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PROGRESSIVE WAVE EXPANSIONS AND OPEN 
BOUNDARY PROBLEMS 

T HAGSTROM" AND S I HARIHARANt 

Abstract. In tlus paper we construct progressive wave expansions and asymptotic 
boundary conditions for wave-hke equations In exienor domains, mcludmg apphcatlons 
to eleciromagnetlcs, compresSible flows and aero-acoustics The development of the con
ditions will be discussed m two paris The first pari will mclude denvatlons of asymptotic 
conditions based on the well-known progressive wave expansions for the two-dimenSional 
wave equahons A key feature In the denvatlons IS that the resultmg famlly of bound
ary conditions mvolve a smgle denvatlve m the direction normal to the open boundary 
These conditIOns are easy to Implement and an apphcatlon m electromagnehcs will be 
presented The second pari of the paper will discuss the theory for hyperbohc systems 
in two dimensions Here, the focus will be to obtam the expansions m a general way and 
to use them to derive a class of boundary conditions that mvolve only time denvatlves 
or time and tangential denvatlve8 Maxwell's equations and the compresSible Euler 
equations are used as examples Simulations With the hneanzed Euler equations are 
presented to vahdate the theory 

Key words. Progressive wave expanSIOns, boundary conditions, Maxwell's Equa
tions, Euler Equations, Numencal Simulations 

AMS(MOS) subject classifications. 65M99, 35B40 

1. Introduction. Exterior problems are commonly posed for wave
Wee equatIons, and their numencal solution leads to the problem of open 
boundary condItions. We discuss both isotropic and nonisotropic cases as 
they arise in electromagnetics and flUId dynamics. These equations in
clude first order hyperbolic systems such as Maxwell's equations, the Euler 
equatIons of compressIble flows, or the hneanzed Euler equations, as well 
as second order reduced forms as appropnate Many work studies of this 
problem have appeared m the recent hterature and we won't try to hst them 
all There are fundamentally two cWferent, though related, approaches that 
have usually been taken One is the use of rugh frequencY asymptotIcs such 
as the geometncal optics approXlmatlOn. The other is based on the far field 
structure of the solutIon. (For a third approach based on the direct ap
proximatlOn of the exact conditIon, see [5].) Progressive wave expanSIons 
were used as a tool to construct far field boundary condItions as early as 
the tIme of Sommerfeld In the modern computatlOnal pomt of view, they 
were put in use for the first tIme by Kriegsmann and Morawetz [8] Since 
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PROGRESSIVE WAVE EXPANSIONS 2 

then there have been many variatIons to tins approach. For example, ex
tensions to anisotropic propagatIon were first attempted by Bayliss and 
Turkel [2], and a generalIzation to the case of anisotropic wave equatlOns in 
two and three dimensIons was proved by the authors [7] Issues include the 
construction of the expanSlOn for general systems, their use to construct 
stable boundary conditions of minimum order, and, finally, their practi
callIDplementation. Higher order conditlOns no matter which approach is 
used, are typically more complicated than the partIal differentIal equation 
one starts with In partIcular, they tend to have higher order denvatlves m 
the direction of the propagation. To avoid this problem, often the partial 
differentIal equatIon itself is used. Such a procedure is not known m general 
for problems governed by first order hyperbolic systems. Here we proVlde a 
systematic way of dealing with this issue using progressive wave expanslOns. 
Our attention focuses on first order systems, namely, Maxwell's equations 
and the hnearized Euler equations To motlvate the centralldeas, we first 
conSIder the second order wave equation Wlth the emphasis on progressive 
wave solutions. 

2. Second order wave equation. As mentlOned above, the goal 
here is to treat the problem of boundary conditlOns Wlthout having hIgher 
order normal denvatives. To illustrate the underlying procedure, let us 
consider the problem governed by the wave equation m two dImensions. 
We wish to construct the progressive wave solutlOns to tills equation and 
explOlt their structure to prescnbe asymptotIc boundary conditions. The 
equation written in cylindrical coordmates takes the form 

1 1 
Utt = Urr + -Ur + 2U99 

r r 
(2.1) 

We look for solutlOns that are penodic in the angular dlrectlOn as follows 

00 

(2.2) u(r,9,t) = L vn {r,t)an (9) 
n=O 

where an(9) = An cos nO + Bn sin nO. Substitutmg (2.2) in (2.1), we obtain 

1 n2 

Vn,tt = vn,rr + -vn,r - 2 vn 
r r 

(2.3) 

