
NASA Contractor Report 198441
NASA-CR-198441
19960010174

TADS-A CFD-Based Turbomachinery and
Analysis Design System With aUI
Volume II-User's Manual

R.A. Myers, D.A. Topp, and R.A. Delaney
Allison Engme Company
Indzanapolis, Indzana

December 1995

Prepared for
LewIs Research Center
Under Contract NAS3-25950

• National Aeronautics and
Space Administration

11111111111111111 11111 11111 11111 1111111111111
NFOI036

LANGLEY RESEARCH CENTER
LIBRARY NASA

HAMPTON, VIRGINIA

https://ntrs.nasa.gov/search.jsp?R=19960010174 2020-06-16T05:46:41+00:00Z

1IIIIIIIIIIIIIIIIjljllfmlrtl~'111~~~1111111111111111
3 1176014236567

Contents

1 Summary 1

2 Introduction 3

3 Conventions and Nomenclature 1
3.1 Typographic Conventions 7
3.2 Nomenclature . . 8
3.3 CUI Conventions ... 8

3.3.1 Windows · 8
3.3.2 Mouse Buttons 8
3.3.3 Pulldown Lists 8
3.3.4 Toggle Buttons 9
3.3.5 Radio Buttons. 9
3.3.6 Push-buttons . 9
3.3.7 Text Boxes .. 9
3.3.8 Action Buttons 9

3.4 File Formats . 10
3.5 File Naming 10

4 Preparing Input for TADS 13
4.1 Aidoil Description . . · 13
4.2 Flowpath Description . 14
4.3 Aerodynamic Data · 16

5 Main Panel 19
5.1 Edit Programs Mode · 21
5.2 Edit Data Mode. . . . · 21

5.3 Edit/Run Mode ...
5.4 Run Mode
5.5 Edit Machines Mode

6 Remote Processor Setup Panel

7 Input Panels
7.1 Standardized Data Input Panels . .

7.1.1 TIGG Input Panel .
7.1.2 ADPAC Input Panel .
7.1.3 GRAPE Input Panel .
7.1.4 RVCQ3D Input Panel

7.2 SLICER Data Input Panel . .
7.2.1 Percent Mass Slice Mode.
7.2.2 Percent Span Slice Mode.
7.2.3 Percent Area Slice Mode.
7.2.4 Inches Slice Mode .

8 TADS Operating Instructions
8.1 Installing TADS
8.2 User Setup
8.3 Executing TADS
8.4 Trouble Shooting TADS

9 On Line Documentation

A Complete List of Input and Output Files

B Sample Flowpath Description Input File

C Sample Aerodynamic Data Input File

D Sample X Resource File

E Extracting the Source Files

F Compiling TADS Components

11

23
23
23

25

27
..... 28

31
33
35
35
39
42
42
42
43

45
45
46
47
49

51

55

59

61

65

69

73

G Running the Distribution Demonstration Test Case 75

111

IV

List of Figures

2.1 The coupled throughflow and blade-t<rblade analysis is an it-
erative, multi-step process. 5

4.1 The airfoil shape is defined as a surface in two parameters. 15

5.1 TADS main panel controls the coupled analysis. 20
5.2 Program mode selector controls the GUI's appearance and

execution. .. 21
5.3 The component group controls change in appearance and func-

tion as the program mode is changed. 22

6.1 Program modules can be run on remote hosts configured using
the Setup Panel. 26

7.1 The error panel will display the valid range. 30
7.2 TIGG input panel controls the axisymmetric grid generation.. 33
7.3 ADPAC input panel controls the through-flow analysis. 34
7.4 GRAPE input panel controls the blade-t<rblade grid generation. 36
7.5 RVCQ3D input panel controls the blade-t<rblade analysis.. 38
7.6 Slicer input panel controls the location of the 2-D analyses.. 40
7.7 User has the option to manually define slice geometry.. . .. 41

v

VI

List of Tables

2.1 Coupled analysis organization .. .

4.1 Required input data files

6

13

7.1 Action buttons on standardized input panels control file cre­
ation, modification and restoration. 29

7.2 Action buttons on "Slicer" input panel control file creation,
modification, restoration and program execution. 32

7.3 The GRAPE input parameters were modified to enhance grid
quality while reducing user effort. 37

F.l TADS development platform software configuration .. 73

vii

YI11

Chapter 1

Summary

The primary objective of this study was the development of a CFD (Compu­
tational Fluid Dynamics) based turbomachinery airfoil analysis and design
system, controlled by a GUI (Graphical User Interface). The computer codes
resulting from this effort are referred to as TADS (Turbomachinery Analysis
and Design System). This document is intended to serve as a User's Man­
ual for the computer programs which comprise the TADS system, developed
under Task 18 of NASA Contract NAS3-25950, ADPACSystem Coupling to
Blade Analysis & Design System GUI.

TADS couples a throughflow solver (ADPAC) with a quasi-3D blade­
to-blade solver (RVCQ9D) in an interactive package. Throughflow analysis
capability was developed in ADPAC through the addition of blade force and
blockage terms to the governing equations. A GUI was developed to simplify
user input and automate the many tasks required to perform turbomachinery
analysis and design. The coupling of the various programs was done in such
a way that alternative solvers or grid generators could be easily incorporated
into the TADS framework. Results of aerodynamic calculations using the
TADS system are presented for a highly loaded fan, a compressor stator, a
low speed turbine blade and a transonic turbine vane.

1

2 Summary

Chapter 2

Introduction

Traditionally, airfoils have been designed by stacking 2-D sections to create
a 3-D model. While 3-D analysis has become common, 3-D design has not.
Today, pseudo 3-D design is accomplished by adjusting 2-D parameters in
response to 3-D analysis. This approach benefits from a large experience
base in 2-D design and a good understanding of the 2-D design parameters.

There are CFD codes available to perform the full 3-D analysis of the
complicated flows associated with 3-D airfoils, but they are slow and require
large amounts of computer memory. While advances in computer technology
and in solution algorithms are reducing the penalties associated with 3-D
modeling, routine design is still not practical with these tools.

The objective of this program is to produce a turbomachinery airfoil de­
sign and analysis package built on the traditional approach, but using modern
analytical techniques. This new Turbomachinery Analysis and Design Sys­
tem (TADS) couples a throughflow solver with a quasi-3D blade-ta-blade
solver in an interactive package. The coupling is done in such a way that
alternative solvers or grid generators can be easily incorporated into the
TADS framework.

TADS is a an interactive turbomachinery design system which provides a
user-friendly means of managing the jobs and files associated with a coupled
throughflow fblade-ta-blade analysis. It is controlled by a Graphical User
Interface (GUI), which simplifies user input and automates the many required
tasks. The coupled analysis encompasses the following design activities:

3

4 Introduction

1. axisymmetric grid generation

2. through-flow calculation

3. airfoil slicing

4. blade-to-blade grid generation

5. blade-to-blade calculation

6. streamline resolution

7. body force resolution

A coupled throughflow and blade-to-blade analysis requires many steps,
repeated iteratively. Figure 2.1 shows the work flow of a typical analysis. A
converged analysis is achieved when the meridional streamlines are settled in
the throughflow analysis and the mean stream surface is settled in the blade­
to-blade analysis. Each analysis provides the solution surface for the other,
and iteration is required to determine the final shapes. In practice, only one
iteration is required to achieve an acceptable solution in many cases.

TADS is composed of independent programs which are able to interact
via a controlling program. A graphical user interface (GUI) serves as the
control program and the user's point of contact with the program modules.
The program modules are computational codes and their associated pre- and
post-processors. This type of scheme allows modules to be added, deleted or
modified with little or no effect on the controlling program. It also allows
modification of the controlling program independent of the program mod­
ules. In order to leave each code as a stand-alone module the I/O routines
were modified to conform to a common standard. The disadvantage to this
approach is the many files created during an analysis clutter the directory.
Although the clutter is unfortunate, these files provide a built-in restart ca­
pability for the analysis.

These program modules are grouped into seven functional divisions re­
ferred to as component modules. Table 2.1 may give a better understanding
of this organization. As shown in the table, the component modules corre­
spond to the seven design activities listed above. For example, ADPAC is a
program module for the "Throughflow Calculation" component group.

Also, TADS shares data between component modules. This insures the
data integrity of the individual component solutions. In addition to facili­
tating data I/O, TADS acts as a file manager/bookkeeper by utilizing a file
naming convention which forces a consistent file naming strategy.

Introduction 5

Coupled Throughflow and Blade to Blade Analysis

START

STOP

No

Y ..

Figure 2.1: The coupled throughflow and blade-to-blade analysis is an iter­
ative, multi-step process.

6 Introduction

Table 2.1: Coupled analysis organization.

Component Module Program Module Executable
Axisymmetric Grid Generation TIGG intigg tiggc3d

BATCH TIGG intigg tiggc3d
Throughflow Calculation ADPAC adpachc bodyf adpac

VIADAC nja
Slicer SLICER radsl slicer
Blade-to-Blade Grid Generation GRAPE grape
Blade-to-Blade Calculation RVCQ3D fixrvc rvccq3d

PGASC nja
TSONIC nja

Mean Streamline Finder MEANSL restack meansl

The graphical user interface allows the user to interactively query, alter
and submit a design analysis in an organized and compact environment. The
layout of the GUI helps to guide the user through the design process, while
maintaining the flexibility required by an interactive system. The GUI was
programmed in X Windows for portability. It also provides the means for
executing component modules on remote machines in order to take advantage
of heterogeneous system hardware and resources.

