
LEARNING AND DIAGNOSING E'AULTS N96- 70675
USING NEURAL NETWORKS

Bruce A. Whitehead
Earl L. Kiech

Moonis Ali

Center For Advanced Space Propulsion
The University Of Tennessee Space Institute

'lhllahoma, TN 37388

Abstract

Neural networks have been employed for learn-
ing fault behavior from rocket engine simulator pa-
rameters and for diagnosing faults on the basis of the
learned behavior. Two problems in applying neural
networks to learning and diagnosing faults are (1) the
complexity of the sensor data to fault mapping to be
modeled by the neural network, which implies dif-
ficult and lengthy training procedures; and (2) the
lack of sufficient training data to adequately repre-
sent the very large number of different types of faults
which might occur. Methods are derived and tested
in an architecture which addresses these two prob-
lems. First, the sensor data to fault mapping is de-
composed into three simpler mappings which perform
sensor data compression, hypothesis generation, and
sensor fusion. Efficient training is performed for each
mapping separately. Secondly, the neural network
which performs sensor fusion is structured to detect -
new unknown faults for which training examples were
not presented during training. These methods were
tested on a task of fault diagnosis by employing rocket
engine simulator data. Results indicate that the de-
composed neural network architecture can be trained
efficiently, can identify faults for which it has been
trained, and can detect the occurrence of faults for
which it has not been trained.

Introduction

The objective of our research described in this
paper is to employ neural networks for (i) learning
fault behavior from rocket engine simulator parame-
ters perturbed with noise (termed as sensor data in
this paper), and (ii) diagnosing faults on the basis
of the learned behavior. In a complex system (such
as a liquid-fuel rocket engine), there are many pos-
sible ways in which components of the system may
fail. Only a fraction of these possible failures have
been observed and are known to human experts. Hu-
man experts have not seen all possible instances of all
faults and hence cannot describe the features of the

faults sufficiently well to make diagnostic decisions.

This state of affairs is problematic for training a
neural network to recognize component failures based
on sensor data. Neural networks learn to recognize
faults by being trained with examples of these faults.
They are capable of generalizing from some examples
of a fault to other examples of the same fault, but they
are not capable of recognizing a new fault for which
no training examples have been given. If a neural
network is trained to recognize a set of faults and then
presented with an example of a completely new fault,
it will typically either (i) find the closest match to
the new example among the previously trained faults,
or (ii) classify the new example as an interpolative
"blend" of previously trained faults.

Neither of these classification strategies is appro-
priate for recognizing a failure which is different from
the classes of failures for which the neural network has
been trained. What is needed, rather, is an ability to
recognize that the new failure is not an example of
any previously trained fault. In other words, the neu-
ral network must be capable of recognizing the classes
for which it has been trained as well as one additional
"unknown" class, even though no training examples
are available for this unknown class.

If the weights in a neural network are determined
solely by the training examples, then the subsequent
behavior of the network is also determined by these
training examples. Such a network would only be able
to classify new examples on the basis of the examples
it has seen, and would not be expected to reliably
recognize an "unknown" class. We therefore have de-
veloped a neural network architecture in which the
weights are not determined solely by the training ex-
amples. Instead, the weights are determined partly
by expert judgment about the type of classification
to be performed, and partly by conventional back-
propagation training from examples.

This work was supported in part by NASA Grant This architecture has been tested in the task of
No. NAGW-1195 and Etocketdyne Contract No. sensor fusion of data from the rocket engine simula-
R04QBZ90-032709. tor. The purpose of the sensor fusion architecture is

https://ntrs.nasa.gov/search.jsp?R=19960011790 2020-06-16T05:52:04+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42778701?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

to classify faults of sensor readings as either (i) exam-
ples of normal steady-state operation, (ii) examples of
known classes of component failures, or (iii) examples
of an unknown class of anomalous behavior.

Sensor data typical of a rocket engine fault
(with and without the addition of simulated noise) are
depicted in Fig. 1. Four sensors, high pressure fuel
turbopump (HPFT) temperature, thrust, .chamber
coolant valve (CCV) pressure, and main fuel valve
(MFV) pressure are monitored during engine opera-
tion. The data are normalized with steady-state
values for convenience. In the present effort, it is
assumed that the engine is operating a t some steady-
state condition when the fault condition occurs. The
fault will be manifested as a deviation of sensor values
from the steady-state condition. In the present effort,
a time window containing 40 sensor readings span-
ning four seconds is used.