Following Friedlander [41, we construct solutions of (2.3) in the form 

(2.4) L:
oo r;"(t-r) 

vn(r,t) = 1 
r3+2 

3=0 

Substltution of (2.4) in (23) results m the followmg recurrence relatlOns 

(2.5) 
, (J+ 1 )2_n2 

1;'+1 (t - r) = - 2(; + 1) I;'(t - r) 
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The gOallS to examine the effect of the recurrence relations on constructIOns 
of asymptotic boundary condItions. First, we observe that substItution of 
(2.4) in (2.2) Yields the followmg formal representatIon of the solution 

00 00 r(t-r) 
u(r,6,t)=~an(6)~ 3 1. 

L.J L.J r3+ l 
n=0 3=0 

(2.6) 

Mampulations of this senes, particularly mcreasmg the order of the decay 
rate for boundary conditions, have been proposed by many authors (e.g. 
BayllSs and Turkel [1]). In fact, a different form of (2 6) has been used for 
these constructIons, which will not be discussed here. We define a "basic 
boundary operator" from (2.6) as follows: 

(2.7) 
{) {) 1 

B=-+-+{)t Or 2r 

It is Immediately venfied from (26) that 

(2.8) 

Direct approximation of (28) is the radiation condItion Bu = 0, a pop
ular condition m the hterature noted by many researchers (e g. BayllSs 
and Turkel [1], Engquist and MaJda [3]). Asymptotic accuracy of such 
a condition IS 0(r-5/ 2 ), whlch is evident from (2.8). HIgher order condi
tions in general requrre higher order normal derivatives or denvatlves in 
the dominant direction of propagation This may not be a deSIrable fea
ture numerically, particularly for nonlinear generalIzations. Here we obtam 
higher order condItions that mvolve Bu, 1£, 1£99, and their time derivatIves 
on the artificial boundary. We begm with the constructIOn of higher order 
condItions by differentiating (28). Thls yields: 

{) 00 00 fn'(t r) 
{)tBu= - ~an(6)~J 3

r
3+; 

n=0 1=0 

(2.9) 

Noting that the mner summatIOn may be written m the form 

and usmg the recurrence relatIOn (25) Yields: 

{) 00 00 ( 1 )2 2 
-Bu= ~ (6)~ J+2" -n r 
at L.J an L.J 2r1+ t 3 

n=O 1=0 
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A simple marupulatlOn of the nght hand side yields: 

(2.10) 
{} 1 1 cP'IL 1~ ~J(J+1) n 

at B'IL - 8r2'IL - 2r2 {}92 = 2 L.", an (9) L.", r1+t 1, 
n=O 1=1 

The highlight here 18 the observation 

00 00 r(t-r) 
'lL1I1I = - '" n2an(9) '" 1 l. L.", L.", r1+ 2 

n=O 1=0 

(2.11) 

4 

Note that the asymptotic accuracl of the candidate boundary conrution 
(210) is increased further to O(r-2") Let 

(2.12) 

Then (2 10) becomes 

B _~I:oo (9)I:
00 

(J+1)(J+2)ln 
1'IL-

2 
an Z 1+1 

r1+2 
n=O 1=0 

(2.13) 

This form again suggests the use of the recurrence relatIOns (2 5) by differ
entiating the equatIOn WIth respect to time DOlDg so, we obtain 

(214) 

We note that _n2 translates into the second tangential denvatlve 
Defining 

{} 1 1 
(2.16) B2'IL = at B1 'U + 8r3'U + 2

r
3 'lLlle 

It IS clear that equatIOn (2.15) Yields a one asymptotic order mgher bound
ary conrution (to O(r-~)). Moreover, noting 

(2.17) 

and applymg the time derivative agalD, the process becomes clear and It 
Yields 
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Remark 1: As far as numencal lDlplementatlOn of these conwtions are 
concerned, one may conSIder a sequence of operatIons to update U at the 
current tlDle: 

(219) 