Visually, the GUI consists of a series of windows or panels:

• Main panel

• Message panel

• Remote processor setup panel

• Standardized data input panels

Slice independent panels

Slice dependent panels

• Specialized data input panels

Chapter 3

Conventions and
Nomenclature

This chapter explains some of the nomenclature and conventions used through­
out this manual and the GUI.

3.1 Typographic Conventions

• Items that are selectable are set in bold type.

• Path and file names are in f1xed-w1dth type.

• Program module names are EMPHASIZED UPPERCASE.

• Executable and shell script names are emphasized.

• Environment variables are in f1xed-w1dth type.

• UNIX commands are set in bold type.

• Optional parameters are set in brackets, [J.
• Keypresses are enclosed in <>, e.g. < RETURN >.

• Keyboard entries are in fixed-width type and generally terminated
with < RETURN> or < ENTER> unless otherwise stated.

7

8 GUI Conventions

3.2 Nomenclature

Definitions of terms, acronymns and abbreviations used in this document are
provided below.

panel Window
control Widget (toggle button, text entry box, push-button etc ...)

"Local" Machine on which TADS is executed
C8.sename User supplied case name

ASCII American Standard Code for Information Interchange
HTML HyperText Markup Language

PLOT3D NASA graphics flow visualization program
TADS Turbomachinery Analysis and Design System

3.3 GUI Conventions

Specific controls have individual behaviors and appearances. Unless other­
wise stated, the following conventions are used by the GUI:

3.3.1 Windows

Closing a window from the decorations box will close the parent window and
force TADS to terminate (non-gracefully). Resizing a window will automat­
ically rescale the contents to fill the new window . .
3.3.2 Mouse Buttons

Unless explicitly stated otherwise, the term "click" means to move the mouse
until the cursor is over the desired control, then pressing and releasing the
left mouse button. "Double clicking" is simply performing two "clicks" in
rapid succession.

At this time, the right and middle mouse buttons have no function.

3.3.3 Pulldown Lists

A downward pointing arrowhead indicates a pulldown list. The list is dis­
played by clicking on the arrowhead with the left mouse button. To make a

GUI Conventions 9

selection from the list, click on the desired item.

3.3.4 Toggle Buttons

To activate a toggle button move the mouse until the cursor is over the button
and click the left mouse button. A filled toggle box is considered to be on,
and an empty box is off.

3.3.5 Radio Buttons

Radio buttons are a group of toggle buttons which are mutually exclusive of
each other. In other words, only one may be on at any time; however, one
must always be on. When one button is clicked on, all the others are forced
to off.

3.3.6 Push-buttons

A push-button is activated by clicking on it with the left mouse button.

3.3.7 Text Boxes

To enter data in a text box, the box must first be selected by clicking on it
with the left mouse button (this will cause the text box to be highlighted).
Then text may be typed from the keyboard. Double clicking on the text will
display any existing text in reverse video mode. This text will be overwritten
if any text is input by the user. Most text boxes encountered in this program
will accept the data after pressing <ENTER> or <TAB>, or after clicking
on another control (including one which exits the current panel).

3.3.8 Action Buttons

Action buttons are push buttons which control file creation, modification
and/or execution. Action buttons are found throughout TADS, however,
most of them are located at the bottom of input panels.

10 File Naming

3.4 File Formats

All files used by TADS are ASCII text, native binary or SDB binary. SDB
is a library of I/O routines which create platform independent binary data
as opposed to native binary which is platform dependent. Each supported
platform has a SDB library available to perform the necessary conversions.
Using SDB, any platform can read binary data created by any other platform.
Supported platforms include Cray, Silicon Graphics, IBM RS/6000, Sun, etc.
The binary data structure of SDB is equivalent to reading and writing binary
data in C on a Silicon Graphics workstation. SDB is documented in Ref.[8].
All TADS files, except native binary files, are platform independent, so any
program task can be performed on any supported machine without loss of
generality.

The only files using the native binary format are the slice database files.
These files are not required for restart if the corresponding ASCII files exists
(which they normally should if the database file exists). If both types of files
exist, the information from the native binary files is over-ridden by data in
the ASCII files. The native binary files should be removed before executing
subsequent runs of TADS on a "local" machine which is of a different platform
type than the original run.

Most of the binary files used by TADS are geometry or flow data files.
All geometry or flow data files are written in PLOT3D format using SDB.
Specifically, most files are 3-D, whole, multiple grid files, in accordance with
the definitions in Ref. [1], pp 162-165. The only exceptions being the 2-D,
single grid files used for the blade-to-blade analyses.

3.5 File Naming

The files created or used by TADS use the casename. extenslon file name
convention adopted from ADPAC. The user specifies a case name for the
problem, and each file needed by TADS is assigned a unique extension.
This way, multiple airfoils could be run in the same directory. There is
also much less confusion about which files were created by TADS. Some pro­
grams, notably the grid generators and quasi 3-D solvers expect files with
specific names for input and output. These files do not follow the convention
adopted for TADS. This is not a serious problem unless multiple runs of the

File Naming 11

same program must be made in the same directory. Multiple runs would
require multiple files with the same name, resulting in overwritten data or
confusion about the contents of files. While it would be possible to write
scripts to rename or symbolically link files to the expected names, it is clearer
and simpler to create subdirectories to contain these files. TADS creates a
subdirectory for each blade-to-hlade section to be analyzed. Within the sub­
directory, some files do not conform to the naming convention, but confusion
is avoided because the subdirectories themselves are named descriptively.

A complete list of input and output file names and descriptions can he
found in Appendix A.

12 File Naming

Chapter 4

Preparing Input for TADS

The TADS system requires four things as input: a casename, a Cartesian
description of the airfoil, a description of the meridional flowpath, and aero­
dynamic data. The minimum file set required for TADS to execute is listed in
Table 4.1. All other information needed by TADS has either a default value
which can be reset in an input panel, or is generated internally by another
part of the analysis.

4.1 Airfoil Description

The airfoil is input as a 3-D Cartesian surface in two parameters. This sur­
face can be envisioned as the first contour in an O-grid, Figure 4.1. The first
parameter, I, wraps clockwise around the airfoil to form a closed surface,
when viewed from above. The J index is set to 1, corresponding to the first
contour in a right-handed O-grid. The K index is the number of spanwise
point in the airfoil description. TADS expects to receive the airfoil descrip-

Table 4.1: Required input data files.

Name Format Description
casename.tdsblad PLOT3D (SDB) airfoil geometry
casename.tdspath ASCII flowpath geometry
casename. tdsaro ASCII aerodynamic data

13

14 Flowpath Description

tion with the machine axis aligned with the X direction. The file is a 3-D,
whole, multiple grid file, in accordance with the definitions in Ref. [7], pp
162-165. The file is written in PLOT3D format using SDB, and is named
c:asename. tdsblad, following the TADS convention. The coordinates should
be in inches.

The distribution of points in the airfoil description should follow some
basic guidelines. First, there must be sufficient resolution of all geometric
features, specifically the leading edge and trailing edge. Second, the spanwise
distribution of points must be smooth. The airfoil definition is sliced along
the meridional streamlines for use in the blade-to-blade analysis. The shape
of the airfoil is found along the streamline by splining each spanwise row of
points and finding the intersection with the meridional streamline. If the
spanwise point distribution is not smooth, the spline through those points
will be less accurate, degrading the fidelity of the blade-to-blade analysis.
The analogy between the airfoil definition and an O-grid is appropriate: the
point distribution in the airfoil definition is acceptable if it would make an
acceptable blade surface in a 3-D O-grid.

4.2 Flowpath Description

The meridional flowpath is defined by two lines in the (X, R) plane. The file
is in ASCII free format, and is named ca.sename. tdspa.th, according to the
TADS convention. A sample input file is found in Appendix B.

This the format of this file is simple. The first line is a comment indicating
that the hub surface definition follows. The second line contains the number
of points in the hub surface definition. After this is the series of (X,R)
coordinate pairs, with one pair on each line, in inches. The shroud definition
follows the pattern of the hub definition. Immediately following the hub
definition, is a comment line indicating that the shroud definition follows.
Then comes the number of points in the shroud definition and the coordinate
pairs as before.

The flowpath definition will be splined for use in many of the TADS mod­
ules. The definition should be resolved well enough that the spline accurately
represents the surface. No particular placement of the points is required, and
the number of points describing the hub and shroud is independent. The only
restrictions on the flowpath definition are that there must not be any repeated

Flowpath Description

Airfoil Description Input File casename.tdsblad

Leading --__ H

Edge

~- Trailing
Edge

K

~I index wraps around the leading edge

File is PL0T30, 3D, whole, multiple grid, written using the SOB library

File contains surface description of the airfoil, wrapped clockwise
from the trailing edge

The I index wraps around the airfoil from the trailing edge

The J index is 1 (constant)

The K index runs from hub to tip

Figure 4.1: The airfoil shape is defined as a surface in two parameters.

