L=
View metadata, citation and similar papers at core.ac.uk brought to you by .. CORE

provided by NASA Technical Reports Server

N e)

/77
fe B2

The VIS-AD Data Model: Integrating Metadata and
Polymorphic Display with a Scientific Programming
Language

William L. Hibbard!%2, Charles R. Dyer? and Brian E. Paul!

lSpace Science and Engineering Center
2Computer Sciences Department
University of Wisconsin - Madison
whibbard@macc.wisc.edu

Abstract. The VIS-AD data model integrates metadata about the precision of
values, including missing data indicators and the way that arrays sample
continuous functions, with the data objects of a scientific programming
language. The data objects of this data model form a lattice, ordered by the
precision with which they approximate mathematical objects. We define a
similar lattice of displays and study visualization processes as functions from
data lattices to display lattices. Such functions can be applied to visualize
data objects of all data types and are thus polymorphic.

1. Introduction

Computers have become essential tools to scientists. Scientists formulate
models of natural phenomena using mathematics, but in order to simulate complex
events they must automate their models as computer algorithms. Similarly,
scientists analyze their observations of nature in terms of mathematical models, but
the volumes of observed data dictate that these analyses be automated as computer
algorithms. Unlike hand computations, automated computations are invisible, and
their sheer volume makes them difficult to comprehend. Thus scientists need tools
to make their computations visible, and this has motivated active development of
scientific visualization systems. Explicitly or implicitly, these systems are based on:

1. A data model - how scientific data are defined and organized.

2. A computational model - how computations are expressed and executed.

3. A display model - how data and information are communicated to a the user.

4. A user mode! - the tasks and capabilities (e.g., perceptual) of users.

5. A hardware model - characteristics of equipment used to store, compute with,
and display data,

Robertson et. al. [11] describe the need for a foundation for visualization
based on such formal models. The user and hardware models help define the
context and requirements for a system design, whereas the data, computational and
display models are actually high level components of a system design. Because

(NASA-CR-200164) THE VIS-AD DATA N96-18404
MODEL: INTEGRATING METADATA AND

POLYMORPHIC DISPLAY WITH A

SCIENTIFIC PROGRAMMING LANGUAGE Unclas
(Wisconsin Univ.) 32 p

G3/61 0099813

https://core.ac.uk/display/42778687?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

scientists explore into unknown areas of nature, they need models of data,
computation, and display that can adapt to change.

2. Data Model Issues

2.1 Levels of Data Models

A data model defines and organizes a set of data objects. Data models can
be defined at various levels of functionality [16]. Data models can describe:

1. The physical layout and implementation of data objects. At the lowest level, a
data model may describe the physical layout of bits in data objects. It is
widely acknowledged that this level should be hidden from users, and even
hidden from systems developers as much as possible. At a slightly higher
level, a data model may describe the data objects of a visualization system in
terms of the data objects of the programming language(s) used to implement
the system.

2. The logical structure of data. This level describes the mathematical and
logical properties of primitive data values, how complex data objects are
composed from simpler data objects, and relations between data objects.

3. The behavior of data in computational processes. This is a pure object-
oriented view of data. The internal structure of data objects is invisible, and
all that is specified is the behavior of functions operating on data objects.

While purely behavioral models of scientific data are possible, it is rare to
see a behavioral data model that does not refer to the logical structural of data. That
is, the behaviors of functions operating on objects are usually explained in terms
like "returns a component object” or "follows a reference to another object.” In
particular, most data models that are described as "object oriented" are object
oriented implementations of structural data models. In these cases, the internal
structure of objects is hidden in the sense of programming language scope rules, but
is not hidden in the user's understanding of object behavior. The idea of defining
complex things in terms of simpler things is extremely natural and convenient, so it
is not surprising that most data models are essentially structural. Furthermore,
structural data models permit automated analysis of data syntax (e.g., for query
optimization), but it is difficult to apply similar analyses to purely functional
specifications of data.

2.2 Structural Data Models
The physical and implementation levels address issues that should not be
visible to scientists using a system, and purely behavioral data models are rare.

Thus we focus on the structural level. At this level a data model needs to address
the following issues:

38

1. The types of primitive data values occurring in data objects. A primitive type
defines a set of primitive values. It may also define an order relation, basic
operations (e.g., addition, negation, string concatenation), and a topology
(e.g., the discrete topology of integers, the continuous topology of real
numbers) on the set of values. :

2. The ways that primitive values are aggregated into data objects. These may
be simple tuples of values, they may be functional relations between
variables, or they may be complex networks of values.

3. Metadata about the relation between data and the things that they represent.
For example, given a meteorological temperature, metadata includes the fact
that it is a temperature, its scale (e.g., Fahrenheit, Kelvin), the location of
the temperature and whether it is a point or volume sample, the time of the
temperature, an estimate of its accuracy, how it was produced (e.g. by a
simulation, by direct observation, or deduced from a satellite radiance), and
whether the value is missing (e.g., in case of a sensor failure).

A structural data model defines behavior rather than implementation, but
does so in terms of an underlying structure. That is, primitive types describe the
operations that can be applied to primitive objects, but do so under the assumption
that the state of a primitive object is a simple mathematical value. Similarly,
aggregate types describe operations that return objects as functions of other objects,
but do so in terms of hierarchical and network relations between objects. A purely
behavioral model would not place such constraints on operations on objects.

2.3 Extensive Versus Intensive Models for Types of Data Aggregates

The way that a structural data model defines types of data aggregates is an
important issue in the context of data visualization. Many visualization systems
define data models that are essentially finite enumerations of those aggregate types
for which the systems have implemented display functions. For example, a
visualization system's data model may include images, 3-D scalar and vector fields,
vector and polygon lists, and color maps. On the other hand, scientists writing
programs require flexibility in defining aggregate types. Thus programming
languages usually define data models in terms a set of techniques that let users
define their own (potentially infinite) sets of aggregate types. That is, users are
given language features like tuples (i.e., structures in C), arrays and pointers for
building their own structures. Visualization systems stress aspects of their data
models related to display models, whereas programming languages stress aspects of
their data models related to computational models.

In set theory, a set may be defined extensively as a list of members, or
defined intensively by a logical condition for membership. We borrow these terms,
saying that an extensive data model is one that defines a finite enumeration of
aggregate types, and saying that an intensive data model is one that defines a set of
techniques for building a potentially infinite set of aggregate types. Systems
designed for particular applications, including many scientific visualization

39

systems, tend to define extensive data models, while programming languages tend
to define intensive data models.

Scientists need data models that can support general computational models
and can also support general display models for all data objects. Object oriented
techniques provide one approach to this need. Each aggregate type in an extensive
data model can be defined as a different object class. Inheritance between classes
simplifies the task of designing new types of aggregates, and polymorphism allows
analysis and display functions to be applied uniformly to many different aggregate
types. However, this approach still requires users to explicitly define new object
classes and their display functions. An approach based on intensive data models
may be easier for scientists to use.

2.4 Models for Metadata

Programming languages and visualization systems differ in their level of
support for metadata. While programming languages offer users the flexibility to
build their own logic for managing metadata, they have no intrinsic semantics for
the relation between data and its metadata. For example, scientists may adopt the
convention that -999 represents a missing value, but since the programming
languages that they use do not implement any special semantics for this value, their
programs must include explicit tests for this value. On the other hand, many
scientific visualization systems do intelligently manage the relation between data
and its metadata. For example, some systems implement missing data codes, some
systems manage information about the spatial locations of data (sometimes called
data navigation), and some systems manage information needed to normalize
observations to common scales (sometimes called data calibration).