I t is not sufficient for the purposes of diagnosis
to simply detect when and whether a deviation from
steady-state conditions has occurred; how the devia-
tion is manifested over time is also important. For
instance, an observation that a particular sensor
parameter is decreasing linearly will likely result in a
different diagnosis than that obtained from observing
an asymptotic decrease1. Therefore, to be effective, a
diagnostic system must be responsive to the qualita-
tive (as well as the quantitative) behavior of the en-
gine. The diagnostic process must also exhibit
resilience to noise. A noise-corrupted version of the
fault is therefore depicted in Fig. 1 for comparison.
The 2% noise level means that the standard deviation
for a Gaussian distribution of perturbations about the
noise-free curves is 0.02. A 2% noise level would be
considered excessive for most instrumentation; how-
ever, satisfactory operation a t this noise level is used
as a goal in the present effort.

Neural networks have been employed a t UTSI
in the past to diagnose the development of fault con-
ditions in jet engines24, using conventional feedfor-
ward networks trained with well-known
back-propaga tion algori thms6. Although this method
was effective in diagnosing faults when given samples
of data corresponding to a fault for which the networks
were trained, several deficiencies of the conventional
feedforward model were noted:

1). Networks can be trained to associate a set
of patterns with a set of fault conditions quite readily.
However, when presented with an input pattern
qualitatively different from those included in the

FIGURE 1. Sensor outputs for a 30% blockage of the
- main fuel valve with 1.5 second onset interval..

training examples (e.g., a pattern representing a pre-
viously unobserved fault condition), the networks can
produce spurious categorizations and false positive
identifications. There is no method to train a conven-
tional feedforward network to, for instance, activate
an output node if the input pattern is not similar to
those patterns for which the network is trained.

2). Conventional feedforward networks are
limited in the number and type of training examples
which can be used. Some of the networks in the jet
engine diagnostic system required long training
times, which depended not only on the number of
training examples required, but also on how similar
training examples representing different faults were
to each other.

These deficiencies can adversely effect the
application of neural networks to the classification of
fault patterns. The present work attempts to formu-
late a neural network architecture and training
regimen which will successfully extend the
capabilities of feedfonvard network models.

ArchReaure and Wlethod

Consider the problem of infening the operat-
ing conditions of a system from sensor data. Suppose
there are M different possible system conditions
Ci ... CM and N different sensors SI. ..SN. In general,
each possible condition Ci may be quantitatively char-
acterized by a set of P parameters cip, p = 1,2, ...Q. (In
our current research, each condition is characterized
by two parameters, relating to the severity and onset
interval of faults in jet and rocket engines.) The set of
all possible system conditions can then be charac-
terized by the set of parameters {tip], where i
enumerates the possible conditions andp enumerates
the parameters associated with each condition. To
infer these conditions, we may sample the value of
each sensor Sj over a period of time. If each sensor is
sampled at discrete times t = l...T, then the complete
set of sensor data is represented by the set of values
{sjt}, where j enumerates the different sensors and t
enumerates the sampling times.

From the point of.view of its operation, a
system can be represented as a function

which represents the cause-and-effect relationship -
from system conditions to sensor values. Ideally, if all
conditions other than those enumerated could be held
constant, F would be a deterministic function. In prac-
tice, however, F is usually characterized as a stochas-
tic function in which values of sjt are assumed to be
influenced by noise as well as by the conditions (tip].
This noise results both from variability in testing
conditions and from unreliability of the sensors.
Sample data points for this function F can be derived
by observing the physical system (under known test
conditions) andlor by manipula ting a simulation of the
physical system.

In either case, the problem of infening the
condition of the system from observed sensor values
is the problem of deriving the inverse function

which is the mapping from sensor values to
hypothesized underlying conditions. For complex
real-life ~ystems such as jet and rocket engines, the
nature of the function F-' is unknown. However,
observations of sensor values caused by known condi-

tions (i.e. observations of F) can be used as example
data points for^-'. I t might be thought that F - I could
readily be learned from these examples by a neural
network trained with back-propagation. Each ob-
served set of sensor values {~jt} would be input to the
network, and the known conditions [tip) would be the
desired outputs for back-propagation training. In tri-
als using jet and rocket engine data, however, we
observed that two different fault conditions may cause
very similar sensor behavior and also that low-
severity, slowly developing faults are very difficult to
distinguish &om normal behavior. Such differential
diagnoses have proven very difficult for an unstruc-
tured back-propagation algorithm to learn.

