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ABSTRACT

In the area of computational acoustics, procedures which accurately pre-

dict the far-field sound radiation are much sought after. A systematic de-

velopment of such procedures are found in a sequence of papers by Atassi.

et. al. [3] [4] [7]. The method presented here is an alternate approach to

predicting far field sound based on simple layer potential theoretic methods.

The main advantages of this method are: it requires only a simple free space

Green's function, it can accomidate arbitrary shapes of Kirchoff surfaces,
and is readily extendable to three-dimensional problems. Moreover, the pro-

cedure presented here, though tested for unsteady lifting airfoil problems,

can easily be adapted to other areas of interest, such as jet noise radiation

problems. Results are presented for lifting airfoil problems and comparisons

are made with the results reported in [3] [4] [7]. Direct comparisons are also

made for the flat plate case.
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1 INTRODUCTION
l.

The prediction of far-field sound radiation is a key area of interest in the com-

putational aeroacoustics community. This subject is a common intersection
for most unsteady external aerodynamic problems such as the gust response

of airfoils, flutter problems, and jet noise. Since these problems are posed in

open domains, in general, it is difficult to extend the computational domains

to the far-field due to the prohibitive cost of the computations involved.

While the state of the art of computers provide high speed and large storage

capacity, the numerical algorithms themselves are known to have problems.

They are subject to their dissipative and dispersive properties and may con-

taminate acoustic calculations due to the disparity in magnitude between the

acoustic pressure and the dominant flow quantities. Current efforts involving

the direct numerical simulation of far-field sound are being made by Tam et.

al. [11], Roe et. al. [8], and Mitchell et. al. [6]. Among all the numerical

development are a sequence of works developed by Atassi and his associates

[3] [4] [7]. A summary of these efforts are found in [1]. These methods

employ numerical simulations in the near field, developed by Scott [9] [10],
and construction of a Kirchoff surface for the prediction of far-field sound

using Green's function techniques. Thus the driving philosophy is accurate
numerical simulation in the near-field and a "semi-analytical" approach to

predict the far-field sound. This paper is motivated by these works. The key
difference here is in the formulation of the far-field sound radiation calcula-

tions. In contrast to the work of Atassi et. al. [3] [4] [7], a potential theoretic

approach is implemented. This method requires only the free space Green's

function and involves an unknown simple layer density. This simple layer

density is solved for by a technique proposed by Hariharan and MacCamy

[5] for electromagnetic scattering problems. The application of this method

for aerodynamic problems is shown here in detail. The method has the key

advantage that the Kirchoff surface does not have to be a circle or other

simple shape. As long as it is a smooth surface, the method will work. This
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is attractive to those studying jet noise problems, where the computational

domains are typically elongated. Also, the method is extendable to fully

three-dimensional problems with little difficulty.

The calculations presented here are mainly driven by the comparison of

the results to those of Atassi [3] and Patrick [7]in an elliptical domain. We

also compare results in a rectangular domain for a specific fiat plate case pre-

sented at the ICASE/LARC Workshop on Computational Aeroacoustics [2].
The near-field calculations are performed by the GUST3D code developed

byScott[9][I0].

2 FORMULATION OF THE PROBLEM

The problem discussed here deals with the calculation of acoustic pressure

in the exterior flow field f_ of some boundary F, where F is a Kirchoff surface

which surrounds an arbitrary airfoil. The airfoil is submersed in a subsonic

compressible flow field with a three-dimensional upstream vortical distur-

bance. The disturbance has magnitude and frequency vectors given by a and

k respectively and the details of this disturbance are outlined in reference

[9]. We assume that the acoustic pressure on r is known. The governing

continuity and momentum equations for compressible subsonic flow are as
follows:

p, + div(pU) = 0 (1)
1

U, + (C-v)U + -VP = 0 (2)
P

and the state equations relating p and p are

cgp = c2° (7 = 1.4 for standard air) (3)
P = AP'Y' Op

• where p is density, io is pressure, U is the fluid velocity, t is time, A is a

constant, and Cois the speed of sound. We assume that F is far enough from
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the airfoil so that the mean flow quantities do not differ appreciably from

the free stream in fl and hnearize (1) and (2) above using

U=U_+u

p = p_ + p'

p=p= +p'. (4)