3. Data Lattices

Mathematical models define infinite precision real numbers and functions
with infinite domains, whereas computer data objects contain finite amounts of
information and must therefore be approximations to the mathematical objects that
they represent. For example, a 32-bit floating point number represents real
numbers by a set of roughly 2232 different values in the range between -10738 and
+10”38, plus a few special codes for illegal and out-of-range values. Since most
real numbers are not members of this set of 2732 values, they can only be
approximately represented by floating point numbers. As another example, a
satellite image is a finite sampling of a continuous radiance field over the Earth.
The image contains a finite number of pixels, and pixels sample radiance values in
finite numbers of bits (8-bit values are common). Thus the satellite image can only
approximate the continuous radiance field. Satellites and other sensor systems are
fallible, so scientists usually define missing data codes to represent values where
sensors failed. These missing data codes may be interpreted as approximations that
contain no information about the mathematical values that they represent.

40

We can define an order relation between data objects based on the fact that
some are better approximations than others. That is, if x and y are data objects,
then we define x < y to mean that y is consistent with x, and that y provides more
precise information than x does. We illustrate this order relation using closed real
intervals as approximations to real numbers. If w is a real number, and if [a,] is
the real interval of numbers between a and b, then [a, 5] is an approximation to w if
w belongs to the interval [a, b] (i.e., if a <w<b). Given two intervals [a, b]
and {c, dl, we say that {a, b} < [c, d] if [c, d] < [a, b]. This is because the smaller
interval provides more precise information about a value than the containing
interval does. Letting the symbol L represent a missing data code, then L provides
less precise information about a real value than any interval, so we can say that 1 <
la. b} for any interval {a, b]. Figure 1 shows a few closed real intervals and the
order relations among those intervals.

[0.0, 0.0) [0.01, 0.01] [0.5, 0.5] [0.945, 0.945)
\ / /\
[0.0, 0.01) [0.93,0.95] [0.94,0.97]
| N\ /
[0.0,0.1] [0.9, 1.0]
\ /

(0.0, 1.0]

4

Figure 1. Closed real intervals are used as approximate representations of real numbers,
ordered by the inverse of containment (i.e., containing intervals are "less than" contained
intervals). We also include a least element L that corresponds to a missing data indicator.
This figure shows a few intervals, plus the order relations among those intervals. The
intervals in the top row are ail maximal, since they contain no smaller interval.

We interpret arrays as finite samplings of functions. For example, a
function of a real variable may be represented by a set of 2-tuples that are (domain,
range) pairs. The set {({1.1, 1.6], [3.1, 3.4]), ([3.6, 4.1}, [5.0, 5.2)), ([6.1, 6.4},
[6.2, 6.5])} contains three samples of a function. The domain value of a sample lies
in the first interval of a pair and the range values lies in the second interval of a
pair, as illustrated in Fig. 2. Adding more samples, or increasing the precision of
samples, will create a more precise approximation to the function. Figure 3 shows
the order relations between a few array data objects.

In general we can order arrays to reflect how precisely they approximate
functions. If x and y are two array data objects that are both finite samplings of a
function, and if, for each sample of x, there is a collection of samples of y that
improve the resolution of the function's domain and range over the sample of x,
then x < y. Intuitively, y contains more information about the function than x does.

41

(6.2, 6.5]

(5.0,5.2] /

[3.1, 3.4] //_\-—/

(1.1, 1.6] (3.6, 4.1] [6.1,6.4]

Figure 2. An approximate representation of a real function as a set of pairs of intervals.

{((1.33, 1.40], [3.21, 3.24)), {(f1.1, 1.6], [3.1, 3.4)),
([3.72, 3.73), {5.09, 5.12)), ([3.6, 4.1}, [5.0, 5.2)),
([6.21, 6.23], [6.31, 6.35))} ([6.1,6.4], [6.2, 6.5]),

\ (7.3, 7.5], [8.1, 8.4])}

{[1.1, 1.6], [3.1, 3.4)),
(3.6, 4.1], [5.0, 5.2)),
(6.1, 6.4], [6.2, 6.5])}

{{.1.18), L),
(3.6, 4.1, [5.0, 5.2)),
(6.1, 6.4], 1)}

¢ (the empty set)
Figure 3. A few finite samplings of functions, and the order relations among them.

3.1 A Scientific Data Model

42

Now we will define a data model that is appropriate for scientific
computations. We describe this data model in terms of the way it defines primitive
values, how those values are aggregated into data objects, and metadata that
describes the relation between data objects and the mathematical objects that they
represent.

The data model defines two kinds of primitive values, appropriate for
representing real numbers and integers. We call these two kinds of primitives
continuous scalars and discrete scalars, reflecting the difference in topology
between real numbers and integers. A continuous scalar takes the set of closed real
intervals as values, ordered by the inverse of containment, as illustrated in Fig. 1. A
discrete scalar takes any countable set as values, without any order relation between
them (since no integer is more precise than any other). Figure 4 illustrates the
order relations between values of a discrete scalar. Note that discrete scalars may
represent text strings as well as integers. The value sets of continuous and discrete
scalars always include a minimal value L corresponding to missing data.

Figure 4. A discrete scalar is a countable (possibly finite) set of incomparable elements, plus
a least element L.

0 1 2

Our data model defines a set T of data types as ways of aggregating
primitive values into data objects. Rather than enumerating a list of data types in 7,
the data model starts with a finite set S of scalar types, representing the primitive
variables of a mathematical model, and defines three rules by which data types in T
can be defined. These rules are:

1. Any continuous or discrete scalar in S is a data type in 7. A scientist using
this data model typically defines one scalar type in § for each variable in his
or her mathematical model.

2.1If ¢y, ..., t, are types in T, then struct{ty;....tp} is a tuple type in T with
element types t;. Data objects of tuple types contain one data object of each
of their element types.

3. If wis a scalar type in S and r is a type in T, then (array [w] of r) is an array
type with domain type w and range type r. Data objects of array types are
finite samplings of functions from the primitive variable represented by their
domain type to the set of values represented by their range type. That is,
they are sets of data objects of their range type. indexed by values of their
domain type.

43

Each data type in T defines a set of data objects. Continuous and discrete
scalars define sets of values as we have described previously. The set of objects of a
tuple type is the cross product of the sets of objects of its element types. The set of
objects of an array type is not quite the space of all functions from the value set of
its domain type to the set of objects of its range type. Rather, it is the union of such
function spaces, taken over all finite subsets of the domain's value set.

A tuple of data objects represent a tuple of mathematical objects, and the
precision of the approximation depends on the precision of each element of the
tuple. One tuple is more precise than another if each element is more precise.
That is, (x|, ..., Xp) £ (1, -... V) if x; <y; for each i. Figure 5 illustrates the order
relations between a few tuples.

(A, B,E)
(A, LLE) (A,B, 1) (L, B,B)
>
(AL, 1) Ll L E) 4,B, 1)
&L

Figure S. Defining an order relation on a cross product. Members of cross products are
tuples. This figure shows a few elements in a cross product of three sets, plus the order
relations among those elements. In a cross product, the least element is the tuple of least
elements of the factor sets.