We propose that learning of the function F-'
from sample data points can be more efficient if F"
is decomposed and structured into special-purpose
constituent functions, each of which can be learned
separately. The proposed decomposition is

(where * denotes the composition of functions)

The purpose of the function R is data compres-
sion: to reduce the dimensionality of the sensor data
[sjt} without losing the information necessary to make
valid inferences. The purpose of the function M is to
map this reduced sensor data (s'jh] into hypothesized
conditions {c~ip]. The functions R and M are applied
separately to each sensorj. Finally, the purpose of the
functionA is to perform sensor fusion, i.e., to arbitrate
among the hypotheses nominated by different sensors
to determine which hypothesis is most likely. Each
special-purpose component function R, M, and A is
represented independently and trained separately.
While the sensor fusion architecture A is the focus of
the present study, the preprocessing functions R and
M are discussed briefly in the following two subsec-
tions. The alternative sensor fusion architectures that
were compared are then discussed in detail, and the
results of the comparison are given.

Step 1: Data Compression

The data compression function R above is
performed by an autoassociative network6 with a t
least one layer of semi-linear hidden nodes. There are
T input nodes and T output nodes, one for each dis-
crete sampling time t = 1, ..., 1'. Data compression is
accomplished by connecting the T input nodes to the
T output nodes through a much smaller set of

PI c< Thidden nodes. Node activations are continuous
variables. The network is trained to associate input
patterns with identical patterns clamped a t the out-
put nodes. As a result, training is unsupervised; i t is

' left to the weights between the input, hidden, and
output layers of the network to organize in a fashion
whereby the mapping is performed correctly.

Once training has been completed, classifica-
tion is accomplished by examining the activations of
the hidden nodes. In a sense, the hidden node activa-
tions are employed as the "output" of the network. The
mapping from input nodes to hidden nodes reduces
the dimensionality of the input data from T (the nurn-
ber of time-series samples for a given sensor) toH(the
number of hidden node activations). The mapping
from hidden nodes to output nodes, on the other hand,
has been used to reproduce the original input pattern
from the hidden node activations. To the extent that
training is successful, therefore, the H hidden node
activations will contain sufficient information to
reproduce the T time-series sensor values. The H
hidden node activations for each sensor Sj thus com-
press that sensor's time-series values {sjt}, t = 1, ..., T
into its hidden node activations (s'jl, ..., s'jH) = ~((~ j t }) ,
where R is the weighted-summation performed by the
connections from the input layer to the hidden layer
of the autoassociative network.

This special-purpose network for reducing the
dimensionality of the sensor data can be trained very
economically. Suppose that i t is desired to train the
overall architecture R * M *A to classify a large num-
ber of temporal patterns (where each temporal pat-
tern consists of a set of data curves, i.e. a set of
time-series values for all sensors). While all of these
curves will be classified by the mapping M of step 2
below, only a small subset of the training curves is
needed to train the data compression network R. For
training an autoassociative network to perform R, a
small representative subset of the total set of curves
is sufficient. Training is done on this subset of curves
using an autoassociative back-propagation algorithm
with output nodes clamped to the same values as the
input nodes. After training is complete, data compres-
sion is accomplished by the resulting set of weights
from the T input nodes to the H hidden nodes, as
explained above.

Step 2: Hypothesis Generation

Once training has been completed for the
autoassociative network above, the network is then
run (with fixed weights) on the entire set of desired
training data. Since no learning is involved a t this

stage, each sensor data curve {sjt], t = I,..., T can be
collapsed into its hidden-node representation
{s'jjt], h = l,..,H in one iteration of the network. The
H hidden node activations for each sensor constitute
a compressed representation of the input data for that
sensor. The entire set of training data can therefore
be converted into a compressed representation with
very little computation, i.e., only one iteration of the
network per data curve per sensor.

Each data curve will evoke a specific hidden
node response which can be represented as a single
point (s'jl, ..., s ' j ~) in the H-dimensional parameter
space of hidden node activations. Our studies have
shown that data curves generated by smoothly vary-
ing the quantitative parameters kip] of a given fault
condition Ci result in hidden node responses which
map out a surface. If H hidden nodes are used, the
hidden node activations will define a surface in an
H-dimensional parameter space. For example, Figure
2 illustrates surfaces generated by training an autoas-
sociative network, with three hidden nodes, on thrust
data from the Space Shuttle Main Engine. The larger
surface is generated from hidden node activations
which correspond to blockage a t the main oxidizer
valve; the smaller surface corresponds to blockage of
the main fuel valve. Both surfaces represent fault
conditions over a range of severities and onset inter-
' vals. The hidden-node activation resulting from nor-
mal (steady-state) operation is represented as a single
point in the parameter space.