(2.20) 
1 1 

Zt - -8 2 U + 2"U/I/I = V r r 

(2.21) 
1 1 

Vt + 8r3 U + 2r3 U/I/I = W 

(2.22) 
25 13 1 

Wt - 128r4 U - 16r4 U/I/I - 8r4 U/I/I/I/I = 0 

The above sequence of equations (which provides a boundary conwtlOn 
asymptotically accurate to O(r-lf)) as a system of first order equations to 
march in time. (At the tlDle this article was written one of the students 
of the second author has implemented such a procedure and obtained the 
indicated asymptotic Improvement. The details will appear elsewhere). 
Remark 2: The procedure above coincides with the high frequency ap
proximatIOns of the exact condItion in the radlally symmetric case In the 
Laplace transform domaIn, the exact operator has the form (see [6]) 

(2.23) B U __ ~ srKb(sr) 
e - r Ko(sr) . 

Where Ko(z) IS the modified Bessel function of order O. Moreover we find 
as sr -+ 00 

(224) 
1 1 1 1 -3 

Beu = ;(sr + '2 - Ssr + 8(sr)2 + O((sr) )) 

The Laplace transform of the derived operators coincides with the large sr 
approximations of the exact boundary operator Be We can, then, interpret 
the expansIOns both as a long-range and as a hIgh-frequency approximation. 

We also note that the Fourier transform of the operator BI U cOInCldes 
with the second order operator proposed by Knegsmann et al. [9] in con
junction Wlth on surface radiation condItIons. As an example we conSIder 
the computatIon of the surface current calculatIon In electromagnetIc scat
tering. Let r be the boundary of a perfect conductor Then the magnItude 
of the total current is given by the formula (see [9]) 

(225) 
, a 

J = I;; an (us + uonc)lr 
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where Us is the scattered field, and U mc 15 the known InCIdent field For 
perfect conductors Us = -Umc on the boundary of the scatterer r The 
prinCIple of the on surface boundary procedure consists of bringmg the far 
field boundary exactly on the mterface of the scatterer The advantage IS 
rather clear. Smce the total current is a functIOnal of the normal derivative 
of the scattered field and the radiation boundary operators on the surface 
directly express the normal derivatives m terms of the mCldent field We 
note that In the formula for the surface current k is the wave number which 
arose from the Fourier transform of the wave equation We hst the Founer 
transform of the operators denved m our theory They are: 
Condition 1 

(226) 
1 

- tku + U r + 2r 1£ = 0, 

Condition 2. 

(227) 

Condition 3. 

2 1 1 1 1 1 
(2.2&)-tk) (-tku + U r + 2r 1£) = -tk( 8r2 1£ + 2r2 1£88) - 8r3u - 2r3u88 

The first two operators are used In [9], and the third one 15, so far as we 
know, new A plane wave mcident upon a umt cyhnder 15 conSidered for 
the calculation of J and results are shown in FIgures 2.1 (k = 5) and 22 
(k = 2) respectively. The inCIdent field has the speCIfic form U.nc = e·lcrcos8 

Remark 3.: For an15otroplc equatIOns, such as convective wave equation, 
an analogous procedure may be denved. The use of the resultmg conditions 
are more pertment to systems of equatIOns such as the hneanzed Euler 
equatIon This is dlScussed In section 4. 



PROGRESSIVE WAVE EXPANSIONS 

Surface Current J (1<=5 0) 
CompaII8OIIS Wdh 'ElcacI Sc*Ibon' 

30r---~----~----~--~----------'---------~ 

--- Condibon 3 
-- "EXIICI" 

- - Condibon 2 
~o ---Condibon1 

10 

20 
fW,'Je 

30 

FIG 2 1 Companson of results Wtth exact 801utton, Ie = 5 

Surface Current J (1<=2 0) 
Con.,anaon Wdh ElcacI SoIuton 

4.0 

30r---~-----'----~-----r----------~---------' 

-- ConcIbon 3 
••••• - 'ExacI' 

~o - - ConcIbon 2 

10 

FIG 2 2 Companson of results Wtth exact 801utton, Ie = 2 
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3. First order hyperbolic systems - Isotropic case. Here our 
focus is to extend the ideas to systems of first order equatIons The pro
gressIve wave expansIons may be carried out directly In the tIme domaIn 
as we dld for the second order wave equatIons or In the Laplace trans
form domam. In this sectIon we present the construction using the Laplace 
transform. The dlrect approach is illustrated in Section 4. 