An array data object is a finite sampling of a function, and the precision of
approximation depends on how precisely the function's domain is sampled and the
precision of the array's range values. If an array is indexed by a continuous scalar,
the interval values of the index indicate how precisely the function's domain is
sampled, as illustrated in Figs. 2 and 3.

By building hierarchies of tuples and arrays, it is possible to define data
types in T that represent virtually any mathematical model used in the physical
sciences. For example, consider a set of data types appropriate for analyzing
meteorological observations. The scalar types used to represent primitive variables
for this analysis include:

temperature - thermometer reading (continuous)

44

dew_point - wet bulb thermometer reading (continuous)

pressure - barometer reading (continuous)

count - frequency count of values in a histogram (discrete)
station_name - name of observing station (discrete)

latitude - latitude of observing station (continuous)
longitude - longitude of observing station (continuous)

time - time of observation (continuous)

The complex data types for this analysis include:

station_reading = struct{
.sta_temp = temperature;
.sta_dew = dew_point;
.sta_pres = pressure;
} S
station_series = (array [time] of station_reading)
station_set = (array [station_name] of

struct{
.set_series = station_series;
.set_lat = latitude:
.set_lon = longitude;

}

temperature_histogram = (array [temperature] of count)

A data object of the station_reading type includes one value for each instrument at a
weather observing station. A data object of type station_series contains a sequence
of station_reading objects, that finitely sample continuous functions of
meteorological fields over time. A data object of type sfation_set is an array that
associates a time series of readings and Jatitude and longitude locations to each of a
finite set of station_names. A data object of the femperature_histogram type
contains frequency counts of intervals of femperatures. In this case, the interval
values of the temperature represent the bins used for histogram calculation.

The lattice data model defines certain metadata about the relation between
data objects and the mathematical objects that they represent, including:

1. Every primitive value in a data object is identified by the name of the
primitive mathematical variable.

2. An array data object is a finite sampling of a mathematical function. The set
of index values of the array specify how the array samples the function being
represented.

3. The interval values of continuous scalars are approximations to real numbers
in a mathematical model, and the sizes of intervals provide information
about the accuracy of their approximations.

45

4. Any scalar data object may take the missing value (denoted by L) and this
provides information about accuracy (i.e., the fact that the value has no
accuracy).

3.2 Interpreting the Data Model as a Lattice

We view a data display process as a function from a set of data objects to a
set of display objects. Our data model defines a different set of data objects for each
different data type, suggesting that a different display function must be defined for
each different data type. However, we can define a lattice U of data objects and
natural embeddings of data objects of all data types into U. The lattice U provides
us with a unified model for all of our scientific data objects, and enables us to define
display functions that are applicable to all data types (i.c., these display functions
are polymorphic). Our analysis of the properties of display functions will thus be
independent of particular data types.

A lattice is an ordered set U in which every pair of elements x and y has a
least upper bound sup{x, y} [this is z such that x<z,y<zandVwe U. (x<w
& y s w = z < w)] and a greatest lower bound inf{x, y}. A lattice U is complete if it
contains the least upper bound sup(4) and the greatest lower bound inf{4) for any
subset A c U.

We define a data lattice U whose members are sets of tuples. The primitive
domains of this data lattice are defined by a finite set S of scalar types, and the tuple
space is the cross product of the sets of values of the scalar types in S. Define / as
the set of values of a scalar s € S and define X = X{/; | s € S} as the cross product
of these scalar value sets. Members of our data lattice are subsets of X. Figures 1
and 4 illustrate the order relations on the scalar value sets /g, and Fig. 5 illustrates
the order relation on the set X of tuples.

Members of U are subsets of X. However, there is a problem with defining
an order relation between subsets of X that is consistent with the order relation on X
and is also consistent with set containment. For example, ifa, b € X and a < b, we
would expect that {a} < {b}. Thus we might define an order relation between
subsets of .U by:

VA, BcX.(A<BoVaecAd.3be B asb) Q)

However, given a < b, (1) implies that {b} < {a, b} and {a, b} < {b} are both true,
which contradicts {6} # {a, b}. This problem can be resolved by restricting the
lattice Uto sets of tuples such every tuple is maximal in the set. That is, a set
A < X belongs to the lattice U if a < b is not true for any pair a, b € 4. (Actually,
the situation is a bit more complex - see [7] for the details.) The members of U are
ordered by (1), as illustrated in Fig. 6, and form a complete lattice.

46

{(A,B, 1)}

{(a, L1, 1), (4, B, 1)}

[\

{(A, L, 1)} y B, 1)}
&L L)

¢ =the empty set

Figure 6. A few members of a data lattice U defined by three scalars, and the order relations
between them.

To get an intuition of how data types are embedded in the lattices, consider
a data lattice U defined from the three scalars time, temperature and pressure.
Objects in the lattice U are sets of tuple of the form (time, temperature, pressure).
We can define a tuple data type struct{temperature; pressure}. A data object of this
type is a tuple of the form (temperature, pressure) and can be modeled as a set of
tuples (actually, it is a set consisting of one tuple) in U with the form {(L,
temperature, pressure)}. This embeds the tuple data type in the lattice U, and Fig.
7 illustrates this embedding.

embedding of a tuple type

into a lattice
N
(temp1, pres1) 7 {(1, temp1, pres1)}
an element of the tuple type a member of the lattice of sets of tuples
(temperature, pressure) of the form (time, temperature, pressure)

Figure 7. An embedding of a tuple type into a lattice of sets of tuples.

Similarly, we can embed array data types in the data lattice. For example,
consider the same lattice U defined from the three scalars time, femperature and
pressure, and consider an array data type (array [time] of temperature). A data
object of this type consists of a set of pairs of (time, temperature). This array data
abject can be embedded in U as a set of tuples of the form (time, temperature, 1).
Figure 8 illustrates this embedding. The basic ideas presented in Figs. 7 and 8 can
be combined to embed complex data types, defined as hierarchies of tuples and
arrays, in data lattices. The details are explained in [6] and [7].

47

{(time1, temp1), {(time1, temp1, L),

{time2, temp2), (time2, temp2, 1),

embedding of an

(time3, temp3), array type into (time3, temp3, 1),
a lattice
AN
7
(timeN, tempN)} (timeN, tempN, L)}
array of temperature values set of tuples with pressure
indexed by time values values = |

Figure 8. An embedding of an array type (a functional dependency between scalar types) into
a lattice of sets of tuples.

If x € X is the embedding of a data object of a type ¢ € T, and if the scalar s
does not occur in the definition of #, then the s values of all the tuples in x will be L.
Also, in order to embed data objects in the data lattice U, we must restrict T to the
set of data types ¢ such that no scalar s occurs more than once in the definition of ¢.
We note that, for each type in t € T, the embedding of data objects of type ¢ into U is
an order embedding. This means that if @ and b are objects of type ¢ then a < b if
and only if E{a) < E/b), where is E; is the embedding of objects of type 1.

Lattices and other kinds of ordered sets have played an important role in
the denotational semantics of programming languages [2, 12, 13, 14, 15], and they
can also play an important role in visualization.