In the present example, sensor curve charac-
teristics are functions of two parameters: severity
and onset interval for each condition Ci. Curves which
vary by only one parameter ~ i l (e.g., main oxidizer
valve blockages of the same severity, but of different
onset intervals) will evoke corresponding hidden node
activations R(Fj(ci1)) which define one coordinate
direction of the main oxidizer valve surface. That is,
Fj(ci1) denotes the set of time-series data ctirves of
sensor Sj when parameter cil is varied. R in turn
compresses each curve into a point in the hidden-node
space. Curves which vary by another parameter ci2
(e.g., main oxidizer valve blockages which vary in
severity, but are constant in onset time) will evoke
hidden node activations R(Fj(ci2)) which define the
other coordinate direction of the surface. The entire
surface can therefore bemapped out by systematically
varying both cil and cia. If C ~ I X C ~ ~ denotes the set of all
such combinations of values of the fault pammekre
cil and ciz, then Fj(cilx~i2) denotes the set of time-
series curves for sensor/s responses over this range

FIGURE 2. Surfaces representing Main Oxidizer Valve and Main Fuel Valve blockages for Thrust sensor. The
autoassoclatlve network maps each possible lnput pattern Into one point HI, H2, H3, representing the hidden
node actlvatlons which result from that lnput pattern. A class of related lnput patterns will generate a surface
In thls space.

of parameters. R(Fj(cilxci2)) in turn denotes the sur-
face obtained by compressing these sensor curves into
points in the H-dimensional hidden-node space.
Similarly, a set of main fuel valve blockages covering
a range of severities and onset intervals can be used
to define another surface.

As explained above, the entire set of training
data can be converted into points in the hidden-node
parameter space in one iteration of the autoassocia-
tive network per data curve per sensor. In the present
implementation, these points are simply interpolated
to generate a parameter surface for each fault condi-
tion. "Training" the map M from hidden-node activa-
tions to parametem consists merely of (i) generating
a point in the hidden-node parameter space for each
training example; (ii) labeling each such point with
the known parameters (e.g. severity and onset inter-

val) of the example which generated the point; and (iii)
interpolating a coordinatized surface from the set of
points obtained by varying the parameters of a given
condition.

Note that each different sensor Sj will
generate its own set of surfaces in H-dimensional data
compression space, showing the responses of that
sensor to the range of conditions in the training data.
There will therefore be a separate map Mj for each
sensor Sj.

This training process does not in any way
require that only three hidden nodes be used, but is
fully extensible to higher numbers of hidden nodes. If
higher numbers of hidden nodes are used, higher-
dimensional surfaces (hypersurfaces) will be
generated.

Once a network is trained and the surfaces
generated, it may be used for classification of new
input patterns. In the example of Figure 2, a new input
will be mapped into a new point in multi-dimensional
space. If the point lies on or near the surface defined
by the training examples, then the resulting
hypothesis is that the fault condition represented by
that surface is indeed occurring. The closer the new
point is to the surface, the stronger is the evidence it
provides for that hypothesis. If the new point is close
to more than one surface, then more than one
hypothesis will be generated, but with different levels
of confidence if the distances to the surfaces are dif-
ferent.

After training is complete for steps 1 and 2
above, a new sensor curve {sjt], t = 1, ..., T can be con-
verted into a new point (s'jl, ... ,s ' j~) in the hidden-node
parameter space, where (s'jl, ..., s ' j ~) = ~({sjt]), R being
the mapping performed by the data compression net-
work of step 1. This point in turn can be projected onto
each surface R(Fj(cilxci2)) yielding values for the
parameters cil and ci2 of the hypothesized condition
Ci. The degree of evidence for each hypothesized con-
dition is a function of the distance from the new point
to the surface representing that condition, as dis-
cussed below. I f j sensors are operating simultaneous-
ly, then this process is canied out separately for each
sensor and each surface, projecting to the surfaces
that were generated for that particular sensor during
training. This will yield a different opinion from each
sensor as to the likelihood of various hypothesized
conditions. The purpose of the third component of our
decomposed architecture is to fuse the information
from different sensors into a reliable inference.

Step 3: Sensor Fusion

The key to obtaining a reliable overall in-
ference is the reliability of the differential diagnoses
which can be contributed by each sensor. Figure 3
shows a typical problem of differential diagnosis. For
this sensor, the main oxidizer valve surface and the
main fuel valve surface intersect. The set of hidden-
node-activations near this intersection are therefore
consistent with blockage of either the main oxidizer
valve or the main fuel valve. In this region of the
hidden-node space, differential diagnosis by this sen-
sor would be quite unreliable. On the other hand, for
points which are near one surface but not near to the
other surface, the data is consistent with only one
interpretation and therefore the differential diagnosis
is more reliable. Finally, points far from both surfaces
may indicate either an unknown condition or a faulty

sensor. These different possibilities may be repre-
sented by the set of distances from a given point
(s'jl, ..., s ' j ~) in the hidden-node space to each of the
M surfaces {~(Fj(ci~~ciz))], i = 1, ...N in that space (as
well as the distance to the "normal" ~ o i n t R(Pj(co))
derived from sensor values under normal s teady-state
conditions).