15

16 Aerodynamic Data

points, and that the definition must be monotonic in the flow direction.

4.3 Aerodynamic Data

The aerodynamic data file contains tables of information at the airfoil leading
and trailing edges. Following the TADS convention, the name of this file is
ca,senue . tdsa.ro. The file is in ASCII format and is read with free format
by FORTRAN subroutines. A sample input file is found in Appendix C.

The ca,senue. tdsa.ro file is largely self-documenting, with comment
lines preceding each data entry. The contents of the comment lines are ig­
nored, but there must be at least a blank line where each comment belongs.

Three comment lines precede the first item. The first item is a flag which
indicates which type of machine is being analyzed (at present, the only ac­
ceptable value is 0 for axial machines). One comment line precedes the
second item. The second item is the number of radial stations for which
there is aerodynamic data. This number must correspond to the number of
table entries which follow, but does not need to correspond to the number
of spanwise points in the airfoil description (ca,sename. tdsblad) or to the
number of meridional streamlines to be used in the analysis.

Two comment lines precede the table of aerodynamic conditions at the
leading edge. The table has two groups of data, with four entries per line.
The first group consists of the radius, total pressure, total temperature, and
the axial location. The radius and axial values define the locations at which
the aerodynamic conditions are to be held, in inches. The locations of the
aerodynamic data generally correspond to the leading edge (or trailing edge)
of the airfoil. However, these definitions are never used to represent geometry,
and are therefore somewhat arbitrary. The only restrictions are that there
should be no repeated points, and the values should increase monotonically
in the spanwise direction. The total pressure should be in pounds per square
inch, and the total temperature should be expressed in degrees Rankine.

The second group is preceded by a single comment line, and consists of the
radius, and the three Mach number components. The radius is repeated from
above and is included for visual convenience. The Mach number components
are the axial Mach number, the absolute circumferential Mach number and
the radial Mach number.

The trailing edge table follows the leading edge table. Following the

Aerodynamic Data 17

pattern of the leading edge table, there are two comment lines and then a
group of four parameters: the radius, static pressure total temperature, and
axial location. The radial and axial values define the locations at which
the aerodynamic conditions are to be held. The static pressure should be
expressed in pounds per square foot, and the total temperature should be
expressed in degrees Rankine. Two comment lines also precede the second
group, which consists of the radius, the axial Mach number, the absolute
circumferential Mach number, and the radial Mach number. In the current
release of TADS, the static pressure and the total temperature are not used.
The Mach number components are used in the one-dimensional extrapolation
routine which sets the pressure at the exit boundary in the throughflow
analysis.

Following the trailing edge table are lines containing thermodynamic in­
formation and geometric properties. The ratio of specific heats ("y) and the
gas constant follow two comment lines. The gas constant is expressed in the
customary units of foot-pounds force per pound mass degree Rankine. Two
more comment lines precede three geometric parameters: the wheel speed
(in revolutions per minute), the tip clearance (in inches) and the number of
blades.

Finally, two comment lines precede the airfoil tangency points. In tra­
ditional airfoil design programs, airfoils are defined in four segments: the
pressure and suction surfaces, and the leading and trailing edges. The tan­
gency points are those points in the airfoil description which denote where the
leading and trailing edges join the pressure and suction surfaces. TADS uses
these points when locating the mean camber line of the airfoil. The mean
camber line is determined from the pressure and suction surfaces. These
surfaces are defined as the segments of the airfoil between the appropriate
tangency points. It is not required that these points actually define a joint
between segments, but they should be chosen so that the pressure and suction
surfaces don't contain the high curvature regions of the leading and trailing
edges. If TADS issues messages indicating that it can't locate the mean cam­
ber line, adjust the tangency points away from the leading and trailing edges
and rerun.

The tangency points are prescribed in clockwise order, starting at the
leading edge. They are ordered as follows: the suction surface leading edge,
the suction surface trailing edge, the pressure surface trailing edge, and the
pressure surface leading edge. These values correspond to the I index in the

18 Aerodynamic Data

airfoil definition.

Chapter 5

Main Panel

The function of the main panel (shown in Figure 5.1) is to direct work flow.
The work being directed can be divided into three categories: configuration,
data input and execution. However, a more logical breakdown organizes
these categories into five operating modes:

1. Edit Programs

2. Edit Data

3. Edit/Run

4. Run

5. Edit Machines

The program mode selector (see Figure 5.2) sets the active mode and
determines the appearance of the component group controls (see Figure 5.3).
These controls give the user the flexibility to loop on specific aspects of a
solution by managing input data and component module execution. De­
pending on the active mode, these controls display the name and status for
each component module's active program module or it's associated execution
host. The operation and appearance of this modal display is discussed below
for each operation mode.

The main panel also contains three action buttons in the lower right
corner. There is a Quit button to exit the GUI, a Shell button to open a
UNIX shell in the current working directory and a Setup button to configure
remote execution of component modules.

19

20 Main Panel

Figure 5.1: TADS main panel controls the coupled analysis.

Edit Programs Mode 21

Figure 5.2: Program mode selector controls the GUI's appearance and
execution.

5.1 Edit Programs Mode

The "Edit Programs" mode allows the user to select which program modules
to execute. For example, the user may select TIGG or BATCH TIGG as the
axisymmetric grid generator.

The available choices are displayed in a pull down list which is activated
by clicking on the downward pointing arrowhead located to the right of the
program labels. Note, only component groups with more than one option
will display the arrowhead.

5.2 Edit Data Mode

When TADS is in the "Edit Data" mode, the program labels become push­
buttons. When the push-button for a component is clicked, the main panel is
replaced by the input panel for the component's active program module. In
general, each component program has its own data input screen. However,

22 Edit Data Mode

Figure 5.3: The component group controls change in appearance and function
as the program mode is changed.

Edit/Run Mode 23

in some instances different programs may share the same input screen (as is
the case for TIGG and BATCH TIGG). The individual input windows are
discussed later in this document.

5.3 Edit/Run Mode

When TADS is in the "Edit/Run" mode, a toggle button is displayed to the
left of each program label and an action button labeled "Run" is displayed
beneath the component group display. The toggle buttons determine which
components are to be edited (see "Edit Data Mode" above) and then executed
when the Run action button is clicked.

Warning: all modules will attempt to execute regardless of data avail­
ability. Therefore, the safest execution path is from top to bottom. After
the loop has been completed once, the user may run the modules in a more
random order; however, caution should still be used. For example, if the
axisymmetric solution is modified, the slicer module should be run prior to
rerunning the blade-to-blade solution. A more obvious example would be
trying to run the blade-to-blade solver before generating the grid.

5.4 Run Mode

When TADS is the Run mode its appearance is identical to "Edit/Run"
mode. The only difference in behavior to the "Edit/Run" mode is that the
data is not edited prior to program execution when the "Run" action button
is clicked.

5.5 Edit Machines Mode

The "Edit Machines" mode allows the user to select on which machine a
component module is to execute. For example, the user may select "Local"
to run a program on the same machine which is running TADS or some
remote machine to execute a module across the network. All component tasks
default to the local machine unless TADS is being run as a restart, in which
case the previous configuration data is restored from a file. Some programs,

24 Edit Machines Mode

such as TIGGC3D must be run with specific machine combinationsl in order
for the interactive graphics (GL) to work properly.

To change the machine associated with a component module, the user
simply selects the desired machine from the pulldown list of available ma­
chines for the particular component group. The list of available machines is
controlled by the remote processor setup panel (see Chapter 6) and is the
same for all component groups. This mode is only available if more than one
machine exists in the list.

1 Program must run on a local GL machine or on two SGI machines.

Chapter 6

Remote Processor Setup Panel

TADS has the capability to distribute tasks to networked machines. The
remote processor setup panel allows the user to configure a list of available
machines. From this panel (see Figure 6.1) the user may add new machines
and/or delete or modify existing machines from the available list. The panel
allows the user to specify machine name, manufacturer, path to the current
working directory and the path to the executables for each machine on the
list. This information is saved to a file in the local working directory and is
accessed upon restart. The remote machine must have NFS file access to the
local disk; however, it is not required that the directory paths on the remote
machine be the same as the local machine, although that is the default value.

If the user copies or moves the working directory to another location, the
paths in this file (casename. conf1gure) must also be updated to reflect the
new directory paths. Otherwise, TADS will attempt to continue operating
on the files in the original path. These same precautions must be taken when
TADS is run on a different "local" machine. TADS will automatically know
the type of the machine it is running on; however, the original path names
will be read from the casename. conf1gure file.

The structure of the configuration panel allows the user to include the
same machine more than once in the list of available machines. This feature is
useful when different versions of the same program exist on one machine. The
user can setup the second occurrence in the list to point at an applications
directory different than the first. When this scenario is used, some confusion
may occur because the list of machines displays the same machine name
more than once with no distinguishing features. In this case the user must

25

26 Remote Processor Setup Panel

Figure 6.1: Program modules can be run on remote hosts configured using
the Setup Panel.

be aware of the order of the machines in the setup panel when choosing a
machine from the main panel in the "Edit Machines" mode.

The action buttons located at the bottom of this panel have the same
functions as those described for standardized input panels in Table 7.l.

Chapter 7

Input Panels

All the data input panels create an input file for the associated program
module. There are several advantages to this approach.