U_, p_, and p_ are the freestream velocity, density, and pressure respec-

tively, and similarily, u, pl and pl are the perturbation velocity, density and

pressure. Before proceeding, we note that the following relation may be

derivedusing(3) and the linearizationin (4):

ff 2 i= c=p. (s)

Substituting (4) into (1) and (2), one obtains the hne_ized continuity and

momentum equations:
Do
-_p + p_ div u = 0 (6)

Do p,p=_iu+_ =0 (7)

where DODt----o_at+ U_ o_-_.Now, we substitute (5)into (6) and (7) to obtain

1Do,

c__p +p=divu=0 (s)
Do

p=_iu + _ p'= 0. (9)
Manipulating (8) and (9), namely _t(8) -div(9), yields

1 D 2
o , V2p,_ b-_.p = 0

or

_-=-;-(_+u=_ )_p'=zlp'. (_o) i.



Now, we non-dimensionalize (10) as follows:

xl,z2,z3 by c/2

t by c/2uoo
kl,k2, k3 by 2/c

p' by pooUoola[

where c is the airfoil chord length. Then the dimensionless form of (10) is

, o b_)_v, v'v' (11)M:o(b_+ = .

We then make the following transformation which removes the depen-

dence on time t, and the spanwise coordinate za:

The nondimensional wave number kz is called the reduced frequency and is

g_ve_bykl=_c/2Uoo(thedimensionalkl is_venbykl=,,,/Uoo,where,,,
is the dimensional angular frequency). The quantity Kz is defined by

klM_ where _oo = 41- M_.gl- _L'

(11) then becomes

2 _2ff 02_

Finally, we transform the coordinate system to the well-known Prandtl-

Glauert plane using the linear transformation

_-1 "-" Xl

_ = Zoo=2

x-3 = fl_o=3.



Since the quantity/_oo is less than unity, this amounts to a compression of

the x_ and xs coordinates. After applying this transformation, we have

~2
/3+ K2/3 = 0, (13)

where
2 2

KS = klM _ k_

Now the problem clearly becomes a classical exterior problem governed by the

Helmholtz equation (13) subject to numerically calculated values of/3 on the

boundary r, where r is the transformed boundary in the Prandtl-Glauert

plane. Even though it appears to be a simple problem, the assembly of

solutions plays a major role in the accurate prediction of far field calculations.

A procedure that has a general structure is proposed here and is described
next.

3 SOLUTION PROCEDURE

The solution procedure is based on simple layer potential theory [5]. The

advantage of the procedure is that the solution relies on a free space Green's

function rather than a specific Green's function which is suited for the domain

of the problem. In particular, arbitrarily shaped Kirchoff surfaces may be

used. The free space Green's function for (13) is

i 1
G(_,_r) = -_H_(K (14)

where _ is a point in the transformed domain, _, and _ is a point on r.

From potential theory [5], the solution of (13) can be written as

/3(_) =/t' o'(_)G(:_,:_)dsy _ E _, _ E r (15)

where/3 satisfies

eiK-R

• /3 ,-__ as [_[ _ oo with R = [_- :_[
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•:=](_)on_.

Imposing the boundary condition, (15) becomes

f_ _r(9)O(fc,@)ds9 =/(_), _,_" E r. (16)

We can now describe a procedure for solving (16) for the o"values. Upon cal-

culating cr and substituting in (15), 15at any point _ E _ can be determined.

To allow an arbitrary shape of the Kirchoff surface, it will be assumed

that r is some polar representable geometry. Therefore, it can be expressed

as the function r = R(O). Let 0 and € be polar representations of the points

_. and # respectively. Then _ and :_ may be expressed in polar coordinates
as

fc(O) = (R(O)cosO, R(O)sin O)

_r(¢) = (R(¢) cos ¢, R(¢) sin ¢),

and we may write

](_)=]Cn(O)cosO,n(O)sinO)-](o),
and

o-(_') = o-(R(¢)cos €, R(¢)sin €) - _'(€).