3.3 Display Lattices

Our lattice structure can also be used to model displays. This is motivated
by analogy with the display model of Bertin {1]). He defined a display as a set of
graphical marks, and identified eight primitive variables of a graphical mark: two
spatial coordinates of the mark in a graphical plane (he restricted his attention to
static 2-D graphics), plus size, value, texture, color, orientation, and shape. Bertin
defined diagrams, networks and maps as spatial aggregates of graphical marks. By
defining a graphical mark as a tuple of its graphical primitive values, a display can
be viewed as a set of tuples.

We define a finite set DS of display scalars that represent graphical
primitives and we interpret a tuple of values of the display scalars as a graphical
mark. Similar to the data lattice U, we define a display lattice ¥ whose members
are sets of tuples of values of display scalars.

We can define a display lattice for static 2-D displays using five continuous
display scalars: two for image coordinates plus three for color components (e.g., red,
green and blue). In this model, a display is a set of colored rectangles. The interval
values of the image coordinate scalars in a tuple specify the size and location of the

48

rectangle on the screen, and the interval values of the color component scalars
specify the range of colors used in the rectangle. This model can be extended to
dynamic 3-D displays, by adding two more display scalars: one for a third image
coordinate and another for indicating a graphical mark's location in an animation
sequence. The three image coordinates then specify the locations and sizes of 3-D
rectangles that must be projected onto a 2-D display screen (where multiple
rectangles are projected to the same screen location, their colors must be combined
according to some compositing algorithm). The values of the animation scalar are
used to select tuples for display. At any instant during data display, an animation
index takes an interval value, and only those tuples whose animation scalar
intervals overlap this animation index value are displayed. By sequencing through
values of the animation index, the display screen contents will change, providing a
dynamic display. Figure 9 illustrates the role of the various display scalars in this
display model.

set of animation steps:

HEEREEEEE

X
interval that mark persists
during animation ‘
tuple of display
scalar values
" for a graphical
mark (time, red, green, blue, x, y, 2)

[) . .
: location and size
_T of mark in volume
F [] ranges of values of
L mark’s color components
I

red green blue
Figure 9. The roles of the display scalars in an animated 3-D display model.

Just like computer data objects, computer displays contain finite amounts
of information. Pixels and voxels have limited resolution, colors are specified with
limited precision, animation sequences consist of finite numbers of steps, etc. The
lattice structure of V orders displays based on their information content.

Display models need not be limited to such primitive values as spatial
coordinates, color components and animation indices. For example, consider a
display model where a display consists of a set of graphical icons distributed at
various locations in a display screen. This display modei could be defined using

49

three display scalars: a horizontal screen coordinate, a vertical screen coordinate,
and an icon identifier. Then a single value of the icon identifier display scalar
would represent the potentially complex shape of a graphical icon. Or, a set of
display scalars may form the parameters of a complex graphical shape. For
example. 2-D ellipses may be used as graphical marks, parameterized by five
display scalars for their center coordinates, orientations, and the lengths of their
major and minor axes.

3.4 Data Display as a Mapping From a Data Lattice to a Display Lattice

We model a display process as a function D:U—V that generates a display
in ¥/ from any data object in U. Rather than defining such functions constructively,
in terms of algorithms for calculating a display D(u) from a data object ¥ € U, we
will define conditions on D and study the class of functions satisfying those
conditions. For our conditions, we interpret Mackinlay's expressiveness conditions
[8] in the lattice context. These conditions require that a display encode all the
facts about a data object, and only those facts. As we show in [6] and [7], we can
interpret these conditions as:

Condition 1. VP € MON(U - {1, 1}).
30 € MON({DMAX(X)) - {L,1}).P=Q0D

Condition 2. Vu € U. D(u) € 1D(X) and VQ € MON({D(MAX(X)) — {L , 1}).
3P € MON(U - {1, 1}). 0=Po D"l

D
Us = = | DIMAX(X))
D
P Q
(1)

Figure 10. Expressiveness Conditions 1 and 2 interpreted as a commuting diagram. The
conditions require that a display function D generate a one-to-one correspondence between
the set of monotone functions £ and the set of monotone functions 0, going both ways around

the diagram.

Here MON(U —» {1, 1}) is the set of monotone functions from U to the set {L , 1},
MAX(Y) is the set of maximal tuples in X and thus the maximal element of U, and
1D(MAX(X)) is the set of all displays in V less than the display of MAX(X). A
function P is monotone if x < y implies P(x) < P(y). We interpret facts about data
objects as functions in MON(U — {1 , 1}) and we interpret fact about displays as
functions in MON(V — {1, 1}) (however, we limit this to displays less than the

50

display of the maximal data object). Condition 1 says that for every P there is a Q
that makes the diagram in Fig. 10 commute, and Condition 2 says that for every Q
there is a P that makes the diagram commute.

We say that a function D:U—V is a display function if it satisfies
Conditions 1 and 2. In [7] we prove:

Proposition 1. D:U—V is a display function if and only if it is a lattice isomorphism
from U onto D(MAX(X)), which is a sub-lattice of V.

The definition of display function, and the proof of this proposition, do not
refer to the construction of data and display lattices in terms of scalars (although
that construction motivates some of the discussion). The set MAX(X) plays a role in
the definition of display function and in our proofs, but only as the maximal
element of the lattice U. Since any complete lattice has a maximal element (i.c., the
sup of all its elements), this result is true for any pair of complete lattices U and V.

In the special case that the lattice U and V are constructed from scalars and
display scalars as described in Sects. 3.2 and 3.3, display functions can be
characterized by simple mappings from scalars to display scalars. Specifically, for a
scalar s € S, define an embedding Eg/;—>U by Ey(b) = (L,....b,...,.1) (this notation
indicates that all components of the tuple are L except b) and define U = E(/g) <
U. Similarly, for a display scalar d € DS, define an embedding E .y — V by
Efb) =(1,...,b,....1) and define V= EAIl;) < V. These embedded scalar objects
play a special role in the structure of display functions. In [7] we prove:

Proposition 2. If D:U-V is a display function, then we can define a
mapping MAP :S—>POWER(DS) such that for all scalars s € S and all for a € U
there is d € MAPp(s) such that D(a) € V5. The values of D on all of U are
determined by its values on the scalar embeddings Uy (see [7] for the details).
Furthermore,

(@ Ifsisdiscrete and d € MAPp(s) then d is discrete,

() Ifsis continuous then MAP(s) contains a single continuous display scalar.
(©) Ifs#s' then MAPp(s) n MAPD(s) = $.

This tells us that display functions map scalars, which represent primitive
variables like time and temperature, to display scalars, which represent graphical
primitives like screen axes and color components. Most displays are already
designed in this way, as, for example, a time series of temperatures may be
displayed by mapping time to one axis and temperature to another as illustrated in
Fig. 11. The remarkable thing is that Prop. 2 tells us that we don't have to take this
way of designing displays as an assumption, but that it is a consequence of a more
fundamental set of expressiveness conditions. Figure 12 in Sect. 4.4 provides a
more detailed example of how a display function is defined by a set of mappings
from scalars to display scalars.

51

mycH>»amogm-

TIME
Figure 11. A time series displayed as a graph.

Display functions of the form D:U—V are polymorphic in that sense that
they can be applied to data objects of any type in 7. Furthermore, our lattice results
show that we can define such functions in terms of a set of mappings from scalars to
display scalars. Just as data flow systems define a user interface for controlling how
data are displayed based on the abstraction of the rendering pipeline, we can define
a user interface for controlling how data are displayed based on the abstraction of
scalar mappings.