The most obvious advantage is that restarting TADS from a previous case
is transparent to the user. Also, should problems be encountered, the user
may execute the modules outside of the GUI in order to isolate the source of
the problem. The GUI does not provide the user access to all input variables,
but is restricted to variables which are most likely to be of interest to the
user. If the user wishes to modify input data which is not directly available
through the GUI he/she may edit directly into the input file and make the
desired modifications. This can be useful when new variables are added to a
module. 1 Another benefit is that existing (non- TADS) input files may be
used for initial input providing the files follow the TADS naming conventions
and formats, and only data which is accessible from the GUI is used. Some
modules have only limited use of this feature - see individual input panel
descriptions for more information.

1 For this to work properly, the user must Shell out from the main panel to edit the
data. After edIting is complete do not enter the input panel for the desired program
module, because this will rewrite the mput file (as will TADS initialization).

27

28 Standardized Data Input Panels

Generally, TADS draws upon three sources of data to create an input file.

1. Initial input files - basic flowpath/airfoil geometric and aerodynamic
information

2. User data (via the GUI)

3. Internal data - output from TADS component modules

All of the input panels in TADS have a row of action buttons located
across the bottom of the panel. Generally, these action buttons control file
creation/modification and occasionally program execution. Unless specifi­
cally noted, these buttons behave as described in Table 7.1 for all input
panels.

7.1 Standardized Data Input Panels

At present, all of the component module input panels, with the exception
of the slicer module, are patterned after the same model. This model has
two distinct subclasses: slice dependent and slice independent. The input
panels of these subclasses appear almost identical, except for some additional
controls on the slice dependent input panels. The additional controls are
described in greater detail later in this section.

For both slice dependent and independent classes, most of the user data is
scalar (non-array) in nature. This allows the input panels for each component
module to be very similar. For purposes of this GUI, scalar data is divided
into three classes: boolean, trigger and numeric. Boolean data have only
two valid values (True/False, On/Off, 0/1, etc.,...) and are represented
by a toggle button in the GUI. A textual description of the logical state is
displayed with the toggle button to clarify what state is active. Trigger data
have a finite list of valid values. These values are sequential and incremented
by positive one for each choice. Trigger data generally have fewer than ten
choices and are represented in the GUI by a pulldown list. Some trigger data
contain textual descriptions in the pulldown list, but others may only list
the numeric values. Numeric data may be real or integer values. Depending
on the specific instance, a valid range may be enforced. Numeric data are
represented by a text entry box in the GUI.

Standardized Data Input Panels 29

Table 7.1: Action buttons on standardized input panels control file creation,
modification and restoration.

Save Overstore current panel data to a file if changes have been
made. If no changes have been made, then no action is
taken.

Restore Restore current panel data from a file. Any changes not
saved prior to a restore are lost. This action button is
only active if the input file exists (from a previous save).

Default Reset current panel data to default values (except for
locked data - see below). These defaults are setup specif-
ically for TADS. This means they are not necessarily the
same as the defaults stated in the formal documentation
of the individual component modules. Any changes not
saved prior to a default are lost.

Done Save current data (see above) and then exit current
panel. In some instances, this action button will force the
execution of secondary component programs such as pre-
processors. When this situation occurs it will be stated
in the documentation. Also, a message will appear in the
message panel indicating any programs being executed;
however, this message may not be seen due to the short
execution times of most of these secondary programs.

Cancel Exit current panel without saving current changes. If a
save has been done prior to cancel, secondary programs
will be executed (if appropriate) as described above for
done. If changes have been made to the data without a
save being done, the user will be so informed and given
the option to return to the current panel.

30 Standardized Data Input Panels

I I I

: ERROR MESSAf1E
I I .

,., ." "., •. , ... >:. \.,?{ { ?\}) .;:: . t ? i

...... ::: ::: ,:: :::: ,:':

Figure 7.1: The error panel will display the valid range.

If a numeric entry fails an active bounds checker, an error panel appears
(see Figure 7.1 for an example). The invalid number the user attempted to
enter is displayed on the error panel along with the valid data range. The
entered value is reset to its previous value and the user is prompted to click
OK to continue.

The user data is also divided into locked and unlocked categories. U n­
locked data is modifiable by the user, whereas locked data is not. Locked
data is usually extracted from internal data, or is only available under special
operating conditions. To distinguish between locked and unlocked data, the
GUI uses shading, borders and pixmaps. When a data field is locked out,
its background color is set to match that of the working panel, and its bor­
der and any associated pixmap are removed. An unlocked text/toggle field
has a white background framed by a border and an unlocked pulldown field
displays a bordered pixmap of a downward pointing arrowhead.

Most of the input panels are setup to display a description of the active
control on the status bar (located near the top of the panel). Currently, the
only description displayed is the name of the input variable.

Slice dependent component modules (such as the blade-to-blade solver)
require an input file for each desired slice. To maintain slice to slice ~ata in-

Standardized Data Input Panels 31

tegrity some inputs must be constant for all slices, while others are allowed to
vary. Therefore, some normally independent inputs are required to conform
to an overall scheme. Using random access binary files to create a relational
database allows individual slices to share "common" data, and therefore in­
sure slice data integrity. This compact organization more efficiently manages
the data while it is being manipulated by the GUI and increases user produc­
tivity by allowing a single change to affect all slices at once. These benefits
come at the cost of uniformity. The action buttons at the bottom of a slice
dependent panel behave in a slightly different manner than they do for slice
independent panels. These differences are documented in Table 7.2.

Slice dependent input panels appear almost identical to slice independent
panels. One difference is the addition of a pulldown list at the top right of
the panel. The pulldown list allows the user to select an individual slice or
all the slices. The only other visual difference is an additional action button
labeled Run at the bottom of the panel. This action button executes the
associated component module for the currently active slice only and allows
the user to debug input data without having to run solutions on all slices.
The button is only active for individual slices and only in the "Edit Data"
mode.

The multi-slice capabilities of the GUI required a visual method of distin­
guishing slice dependent and independent variables. This was done with the
locked/unlocked feature described above. Data that must be held constant
from slice to slice locked out for individual slices. This also prevents the user
from inadvertently changing slice independent data for a single slice.

7.1.1 TIGG Input Panel

TIGG is a slice independent component module. It uses a standardized input
panel as described in section 7.1. A representative screen image of it's CUI
input panel is shown if Figure 7.2. The controls correspond to input described
in the TIGG user's manual (Ref.[5]). This input panel is used for both TIGG
and BATCH TIGG2 component modules. This is possible because the input
for both is identical.

2 BATCH TIGG is t.ggc9d executed with the "-2d" flag to bypass the GL dependent
GU!.

32 Standardized Data Input Panels

Table 7.2: Action buttons on "Slicer" input panel control file creation, mod­
ification, restoration and program execution.

Save Overs tore current panel data to the database file for the
active slice if changes have been made. If no changes
have been made, then no action is taken. The actual
input files for the component modules do not get written
out by a save as they do for slice independent panels.

Restore Restore current panel data from the database file for the
active slice. Any changes not saved prior to a restore
are lost. The restore action button is inactive in the
"All Slices" mode.

Default Normal operation (see Default in Table 7.1).
Done Save current data, write out component module input

file for each slice and then exit current panel. Execution
of secondary component programs is the same as de-
scribed in Input Panels above.

Cancel Write out component module input file for each slice
without saving current changes and then exit current
panel. Execution of secondary component programs and
prompting for continuation is the same as described in
Input Panels above.

Run Save current data, write out input files and then exe-
cute current component module and related secondary
programs. This action button appears only on multi-
slice input panels. It is available only in the "Edit Data"
mode and is deactivated for the "All Slices" option. This
action is equivalent to running a component module in
the "Edit/Run" mode (except for only one slice).

Standardized Daita Input Panels 33

Figure 7.2: TIOG input panel controls the axisymmetric grid generation.

7.1.2 ADPAC Input Panel

ADPAC is a standardized, slice independent component module. A repre­
sentative screen shot is shown if Figure 7.3. The control labels correspond
to the input keywords described in the ADPAC user's manual (Ref.[4]).

The restart option (FREST) in ADPAC is not fully incorporated into
this version of rpADS. The trigger will cause ADPAC to attempt a restart;
however, the restart file must be manually specified before the module is
executed. This requires the user to provide the restart file before TADS is
executed or to Ulse the Shell feature on the main panel to perform the re­
quired file swapping/renaming.

The short execution times demonstrated during the development phase
of TADS reduced the priority of adding the additional logic and complexity
required to perform the necessary file swapping/renaming. In other words,
it runs so fast that more iterations are preferred over restarting.

Another problem with this scheme is that the logic to allow the body force
file (casename. bf .1) to be updated by ADPAC is not active. Therefore,
bodyfwill overwrite the body force file each time the ADPAC module is run
from TADS.

Warning: TADS will only recognize the ADPACinput parameters shown
on the input panel and in the given order (left to right and top to bottom).
Similarly, it will only write out these same inputs to the ADPAC input file
(casename. adpcLc. input) in a fixed order. These conditions limit the user's
ability to specify ADPAC input data prior to execution. The user is free
to use any legal ADPAC input format as long as TADS is not initialized or
the ADPAC input panel is not invoked from within TADS. Either of these

34 Standardized Data Input Panels

Figure 7.3: ADPAC input panel controls the through-flow analysis.