Maxwell's equatIons offer an mteresting example of an IsotropIc sys
tem Here we confine our attention to Transverse Magnetic (TM) fields for 
simpliCIty. The full field equations are: 

(31) dzv €E = dzv /LH = 0, 

(3.2) curl H 
aE 

= €/it ' 

(3.3) curl E 
aH 

= -/L-
at 

We shall consider TM fields as follows: 

(34) E = E(x,y,t) k 

(35) 

EquatIOn (3.4) indlcates that the electric field propagates m the direction 
perpendicular to the x - y plane and 18 transverse to the magnetIc field 
Under these assumptIons, equations (3.2) and (3.3) become 

aH2 aHI aE -----=€-ax ay at 
(36) 

and 

(3.7) aE. aE. (aHI . aH2.) ay 1- axJ = -/L Ttl + TtJ 

respectIvely Rearranging equations (3 6) and (3 7), we obtam the followmg 
system 

aE = ~ [aH2 _ aHI] 
at € ax ay 
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Tlus can be put m the conventional form: 

(3.8) Ut = A U Z +B u y 

where 

01) o 0 , 
o 0 

~~ ~) 
o 0 

and where U = (E,H1,H2 )T Convertmg to polar coordmates we obtaIn. 

8 ( E) ( 1 0 -~ sinO ~ COSO) 8 ( E ) 
- HI = --smO 0 0 - HI at 11' ar 

H2 -; cos 0 0 0 H2 

(3.9) 
1 ( 1 0 -~ cosO -~ smo) 8 ( E ) +- --cosO 0 0 - HI 
r '1. 0 0 0 80 H -jism 2 

We take the Laplace transform of (3.9). With the change of vanable r = r s 
we have 

(3.10) ( !J = ( R~ + te~ ) ( ~ ) 
where 

R= ( 

0 -lsmO 

~r) _1. sm O 
E 

0 
I' 
~cosO 0 

and 

e= ( 
0 _1 cosO 

-~r) _.1 cosO 
E 

0 
'1 0 -- sinO 
I' 

We seek an expanSIon of solutions of (3 10) m the form 

(3.11) 
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We note that th18 form is sunilar to Fnedlander's form that apphes to 
the second order wave equation m the Laplace transform domain Also, we 
have mtroduced a decay rate constant a which turns out in two dunenslOns 
to equal t, as expected Substltutmg (3.11) mto (3.10) yields to leadmg 
order: 

(312) A= 1+ gR+ g'e 

and 

(313) Aa=O 

For this requirement to be true, clearly It must follow that· 

( 

1 _l(gsmO+g'cosO) 
1 E 

O=det(A)=det -ji(gsmO+g'cosO) 1 
~(gcosO - g' sin 0) 0 

1 = (1- -«gsmO + g' cos 0)2 + (gcosO - g'smO)2)) 
EJ,£ 

(3.14) 

The roots of equation (3.14) are: 

9 = ±N-, .j€p.cos(O + t/J), 

t/J arbitrary. For waves propagatmg to infinity in all drrectlOns we choose 
9 = ..jEii as the allowoable root With trus value of g, the matnx A becomes 

A = ( -Asine 
/!cosO 

whose nght nullvector 18 

with left nullvector 

-.J¥ sinO 
1 

o 
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The next order terms m the asymptotic expansIOn yield the following rela
tion: 

(315) 
oa 

Ab = -o:Ra + e 09 ' 

and a is determmed by-

(3.16) 

I e., by reqUIring (1, Ab) = 0 
Noting the following calculatIOns: 

oa = oa1 ( rism9) (h~OS9 ) of) of) V ~ + a1 V IJ. , -VI cos f) If sin f) 

( 

0 ) ( __ 1) oa oa1 1 v'EJi 
9- = - -"ji.cosf) +a1 0 , 

of) 09 1 f) - 0 -"ji.sm 

it follows that 

1 
0:=-

2 

Choose 

b=(f), 
and use the last two equations to obtaIn 

1 . 1 oa1 
~ = (-smf)a1 - -cos9 <M' 

21-' I-' uu 
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1 1 aal 
b3 = (--cos8)al - -sme-. 

2JL JL 00 

Substitutmg a and b m (3.11) we obtain 

• e-r..;7iE 
E= -_-l.-al, 

T2 

aE e-r..;7iE aal 
ae = ---;r 89' 

. V; . 1 - cose . aE 
H2 = - -cos8E+ -(--E-sme-). 