More specifically, let us define d~ to be the
distance from the point (s'jl, ..., s ' j ~) to the nearest
point on the surface R(Fj(cilxci2)), or to the normal
point R(Fj(c0)) when i = 0. Since the point (sj'l, ..., s ' j ~)
was derived from sensor Sj 's data, and since the
surface R(Fj(cilxci2)) gives the set of such points
predicted by hypothesis Cj, then dij indicates how far
sensor Sj 's data is from the predictions of hypothesis
Ci. This distance can be turned into a consistency
measure by defining a tolerance Di for each surface
derived from the variance observed in the set of train-
ing data used to determine each surface
R(Fj(cilxci2)). (A tolerance Do can also be defined
around the normal point R(Fj(c0)). A new data point
closer than this tolerance to the surface should be
taken as evidence in favor of the hypothesis, while a
data point farther away should be taken as evidence
against. We therefore take Di-dij as a measure of the
consistency of the data from sensor Sj with hypothesis
ci.

Suppose, then, tha t these consistency
measures are represented as activations of input
nodes in a layered neural network to perform sensor
fusion, as in Figure 4, In general, such a network
would require (M+l)xN input nodes
Xj, i = 1 ,... ,M, j = 1 ,... f18 that is, one node & for each
pairing between Mi1 hypothesized conditions and N
sensors (counting the steady-state condition as one
hypothesis). Each input node Xj of the sensor fusion
network receives a scalar input D i d 5 where Di is the
tolerance associated with surface R(6fcilxci~;)) and
where dij is the distance between the point
(s'ji, ..., s ' j ~) = R({sj4) and the surface R(q(cilxci2)).
(Recall that R is the data compression function per-
formed by the autoassociative network trainedin Step
1 above, andFj(ci2) gives the series of points generated
by parameter cia of condition Ci during the training of
Step 2.) Each such input node activation D idg there-
fore represents the consistency of data from sensor
Sj with hypothesis Ci.

The desired output of the sensor fusion net-
work is the most likely hypothesis based on all sensor
data. The network therefore contains M+l output

FIGURE 3. Surfaces representing Main Oxidizer Valve and Main Fuel Valve blockages for High Pressure Fuel
Turbopump Inlet Temperature sensor.

nodes, one node Yi for each possible hypothesis of a
fault condition Ci, i = I,...$', and one node Yo for the
hypothesis of normal steady-state operation. Given
these sets of input nodes and output nodes, and
restricting ourselves to one layer of (~ + 1) ~ hidden
nodes, we can then define two possible architectures
which differ only in the connectivity from the input
nodes to the hidden nodes and from the hidden nodes
to the output nodes. These two architectures are
described below:

Fusion Arcltitecture A is shown in Figwe 4. A
structured connectivity pattern is defined which con-
tains (M+I)~ hidden nodes Pa, i = Q @, k = 0 @.
First let us consider the case where i k. Each hidden
node IT&, i + k has random excitatory connections
from the set ofinput nodes FQ}, j = 1, ...,N, and random

inhibitory connections from the set of input nodes
pkj}, j = 1, ...,N. Hidden node f i therefore calculates
a weighted sum of evidence from all sensors. In this
weighted sum, evidence in favor of hypothesis Ci
counts positively, but evidence against hypothesis Ci
counts negatively. Conversely, evidence in favor of
condition Ck counts negatively in the weighted sum,
but evidence against hypothesis Ck counts positively.
Hidden node r i k is thus prewired to receive all data
relevant to a differential diagnosis of hypothesis Ci
over hypothesis Ck. (Conversely, hidden node Eik
would receive data relevant to a differential diagnosis
of hypothesis Ck over hypothesis Ci. For example, if
M=2 classes of fault conditions, then there are
M(M+1)=6 hidden nodes H'ik with i + k Go perfom all
pairwise differential diagnoses between hypotheses

Ci and Ck. These are illwtrakd as the upper 6 hidden
nodes in the middle layer of Figure 4.