4, The VIS-AD Data Model

The VIS-AD (VISualization for Algorithm Development) system was
designed to help scientists visualize their computations [5]. The system can be
understood in terms of its data model, computational model and display model. The
VIS-AD computational mode! is an imperative programming language of the type
familiar to scientists (it is similar to C). The system's data model is based on the
data lattice defined in Sect. 3.2. The data types and data objects of the lattice are
just the types and objects of the VIS-AD programming language. Furthermore,
metadata is integrated into this data model and plays a special role in the semantics
of the programming language.

The biggest difference between the VIS-AD data model and the data lattice
defined in Sect. 3.2 is the way that users define scalar types in S. A VIS-AD
program defines scalar types as real, real2d, real3d, int ot string. The int and
string scalars are discrete scalars, and the real scalars are continuous scalars. The
real2d and real3d scalars take pairs and triples of real intervals as values, and were
included in the VIS-AD system to simplify the definition of spatial data types (e.g.,
the scalar latitude _longitude defined in the next section is a real2d scalar used as
an index for 2-D image arrays).

4.1 Examples of User Defined Data Types

52

Users of VIS-AD can build types as arbitrary hierarchies of tuples and
arrays, which provides the flexibility to adapt to scientific applications. VIS-AD's
two- and three-dimensional real scalars make it easier to define types for spatial
data like satellite images. The VIS-AD programming language provides a simple
syntax for defining data types, as illustrated by the following examples taken from
an algorithm for discriminating clouds in time series of multichannel GOES
(Geostationary Operational Environmental Satellite) images.

type ir_radiance = real;
type vis_radiance = real,
type latitude_longitude = real2d;
type time = real;
type image_region = int;
type count = int;
type goes_image =
array [latitude_longitude] of
structure {
.Am_ir = ir_radiance;
.im_vis = vis_radiance;
}
type goes_partition = array [image_region] of goes_image;
type goes_sequence = array [time] of goes_partition;
type histogram = array [ir_radiance] of count;
type histogram_partition =
array [image_region] of
structure {
.hist_loc = latitude_longitude;
.hist_hist = histogram;
}

In these examples, a goes_image data object is an array of pixels indexed
by /atitude_longitude values, where each pixel is a structure containing infrared and
visible radiances. A goes partition object divides an image into regions, and
includes a goes_image object for each value of image_region. A goes_sequence
object is a time sequence of goes_partition objects. A histogram data object
provides a frequency count of the number of occurrences of each ir_radiance value
in an image_region, and a histogram_partition object associates a histogram object
and a /atitude_longitude value with each image region.

4.2 Integrating Metadata with Programming Language Semantics
Unlike the situation in other programming languages, VIS-AD's arrays

may be indexed by real values, or even by two- or three-dimensional real values.
This is because VIS-AD's array types are defined as finite samplings of functional

53

relations from variables (i.e., from scalar types) to other data types. Thus metadata
about the sampling of values is built into the semantics of the VIS-AD
programming language. This has important consequences for the way that
scientific data are manipulated and displayed. For example, an Earth satellite
image is really a finite sampling of a continuous radiance field. If the pixels of an
image are stored in an array in an ordinary language, the pixels are indexed in the
array by integers, and the Earth locations of pixels must be managed separately.
Thus the programming language has no information about the association between
pixel values and their locations. However, if this satellite image is stored in a
goes_image object, then the pixels are indexed with latitude_longitude values, and
the programming language does have access to the locations of pixels. This enables
the system to display a goes_image object in an Earth based frame of reference. If
images from different sources (each with its own Earth projection) are overlaid in a
display, the system can use the information about pixel locations to geographically
register these images.

In the VIS-AD data model, all scalar values are managed in terms of finite
samplings of infinite value sets. In addition to determining the values of array
indices, this also determines the sampling and accuracy of values in arrays and
tuples. For example, if a satellite sensor generates radiances as 8-bit quantities,
then pixel values are really indices into a set of 256 samples of real radiance values.
The scale of these real values may be a standard radiance, in which case the set of
256 values encodes the calibration of the satellite's sensor. Thus VIS-AD's
management of sampling information can be used to encode satellite navigation and
calibration information. Furthermore, sensor systems are fallible, so it is often the
case the no value is defined for some pixels. In the VIS-AD data model, any data
object or sub-object may take the special value missing, indicating the absence of
information. Because missing values are part of the data model, they can be part of
programming language semantics and display semantics.

We will use a satellite image example to illustrate how sampling
information and missing data indicators are integrated with programming language
semantics. In this example, we calculate the difference between images generated
by different satellites. Let goes east, goes west and goes_diff be data objects of
type goes_image, and let loc be a data object of type latitude longitude. Assume
that the goes_east and goes_west images were generated by GOES satellites at East
and West stations over the U.S., so that they have different Earth perspectives.
Then the following program calculates the difference between these images:

sample(goes_diff) = goes_east;
foreach (loc in goes_east) {
goes_diffTloc] = goes_east[loc] - goes_west{loc];

}

The first line specifies that goes_diff will have the same sampling of array index
values (i.e., of pixel locations) that goes_east has. The foreach statement provides
a way to iterate over the elements of an array. In this case it iterates loc over the

54

pixel locations of the goes_east image. The expression goes_west[loc] resamples
the goes_west image at the Earth location in loc. If loc falls in an area where there
are no goes west pixels, then goes west{loc] evaluates to missing. VIS-AD's
arithmetic operations evaluate to missing if any of their operands are missing, so if
goes_westlloc] is missing then the difference goes_difflloc] is also set to missing.

The VIS-AD programming language provides vector operations, so this
little program can also be expressed as:

goes_diff = goes_east - goes_west,

The resampling of goes_west index values, and the evaluation to missing where
there are no goes_west pixels, are implicit in this statement.

Users can access metadata about sampling and missing data explicitly. For
example, the statement:

foreach (loc in goes_east) { ... }

iterates Joc over the samples of the goes_east array. Missing data indicators may be
explicitly accessed using these statements:

if (goes_east == missing) { ... }
goes_east[loc].im_ir = missing;

However, because of the special role of metadata in the semantics of the VIS-AD
programming language, users rarely need to do explicit calculations with this
metadata.

The integration of sampling information and missing data is generic, rather
than specific to images. Thus the techniques illustrated in this satellite image
example can be applied to any user-defined data types. As our simple programming
example shows, this can relieve users of the need to explicitly keep track of missing
data, the need to manage the mapping from array index values to physical values,
and the need to check bounds on array accesses. The key to these advantages is that
metadata is integrated into the data semantics of a programming language.

We can summarize the kinds of metadata that are integrated with the
" VIS-AD data model. They are:

1. Sampling information; every value in a data object is taken from a finite
sampling of primitive values.

2. Missing data indicators; any value or sub-object in a data object may take the
special value missing which indicates the lack of information.

3. Names for values; every primitive value occurring in a data object has a scalar
type. and hence a name (i.c., the name of the scalar type).

Because these kinds of metadata are integrated with the data model, they are part of
the computational and display semantics of the VIS-AD system. Note that the

55

VIS-AD programming language semantics do not integrate the accuracy
information of interval values. However, this accuracy information could be
integrated using interval arithmetic [10].

