provided by NASA Technical Reports Server

N96- 17085

#### NASA WIRING FOR SPACE APPLICATIONS PROGRAM TEST RESULTS

Jason A. Vaughn
George C. Marshall Space Flight Center
Materials and Processes Laboratory
Engineering Physics Division
Marshall Space Flight Center, Alabama

=3-20 6329 p, 6

#### **Presentation Outline**

- Objective
- Atomic Oxygen System Description
- Results of Wire Insulation Exposure to 5 eV Atomic Oxygen Atoms
- Discussion of Ultraviolet Radiation Test Procedure
- Results of Ultraviolet Radiation Exposure on Materials

#### **Objective**

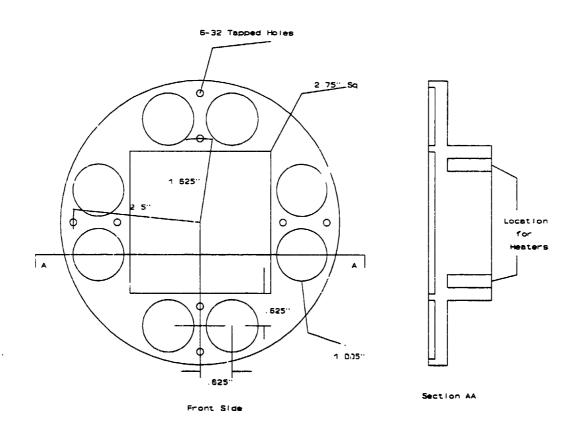
Investigate the effects of AO, UV and AO with UV synergistic effects on wire insulation materials. Atomic oxygen exposure to be on the order of 10<sup>21</sup> atoms/cm<sup>2</sup> and VUV radiation to be on the order of 10,000 ESH.

## PPPL 5 eV Atomic Oxygen System Characteristics

- Developed under contract with MSFC (H-83097B)
- Produces 5 eV atomic oxygen neutral atoms at a flux of 10<sup>16</sup> atoms/cm<sup>2</sup>
- Fluence Levels of 10<sup>21</sup> atoms/cm<sup>2</sup> require exposure times of approximately 40 hrs.
- Simultaneously produces Vacuum Ultraviolet radiation at 130 nm 200 times as intense as the equivalent solar VUV dose.

Coaxial Plasma
Source

Gate Valve


Coils

PPPL 5 eV Atomic Oxygen System Schematic

## Wire Insulation Materials Exposed to 5 eV Atomic Oxygen

- TRW PFPI--Partially Fluorinated Polyimide
- MIL-W-22759/12-TFE Teflon Outer Material
- MIL-W-22759/34-XL-ETFE (TFE Teflon Material)

## Wire Insulation Sample Fixture for AO Exposure



#### Atomic Oxygen Testing Visual Observations

- After completion of tests all wire materials showed no signs of eroding to the conductor or discoloration of the wire material.
- All wire samples had a powdery residue left on the surface.

# NASA Electrical Wiring Test Program Mass Loss Summary of Wire Exposed to 8.5x10<sup>20</sup> atoms/cm<sup>2</sup> Fluence AO and 8200 ESH VUV

|                             | Average ∆mass<br>(mg) | Average ∆thickness<br>(µm) | Computed Re<br>(cm³/atom) |
|-----------------------------|-----------------------|----------------------------|---------------------------|
| TRW-PFPI<br>(awg #20)       | 6.26                  | 47.2                       | 5.6x10 <sup>-24</sup>     |
| MIL-W-2?759/12<br>(awg #20) | 7.47                  | 34.8                       | 4.1x10 <sup>24</sup>      |
| MIL-W-22759/34<br>(awg #12) | 3.12                  | 14.5                       | 1.7x10 <sup>-34</sup>     |

#### **Ultraviolet Test Set-Up**

- Four Samples of Each Wire Were Used For Statistical Average.
- Samples Exposed in 10<sup>-7</sup> Torr Vacuum for a Period of 1033 hrs.
- Samples were controlled at Temperature of 120°C
- An Enhanced Ultraviolet Radiation Lamp with a Mercury-Xenon Bulb was used to radiate the samples.
- Source Produce Four (4) UV suns over the wavelength region of 200 nm to 400 nm per hour.
- Total Sample Exposure 4132 Equivalent Sun Hours.

#### **Ultraviolet Radiation Test Materials**

- Teledyne Thermantics (awg #20 and #12)--TFE/FEP Co-Polymer
- Tensolite (awg #20 and #12)-- TFE teflon outer material
- Champlain (awg #20)--FEP/TFE Co-polymer
- Barcel M81381-7 (awg #20)--Kapton
- HSCR Gore (awg #20 and #12)--TFE Teflon material Outercoat
- M81381-11 (awg #20 and #12)--Kapton Outer Material
- Filotex (awg #20 and #12)--TFE Teflon Outer Material

# NASA Electrical Wiring Test Program Mass Loss Summary of Wire to 4000 ESH UV Radiation

|                              | Average ΔMass (mg) | Percent Average AMass (% ) |
|------------------------------|--------------------|----------------------------|
| Filotex<br>(awg #20)         | 0.327              | 0.069                      |
| Filotex<br>(awg #12)         | 0.517              | 0.023                      |
| Teledyne Therm.<br>(awg #20) | 0.153              | 0.033                      |
| Teledyne Therm.<br>(awg #12) | 0.530              | 0.025                      |
| Tensolite<br>(awg #20)       | 0.197              | 0.041                      |
| Tensolite<br>(awg #12)       | 0.443              | 0.021                      |
| Champlain<br>(awg #20)       | 0.233              | 0.048                      |
| HSCR Gore<br>(awg #20)       | 0.267              | 0.057                      |
| HSCR Gore<br>(awg #12)       | 0.510              | 0.023                      |
| M81381-11<br>(awg #20)       | -0.180             | -0.035                     |
| M81381-11<br>(awg #12)       | -0.720             | -0.034                     |
| Barcel M81381-7<br>(awg #20) | -0.044             | -0.010                     |

# Summary of Atomic Oxygen and VUV Exposure of Wire Insulation Material

- TRW Partially Fluorinated Polylmide (PFPI) has higher AO reactivity. Uncertain to cause.
- Fluorinated Polymers have a high Synergistic VUV and Atomic Oxygen reactivity.
- The True Reason for the Increased Fluorocarbon Reactivity Is Not Known But is Believed to be Caused by the increased VUV Radiation Rate.
- •VUV Exposure Alone on Fluorocarbon Materials Causes Them to Lose Mass.