundancy management module descrip-

tion, the weighted least-squares technique allows failed or

erroneous sensor readings to be eliminated from the estima-

tion algorithm.

At the end of least-squares regression, the resulting pertur-

bation is added to the starting value and the system is relin-
earized about the resulting update. The iteration is repeated

until algorithm convergence is reached--typically in
2 cycles, but as many as 8 cycles. The specific criterion used

to determine algorithm convergence is discussed later in the

redundancy management module description. At the begin-

ning of each new computational cycle, the system of equa-

tions is relinearized about the result of the previous cycle and

the iteration is repeated using new pressure data. Develop-

ment and description of the regression algorithm have previ-

ously been reported. 7,8

Algorithm Startup Module

Because the algorithm computations are recursive- that

is, the computations of each computational cycle rely on the

results of the previous computational cycle- a reliable

means of starting the algorithm computations must be used•

The startup algorithm for the RT-FADS is extremely simple

but very effective. When the startup algorithm is triggered,

the transducers are polled and an initial pressure data set is
obtained. This data set is the target pressure set. Starting at a

known set of airdata conditions corresponding to a nominal

cruise flight con&laon, the corresponding pressure set is
evaluated using the aerodynamic model. The predicted data

set is then linearly perturbed toward the measured data set by
some small amount (currently set at 1 percent of the distance

between the target set and the starting pressure set).

Using the perturbed value, a new estimate of the airdata

state is evaluated using a single cycle of the RT-FADS

* These data are user-selectablewith a default of Mach 0.50, an altitude of
20,000 ft, and 0° true Ot and 13.

regression algorithm. A new perturbed pressure prediction is

evaluated and the iteration is repeated again until the maxi-

mum number of iterations (100) have been performed. At

that point, the startup algorithm is exited and the RT-FADS

computational cycle is begun using the resulting airdata esti-

mate to perform the initial linearization. The startup algo-
rithm is called each time power to the ARTS is cycled or

when a manual reset is performed. The startup algorithm

typically takes approximately 2 sec to complete.

Algorithm Convergence Issues

In general, the RT-FADS algorithm converges rapidly;

however, two potential problems with algorithm convergence

have been encountered. The first convergence instability

happened under supersonic flight conditions when mixed

subsonic/supersonic flow occurred on the RT-FADS pres-
sure matrix. For this supersonic convergence instability, the

algorithm did not actually diverge, but the accuracy of the

algorithm computations degraded•

The second convergence problem was caused by the fail-

ure of one or more pressure measurements. This instability

was catastrophic and resulted in algorithm divergence and

complete system failure.

Supersonic Instability

From inspection of RT-FADS flight data, the supersonic

convergence instability was determined to be caused by loca-
tion of the sonic line behind the detached shock at the air-

craft nose. Figure 4 shows that at low supersonic Mach

numbers (less than Mach 1.10), the subsonic region behind

the detached shock is large enough to include all of the RT-

FADS pressure ports. But as the Mach number increases

(greater than Mach 1.25), the sonic line creeps forward so
that for certain critical Mach numbers, some ports lie in a

subsonic flow regime while some lie in a supersonic flow

regime.

When the RT-FADS ports lie in the subsonic/supersonic

flow arrangement, then a "multiple minima" solution exists.

These minima appear to lie close together. The small pres-

sure perturbations induced by passage of the sonic line are

large enough to cause the algorithm to converge to a false

minimum. The estimate of static pressure triggers the super-

sonic instability.

The algorithm was stabilized by low-pass-filtering the

static pressure estimate at the end of each computational

cycle and using the filtered estimate for linearization in the

next computational cycle. Assuming that the solution for the

previous computational cycle achieves the true minimum,

the low-pass filter tends to keep solution in the proper
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minima region by not allowing drastic changes from one

computational cycle to the next.