Standardized Data Input Panels 35

conditions will cause TADS to reread/rewrite the ADPAC input file.

7.1.3 GRAPE Input Panel

GRAPE is a slice dependent component module. It uses a standardized
input panel as described in Section 7.1. Figure 7.4 shows how the controls
are grouped to correspond to the namelist structure of the input as described
in the GRAPE user's manual (Ref.[6] and Ref.[3]). Some modifications were
made to GRAPE input parameters as noted in Table 7.1.3. Also, the control
labels correspond to their namelist counterparts. These features combined
with the GRAPE documentation provide clear guidance for both experienced
and inexperienced GRAPE users.

The GRAPE input panel will process only the namelist input parameters
shown on the input panel. If the user wishes to input GRAPE namelist
variables not shown on the panel he/she must input the data directly into
the ASCII file before GRAPE is executed. Once this has been done, the
GRAPE input panel must not be invoked. If it is, it will rewrite the ASCII
namelist file.

Warning: This file, casename . grape . in (located in the individual slice
subdirectories), is only read once by TADS during initialization. However,
this file is written out for each slice every time the input panel is exited. The
file which is read each time the input panel is displayed is the native binary
file casename . grape .db in the working directory.

7.1.4 RVCQ3D Input Panel

RVCQ3D is another standardized, slice dependent component module. Like
GRAPE, the controls are grouped to correspond to the namelists structure
of the input as described in the RVCQ3D documentation (Ref. [1]). Fig­
ure 7.5 shows how the control labels correspond to their namelist counter­
parts. Again, these features combined with the RVCQ3D documentation pro­
vide clear guidance for both experienced and inexperienced RVCQ3D users.

Again, just like GRAPE, the RVCQ3D input panel will process only the
namelist input parameters shown on the input panel. If the user wishes to
input RVCQ3D namelist variables not shown on the panel he/she must input
the data directly into the ASCII file before RVCQ9D is executed. Once this

36 Standardized Data Input Panels

Figure 7.4: GRAPE input panel controls the blade-to-blade grid generation.

Standardized Data Input Panels 37

Input Parameter Description
JCAP Number of points on the upstream grid boundary.

(Undocumented feature in original code).

SLE Arclength of leading edge region (distance around
airfoil between leading edge tangency points).

STE Arclength of trailing edge region (distance around
airfoil between trailing edge tangency points).

XUPFRC Locates upstream grid boundary as a fraction of a
distance. The distance is the average of the axial
chord and the airfoil pitch. Replaces XLEFT.

XDNFRC Locates downstream grid boundary as a fraction of a
distance. The distance is the average of the axial
chord and the airfoil pitch. Replaces XRIGHT.

Table 7.3: The GRAPE input parameters were modified to enhance grid
quality while reducing user effort.

38 Standardized Data Input Panels

Figure 7.5: RVCQ3D input panel controls the blade-to-blade analysis.

SLICER Data Input Panel 39

has been done, the RVCQ9D input panel must not be invoked. If it is, it will
rewrite the ASCII namelist file.

Warning: This file, casename. rvcq3d .1n (located in the individual slice
subdirectories), is only read once by TADS during initialization. However,
this file is written out for each slice every time the input panel is exited. The
file which is read each time the input panel is displayed is the native binary
file casename. rvcq3d. db in the working directory.

7.2 SLICER Data Input Panel

The blade-to-blade analysis is performed along streamlines in the meridional
plane as found by the throughflow analysis. This requires that the merid­
ional streamlines be located in the throughflow solution, and that the airfoil
be sliced along these streamlines. TADS uses two separate programs to ac­
complish this purpose: radsl and slicer. This combination of programs is
referenced as SLICER throughout this manual.

The input panel for SLICER is specialized (non-standard), primarily due
to the non-scalar nature of the slice data. Another factor influencing the
layout is the complex interactions between the individual controls.

Figure 7.6 shows the layout of this panel. To the left are three groups of
radio buttons. These control the type of slices, the spacing of slices and the lo­
cation of slices. The list box to the right displays the values at which the slices
will be made (calculated or specified depending on type/spacing/location).

When the spacing indicator is set to Equally Spaced, slice values are
calculated based on the number of slices entered into the Number of Slices
text box. For this mode, the first slice is always the hub (0.0%) and the
last slice is always the tip (100.0%), with the remaining slices being equally
distributed. The Number of Slices text box is only active when Equally
Spaced is selected and becomes a label for other spacing modes. Currently,
the maximum number of slices is set to eleven and the minimum allowed is
three.

When the spacing indicator is set to User Defined, the user has total
control over the slice spacing and is allowed to add, delete or modify slices
from a selection panel (see Figure 7.7). The user has the responsibility to
insure that the values are valid and in the correct units (percent or inches).
Here again, the user is limited to between three and eleven slices.

40 SLICER Data Input Panel

Figure 7.6: Slicer input panel controls the location of the 2-D analyses.

SLICER Data Input Panel 41

Figure 7.7: User has the option to manually define slice geometry.

42 SLICER Data Input Panel

The Convert option under Spacing is not always available to the user.
Under specific conditions this option is disabled to prevent confusion and
inconsistent input. The most common of these conditions is if the axisym­
metric grid file ca.sename .mesh is not found (has not been generated). The
Convert option, when available, will allow the conversion from one type
to another and/or from one location to another. Note, converting from one
"Percent" type to another has no visible effect on the displayed slice values,
but will result in geometrically different slices.

Several combinations of type/spacing/location are disallowed by TADS.
The conditions and reasons surrounding these situations are explained be­
low. The clearest way to explain the type/spacing/location interactions is to
describe how each combination is handled by the program.

7.2.1 Percent Mass Slice Mode

When the type indicator is Percent Mass, the generated slices are along
streamlines at the values displayed in the listbox. These values are percent­
ages of the total mass flow in the passage at either the leading or trailing
edge station (L.E. and T.E., respectively), whichever is specified by the lo­
cation indicator. 3 The Convert option is not available in the Percent
Mass mode. Conversely, the Percent Mass mode is not available when the
Convert option is active.

7.2.2 Percent Span Slice Mode

When the type indicator is Percent Span, the generated slices are along
streamlines which intersect the flowpath at the specified location 3 (i.e. lead­
ing or trailing edge) at the indicated percent span.

7.2.3 Percent Area Slice Mode

When the type indicator is Percent Area, the generated slices are along
streamlines which intersect the flowpath at the specified location 3 at the
indicated percent area. However, if the location is Everywhere, then the

3The Everywhere location is only allowed for Percent Area shces and is not available
when the Percent Mass, Percent Span or Inches type is selected.

SLICER Data Input Panel 43

slices are not along streamlines, but are made at constant area locations
along the flowpath's axial stations. This scenario would produce slices which
are at the same percent area at both the leading and trailing edge locations
(whereas streamlines always follow a constant percent mass).

7.2.4 Inches Slice Mode

When the type indicator is Inches, the generated slices are along stream­
lines which intersect the flowpath at the specified location 3 at the indicated
distance (in inches) from the engine center line.

44 SLICER Data Input Panel

Chapter 8

TADS Operating Instructions

This chapter contains some basic operating instructions for TADS. These
instructions include general information covering source code compilation,
resource configuration, program execution and trouble shooting. This chap­
ter assumes that the TADS distribution has been extracted and placed in the
"install" directory (TAOS. 01). Instructions for extracting the distribution can
be found in Appendix E.

TADS was developed on a SGI Personal Iris operating under IRIX 4.0
(XllRevA). 1 It has been demonstrated on several different platforms in­
cluding a SGI Indigo 2 and an IBM RS6000. The TADS system module was
written primarily in C, but contains some FORTRAN 77 subroutines. These
subroutines are input subroutines which have been stripped from the original
program modules and modified for use in TADS.

8.1 Installing TADS

TADS has a UNIX compatible make facility for source code compilation.
The Makef11e which governs the compilation process is necessarily machine­
dependent and complex. An installation shell script (install_TADS) is also
provided to facilitate a proper installation. This script will prompt the in­
staller for the necessary information needed to make TADS on his/her sys­
tem "automatically".

1 TADS has been ported to IRIX 5.3 (XllRev.6)

45

46 User Setup

To begin installation, it is first necessary to enter the install directory
(TADS. 01) with the command:

cd "Path to TADS.01 directory"/fADS.01

The automated installation is performed by issuing the command:

mstaltTADS

A complete installation of TADS and its associated modules will require
approximately 50 megabytes of disk space. This estimate assumes TADS is
only being installed for a single platform. After installation is complete, the
user may remove the object files by issuing the command:

A description of the installing TA DS manually can be found in Appendix F.

8.2 User Setup

Before TADS can be run, several operations must be performed to configure
the user's system. First, the user's search path must be modified to include
the path to run_tads. Secondly, TADS requires the environment variable
TADSDIR be defined. Also, the user must provide an X resources file.

To add run_tads to the execution search path, enter the command:

setenv PATH $PATH: "Path to TADS.01 dzrectory"/fADS.01

The user must set the TADSDIR environment variable to the absolute path
of the TADS install directory (TADS.01) with the command:

setenv TADSDIR "Path to TADS. 01 directory" /fADS. 01.