4.3 Other Types of Metadata

There are a great variety of kinds of metadata that scientists use to interpret
their data. While some of these are integrated with the VIS-AD data model, the
flexibility to define data types gives users a means to include other kinds of
metadata in their data objects. For example, users of satellite images may want to
manage the following kinds of information with their images:

1. Sensor identification. Satellites often have redundant sensors for measuring
the same radiances, each with slightly different characteristics. Scientists
sometimes need to know which sensor was used to generate a particular
image.

2. Satellite sub-point. This is the Earth location (i.e., latitude longitude)
directly under the satellite, and is useful as a rough guide to image coverage.

3. Pixel scan rate. Images are often scanned over a significant time interval, and
the scan rate in pixels per second can help assign precise times to pixel
radiances.

4. Various measurements of the sensor systems, like voltages, temperatures and
pressures. These are often used to diagnose problems with image quality.

We can create a new image type that includes these kinds of information, as
follows:

type ir_radiance = real;
type vis_radiance = real;
© type latitude_longitude = real2d;
type pixel_rate = real;
type sensor_id = string;
type temperature = real;

type voltage = real;
type annotated_goes_image =
structure {

.image_sensor = sensor_id;
.image_subpoint = latitude_longitude;
.image_pixel_rate = pixel_rate;
.image_sensor_temp = temperature;
.image_sensor_cathode = voltage;

56

.image data =
array [latitude_longitude] of
structure {
Am_ir = ir_radiance;
.im_vis = vis_radiance;

}

While these kinds of metadata are not part of the semantics of the
programming language, they are part of data objects and can be accessed by users'
programs.,

4.4 Data Display in VIS-AD

The VIS-AD display model is similar to the display lattice ¥ described in
Sect. 3.3, and is realized as a set of interactive, animated, 3-D voxel volumes. It is
defined in terms of a set of display scalars that include;

x, y and z coordinates of graphical marks in a 3-D volume

color values of graphical marks

a set of contour values; for each contour display scalar iso-surfaces and iso-lines
are interpolated through the graphical marks in the 3-D volume

an animation value, graphical marks whose animation value overlaps an
animation index are selected for display

a set of selector values, used to model abstract user control over display
contents; the user selects a set of values for each selector display scalar, and
only those graphical marks that overlap that set are displayed

Figure 12 illustrates the way that user's of VIS-AD control how their data
types are displayed. An image_sequence data object is a time sequence of images
with two spectral channels called ir (infrared) and vis (visible). Image pixels are
indexed by pairs of real numbers specifying their Earth locations. Users define
mappings from the scalar types of their application to the display scalar types that
define the VIS-AD display model. The mappings indicated by arrows in Fig. 12
will cause an image_sequence data object to be displayed as an animated sequence
of colored terrains, where the ir channel will determine the height of the terrain and
the vis channel will determine its color. Users can interactively change the
mappings from scalars to display scalars (e.g., change the mappings in Fig. 12 by
mapping ir to color and mapping time to y - this will create a time series of images
stacked up along the y axis). They can also interactively control the functions by
which scalar values determine display scalar values (e.g., by adjusting color tables
for the mapping of vis to color in Fig. 12). Data objects may be displayed according
to multiple sets of mappings simultaneously.

57

type image_sequence =
array {time] of array [lat_lon] of structure {ir; vis;}

o [| F

<~ /M JUT

red green blue

O]
e
/
1

oo~

AEEREEEER

90 ~T"n3g~Taw

Figure 12. Users of VIS-AD control how data are displayed by defining mappings from the
scalar types used to define complex data types to the display scalars used to define the
VIS-AD display model.

The interface for controlling displays, consisting of the definitions of scalar
mappings, is de-coupled from the VIS-AD programming language. This is
important, because it allows users to control the display of their data objects without
embedding explicit calls to display functions in their programs.

The VIS-AD system is available by anonymous ftp from iris.ssec.wisc.edu
(144.92.108.63) in the pub/visad directory. The README file contains
instructions for retrieving and installing the system. '

5. Extending Data Lattices to More Complex Data Models

In Sect. 3.4 we described how a function D:U-V satisfying the
expressiveness conditions must be a lattice isomorphism. Although we motivated
this result in the context of a specific lattice structure for U and V (i.e., their
members are sets of tuples of scalar values), the proof of this result only depends on
U and V being complete lattices. Thus it is natural to seck to apply this result to
other lattice structures for data and display models. The motive for new lattice
structures must be new data models, since display models are themselves motivated
by the need to visualize data. The data model defined in Sect. 3 includes tuples and
arrays as ways of aggregating data. We will describe the issues involved in
extending data lattices to data types defined by recursive domain equations, to
abstract data types, and to the object classes of object-oriented programming
languages. This discussions of this section are somewhat speculative.

58

5.1 Recursive Data Types Definitions

The denotational semantics of programming languages provides techniques
for defining ordered sets whose members are the values of programming language
expressions [4, 13, 14, 15]. An important topic of denotational semantics is the
study of recursive domain equations, which define cpos (defined in the next
paragraph) in terms of themselves.

First, we present some definitions used in denotational semantics. A
partially ordered set (poset) is a set D with a binary relation <on D such that,
vx,y,ze D

x<x "reflexive”
x<y&ysx=x=y "anti-symmetric"”
xSy&y<z=>x<z “transitive”

A subset M c D is directed if, for every finite subset A ¢ M, there is an x € M such
that Vy € 4. y <x. A poset D is complete (and called a cpo) if every directed subset
M c D has a least upper bound sup(M) and if there is a least element L € D (i.e,,
Vy e D. 1 <y). If D and E are posets, a function f.D—E is monotone if ¥x, y € D.
x <y = flx) < fy). A function f.D—E is continuous if it is monotone and if
SinfiM)) = infiiM)) for all directed M c D. If D and E are cpos, a pair of
continuous functions fD—E and g:E—>D are a retraction pair if go f< idp and
fog=idg. The function g is called an embedding, and f is called a projection.

We take the following example of a recursive domain equation from {12].
A data type for a binary tree may be defined by:

Bintree = (Data + (Data x Bintree x Bintree)) |)

Here "+", "x" and "(.)| " are type construction operators similar to the tuple and

array operators we discussed in Sect. 3.1. The "+" operator denotes a type that is a
choice between two other types (this is similar to the union type constructor in the C
language), "x" denotes a type that is a cross product of other types (this is
essentially the same as our tuple operator, so that (Data x Bintree x Bintree) is a 3-
tuple), and the "L1" subscript indicates a type that adds a new least element L to the
values of another type. Equation (2) defines a data type called Bintree, and says
that a Bintree data object is either 1, a data object of type Data, or a 3-tuple
consisting of a data object of type Dafa and two data objects of type Bintree.
Intuitively, a data object of type Bintree is either missing, a leaf node with a data
value, or a non-leaf node with a data value and two child nodes.

The obvious way to implement binary trees in a common programming
language is to define a record or structure for a node of the tree, and to include two
pointers to other tree nodes in that record or structure. In general, the self
references in recursive type definitions can be implemented as pointers. Thus,
recursive domain equations correspond to defining data types with pointers.

59

5.1.1 The Inverse Limit Construction

The equality in a recursive domain equation is really an isomorphism. As
explained quite clearly by Schmidt in [12], these equation may be solved by the
inverse limit construction. This construction starts with Bintreeg = {1}, then
applies (2) repeatedly to get

Bintree = (Data + (Data x Bintree(y x Bintreeg)) |
Bintreey = (Data + (Data x Bintree| x Bintree|)))
etc.