Sensor Failure Instabilities

Because the RT-FADS algorithm is nonlinear and

the solution is based on small perturbations to a current-

state estimate, one true minimum (the physical solution)

exists and multiple false minima may exist for each airdata

grouping. If a large false perturbation is input to the

algorithm- as may happen in the event of a sensor mea-

surement failure- then the algorithm can be disturbed so

far away from the true minimum that it converges to a false

minimum or diverges altogether. In the former case, the algo-

rithm computes erroneous results. In the latter case, the algo-

rithm fails entirely.

If a false minimum has been reached, the algorithm will

not reliably return to the true minimum without reinitializing

with a new starting condition. Redundancy management

techniques to identify and remove this catastrophic instabil-

ity have been developed.

Sensor Failure Detection and Redundancy Management

Using Analysis of the Normalized Sum of Squared
Residuals

As previously mentioned, when a measurement failure is

encountered and a large disturbance occurs, the resulting

large false perturbation may cause the algorithm to converge

to a false minimum. To prevent this occurrence, a reliable

method for detecting and eliminating failed or invalid mea-

surements from the algorithm is required. At the end of each

iteration, the root-mean-square value of the data residuals

represents a quantitative measure of the algorithm perfor-

mance for that iteration. For a converged iteration, the pres-

sure residuals are a subset of a much larger random

population whose statistical properties are approximately
0 lbf/ft 2 mean and Gaussian distributed.

Figure 5(a) shows a sample histogram of the residuals nor-

malized by the sample population standard deviation

(derived from flight data for converged computations) com-

pared to the normal Gaussian distribution. This histogram

validates the assumption that the RT-FADS residuals are

normally distributed.

Because the RT-FADS residuals are Gaussian distributed,

the sum of the squares of the RT-FADS residuals is a vari-

able whose random distribution is closely approximated by

the X2 distribution for five degrees of freedom. !1 Five

degrees of freedom results from the 11 independent trans-
ducer measurements and the fact that the model residuals are

related by 6 parameters estimated from the pressure data.

These 6 parameters are the sample variance, a ; the calibra-

tion parameter, e; and the four airdata parameters, qc,

P=, or, and, _. Figure 5(b) shows a sample sum-square

probability distribution of the algorithm residuals for con-

verged RT-FADS flight data compared to a theoretical
2 . . •

;( distribution for five degrees of freedom.
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(a) Residual distribution.
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(b) Normalized residual sum.

Figure 5. Probability distributions for converged RT-FADS

algorithm.

Algorithm Convergence and Fault Detection Using the

Normalized Sum of Squared Residuals Criterion

At the end of each iteration, comparison of this sample
X2 variable with percentage points of X2 distribution gives a

reliable statistical test of whether the algorithm converged.
Because X2 is a relative probability indicator, a small value

of Z2 corresponding to high probability in the tables indi-

cates that convergence is likely. A large _2 value corre-

sponding to a low probability in the tables indicates that

convergence is unlikely.

Because of its quantitative indication of convergence prob-
abilities, the _2 of the residuals is used as the convergence

criterion for the algorithm. When the 90-percent residual

confidence level is reached for a particular degree of free-

dom, then convergence is implicit and one additional itera-

tion is performed.

Redundancy Management and Fault-Tolerant

Processing Options

Figure 6 schematically shows the redundancy manage-

ment schemes employed in the RT-FADS algorithm.

Because sensor failures are likely to occur, and because the

RT-FADS processing algorithm uses all of the data simulta-

neously to compute the airdata values, an easy mechanism

for removing failed sensors from the algorithm is imple-

mented using the weighted least-squares technique. If a

weight is set to zero, then the pressure reading corresponding

to the weight has no influence on the estimation.

A series of tests (described in the following paragraph) are

performed for each transducer, and the result of each test is

either 1 (passed) or 0 (failed). If a transducer reading fails

any of the fault processing tests, then it is weighted out of the

algorithm and the degrees of freedom of the system are

reduced by one. This weighting-out allows up to 4 transduc-

ers to be weighted out of the algorithm while still giving an

identifiable system (degrees of freedom greater than or equal
to 1). The main benefit of the Xz methods is they allow a

nominal operation that devotes very little of its processing

time to data checking. This benefit allows a fast nominal

throughput. Only when the %2 test fails are the time-

consuming data-checking schemes used. This operation is a

unique approach to fault-tolerant systems.