TADS looks for X resources in a file named. tads .re. This file must be
in the user's home directory. To symbolically link a "standardized" resource
file to the user's home directory execute the following command from the
install directory:

Executing TADS 47

instalLuser

The user can customize the TADS GUI environment by replacing the
symbolic link with a user customized version of the resource file. Customiz­
able features include fonts, colors, sizes and positions of some but not all
GUI components. A sample resource file is found in Appendix D.

Executing the instalL user command will also check to see if TADSDIR has
been defined and will display the current value for the user to verify. There­
fore, the TADSDIR environment variable should be set prior to running
instalL user.

8.3 Executing TADS

After TADS has been installed and configured it is recommended that the
sample cases provided with the standard distribution be tested to verify
proper installation. A discussion of the demonstration test case included
with the distribution is given in Appendix G.

Once the TADS installation has been verified, the user is ready to run.
Before running TADS , the user must place the required input files (see
Table 4.1) in the working (current) directory. To execute TADS enter:

run_tads -case casename [-help]

run_tads is a shell script used to execute tads. It was designed to provide
optional help on command line options and to provide preliminary input and
configuration verification. The script determines the "local" machine type in
order run the correct executable. Currently, there are no valid options (other
than -help).

After an initialization delay the main panel will appear. A smaller panel
will also appear and present text informing the user of program activity. This
smaller window is the message panel and may be moved and/or resized by
the user. Note, closing the message panel will not close the main panel and
will not force TADS to terminate.

From the main panel the user has control over many operations. The
order in which these operations are performed will vary from user to user,
and from design to design. The scenario presented in this section is an
attempt to reproduce a "typical" solution.

48 Executing TADS

Typically, the user will first select the Setup action button to configure
TADS for remote execution of component modules. Remember, the working
directory must be NFS mounted on the remote machines for TADS to work
properly. Once all the desired machines have been configured click Done.
H all programs are to be executed "locally", this configuration step may be
bypassed.

A logical second step is to select the Edit Programs mode. This allows
the user to choose which programs TADS will use for the coupled analy­
sis. The programs are selected from the pulldown lists located next to the
component group controls (see Figure 5.1).

After selecting program modules, the user needs to inform TADS where
the modules should run (e.g. on which remote machine). This is done by
entering the Edit Machines mode and clicking on the desired choice from
the appropriate pulldown menu. Be sure that any modules requiring GL
graphics are run locally (local machine must have GL capability). GL pro­
grams may be run remotely, only if both the remote and local machines are
SGI.

At this point, the user will normally enter the Edit/Run mode and
proceed to execute the component modules one at a time until a complete
analysis has been performed. Alternatively, the user may enter the Edit
Data mode and attempt to setup all the input data before any programs are
executed. While this approach can work, it is not the recommended method.
The Edit Data mode is best reserved for fine tuning a solution after the
initial pass has been completed. The exception to this rule is when running
multi-slice modules. The Edit Data mode allows the user to execute a single
slice analysis, whereas the Edit/Run mode will attempt to run the program
module for all slices. For example, it is often desirable to generate a 2-D
blade-to-blade grid for a single slice in order to evaluate the quality of the
grid.

Once a single iteration has been completed, the user may switch to Run
mode and continue the coupled analysis without any further user interaction.
Each time Run is selected, TADS will execute another iteration. In many
cases run during development, only one iteration was required to achieve an
acceptable solution.

At any time, the user may exit (Quit) TADSfrom the main panel. Hthe
user restarts TADS with the same casename, the previous configuration will
be remembered (including active modes and programs). A TADS restart is

Trouble Shooting TADS 49

transparent to the component modules as long as the related files are not
altered between executions. Note, the previous configuration will be lost
if the configuration file (casename.conflgure) is deleted before TADS is
rerun.

8.4 Trouble Shooting TADS

If any problems are encountered at execution time check the following list for
some possible solutions. The list is by no means complete, but is intended
to deal with the problems most commonly encountered during development.
The list is structured from the least to most aggressive, so try the items at
the top of the list before moving on to more drastic measures. Any problems
encountered in the independent program modules should be addressed by
the appropriate author(s) and/or their documentation.

• Check to be sure the required input files are present (Table 4.1).

• Check to be sure run_tads is in search path.

• Check to be sure the DISPLAY environment variable has been defined.

• Check to be sure the TADSDIR environment variable has been defined.

• Check to be sure . tads . rc exists in the user's home directory.

• Remove all .db files from working directory (rm casename.*.db).

• Remove configuration file from working directory (rm casename . conflgure).

• Remove all multi-slice input files from slice subdirectories.

• Remove all non-required input files from working directory.

50 Trouble Shooting TADS

Chapter 9

On Line Documentation

This user's manual, along with the final report, have been provided in an
on-line format with this release of TADS. The documentation is in HTML
(HyperText Markup Language) format and may be viewed with any HTML
viewer /browser. "Hypertext" is text/graphics with pointers (links) to other
text/graphics. It allows the user to access more information about a partic­
ular subject by "clicking" on it. Some of the more popular browsers are:

• N CSA Mosaic

• Netscape

• tkWWW

• Emacs (w3 mode)

A toplevel HTML file (referred to as a homepage) can be found in the
$TADS.Ol/html directory under the name TADS.homepage.html. As an ex­
ample, to start NCSA Mosaic with this homepage the user would enter:

xmosa1c -home $TADS.Ol/html/TADS.homepage.html

51

52

Bibliography

[1] Chima, R., "Explicit Multigrid Algorithm for Quasi-Three-Dimensional
Viscous Flows in Turbomachinery," Journal of Propulsion and Power,
Vol. 3 No.5, 1987.

[2] Chima, R., Turkel, E. Schaffer, S., "Comparison of Three Explicit
Multigrid Methods for the Euler and Navier-Stokes Equations," NASA
TM88878, Jan., 1987.

[3] Chima, R., "Revised GRAPE Code Input for Cascades," NASA Lewis,
June, 1990.

[4] Hall, E., Topp, D., and Delaney, R., "Task 7 - ADPAC User's Manual"
NASA CR195472, 1995.

[5] Miller, D., "TIGGERC - Turbomachinery Interactive Grid Generator for
2-D Grid Applications and Users Guide," NASA TM106586, 1994

[6] Sorenson, R., "A Computer Program to Generate Two-Dimensional Grids
About Airfoils and Other Shapes by Use of Poisson's Equation," NASA
TM81198, 1980.

[7] Walatka, P., Buning, P., Pierce, L, Elson, P., "PLOT3D User's Manual,
Version 3.6" NASA TM101067, 1990.

[8] Whipple, D., "BDX-Binary Data Exchange Preliminary Information,"
NASA-Lewis Research Center 1989.

53

54

Appendix A

Complete List of Input and
Output Files

The current working directory contains files and subdirectories. The subdi­
rectories contain files associated with multi-slice modules.

The files in the current directory are listed below:

Name Format Descnpt20n
casename.adpac.1nput ASCII ADPAC standard input file.
casename. adpac. out ASCII ADPAC standard output file.
casename.bf.l PLOT3D ADPA C2-D blockage/body force file for

block #1.
casename.boundata ASCII ADPAC block boundary definition file.
casename.conf1gure ASCII Configuration infor-

mation (machine name, manufacturer,
executable path and data path) used to
submit jobs to remote machines. It is
created and maintained by the "Remote
Processor Configuration" panel.

casename.converge ASCII ADPAC solution residual convergence
history file.

casename.forces ASCII ADPAC output containing resultant
forces and momentum on body.

continued on next page

55

56 Complete List of Input and Output Files

continued from previotJ.8 page

Name Format Descnption
casename.grape.db binary Database file used to manipulate

GRAPE input data for all slices.
casename.meansl PLOT9D MEANSL output file containing mean

stream surface.
casename.mesh PLOT9D ADPAC mesh file (PLOT9D

compatible).
casename.p3dabs PLOT9D ADPAC PLOT9D output file (absolute

flow).
casename.restart.new PLOT9D New ADPAC restart file (output by

ADPAC).
casename.restart.old PLOT9D ADPAC restart file (used as input for

ADPAC restart runs).
casename.rvcq3d.db binary Database file used to manipulate

RVCQ9D input data for all slices.
casename.slcaro ASCII SLICER output file containing aerody-

namIc information
for meridional streamline interpolation
from casename. tdsaro.

casename.s11ce~ata ASCII SLICER input file containing slice loca-
tion, type and spacing information.

casename.stkq PLOT9D RESTACI(output PLOT9D "Q" file of
stacked 2-D solutions.

casename . stkx PLOT9D RESTACI(output PLOT9D "X" file of
stacked 2-D solutions.

casename . tdsaro ASCII Aerodynamic information at the airfoil
leading and trailing edges and the airfoil
tangency point indices. A sample file
can be found in Appendix tdsaro.

casename . tdsasl PLOT9D RADSL output PLOT9D "X" file of
meridional streamlines.

casename . tdsasq PLOT9D RADSL output PLOT9D "Q" file of
meridional streamlines.

continued on next page

Complete List of Input and Output Files 57

continued from previous page

Name Format Descrtptlon
casename . tdsui ASCII intzgg input file containing axisymmet-

ric grid parameters.
casename.tdsblad PLOT9D 3-D Cartesian airfoil surface defined by

two parameters, one clockwise around
the airfoil, and the other along the span.

casename.tdsbsl PLOT9D SLICER output file containing airfoil
sliced along meridional streamlines.

casename.tdspath ASCII Meridional flowpath definition, con-
sisting of two line in the (X,R)
plane. A sample file can be found in
Appendix tdspath.

casename.tlggln ASCII TIGG input file
tds_casename ASCII Text file which contains current case

name - this file is used by the fortran
programs to construct file names

casename.sl.# Directory Subdirectory name where # is a slice
number.