The distance between the two points _ and _"is then given by

I_-yl = I(R(0)c°s0,R(0) sin 0) - (R(¢) cos ¢, R(¢) sin ¢)l

= _/R2(0). R2(€) - 2R(0)R(¢) cos(0 -€)

= d(0, €), (17)

and the Green's function becomes

G(&,_) - _H(ol)(glx - _rl)

=
• - 0(0,€). (18)
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Now, since _r= (_,!)), where _ and _ are given by

= R(¢)cost
= R(¢) sin€,

d_ and d_ are given by

d_ = [-R(¢)sin¢+ R'(¢)cos¢] d¢

d9 = [R(¢)cos¢+ R'(¢)sin¢] d¢

and ds is as follows:

ds = _/d_.2 + d_2

= _/[R'(¢)cos¢- R(¢)sin¢] 2 + [R'(¢)sin¢+ R(¢)cos¢] 2 d¢

= _/R'2(€) + re(t) de.

Substituting the above quantities into (15) yields

=][ _(€)¢(0,€)_/R,'(€)+R_(¢)de,e_ [0,2_).ice)

By defining _(€) = o'(¢)_/R '2+ R 2, we obtain our final equation

1(o) ][= _(€)0(0,€)d€, 0 € [0,27r). (19)

Wenowconsiderthecasewheree=€in(18)andGbecomessi,,g,_a,:.
We must firstnote that the zero order Hankel function of the first kind may

be expressed by

• i

where -_= _ ( 7 is Euler's constant and R(z) _ 0 as z --+0). Using2_r

this, G may be written as follows:

G(8,€) = -4H(ol)(Kd(O,¢))
1 i

= -_-zlog(gd(O,¢))+_l-7+ f_(Zd(O,¢)). (20)
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Our next step is to observe that when 6 _ €, R(8) can be expanded in a

neighborhood of € by a Taylor series in the following way:

a"C¢)roR(o)= R(¢)+a'(€)(0- €)+ 2! " - €)_+""
Next, we square (17) and substitute the above for R(O) to obtain

d2(0,€) = 4R2(¢)sin2_ --_) +,4a(¢)a'(¢)sin2(_-_)(O - €)

• +[_,,(€)+2RC¢)R"(¢)sin'(L_2-)](0- €)_
4 _

+[_-z(_)z'(€3+_R(_)z"(_),_'(_)1( 0- _)_+....
Now we divide both sides by the first term on the right hand side and take

the limit as 0 ---*€ to obtain

, lira _(0,€) R,_(¢)

Thus, when 0 ---*€,

d(O, €) = 2 sin( l0 - €------_[)eRa(C) + R2(€). (21)2

This confines the singularity which arises in (20) to the factor sin(_).

Our next step is to rewrite (19) as follows:

/o_'_(_(€)- _-(o))0(o,€)d€+_-(o)]o_'_0(o,€)d€=0(o),o_ [o,_-). (22)
The motivation for doing this is that when 0 _ €, it can be shown [5] that

the first term in (22) will approach zero, and we may use (21) to work with

the singularity in the last term of (22). Substituting (20) in the last term of

(22) gives

_.(O)fg'_¢(O,¢)d¢
i

= 9(0)fo2"[_ log(2KCaa(¢) + R2(€) sin[l_]) + _ - g + R(0, €)]d€

• = _'(O)f_o'_log[sin(°-_2_)]d¢+6"(O)f_'_.R(O,¢)d¢,O E [0, 2a') (23)
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where __is defined by

i 1 log(2Kv/R,_(_ ) + R2(_b)), 0 =
k= "Y-z+_

_ 1 log(sin[!_]), 0 #-¼Zo(1)(Kd(0,

Now, we must turn our attention to the first term in (23). Using complex

analysis, the exact value of this integral may be obtained, namely

]o_ log[sin(Io-2_1)]d_= - 2_log(2).