When a sensor is polled, timing watchdogs are set to

ensure that a response is received within a preset time period.

If a correct response has occurred in the preset period, then

the measurement weight is set to 1, the watchdog is reset,

and the next sensor in the sequence is polled. If a watchdog

times out for 100 consecutive computational cycles, then the

transducer is considered to have permanently failed and is

weighted out of the algorithm. This transducer will no longer

be polled until the ARTS power is cycled or a manual reset is

performed. When a data reading has been successfully col-

lected, a check is performed to determine that the pressure

reading is within a preset reasonableness bound given by

100 lbf/ft 2 < _Pn < 2250 lbf/ft 2, n = 1... 11. (5)

Data values exceeding the reasonableness limits are

weighted out of the computation. For each pressure weilghted
out of the algorithm, the degrees of freedom for the %_ test

are reduced by 1.
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If more than 4 sensors have failed the watchdog or reason-

ableness tests, then the system is indeterminate for that com-

putational cycle and a hold-last-value mode is employed.

In this mode, the data returned from the algorithm are the

last available good airdata values. The hold-last-value mode

allows for momentary disturbances such as data spikes

to pass without occupying processor time with fault-

tolerance computations while still ensuring that the

algorithm computations for the next computational cycle

will not diverge. The hold-last-value scheme is employed for

a maximum of 4 computational cycles.

After all pressures that exceed the reasonableness limits

have been removed, the nominal processing loop is entered.
2 • •

After an iteration is performed, the X variable ,s recom-

puted and its value is compared against the table values. If



the %2 probability is greater than 90 percent in the tables,

then convergence is likely and one additional iteration is

performed. After the additional iteration, the pressure

weights are reset; a computational cycle is written to the

ARTS backplane; and the algorithm returns to await

acknowledgment from the ARTS so that a new computation

cycle can begin.

If the maximum number of allowable iterations (cur-

rently 8) have occurred and the degrees of freedom axe

greater than or equal to l, the regression cycles are not con-

verging satisfactorily and a hold-last-value on the airdata

state using the last available good estimate is again

employed. This hold scheme is allowed to occur for up to
2 consecutive iterations. If the criterion has not been vio-

lated, then the algorithm outputs data, retains the current

weights, and returns to await acknowledgment for a new
computational cycle. If the algorithm has not converged for

3 computational cycles, then something is seriously wrong
with the data and a more sophisticated scheme to detect the

failed pressures is initiated.

A parity weighting scheme is employed in which succes-

sive groupings of transducers are weighted out of the algo-

rithm and the regression is performed. The algorithm
weights each of the transducers individually, and the regres-

sion is performed using the converged airdata from the previ-

ous computational cycle as the starting point. The
X2 variable is computed and is compared against the table

values for four degrees of freedom (in each case, the number
of transducers has been reduced by 1). If weighting out one

of the transducers gives a X2 value that has a convergence

probability of greater than 50 percent, then the algorithm is

iterated until convergence. If convergence occurs, then the

weights are reset and the algorithm outputs data and returns
to await acknowledgment for a new computational cycle.

If convergence does not occur by weighting out just one of
the transducers, then all successive groupings of two are

weighted out. The X2 variable is computed and compared

against the table values for three degrees of freedom (the
number of transducers has been reduced by two). If weight-

ing out one of the groupings gives a convergence probability

of greater than 50 percent, then the algorithm is iterated until

convergence (90 percent). Otherwise, a new grouping is
selected. If convergence has not occurred after all possible

groupings of two have been exhausted, then groupings of

three are evaluated, and so on. When the degrees of freedom

of the system drops to less than 1, then the parity weighting
scheme has failed; the system is indeterminate; and hold-

last-value on the airdata using the last available good esti-

mate is employed.

If the system is still indeterminate after 3 consecutive

computational cycles, then the algorithm is considered to
have diverged catastrophically and the system is reinitialized

using the startup routine previously described. The watch-

dog, reasonableness, and parity weighting schemes are also

built into the startup routine. Also, at the beginning of any

computational cycle, if the watchdog and reasonableness cri-

teflon give a degree of freedom less than 1 for more than

4 computational cycles, the data are considered totally unre-

liable and a system reinitialization is performed.