JL /LTS 2 ae 

12 

Multlplying through by S and takIng the mverse transform finally YIelds 

(317) aHl = ( ~sme~ + sme _ cose !...)E, 
{)t V JL at 2/LT /LT ae 

(318) aH2 = _( ~cose~ + cose + sme !...)E 
{)t V Ii at 2/LT /LT ae 

As only one boundary conrutlon is reqUlred, we convert these mto a 
smgle conrutIOn Multiplying (3.17) sm8 and subtractmg (3.18) multiphed 
by cose, we obtam our final form· 

(3.19) aHl sm () _ aH2 cos () _ ~ aE = _1_E 
{)t {)t V Ii {)t 2/LT 

This constructIOn is easily extended to hlgher order, though we have 
not deVlSed a unified approach to the implementatIOn of the higher order 
conrutons. 

4. The linearized Euler equations - An anisotropic example. 
The construction of asymptotic boundary condltIOns for the linearized and 
nonhnear compressible Euler equations is also of mterest, particularly for 
apphcations m aeroacoustlCS. In thls section, we construct the expansions 
in the time domain drrectly. Agam, the system takes the form: 

(4.1) Ut=Auz+BulI 

where A and B are constant matrices In cyhndncal coordinates we have 

(4.2) 
1 

Ut = R Ur + -T U8, 
T 
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where 

(4.3) R= AcosO+ BsinO, 

(4.4) T = -AsmO+BcosO 

A far field asymptotIC expanSIOn may be constructed in the following form 
for the solution vector u: 

(4.5) 

where the scalar functIOn g(O) and the vectors a..(0) are to be determined 
The function 10 is analogous to the radIation functIon discussed m [41 The 
other functions are recursIvely determined by SubstItution of the expansion 
into equation (4.2). The O(~) terms yield: 

(4.6) Cao = 0, 

where C = 1+ g(O)R + g'(O)T For ao to be nontrivial one must have 
det(C) = 0, yielding an 'eikonal function' g(O). The next order correctIOn 
yields 

(4.7) 

This Imposes a necessary restriction that 10 = I~ In general, It follows 
1 n-l = I~, n ~ 1. At this pomt, we tum to the ISentropIC, lmeanzed, 
compressIble, Euler equations to Illustrate the actual calculations involved 
in solving these algebraIc problems For a uniform base flow in the x 
drrectIOn they are· 

(4.8) 
o 0 &u fJv 

(-+M-)p+-+- =0, 
8t ox ox 8y 

(49) 
o 0 8p ( - + M-)u + - = 0 
8t ox ox ' 

(410) 
o 0 op 

(-+M-)v+- =0 ot ox 8y 

Conversion of thIS system to cyhndncal coordmates (48)-(4.10) takes the 
form (42) where 
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( 

M cosO 
R = eosO 

sinO 

( 

-MsmO 
T= -smO 

cosO 

cosO 
MeosO 

o 
smO ) o , 

McosO 

-smO COSO) 
-MsmO 0 

o -MsmO 

CalculatIon of g(O) for these equatIons Yield. 

1 
g(O) = , 

VI - M2 sin2 (J + M cos(J 
(4.11) 

and the matnx C has the form 

where 

C= -Q o , 
[ 

I-MQ 

-R 

-Q 
I-MQ 

o 
-R 1 

I-MQ 

Q = gcosO - g'sinO, 

R = gsm(J + g' cosO 

Solutions of (4.6) are given by 

ao = ho(O) ( l-~Q ) = ho(O) ( r~ ) , 
l-MQ r3 

and the solutions of (4 7) are given by: 

14 

Here ho«(J) and hl(O) are arbltrary functIons of 0 and the coeffiClents b. and 
c. are given by 

J.. __ (cosO + Mr2 eosO)j2 + Mr~ smO 
~- I-MQ ' 

b _ (sm9+Mr3cos9)/2+Mr~sm9 
3 - I-MQ ' 
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sin 8 + Mr2 smB 
C2 = I-MQ 

- cos B + M r3 sin 8 
C3 = I-MQ 

Collection of these results in the asymptotic expansions YIelds (to O(r-S/ 2 )): 