Using this result in (22) gives us the following:

(_'(,_)- _'(O))d_(O,q,)d,_
)

- 6-(8)1og(2) + _-(8) R(8, d?)dd?= 0(8), 0 E [0,27r). (24)

With this equation, we have removed the problem of the singularity in (19)

and are now ready to attempt to numerically find the _"values.

4 NUMERICAL PROCEDURE

To numerically determine the solution, we must first choose a suitable shape

for the Kirchoff surface. The choice of an ellipse, specifically a circle, will

greatly simplify the above formulation since analytical representations for

R(0) and its derivative are well known. If we choose some other shape, we

may have to numerically approximate R'(0), thereby reducing accuracy. The

Kirchoff surface must also be far enough away from the airfoil so that the

mean flow quantities on F deviate only slightly from those of the free stream.

We may then use the GUST3D code to determine the values of _ at a finite

number of points on the boundary.

A numerical representation of (24) can be obtained using rectangular

quadrature. Letting a = 0, b = 27r, hj = _bj-_bj_l, and hi = 0i- 01-1,
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equation (24) becomes

[_(¢j)- _(0)]&(0,¢j)hj+l
j=l

n--]

-_(0)log(2)+_(0)_ _(O,¢j)hj+l= f(o).
j=l

Noting that both 6 and € correspond to points on F, we may replace 0 by 6_
and obtain

rt--1

E:[_(¢j)- _(0_)]0(0_,¢j)hj+l
j--1

n--1

- _(O,)log(2)+_(o,)_ _(o,,¢j)h.i+l= ](o_) (25)
j=l

For each i from 1 to n - 1, an equation of the above type will be yielded. We

will have n - 1 equations and n - 1 unknowns(the & values), and therefore

it would be to our benefit to represent (25) as

rt--:].

,i=1

whereA,j= A(0,_j)._'./=_'(¢j)and/, = ](0,).With(25)int_isform.
we could use a matrix solver to solve the augmented matrix yielded by the

system of equations. After some scrutinization of (25), it can be seen that

the values used for A_i should be as follows:

[Ek=l _'khk+l E_-'_(k_i) O_khk+l], i = j

- log(2) + ,_-1

Ai.i = Oish.i+l ' i 4 J

_here&.i= _(0_,€./)a_dO,j= 0(0,,€./).
Once our goal of finding the _ values is reached, it is a rather simple

matter to obtain/3 at any point x E _. Since our solution procedure was

derived in terms of F and r, in order to find the solution at some point x E

• we must first transform it to a point _ E _. Once we have a point _ E _, we

13



can use the solutionprocedure outlinedabove. For simplicityofnotation, let
(r, 6) and (r, €) be polar representationsof the points _.and _ respectively,
and proceed as follows. Let _ E l_be representedas

:_ -- (r cos 8, r sin 6)

where r and 8 are fixed, and let _"E F be defined as follows:

'3= (R(¢)cos¢,R(¢)sin¢),€_ [0,2_).

Therefore, the distance between ._ and _"is given by

I_- _1 -- _/[_cos¢-R(C)cos¢]2+ [rsin0- R(¢)cos¢]2
= V#_+ R_(¢)- 2_R(¢)cos(0- €)
= d(r, O,€),

and the Green's function becomes

¢(6,€) = -4H(ol)(K d(r, 6, €)).

As follows from (20), the solution will be

i

/5(r, 6) = -_ f0 _(¢)H(°l)(gd(r'6'¢))d¢"

This can be expressed numerically as

i"-l_(¢s)H(ol)(g d(r, 6, Cs))hj+ 1._(_,8)=-_ ._j-q

5 RESULTS AND DISCUSSION

All calculations use the above described method, where the GUST3D code

is used to predict the pressure on the Kirchoff surface. A circular boundary

centered at the center of the airfoil is used and the pressure values inter-

polated from those provided by GUST3D using cubic spline interpolation.
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The number of data points on the Kirchoff surface is a function of reduced

frequency; from 40 points for lower frequencies to 80 for higher frequencies

(see references [9] and [10] for details). The system of equations generated is

solved using Gaussian elimination with pivoting. The radius of the Kirchoff

Surface is 1.5 times the semichord for fiat plates. For airfoils with thickness,

the radius is the minimum radius for which the mean flow and freestream

velocities differ by less than 5% and typically varies from 1.3-2.5 times the

semichord. Increasing or decreasing this radius by a small amount does not

significantly alter the solution as is indicated in figure 15.