Fault-Tolerance Summary

Although the fault-tolerance methods sound complex, they

are surprisingly simple in their implementation. Only the
_2 table values corresponding to 90 percent and 50 percent

for one through six degrees of freedom are required. Thus,
the X2 percentage table has only 12 elements. The main fea-

ture of these fault-tolerance methods is they allow a nominal

operation that devotes very little of its time to data checking.

This feature allows a very fast nominal throughput. Only
when data failures begin to occur are the more time-

consuming data-checking schemes used.

This method is unique to fault-tolerant systems. Further-

more, as new failure situations are encountered, new failure

detection criteria can be added without changing the basic

structure of the fault management system. Figure 6 shows

data flow through the fault-tolerant processing options. More

detailed theoretical development of the RT-FADS fault iden-

tification and redundancy management schemes have previ-

ously been presented. 8

FLIGHT TEST RESULTS

This section presents flight results for the RT-FADS sys-

tem. Generally, the integrated RT-FADS/ARTS performed

well, with more than 14 flight-hours completed. The system
was flight demonstrated from takeoff to landing and through-

out the entire nominal flight envelope of the F-18 airplane (to

a maximum of 45 ° _, + 25 ° [3, and Mach 1.6). The system

was cold-soaked at an altitude of 45,000 ft without any

noticeable degradation of performance. The algorithm reset

and initialization algorithms worked flawlessly on the

ground and in flight. The absolute pressure transducers also

performed well, and engineering unit calibrations on the
individual sensors varied negligibly during the entire

5-month block of Phase I test flights.

Aerodynamic Calibration Procedures and Results

The calibration effort, based on the reference airdata meth-

ods, 6 consists primarily of two tasks: identifying the static

source error represented by the parameter e ; and identifying

the induced wash parameters, Act and A[3. The reference

airdata values were generated by merging complemen-

tary information from multiple data sources, including the

onboard inertial navigation system attitudes, rates, and
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accelerations;radartrackingvelocityandpositiondata;12
andrawinsondeweatherballoonsoundingdata.13

Theweatherballoonsoundingdatawereverifiedinflight
byflying360° ataconstantspeed,performingalevelturn
beforeandaftereachmaneuver.Whentheindicatedairspeed
fromtheRT-FADSsystemisaveragedoverthecourseofthe
360° turn, the effects of the winds are eliminated. The differ-

ence between the averaged airspeed and the averaged radar-

derived groundspeed is the velocity error for that airspeed

caused by the static source error. The velocity error provides

an accurate point on the position error curve.

The local wind direction and speed are evaluated by add-

ing this static source velocity error to the indicated airspeed

reading and then plotting the groundspeed and corrected air-

speed as a function of time. Velocity data are convened to

Mach number using temperatures values obtained from the

rawindsonde balloon soundings and radar-derived geometric

altitude. Local ambient pressure values are evaluated using

rawindsonde balloon soundings and radar-derived geometric
altitude.

The calibration parameters were estimated by substituting

the reference airdata into the aerodynamic model and com-

paring the pressure predictions of the model to the pressures

that were actually measured. Residuals between the mea-

sured and predicted pressures were then used to infer the

values of the calibration parameters at each computational

cycle using a nonlinear regression similar to the RT-FADS

algorithm. Systematic trends in the calibration parameters

were identified by plotting the estimated calibration parame-

ters as a function of flight variables and visually inspecting

the results. Once trends were identified by visual inspection,

they were curve-fit and interpolated to generate a series of

tabular break points that were hard-coded into the RT-FADS

algorithm. Figures 7, 8, and 9 show the resulting calibration
trends.

Figure 7 shows calibration data for the upwash parameter.

The ordinate axis is Act, and the abscissa is the local angle

of attack measured by the RT-FADS system. The true angle

of attack is evaluated by subtracting Act from the indicated

value. At moderate subsonic speeds, the upwash correction

did not vary with Mach number, but for Mach numbers

greater than 0.9, the upwash falls off rapidly as a function of
Mach number and an additional correction is needed.