The files found in a representative slice subdirectory are listed below:

Name Format Descrtption
casename.grape.ln ASCII GRAPE namelist input file
casename.grape.out ASCII GRAPE output file
casename.rvcq3d.ln ASCII RVCQ9D namelist input file
casename.rvcq3d.out ASCII RVCQ9D output file
grld.bln PLOT9D GRAPE 2-D, single grid, SDB bi-

nary ouput file used for PLOT9D post-
processing and as input to RVCQ9D

restout.bln PLOT3D RVCQ9D 2-D, relative, single grid, SDB
binary ouput file
used for PLOT3D post-processing and
RVCQ9D restarting

58 Complete List of Input and Output Files

Appendix B

Sample Flowpath Description
Input File

Flovpath data: Hub prof1le, 1hub followed by x,r pa1rs
9

0.1450100040E+02 0.7461999893E+01
0.1467599964E+02 0.7465000153E+01
0.1543200016E+02 0.7474999905E+01
0.1560700035E+02 0.7478000164E+01
0.1636400032E+02 0.7482999802E+01
0.1654400063E+02 0.7485000134E+01
0.1712100029E+02 0.7489999771E+01
0.1730100060E+02 0.7491000175E+01
0.1796599960E+02 0.7499000072E+01

Flovpath data: T1p prof1le, 1t1P followed by x,r pa1rs
9

0.1452400017E+02 0.8392000198E+01
0.1471399975E+02 0.8376000404E+01
0.1538700008E+02 0.8321000099E+01
0.1559300041E+02 0.8305999756E+01
0.1637500000E+02 0.8250000000E+01
0.1656500053E+02 0.8237999916E+01
0.1709600067E+02 0.8206000328E+01
0.1729800034E+02 0.8194000244E+01
0.1796699905E+02 0.8159999847E+01

59

60 Sample Flowpath Description Input File

Appendix C

Sample Aerodynamic Data
Input File

Aerodynam1c Informat10n F11e
Mach1ne Type:

-0 ax1a1 maCh1nej -1 centr1fugal compressor; -2 rad1a1 turb1ne
o

Number of s11ces for Vh1Ch there 1S aerodynam1c 1nformat1on
11

61

62 Sample Aerodynamic Data Input File

Leading Edge Data
Rad1us Total Pressure Total Temperature Ax1a1 Locat1on

7.500540 155.481003 1089.040039 15.606600
7.510270 155.369003 1087.050049 15.606400
7.536040 155.097000 1082.189941 15.606000
7.577550 154.707993 1076.079956 15.605300
7.634360 154.272995 1069.250000 15.604300
7.706000 153.865997 1063.020020 15.603100
7.792050 153.557007 1058.569946 15.601600
7.892210 153.412994 1059.229980 15.599800
8.006500 153.533005 1068.270020 15.597900
8.135540 154.059998 1091.260010 15.595600
8.281160 155.212006 1140.939941 15.593100

Radius Ax1al Mach Number Tangential Mach Radial Mach
7.500540 0.525909 0.526155 -0.002270
7.510270 0.526044 0.524035 -0.002562
7.536040 0.526363 0.518744 -0.003331
7.577550 0.526477 0.511143 -0.004553
7.634360 0.526305 0.502242 -0.006201
7.706000 0.525663 0.493186 -0.008242
7.792050 0.524440 0.485145 -0.010649
7.892210 0.522145 0.479530 -0.013377
8.006500 0.518735 0.478035 -0.016400
8.135540 0.513141 0.483239 -0.019663
8.281160 0.503329 0.499569 -0.023093

Sample Aerodynamic Data Inpu.t File 63

Trailing Edge Data
Rad1US Stat1c Pressure Total Temperature u1al Locat1on

7.507200 126.592361 1089.040039 16.364599
7.516120 126.589859 1087.050049 16.364799
7.539790 126.579399 1082.189941 16.365101
7.577980 126.571007 1076.079956 16.365601
7.630370 126.558014 1069.250000 16.366301
7.696580 126.549057 1063.020020 16.367201
7.776210 126.549652 1058.569946 16.368299
7.868980 126.590836 1059.229980 16.369499
7.974810 126.666481 1068.270020 16.371000
8.094000 126.811035 1091.260010 16.372601
8.227530 126.980896 1140.939941 16.374399

Rad1us A%1al Mach Number Tangent1al Mach Rad1al Mach
7.507200 0.502212 0.134567 -0.001697
7.516120 0.502219 0.134569 -0.002021
7.539790 0.502324 0.134597 -0.002871
7.577980 0.502365 0.134608 -0.004222
7.630370 0.502441 0.134629 -0.006038
7.696580 0.502487 0.134641 -0.008295
7.776210 0.502454 0.134632 -0.010967
7.868980 0.501993 0.134509 -0.014056
7.974810 0.501220 0.134301 -0.017607
8.094000 0.499827 0.133928 -0.021717
8.227530 0.498471 0.133565 -0.026673

64

Thermodynam1c Informat10n
Gamma Gas Constant

1.376945 53.345001
Physical Propert1es

Wheel RPM Tip Clearance
0.000000 0.000000
Tangency P01nts

1tnsl itnst
4 33

1tnpt
40

Sample Aerodynamic Data Input Pale

Humber of Blades
96.000000

1tnpl
69

Appendix D

Sample X Resource File

I *********** TAOS IBM RS6000 Resource f11e ************

*she11.he1ght: 600
*she11. w1dth: 650
*background: be1ge

*case_t1t1e.shadowTh1ckness:
*t1t1e_bar.shadowTh1ckness:
*t1t1e_bar.A11gnment:
*con_status_bar.A11gnment:

*menu.background:
*menu.he1ght:
*menu.w1dth:
*menu_group.shadowTh1ckness:

*dec_frame.shadowTh1ckness:
*dec_btn.shadowTh1ckness:
*dec_btn.background:
*dec_lbl.background:
*lb1_frame.shadowTh1ckness:
*lb1_frame.background:

o
o

a11gnment_beg1nn1ng
a11gnment_beg1nn1ng

65

11ght grey
40

100
o

5
3

grey
light grey

3
11ght grey

66

*pushb_qu1t.background:
*pushb_qu1t.he1ght:
*pushb_qU1t.vidth:

*pushb_csh.background:
*pushb_csh.he1ght:
*pushb_csh.V1dth:

*pushb_run.background:
*pushb_run.*bottomShadovColor:
*pushb_run.*topShadovColor:

*rad10_box.x:
*radio_box.y:
*rad1o_box.shadovTh1ckness:
*rad10_box.background:
*rad10_btn.shadovTh1ckness:

Sample X Resource File

red
40

100

yellov
40

100

green
black
black

50
120

3
gray

2

*l1st_tb.Al1gnment:
*l1st_label.Al1gnment:
*l1st_pd.shadovTh1ckness:
*l1st_cell.shadovTh1ckness:

a11gnment_beg1nn1ng
al1gnment_beg1nn1ng

3
1

.1nput_button.background:

.1nput_bb.shadovTh1ckness:

.1nput_button.he1ght:

.1nput_button.shadovTh1ckness:

.slc_frame.shadovTh1ckness:

.sl1ce_pd.shadovTh1ckness:

.sl1ce_pd.Al1gnment:

.cascade_label.Al1gnment:

skyblue
o

40
3

3
1

al1gnment_center
al1gnment_center

I ••••••••••••••• fonts •••••• *.**.*.* ••••••• *.
*fontL1st: helvR14
.case_t1tle.fontList:
.t1tle_bar.fontL1st:

helvB18
helvB18

Sample X Resource File 67

*menu.fontList: helvR14
*dec_form_lbl.fontList: helvB14
*dec_tgl.fontList: helvB14
*dec_btn.fontL1st: helvB14
*dec_lbl.fontList: helvB14
*pushb_qu1t.fontL1st: helvB18
*pushb_csh.fontL1st: helvB18
*pushb_run.fontL1st: helvB18
*rad1o_btn.fontL1st: helvB14
*11st_tb.fontL1st: helvR14
*11st_label.fontL1st: helvR14
*11st_pd.fontL1st: helvR14
*11st_box.fontL1st: helvR14
*1nput_button.fontL1st: helvR14
*slc_11st_box.fontL1st: helvR14
*slc_frame_label.fontL1st: helvB14
*s11ce_pd.fontL1st: helvB18
*s11ce_label.fontL1st: helvB18

68 Sample X Resource Hie

Appendix E

Extracting the Source Files

This appendix describes the commands necessary to extract the source code
and demo files from the TADS standard distribution.