5.1 ICASE Benchmark Problem 6

In this case we have a flat plate in a transverse gust (see figure 2.b) defined

as

v = 0.1e_ sin _ - t

where the normalization for the velocity is with respect to coo; length with

respect to Az = 1; and time, with respect to Az/c_. The Mach number is

given as 0.5, and the chord length is 30 units. Using our non- dimensional-

ization, we get kl = 15rr/4 = 11.781 and a2 = 0.2. The unsteady pressure

is to be calculated on a box surrounding the fiat plate as shown in figure

1. The sides of the box are located at dimensional positions of zl = 4-95

and z2 = 4-95. When non-dimensionalized by the semichord, the values are

zl = 4-6.333 and z2 = 4-6.333.

The rms pressure, (½lp'12),is determined on the sides of the box and

compared to those obtained by Patrick and Atassi [2] using a semi-analytical

approach in figures 3-6. 100 data points per side were used. The results

compare quite well, considering that the acoustic energy is such a small

fraction of the total flow energy, and highly accurate results are difficult to

obtain.
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5.2 Polar Plot Comparisons

Polar plots of the solution on a circle of radius r were made, where a value

of 100 times the semichord was used for r. This value is quite arbitrary and,

in fact, the solution was multiplied by v G to remove the dependence on r.

The solution was determined at 200 evenly spaced data points on the circle.

Direct comparisons to those of Atassi and Patrick [7] were made for the

flat plate case for reduced frequency values of 1.0 and 3.0 and Mach numbers

0.1, 0.5 and 0.8 in a transverse gust (see figure 2.b). These are compared in

figures 7-12 and only very slight differences are observed.

In figures 13-14, we examine the effects of airfoil thickness for symmetric

airfoils at no angle of attack in a transverse gust for the Mach numbers and

reduced frequencies given above. Several examples of polar plots of the far

field solution for airfoils with camber and angle of attack in both transverse

and oblique (see figure 2.b) gusts are shown in figures 16-20. These serve as a

demonstration of what kind of information can be gleaned from this method.

As the purpose of this paper is to simply present the potential theoretic

approach to determine far field acoustics as an alternative to other Green's

functions methods, we will not go into any indepth analysis of these plots.

However, the expected results are obtained for these cases (see references [3]

and [7]) with only minor discrepancies, although no direct comparisons to
the results of Atassi and Patrick are available at this time.

6 CONCLUSION

It was shown that potential theoretic methods are a viable alternative to

the modified Green's function approach of Atassi for obtaining the far field

acoustic radiation from lifting airfoils. The only numerical techniques needed

are rectangular quadrature, Gauss-Jordan elimination with pivoting, and

cubic spline interpolation- all of which are simple, well-established techniques.

Morever, the method does not require the development of a new Green's p
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function but uses the well-knownfree space Green's function. This allows
for easy extendability to completely three-dimensionalproblems, i.e., the
solution is represented as a surface integral and the three-dimensionalfree
space Green'sfunction for the Helmholtzoperator is used. Future workis
planned along these lines.
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Three-dimensional (oblique) gust configuration a- k =0
lal =1
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Airfoil in a Transverse Gust _ l Figure 2.b
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RMS Pressure Plot
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Flat Plate in a Transverse Gust
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Flat Plate in a Transverse Gust
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Flat Plate in a Transverse Gust
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Thickness Effects for a Transverse Gust
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Kirchoff Radius Effect for Airfoil in a Transverse Gust
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Angle of Attack Effects in a Transverse Gust
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Thickness Effects in a Transverse Gust
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