Figure 8 shows similar calibration data for the sidewash

parameter, All. Because getting significant sideslip angles

on the F-18 airplane supersonically is extremely difficult, no

supersonic sidewash correction has yet been implemented

for the angle of sideslip. Again, the true angle of sideslip is
evaluated by subtracting All from the indicated value.
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Figure 7. RT-FADS upwash calibration curve.
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Figure 8. RT-FADS sidewash calibration curve.
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Figure 9 shows a calibration curve for the static source

error. It was empirically determined that E may be decom-

posed into three distinct components: E M , which varies as a

function of Mach number; ect, which varies as a function of

indicated angle of attack; and el3, which varies as a function
of indicated angle of sideslip. The total static source error is

given by the summation

E = aM+e_+s_ (6)

Figure 9(a) shows £M plotted on the ordinate axis and

Mach number plotted on the abscissa. The curve rises steeply

through the transonic flight regime, levels off, and then

plunges rapidly at the high supersonic Mach numbers. Fig-

ure 9(b) shows tsct plotted on the ordinate axis and angle of

11



attackplottedontheabscissa.Figure9(c)showsa similar
plot for el3. The calibration parameters ecx and _13 are
adjustments for the loss of total flow energy at the RT-FADS

array caused by the increasing average flow angularity over

all the pressure ports. These parameters become largely neg-

ative for high incidence angles.

At Moo = 0, the theoretical value of E for a blunt body in
uniform flow 14 is 0.25, which is close to the empirically

determined value of approximately 0.262. At large super-

sonic and hypersonic Much numbers, the theoretical value of

predicted by modified Newtonian flow 15 is zero, which is
the inclination of e shown in figure 9(a). Data for pitot-static

systems 16 substantiate the trends with incidence angle shown

in figures 9(a) and 9(c). Based on these agreements with
other theoretically or empirically derived results, the empiri-

cally derived trends for e appear to be physically reasonable.

Evaluation of Code Stability and Fault-Tolerance
Methods

During the early phases of the RT-FADS flight tests, elec-

tromagnetic interference from the aircraft forward transmit-
ter caused erroneously low readings in several of the RT-

FADS pressure sensors whenever the pilot keyed the
onboard communications and navigation radio, t

Figure 10 (a) shows the corrupted pressure data time histo-

ties. This partial failure of the RT-FADS measurement
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(a) Variation with Much number.

Figure 9. Static source error calibration data.

-t The exact cause of this interference was never identified, but the problem
was eventually remedied by disconnecting the forward transmitter.
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(c) Variation with angle of sideslip.

Figure 9. Concluded.

system offered the opportunity to evaluate the performance
of the failure detection and fault management techniques.

When the algorithm is run off-line with the fault process-

ing options deactivated, the algorithm diverges momentarily,
recovers to an erroneous solution, and finally recovers to the

correct solution when the pressures return to their correct

values. Figure 10(b) shows this failure where the RT-FADS

12



Mach number estimate is compared to the ship system air-

data computer (ADC) value. When the fault detection is acti-

vated, the g 2 values jump rapidly at the instance of

measurement failure. The failures are clearly identified and

weighted out of the system. Figure 10(c) shows this X2 time

history. Figure 10(d) shows that when the fault detection

mechanisms are activated, only minor fluctuations in the

Mach number solution are noted. The fault processing

options worked and algorithm divergence was avoided.

Other fault-tolerance examples have previously been

presented. 7

Supersonic Instability

Three critical supersonic instability regions were identified

for this system. The first critical region lies between

Mach 1.25 and Mach 1.30, where the sonic line passes over

the furthest aft row of pressure ports. The second critical

region lies between Mach 1.45 and Mach 1.50, where the

sonic line passes over the next forward row of pressure ports.
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(b) Mach number; fault management inactive.

Figure 10. RT-FADS failure detection and

management example.

fault

The last region of instability lies near Mach 1.60, where the

sonic line passes over the most forward row of ports.