The M+l remaining hidden nodes (designated
H'ii for convenience, i = 0, ...&i) are also prewired to
perform differential diagnoses, but in this case each
differential diagnosisETii is between (i) the hypothesis
that the current condition of the system is Ci, and (ii)
the hypothesis that the current condition of the sys-
tem belongs to some unknown class of anomalies
which has not been seen during training. (In the case
where M=2, there would be 3 such hidden nodes,
illustrated as the lower 3 hidden nodes of Figure 4.)
In essence, each of these hidden nodes H'ii is attempt.
ing to detect unknown anomalies in general, and more
specifically to differentiate the class of such unknown
anomalies from a particular known condition Ci. Since
by definition no training examples are available for
unknown anomalies, the hidden nodes H'ii are
prewired with inhibitory connections suitable for
detecting unknowns. Recall that the activity Di-dij of
each input node Xij is negative if the distance dij from
the nearest known condition Ci is greater than the
preset toIerance Di. Therefore, a negative activation
in any input node should count as a contribution to the
evidence for an unknown anomaly. Moreover, a nega-
tive activation in the particular input nodes Xij repre-
senting distance from the known condition Ci should
especially count as evidence to differentiate an un-
known anomaly from the known condition Ci. Each
hidden node f i i for detecting unknown anomalies
should therefore have some inhibitory input from all
input nodes (as evidence for an unknown anomaly),
and stronger inhibitory weights from the particular
input nodeszj, j = 0, ...,M(as evidence to differentially
diagnose an unknown anomaly from the condition Ci).
In figure 4, dotted lines from input nodes to the lower
3 hidden nodes indicate connections which are initial-
ly set to strongly inhibitory weights to perform each
differential diagnosis. As we have explained, there are
also weaker inhibitory connections (not shown in the
figure) from all other input nodes to each of the lower
3 hidden nodes.

The weights leading to any given hidden node
define a discriminant function which is customarily
thought of as a hyperplane in the space of all possible
input vectors. All points (input vectors) on one side of
this hyperplane result in a positive activation of the
~ v e n hidden node; all points on the other side result
in a negative activation. This discrimination is shar-
pened by the nonlinear sigmoid function applied to the
activation to yield the hidden node's output. The

INPUT

DISTANCE TO

FIGURE 4. Archltecture A: Prestructured to perform
differential diagnosis (ail connections not shown).
Solid lines indicate connections lnltialiy set to
positive wieghts (before training begins); dotted
lines indicate connections initially set to negatlve
weig hts.
weight changes of back propagation training in effect
move each hyperplane in a direction which lessens the
mean-squared error of the network's output over the
training set.

From this standpoint, the differential diag-
nosis performed by eachliidden node=&, k it i, can be

- thought of as a hyperplane intended to separate the
data points representing training examples of condi-
tion Ci from those representing training examples of
condition Cj. While the initial setting of weights biases
each hidden node H'ik to perform this differential
diagnosis, back propagation will move this hyperplane
in whichever direction minimizes the mean-squared
error of the network over the set of training examples.

Similarly, the role of each hidden nodeE;rii can
be viewed as a hyperplane intended to distinguish all
known conditions Ci on one side, from unknown
anomalies on the other side of the hyperplane. M+l
such hyperplanes are created by the hidden nodes
H'ii, i = 0, ...,M. These M+1 hyperplanes are initially
placed in different positions due to the stronger in-
hibitory weights assigned to the inputs Xy, j = 0, ...a
than to the other inputs by each particular hidden
node Xii, as explained above. Since no training ex-
amples are available for unknown anomalies, back
propagation might conceivably reduce the number of
known training examples erroneously classified as
unknown, but would not be expected to improve the
recognition of unknown anomalies as such. We
hypothesized, however, that the effect of this inherent
limitation of example-based training wouId be les-

s e n d by the prestructuring (initial setting of cannec- INPUT
tions and weights) of architecture A described above.

Finally, each output node Yi receives initially
excitatory connections from the hidden nodes
pik) k = l,...,M, (k + i), initially inhibitory connec-
tions from the hidden nodes Fki) k = 1, ...,kf, (k + i),
and an initially inhibitory connection from the hidden
node H'ii. Each output node Yi thus receives ex-
citatory input from all differential diagnoses favoring
hypothesis Ci, and inhibitory input from all differen-
tial diagnoses opposing hypothesis Ci.

Fusion Architecture B is shown in Figure 5.
This architecture has the same number of hidden
nodes as architecture A, and the same number ofinput
and output connections per hidden node, but with
random connectivity from input to hidden and hidden
to output layers, and random assignment of initial
weights. 'l!l~.G architecture is intended to serve as a
"control" case against which the effects of the initial
structuring of archikctureA can be evaluated.