The construction also specifies a retraction pair (g;, f;):Bintree; <> Bintree;, | for
all i, such that g; embeds Bintree; into Bintree;y and f; projects Bintree;,| onto
Bintree;. Then Bintree is the set of all infinite tuples of the form (¢, £}, £, ...) such
that #; = f;(t;4.1) for all i. It can be shown that Bintree is isomorphic with (Data +
(Data x Bintree x Bintree)) |, and thus "solves" the recursive domain equation.

The order relation on the infinite tuples in Bintree is defined element-wise, just like
the order relation on finite tuples defined in Sect. 3.1, and Bintree is a cpo. We
note that the inverse limit construction can also be applied to solve sets of
simultaneous domain equations.

One way of extending our data lattices would be to show how to apply the
inverse limit construction to recursive equations involving our tuple and array type
constructors. Our tuple constructor is equivalent to the cross product operator "x".
While our array constructor is similar to the function space operator "—" used in
denotational semantics, it is not the same. (4—B) defines the set of all functions
from A to B, while our array constructor (array [4] of B) defines the set of functions
from finite subsets of 4 to B. Thus we would need to show how to apply the inverse
limit construction to equations involving the constructor (array {4] of B). The cpos
defined by the inverse limit construction are generally not lattices, but can always be
embedded in complete lattices. Specifically, the Dedekind-MacNeille completion,
described in [2], shows that for any partially ordered set A4, there is always a
complete lattice U such that there is an order embedding of A into U.

Note that the set of Bintree objects defined by the inverse limit construction
includes infinite trees. This is because this set is complete and infinite trees are
limits of infinite sequences of finite trees. The development of denotational
semantics was largely motivated by the need to address non-terminating
computations (the unsolvability of the halting problem showed that there was no
way to separate terminating from non-terminating computations), and non-
terminating computations may produce infinite trees as their values. Since our
result that display functions are lattice isomorphisms depends on the assumption
that data and display lattices are complete, it is likely that any extension of our data
lattice to include solutions of recursive domain equations must include infinite data
objects.

60

The inverse limit construction defines the set of data objects of a particular
data type that solves a particular recursive domain equation. However, our
approach in Sect. 3.2 was to define a large lattice that contained data objects of
many different data types. It would be useful to continue this approach, by defining
a lattice that includes all data types that can be constructed from our scalar types as
tuples, arrays, and solutions of recursive domain equations. This is the subject of
Sect. 5.1.2.

5.1.2 Universal Domains

A fundamental result of the theory of ordered sets is the fixed point
theorem, which says that, for any cpo D and any continuous function £ D—D, there
is fix(f) € D such that ffix(f) = fix(H (i.e., fix(f) is a fixed point of /) and such that
JSix(f) is less than any other fixed point of f.

Scott developed an elegant way to solve recursive domain equations by
applying the fixed point theorem [4, 14]. In a sense, the solution of a recursive
domain equation is just a fixed point of a function that operates on ¢pos. Scott
defined a universal domain U and a set R of retracts of U (this may be the set of all
retracts on U, the set of projections, the set of finitary projections, the set of
closures, or the set of finitary closures - note that these terms are defined in [7]).
Then he showed that a set OP of type construction operators (these operators build
cpo's from other cpo's) can be represented by continuous functions over R, in the
sense that for o € OP there is a continuous function f on R that makes the diagram
in Fig. 13 commute. '

1, A [
cpo's 7 cpo's

range range

R > R

Figure 13. The type construction operator o is represented by function /.

Note that range(w) = {w(u) | u € U}. For unary o € OP this is range(fiw)) =
o(range(w)). Similar expressions hold for multiary operators in OP. Then, for any
recursive domain equation D = O(D) where O is composed from operators in OP,
there is a continuous function F:R—R that represents O. By the fixed point
theorem, F will have a least fixed point fix(F), and O(range(fix(F))) =
range(F(fix(F))) = range(fix(F)), so range(fix(F)) is a cpo satisfying the recursive
domain equation D = O(D). The solution of any domain equation (or any set of
simultaneous domain equations) involving the type construction operators in OP

61

will be a cpo that is a subset of the universal domain U. Thus this approach is
similar to the way that the data types of our data model define sets of data objects
that are embedded in a single data lattice.

Universal domains and representations have been defined for sets OP that
include most of the type constructors used in denotational semantics, including "+,
"x","-»" and "(.)| ". In order to apply universal domains to extend our data model

to include recursively defined types, we would need to show how our tuple and array
type constructors can be represented over some universal domain.

A common example of a universal domain is the set POWER(N), which is
just the set of all subsets of the natural numbers N (i.e., non-negative integers).
POWER(N) is a complete lattice. However, it does not include natural embeddings
of our scalar data objects. Furthermore, the embeddings of mathematical types into
universal domains, as defined by papers in denotational semantics, are not suitable
for our display theory. For example, a simple integer and a function from integers
to integers are embedded to the same member of POWER(N). A display function
applied to the lattice POWER(N), with these embeddings, would produce the same
display for the integer and the function from integers to integers. Since the goal of
visualization is to communicate information rather than to make it obscure, other
embeddings of types into universal domains must be developed. Specifically, an
extension of our display theory to recursively defined data types should include a
universal domain with natural embeddings of our scalar data types, and should
include representations of our tuple and array type constructors that will produce
natural embeddings of constructed types.

5.1.3 Display of Recursively Defined Data Types

Since the goal of visualization is to communicate the information content
of data to users, an extension of our theory must focus on the data lattice U.
However, since a display function D is a lattice isomorphism of U onto a sub-lattice
V. we should be able to say some things about the structure of V. If a subset 4 ¢ U
is the solution of a recursive domain equation, then D(4) c V is isomorphic to 4
and must itself be a solution of the recursive domain equation.

For example, if the set A4 is the solution of (2) for Bintree, then the set D(4)
must also solve this equation. The isomorphism provides a definition of the
operators "+", "x" and "(.) | " in D(4) and thus also defines a relation between

objects and their "subtree” objects in D(4). The isomorphism does not tell us how
to interpret these operators and relations in a graphical display, but it does tell us
that such a logical structure exists. Given the complexity of this structure, it seems
likely that display objects in D(4) will be interpreted using some graphical
equivalent of the pointers that we use to implement data objects in 4.

Two graphical analogs of pointers come to mind immediately:

1. Diagrams. Here icons represent nodes in data objects, and lines between
icons represent pointers.

62

2. Hypertext links. Here the contents of a window represents one or more nodes
in a data object, and an icon embedded in that window represents an
interactive link to another node or set of nodes. That is, if the user selects
the icon (say by a mouse point and click), new window contents appear
depicting whatever the icon points at.

In order to extend our display theory to data types defined with recursive domain
equations, we need to extend our display lattice V' to include these graphical
interpretations of pointers. The most interesting problem is to find a way to do this
that produces a display lattice complex enough to be isomorphic to a universal
domain as described in Sect. 5.1.2.