Figures 1 l(a) and 1 l(b) show the three regions of instabil-

ity for a Mach 1.6 acceleration/deceleration maneuver. Fig-

ure 1 l(a) shows the time history for the RT-FADS Mach

number without the low-pass filter stabilization plotted with

the ADC Mach number. The regions of instability are clearly

evident by the sudden jumps in the Mach number solution.

Figure 1 l(b) shows the same data, except the low-pass filter

on static pressure was used to stabilize the computations.

Figure 12(a) shows the process in more detail for the

Mach 1.25 instability. Figure 12(b) shows the time histories

of the last row of pressures. A correspondence between the

pressure fluctuations and the origin of the instability clearly

exist. Note that the stabilized algorithm performs well at the

point of instability.
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Figure 11. Supersonic instabilities in RT-FADS code.
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code

Evaluation of the System Accuracy

Quantitative RT-FADS system performance was evaluated

by comparing the calibrated outputs to the ship system ADC

outputs. Although the ADC outputs are subject to the same

types of measurement errors as the RT-FADS system, the

ADC provides an accepted standard for comparison.

Figure 13 shows sample time history comparisons for a high-

angle-of-attack flight maneuver. Figure 13(a) shows time

history comparisons for angle of attack. Figure 13(b) shows

Mach number comparisons.

Both angle-of-attack traces are similar to 33 ° or., the limit

of the ADC angle-of-attack range. Because of total pressure

loss on the ADC probe pitot port, the ship system Mach

number begins to degrade at approximately 25 ° or. Clearly,

the RT-FADS equals the performance of the F-18 ADC at

low angles of attack and extends the accurate measurement

range to angles of attack higher than 25 ° . Figure 14 shows

similar comparisons for a Mach 1.35 supersonic accelera-

tion/deceleration maneuver.

Assuming that the ADC is the "truth set" and ignoring

angles of attack greater than 25 ° (where the ADC data begins

to lose accuracy), the statistical accuracy of the RT-FADS

was evaluated as a function of Mach number. This evaluation

was performed by taking root-squared residuals between the

ADC and RT-FADS measurements and graphing the residu-

als on a scatter plot as a function of Mach number for all of

the data points gathered in the Phase I flight tests -- a data-

base of approximately 1,000,000 time computational cycles.

Starting at Mach 0.20 and extending to Mach 1.60 at inter-

vals of Mach 0.20, residual boundaries were drawn so that

more than 99.9 percent of the residuals in each Mach number

interval are included. These residual boundaries establish the

3-a error bounds for the RT-FADS (relative to the

ADC reference) parameters as a function of Mach number.
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Figure 13. Comparison of RT-FADS airdata to airdata

computer for high-angle-of-attack maneuver.
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Figure 14. Comparison of RT-FADS to airdata computer
for Mach 1.35.
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Figure 14. Comparison of RT-FADS to airdata computer

for Mach 1.35.

Figure 15 shows the residual scatter plots and 3-a error

boundaries for Mach number and angle of attack.

For angles of attack below 25 °, the RT-FADS measure-

ment accuracies were nearly independent of angles of attack

and sideslip. Because no ship system value was available for

angle of sideslip, no statistical evaluation was performed.

Because the angles of attack and sideslip were calibrated

using the same reference source, inferring that the accuracy

levels are very similar is reasonable. Table 1 presents 3-G

residual values as functions of Mach number for various

RT-FADS airdata parameters.

Because the ship ADC is believed to have the same general

error magnitudes as the RT-FADS, the error values shown in

table 1 are conservative. Even if the ADC reference is

assumed to be a perfect source, the 3-G residuals are

well within accepted standards for airdata measurement

accuracies.