Both architectures for sensor fusion were
trained with the same back-propagation algorithm,
using the outputs of the training data that were used
in step 2 to determine the surfaces
~ (F ~ (c ~ ~ x c ~))] , i = 1, ...p for each sensor j. Our
hypothesis was that the back-propagation algorithm .
constrained to the connectivity of architecture A
would (i) result in a set of weights from input nodes to
hidden nodes which allow the hidden nodes to perform
pairwise differential diagnoses, (ii) would reliably dif-
ferentiate unknown engine conditions (not present
during training) from the known classes of engine
conditions present during training (a capability ex-
pected to be lacking in the unstructured back propaga-
tion architecture B), and (iii) that this would be
accomplished without sacrificing diagnostic perfor-
mance for known engine conditions, in comparison to
the unstructured back propagation architecture.

Testing Procedure

The decomposed architecture (performing
data compression, hypothesis generation, and sensor
fusion) was trained as described in steps 1-3 above on
simulated SSME data for the four sensors illustrated
in Figure 1: high pressure fuel turbopump tempera-
ture, engine thrust, chamber coolant valve pressure,
and main fuel valve pressure. The training set con-
sisted of normal data and two fault conditions, main
oxidizer valve (MOV) blockage and main fuel valve
(MFV) blockage. Each fault condition was included in
the training set a t three different levels of severity,

$G&
DISTANCE TO ? sp

*> ..,.,. >... L:.~: . :$.. r. :.,
HIDDEN

DISTANCE TO
FAULT2

SURFACE

DISTANCE TO
NORMAL
POINT

FIGURE 5. Architecture B: Fully connected with
random initial weights (all connections not shown).
All connections are Initially set to random weights
drawn from a uniform distribution between -0.1 and
0.1.

and three different onset intervals for each level of
severity. In order to compare the performance of sen-
sor fusion architectures A and B, they were each
trained on the identical output of Steps 1 and 2 of the
training procedure.

After training was completed, the perfor-
mance of architectures A and B were compared on test
data containing the 3 "known" conditions used in
training (normal, MOV blockage, and MFV blockage)
and 2 additional fault conditions that were not
presented during training, Oxidizer Preburner Valve
(OPV) blockage and Fuel Preburner Valve (FPV)
blockage. These two additional "unknown" conditions
were included in order to test each architecture's
ability to detect fault conditions which had not been
included in the training set. 500 instances of each
condition were generated which differed only in the
amount of noise added to the simulated data. For each
noise level, 100 instances of each condition were
generated with the inclusion of random noise a t that
noise level. During testing each example was clas-
sified as one of the three training conditions (normal,
MOV blockage, or MFV blockage) based on the maxi-
mally active output node, or as "unknown" if none of
the output nodes was activated above its threshold
value. Each architecture (A and B) was ksted using a
range of different thresholds, and the threshold yield-
ing the best performance for that network was used.

Table I
Percent correct classification

at various noise levels performed by prestructured architecture A.

Table I1
Percent correct claseification

at various noise levele performed by fully connected architecture B.

Results and Discussion noise levels, As expected, the two architectures did
not differ greatly in their classification performance

Table I shows the results of testing sensor on these known conditions. This is consistent with our
fusion architecture A. AB explained above, this neural hypothesis that the initial structuring would not
network architecture was structured prior to training detract from the network's ability to correctly classify
to perform differential diagnoses among the different new examples of the same conditions presented
conditions to be presented during training, and be- during training.
tween each of th&e conditions and the class of un-
known faults not presented during training. Table I1
shows the results of testing architecture B using the
same training data and same testing data. Architec-
ture B differed from architecture Ain that the connec-
tion weights were not structured prior to training, but
rather were set to random initial values as typically
done in neural networks.

Each column in Tables I and I1 shows the
results obtained for a given noise level in the test data.
Within each column, classification performance (per-
cent correct classifica tions)is shown separately for the
normal operation condition and for each fault condi-
tion.

The first three rows of each table show the
performance on test data representing the three
known conditions (normal and two types of faults) that
were presented during training. The pelrfomance of
both architectures declined with the addition of
greater levels of noise to the test data, with architec-
ture A performing very slightly better at the higher

The last two rows of each table show the
results of testing with the two unknown fault condi-
tions which had not been presented during training.
Since a conventional back propagation networklearns
to classify based on its training examples only, we
expected architectureB not to be able to recognize new
fault conditions as unknown, but rather to classify
them into one of the classes that had been presented
during training. This is indeed what happened. Aa
shown in the last two rows of Table 11, its performance
was five percent or less correct classifications at each
noise level of these two unknown faults. Recall that
results are shown for the best threshold setting for
each network. In other words, there was no threshold
setting which would allow the output nodes of ar-
chitecture B to differentiate known examples from
unknown examples on the basis of its output node
activity.