(4.13) 
hofo hdl 

P = rl/2 + r 3/ 2 ' 

(4.14) 

(4.15) 

Drlferentlatmg 1£ and v Wlth respect to t and using the result fo = f{ 
to O(r-S/ 2 ), we have 

(416) 

(417) 
P h~fo 

Vt = r3Pt + -r3 + a-/2 C3 r r 

Finally, notmg the term mvolvmg h~ can be ehmmated from the last two 
equatIOns, we have 

(4.18) 

where 

P 
a Pt + f3 1£t + 'Y 11t = -0, 

r 

'Y = C3, 

The hIgher order condItIOns are obtruned in a slIDllar manner In fact, one 
can show that the next order conditIOn is of the form 

(4.19) ( ) 
Pt P 

a P + f3 1£ + 'Y 11 tt = -0 + 2'E, r r 
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which is accurate to O(r-7/2). Note that these condItIOns do not wvolve 
any spatlal derivatives As such they are ldeal for rectangular domams 
where tYPically one has to pay speClal attentIOn to the corners, particularly 
when high order numerical schemes are used These conditions correspond 
to the primary acOUStlC boundary conditIOn. In addition, one must impose 
at mflow boundaries, a vorticlty condition For norusentropic flows, m 
addition to the vortlClty, entropy must also be specified at mflow At 
mflow the y momentum equation and zero vortlClty condltIOn YIeld an 
exact relatIOn 

(420) Vt + (p+ Mu)y = O. 

5. A Model Problem. In this sectIOn we begin with the lineanzed 
Euler equations with mean velocity convectIOn. The scaled form of these 
equations are IdentIcal to the one that we used to derive the conditions, 
except they contam forcing terms that charactenze a dnvmg source They 
are. 

(51) 
a a au 8v 

(at + M ax)p + ax + 8y = 0, 

(5.2) 

(5.3) 

where gl and g2 model a Gaussian momentum source, which both oscillates 
sinusoidally and decays algebraically in time. TyPICal examples wclude, 
a quadrupole sound distribution. Here gl and g2 are the gradient of a 
potential ¢ Such a functIOn is given by 

¢ = A(t)e-aR2 co8(29) 

where tan 9 = ~=~~, R = .J (x - xO)2 + (y - yo)2, (xo, Yo) is the locatIOn 
of the source, Q IS a POSItive constant, and A(t) is the amplitude and a 
function of t. (In the numerical experiments A = sin 211't/(1 + t2 ) ) 

In a sample computatIOn whlch was computed for a tIme length of 
100 periods (22415 tIme steps), the solutIOn obtawed with the second or
der conditions was compared With the exact solutIOn, a solutIOn obtamed 
by setting incommg characteristiC variables to zero, and one obtained us
ing the first order condltion. The exact solution was computed m a large 
domain in whlch, within the time of computations, the waves could not 
reflect off the artifiCIal boundanes and return to the small dom&n The 
ma.xunum error m pressure calculations observed for the charactenstlc con
ditIOns was 10.3%, for the first order asymptotic condition It was 3.3%, and 
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for the second order condItion the error was 1.3%; indicating the expected 
unprovement. In Flgures 5.1 and 5.2, the exact solutlOn for the pressure 
lS given after 5 penods and 10 periods of tune respectively. Subsequent 
parrs of figures (53-5.4, 55-56 and 5 7-5.8) mdIcate the solution at these 
times for the characteristlc boundary conditlon, the first order asymptotic 
condltion, and the second order asymptotic conditlons respectively At 10 
penods the errors are visible in the first two cases and therr orders of the 
magrutude indeed are as mdIcated above. Clearly the higher order condi
tion improved the results 
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FIG. 5.1. Exact Solution at 5 periods of time 

FIG. 5.2. Exact Solution at 10 periods of time 
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FIG. 5.3. Solution with charact;eristics based boundary condition t ::::: 5 periods 

FIG. 5.4. Solution with characteristics based boundary condition t ::::: 10 periods 
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FIG. 5.S. Solution with first asymptotic boundary condition t = 5 periods 

FIG. 5.(). Solution with first asymptotic boundary condition t = 10 periods 
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FIG. 5.7. Solution with second asymptotic boundary condition t = 5 periods 

FIG. 5.8. Solution with second asymptotic boundary condition t = 10 periods 
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