CONCLUDING REMARKS

A novel nonintrusive airdata sensing system was devel-

oped and flight tested at the NASA Dryden Flight Research

Center. This system uses a matrix of flush pressure orifices

arranged on the aircraft forebody to determine the vehicle

airdata -- critical measurement parameters for flight control

and research analyses. The system eliminates the need for

external probes that are sensitive to vibration and alignment

error, are easily damaged, may alter the flying qualities of

the aircraft at high angles of attack, and are unacceptable for

hypersonic or stealthy vehicles.
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The real-time flush airdata sensing (RT-FADS) system is

significantly more advanced than earlier nonintrusive airdata

concepts. The development of several innovations has
resulted in a system that is capable of operating autono-

mously in real time. The system incorporates an overdeter-

mined algorithm in which all surface pressure observations

are used simultaneously to infer the airdata parameters using

nonlinear regression. This innovation provides a system that

is robust to noise in the measured pressure data and allows

multiple sensor losses without significantly degrading the

airdata computations, Generally, the integrated system per-

formed well, with more than 14 operational flight hours

completed. The system was flight demonstrated from takeoff

to landing and over the entire nominal flight envelope of the
F-18 airplane (to a maximum of 45 ° o_, _+ 25 [3, and

Mach 1.6).

Flight calibrations were performed using reference airdata

values generated using data sources that include the ship sys-
tem inertial navigation system, radar-tracking velocity and

position data, and rawinsonde weather balloon sounding

data. The calibration parameters were estimated by substitut-

ing the reference airdata into the aerodynamic model and
using a nonlinear regression to identify the calibration

parameters. Systematic trends in the calibration parameters

were identified by plotting the estimated calibration parame-

ters as a function of flight variables and visually inspecting

the results. Trends were identified by visual inspection, and

curve-fit to generate a series of tabular breakpoints that
were hard-coded into the RT-FADS algorithm. Based on

Table 1.3-o Residual values for RT-FADS parameters.

M_, 8M** Set, deg 8qc, ibf/ft 2 _iPoo, lbf/ft 2

0.2 0.0045 0.125 3.50 1.00

0.4 0.0025 0.145 2.00 1.00

0.6 0.0035 0.210 2.00 3.25

0.8 0.0070 0.260 2.00 3.50

1.0 0.0240 0.240 12.00 16.50

1.2 0.0100 0.300 6.00 3.00

1.4 0.0030 0.380 5.00 2.00

1.6 0.0025 0.150 3.00 1.00
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agreementswithothertheoreticallyor empiricallyderived
results,theempiricallyderivedtrendsfor thestaticsource
errorcalibrationparameter,e, appear to be physically
reasonable.

Two types of algorithm instabilities were identified. The

first type of instability occurred during supersonic flight. The

source of this instability is the location of the sonic line
behind the detached normal shock on the aircraft nose. As

the Mach number increases, the sonic line creeps forward so

that for certain critical Mach numbers, some ports lie in a

subsonic flow regime, while some lie in a supersonic flow

regime, resulting in a multiple minima. Small pressure per-

turbations induced by passage of sonic line are large enough

to cause the algorithm to diverge to the false minimum. The

RT-FADS algorithm was stabilized reasonably well by low-

pass-filtering the static pressure estimate and then using the
filtered estimate for linearizing between computational

cycles. The low-pass filter tends to keep the solution in the

proper minima region by not allowing drastic changes from

one computational cycle to the next.

A second type of instability was induced by measurement
failures, and a ;C2 fault detection and redundancy manage-

ment scheme was developed to stabilize the algorithm. These

methods worked well for all of the Phase I test flights.

The RT-FADS equals the performance of the F-18 ADC at
low angles of attack and extends the accurate measurement

range to considerably high angles of attack. The statistical

accuracy of the RT-FADS was evaluated by taking root-
squared residuals between the ADC and RT-FADS measure-

ments and graphing the residuals as a function of Mach num-
ber. Residual boundaries were drawn so that more than

99.9 percent of the residuals in each Mach number interval

are included. These residual boundaries established a

3-a error bound for the RT-FADS parameters as a function

of Mach number. Because the ship ADC is believed to have

the same general error magnitudes as the RT-FADS, the cal-
culated 3-a residual boundaries are conservative estimates

of the true 3- a error bounds. Even so, the resulting accuracy

estimates are well within accepted standards for airdata mea-
surement accuracies.
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