The standard TADS distribution is a compressed tar file which can be
decoded into the various parts by a sequence of commands on any stan­
dard UNIX system. The sequence listed below is intended to guide the user
through the setup from the standard distribution up to, but not including
installation and configuration. The command sequences listed below should
work on most systems employing the UNIX operating system.

The TADS programs are distributed as a compressed tar file named

TAOS. 01. tar. Z

It should be possible to extract and run the code on any standard UNIX
system from this distribution file. The first step necessary to extract the
TADS programs is to un compress the tar file with the command:

uncompress TAOS. 01. tar. Z

This operation essentially replaces the compressed file TAOS. 01 • tar . Z with
an uncompressed file TAOS. 01. tar .

The next step is to extract the individual files and directories from the
TAOS. 01. tar file. Before this is done, the user must put the TAOS. 01. tar file
in a suitable location. Once the tar file is properly placed, the TADS distri­
bution may be extracted with the command:

69

70 Extracting the Source Files

tar xvof TADS. 01. tar

(Note, on some systems tar xvfTADS.01.tar may be sufficient.)
Execution of the UNIX list command Is will verify that the TADS. o 1 directory

has been created. The tar command will have created a top level directory
named TADS. Olin the current directory. The TADS. 01directory is referred to
as the install directory.

The uncompress and tar steps can be combined in a single operation
on most UNIX systems by issuing the command

zcat TADS.01.tar.Z I tar xvf-

This combined operation conserves overall disk space requirements during
the extraction process.

At this point, several files and directories will be available. By entering
the UNIX command Is, a listing of the individual directories can be obtained.
The output of the Is command will look something like:

.tads.rc.alX
cleanup_TADS*
gulllb/

. tads .rc.sgl
csdb/
html/
modules/

TOOLS/
examples/
lnstall_TADS*
sdb/

apl/
gul/
lnstall_user*

mlsc/

A description of each of these listings is given below:

. tads. rc. alX X resource file for IBM RS6000 workstations .

. tads. rc. Sgl X resource file for Silicon Graphics workstations.

TOOLS Directory containing utility programs and scripts used for
development and installation.

apl Directory containing shell scripts and symbolic links to
TADS component module executables.

cleanup_TADS Shell script to remove all the object files created when
TADS is installed.

csdb Directroy containing the Allison developed C version of
the SDB library.

examples Directory containing demonstration test cases.

Extracting the Source Files 71

gu1 Directory containing the source for the TADS GUI.
gu1l1b Directory containing the source for the TADS GUI library

routines.

html Directory containing the HTML versions of this manual
and the final report.

instaiLTADS Shell script to install the TADS GUI and all of the asso­

ciated component modules.

instalL user Shell script to link X resource file into users home direc­
tory.

m1SC Directory containing development programs not required
by TADS, but developed under the contract.

modules Directory containing the source code for TADS compo­
nent modules.

sdb Directory containing the NASA developed SDB library.

72 Extracting the Source Files

Appendix F

Compiling TADS Components

This appendix describes the commands necessary to compile the GUI and
it's associated modules for the TADS standard distribution.

The command sequences listed below should work on most systems em­
ploying the UNIX operating system. Since portions of this process are inher­
ently machine-dependent, the exact commands listed here are for the devel­
opment platform described in Table F.1. Alternate commands will be listed
when a significant machine dependence exists.

After extracting the source files, the user is naturally interested in com­
piling the source files for execution. A UNIX-compatible make facility is
provided for the GUI and its associated library and also for each of the
TADS component modules. The Makeflle which governs the compilation

Table F.1: TADS development platform software configuration.

• IRIX Operating System, Revision 4.0.1

• SGI Fortran 77, 3.10

• SGI Ansi C, 3.10

• Motif Development System, 4.0.5

• Xll Rev.4

73

74 Compiling TADS Components

process is necessarily machine-dependent and requires that the user select
from one of a number of preconfigured systems. If no option is specified in
the make command, then the standard UNIX compilation is performed.

In order to begin the compilation, it is first necessary to enter the ap­
propriate directory (for example cd $TADSDIR/gui). It is now possible to
compile the module by issuing the command:

make

Compilation options are available by typing make help. For example, on
an IBM RS6000 workstation, the command make aix is the appropriate
command.

Appendix G

Running the Distribution
Demonstration Test Case

After TADS has been properly installed and configured (see Section 8.1 or
Appendix F), it is possible to run the demonstration test case provided with
the standard distribution. It is recommended that the sample case be tested
to verify proper compilation and extraction of the TADS distribution.

In order to run the demonstration case, it is necessary to begin in the
examples directory. This directory is located in the install directory and is
entered by issuing the command:

cd $TADSDIR/examples

After entering the examples directory, the Is command will indicate that the
following subdirectories (and possibly others) are available:

AST_S5/ TRY/

Both of these directories contain identical required input files (see Table 4.1)
for AST Stator 5. The AST~5 directory contains only these required input
files. The TRY directory contains these input files and all the files present
after one pass through the TADS system. Having both a before and after
case allows the user to compare his/her results to the results in the TRY
directory.

75

REPORT DOCUMENTATION PAGE
Fonn Approved

OMS No 0704-0188
Public reportlllg burden for thIS collectIOn of IIlformatlOn IS estImated to average 1 hour per response IncludIng the tIme for revIeWIng InstructIons, searchng eXIstIng data sources,
gathenng and malntalnong the data neadad and completIng and revl8wlng the collectoon of InformatIon Send comments regardIng thIS burden estImate or any other aspect of thIS
collectIOn of IIlformatlOn oncludong suggestIOns for reduCIng thIS burden, to WashIngton Headquarters ServIceS Dlrectorete for InformatIOn OperatIons and Reports 1215 Jefferson
DaVIS HIghway Sude 1204, ArlIngton VA 22202-4302 and to the OffICe of Management and Budget, Paperwork ReductIOn Pro)8Ct (0704"()188) WashIngton, DC 20503

1 AGENCY USE ONLY (Leave blank) 12 REPORT DATE 13 REPORT TYPE AND DATES COVERED

December 1995 Fmal Contractor Report
4 TITLE AND SUBTITLE 5 FUNDING NUMBERS

TADS-A CFD-Based Turbomachmery and AnalYSIS DeSIgn System WIth GUI
Volume II-Users's Manual

WU-50~2-10

6 AUTHOR(S) C-NAS3-25950

R A Myers, D A Topp, and R A Delaney

7 PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8 PERFORMING ORGANIZATION
REPORT NUMBER

Alhson Engme Company
PO Box 420 E-l0059
IndIanapolIs, IndIana 46206-0420

9 SPONSORINGIMONITORING AGENCY NAME(S) AND ADDRESS(ES) 10 SPONSORINGIMONITORING
AGENCY REPORT NUMBER

NatIOnal AeronautIcs and Space AdmlOIstratIon
LeWIS Research Center NASA CR-198441
Cleveland, OhIO 44135 - 3191

11 SUPPLEMENTARY NOTES

Project Manager, KestutIs C CIvlOskas, PropulSIOn Systems DIvISIon, NASA LeWIS Research Center, orgamzatIon
code 2760, (216) 433-3944

12a DISTRIBUTION/AVAILABILITY STATEMENT 12b DISTRIBUTION CODE

UnclaSSIfied - UnlImIted
Subject Category 07

This publIcauon IS available from the NASA Center for Aerospace Information, (301) 621-0390

13 ABSTRACT (Maximum 200 words)

The pnmary objectIve of thIs study was the development of a CFD (ComputatIOnal FlUId DynamICS) based turbomachmery
aIrfOIl analYSIS and deSIgn system, controlled by a GUI (GraphIcal User Interface) The computer codes resultIng from thIS
effort are referred to as TADS (TurbomachInery AnalYSIS and DeSIgn System) ThIS document IS lOtended to serve as a
User's Manual for the computer programs whIch compnse the TADS system, developed under Task 18 of NASA Contract
NAS3-25950, ADPAC System Couphng to Blade AnalYSIS & DeSIgn System GUI TADS couples a throughflow solver
(ADPAC) WIth a quaSI-3D blade-to-blade solver (RVCQ3D) In an lOteractIve package Throughflow analYSIS capabIlIty
was developed 10 ADPAC through the addItion of blade force and blockage terms to the governlOg equatIons A GUI was
developed to SImplIfy user lOput and automate the many tasks reqUIred to perform turbomachmery analYSIS and deSIgn
The couplIng of the vanous programs was done 10 such a way that alternatIve solvers or gnd generators could be easIly
lOcorporated lOto the TADS framework Results of aerodynamIC calculatIons uslOg the TADS system are presented for a
hIghly loaded fan, a compressor stator, a low speed turblOe blade and a transomc turblOe vane

14 SUBJECT TERMS 15 NUMBER OF PAGES

ComputatIonal flUId dynarmcs, DeSIgn, TurbomachInery
85

16 PRICE CODE

A05
17 SECURITY CLASSIFICATION 18 SECURITY CLASSIFICATION 19 SECURITY CLASSIFICATION 20 LIMITATION OF ABSTRACT

OF REPORT OF THIS PAGE OF ABSTRACT

UnclasSIfied UnclasSIfied UnclaSSIfied

NSN 7540-01-280-5500 Standard Form 298 (Rev 2-89)
Prescnbed by ANSI Sid Z39-18
298-102

End of Document