Architecture A, by contrast, was able to cor-
rectly identify new faults as unknown, based on below-
threshold activity in all output nodes. This is shown

in the last two rows of Table I, in which all examples
of new faults a t all noise levels are correctly classified
on this basis. Since the only difference between ar-
cllitectures A and B is in the initial structuring of
connections prior to training, i t is reasonable to con-
clude that the initial structuring of architecture A to
perform differential diagnoses allows this network to

ldetect examples of unknown classes that were not
presented during training.

The structured back-propagation network of
architectureA could be viewed as a hybrid between a
knowledge-based expert system and an example-
trained neural network. In knowledge-based systems,
both the general format of the rules and the exact
instantiations of the rules are extracted from human
experts. In conventional back-propagation networks,
hidden nodes serve a function analogous to rules in an
expert system. The general format of such a "hidden-
node rule" is determined by which input nodes have
significant connections to each hidden node, while the
exact instantiation of such a rule is given by the exact
weights which result from training. In conventional
back-propagation, both the format of the hidden-node
rules and the exact instantiation of these rules are
implicitly determined from training examples by the
back-propagation algorithm. The structured back-
propagation architecture A above represents a hybrid
between these two approaches. The general format of
its "hidden-node rules" is determined in advance by
the connectivity specified for architecture A, and is
based on expert judgment about the general utility of
rules based on differential diagnosis. Within this
general format, however, the specific instantiation of
each differential diagnosis rule is determined by the
exact weights which are learned from training ex-
amples via back propagation. This initial structuring
of the back-propagation architecture using expert
human judgment allows the neural network to detect
the occurrence of faults for which no training ex-
amples were presented. This dependence on expert
human judgment is much less than in a rule-based
expert system, however, since the exact instantiations
of the rules are still learned from training examples.
Training based on examples should make these "hid-
den-node" rules easier to maintain than in a conven-
tional rule-based expert system. However, this
reduced dependence and implicit learning of "hidden-
node-rules" makes it more difficult to provide explana-
tions to the user about t l ~ e inference process.
Nevertheless, forcing the "hidden-node rules" into a
predefined format allows the behavior of the network
to be more easily compared with the behavior of

human experts than in the case of an unstructured
back-propagation network. This pobntially would
allow the networlr. to "explain" the reasons for its
diagnosis in terms understaclllable by a human
operator.

Acknowledgement

This work was performed within the Center
for Advanced Space Propulsion (CASP) and was sup-
ported in part by NASA Grant NAGW-1195 and Rock-
etdyne Contract No. R04QBZ90-032709. The Center
for Advanced Space Propulsion is part of The Univer-
sity of Tennessee-Calspan Center for Aerospace Re-
search, a not-for-profit organization located a t UTSI.
The authors would like to thank A. M. Norman for his
assistance during the course of this effort.

References

1. Cikanek, HA., "Space Shuttle Main Engine Failure
Detection", presented a t the 1985 American ControI
Conference, Boston, MA, June 19-21,1985.

2. Dietz, W.E., Kiech, E.L., and Ali, M., "Jet and
Rocket Engine Fault Diagnosis in Real Time", Journal
of Neural Network Computing, Vol. 1, No. 1,1989.

3. Dietz, W.E., Kiech, E.L., and Ali, M., "Pattern-
Based Fault Diagnosis Using Neural Networks", The
First International Conference on Industrial and En-
gineering Applications of Artificial Intelligence and
Expert Systems, Tullahoma, TN., pp 13-23, June 1-3,
1988.

4. Dietz, W.E., Kiech, E.L., and Ali, M. "Classification
of Data Patterns Using an Autoassociative Neural
Network Topology", The Second International Con-
ference on Industrial and Engineering Applications of
Artificial Intelligence and Expert Systems, The
University of Tennessee Space Institute, Tullahoma,
TN, pp. 1028-1036, June 6-9, 1989.

5. Rumelhart, D.E., Hinton, G.E., and Williams, R.J.,
"Learning Internal Representations by Error
Propagation", pp. 318-364, in Parallel Distributed
Processing, Vol. I, The MIT Press, Cambridge, IMA,
1987.

6. I~uczlcewski, R.M., Myers, M.H., and Crawford,
W.T., "Exploration of Backward Error Propagations
as a Self-organizational Stmcturre", TRW MEAI),
One Rancho Camel, San Diego, CA 92128.