5.2 Abstract Data Types and Object Classes

Abstract data types and the object classes of object-oriented programming
are ways of defining data types that hide the internal structures of data objects from
the programs that use those data objects. Definitions of abstract data types and
object classes include definitions of member functions for basic operations on data
objects. Data objects are accessed by applying these member functions, rather than
by selecting their primitive sub-objects. In fact, the hidden implementation of data
objects may not include sub-objects at all, but may be purely functional. For
example, an array data object may be implemented either by explicitly storing
elements of the array, or by a function for computing the elements of the array as
they are accessed. :

5.2.1 Abstract Data Types

In an algebraic setting [17], abstract data types are specified by a signature
T = (T, F) and a set of logical conditions E. T is a set of types and F is a set of
member functions among the types in T (that is, the types of the member functions,
and the numbers and types of their arguments, are specified). E is a set of first
order statements involving quantifiers, equality, the member functions of F, and
variables with types in 7. It is undecidable whether the statements in £ are
satisfiable (i.e., no algorithm exists which can tell, for given £, whether any set of
data objects and functions satisfy E), so there are no compilers that produce
implementations from 7, F and E. However, abstract data types are used as the
basis of programming methods. System designers use heuristic methods to derive
conditions in E by analyzing system requirements, and use these conditions as a
guide for implementing the functions in F [9].

Because of the generality of the abstract data type formalism, it can be used
to express our lattice theory of display. To see this, define Ty o1 = {U, V}, FpT =
{infy.UxU—U, supy.UxU-U, infy:VxVoV, supy:VxV—V, D:U~V} and E o1 =
{lattice axioms for U and V, expressiveness conditions on D}. That is, the data
types of Tj o are the data and display lattices U and ¥, the functions in F] o are
the lattice operations on U and V plus the display function D, and the logical

63

conditions in Ej a7 are the axioms defining U and V as lattices plus the
expressiveness conditions. Expressiveness Conditions 1 and 2, as defined in Sect.
3.4, quantify over MON(U > {1 , 1}) and are thus second order statements
whereas Ej 5 is supposed to consist of first order statements. However, as shown
by Prop. 1, Conditions 1 and 2 are equivalent to conditions that can be expressed as
first order statements. There are obviously many different sets of lattice U and V'
satisfying the abstract data type definition in 7} o1, FoT and E{ AT

In Sect. 5.2.3 we will discuss the issues involved with extending our lattice
theory to display the data objects of abstract data types.

5.2.2 Object Classes

Like abstract data types, the object classes of object-oriented programming
languages define access to data objects in terms of a set of member functions.
However, rather than defining logical conditions that the member functions must
satisfy, object classes define these functions explicitly as programs. An object class
in C++ defines members as both data structures and functions, which are divided
into private and public parts [3]. The private members are only accessible from
member functions defined as part of the class (i.e., they are not accessible from
outside the class definition).

In addition to hiding the implementation of object classes, object-oriented
languages provide two mechanisms called polymorphism and inheritance that
provide a novel style of programming compared to traditional procedural languages.
Polymorphism means that the same member function name may be defined in the
public parts of multiple object classes. Calls to member functions are bound to the
appropriate function definitions at run time, determined by the classes of the objects
passed as arguments to the functions. Inheritance allows an object class to be
defined in terms of another. The new class "inherits" the members of the old class,
except where those data members are explicitly redefined.

Object-oriented visualization systems define polymorphic display
functions. These systems partition their data models into a number of object
classes, and their polymorphic display functions may be called to display any data
object in their data models. Thus the object oriented approach and our lattice
approach both define display functions that can be applied to data objects of any
type. However, where the object oriented visualization systems require constructive
definitions of display functions as programs, our approach defines data and display
lattices and defines display functions as any function satisfying the expressiveness
conditions. Thus it is still interesting to investigate how our lattice theory can be
extended to the object classes of an object-oriented language.

The private and public members of class definitions include data
structures. These may be displayed using the techniques that we developed in Sect.
3, and the techniques for displaying recursively defined data types suggested in
Sect. 5.1. However, this approach does not provide a systematic way to display data
objects defined by classes, since class definitions include functions as well as data

64

structures. In the next section we will discuss issues involved in extending our
lattice model of display to the member functions of object classes.

5.2.3 Lattice Models for Abstract Data Types and Object Classes

Because of the similarity between abstract data types and object classes, we
will discuss them together, using the notation of abstract data types. We let T
denote a set of types and let F denote a set of member functions. The types in T
may be abstract data types or may be object classes, and the functions in F may be
defined by a set E of logical conditions or by a set of programs. The important
point is that the functions in F define relations among data objects, and that these
relations take the place of a definition of data objects in terms of their internal
structure. In fact, we could say that the relations defined by functions in F are a
generalization of the relations between objects and their sub-objects that define the
internal structures of data objects. In Sect. 3.1 we defined tuple objects in terms of
their element sub-objects, and we defined array objects in terms of their domain and
range sub-objects. These relations between objects and their sub-objects are special
cases of relations between objects expressed by member functions.

Let A be the union of the sets of data objects of all types in 7. We could
give A the discrete order (i.e., no object is greater than any other object), but this
would lead to a very boring theory of data display. In order to define a more
interesting order relation on 4, we can start with the data lattice that we defined in
Sect. 3.2 (here we call it Ug). If T is a set of abstract data types, then we let the
objects of U serve as constants in the logical conditions of £. If T is a set of object
classes, then we take the continuous and discrete scalar types of U as the primitive
values of an object oriented programming language.

If we also assume that the member function in F are monotone, then we
can use these functions to derive order relations between objects in 4 from the order
relations between objects in Uj;. However, there is no guarantee that there is a order
relation on 4 that is consistent with the assumption that the functions in F are
monotone. For example, while it is easy to define monotone arithmetic operators on
the scalar types of U, there is no reasonable way to define monotone logical and
comparison operators on the scalar types of U, (we run into inconsistencies
assuming either that false < frue or that true and false are not ordered). This
suggests that a monotonicity assumption is a severe restriction on the member
functions in F.

However, in order to define an interesting order condition on A we may
assume that member functions are monotone. In this case, we need to verify that
the monotone functions of F are consistent with an order relation on A, although
this appears to be a difficult problem. If T is a set of object classes, and if member
functions are implemented in a programming language that includes logical and
comparison operators, then it is generally undecidable whether functions defined
among the objects of Uy are monotone. However, we may be able to design a
restricted programming language for member functions that allows us to verify that
monotone member functions are consistent with an order relation on 4. If T is a set

65

of abstract data types, then the monotonicity requirement must be added to £ as a
set of logical conditions on the member functions in F (along with conditions that
define order relations on the types in 7). This may cause a set of satisfiable
conditions to become unsatisfiable, and it is generally undecidable whether the
addition of monotonicity conditions causes a set E of conditions to become
unsatisfiable. Of course, this situation is no worse than without monotonicity
assumption, since the question of whether a set of logical conditions is satisfiable is
generally undecidable.

Given an ordered set 4 of data objects (the union of the sets of data objects
of each type in 7), we can use the Dedekind-MacNeille completion to embed 4 in a
complete lattice U. In order to apply our display theory we would need to construct
a display lattice V" such that isomorphisms from U onto sub-lattices of V exist, and
develop interpretations of display objects in V in terms of a physical display device.
Since the display function D:U—V is an isomorphism between the set of data
objects and a subset of the set of display objects, and since the relations between
data objects expressed by the member functions in F (and subject to the logical
conditions in E) are a generalization of the hierarchical relations between objects
and sub-objects in the data model defined in Sect. 3.1, it is natural to seek an
interpretation of display objects in terms of relations between display objects that
generalizes the relation between display objects and graphical marks as described in
Sect. 3.3. For example, we may represent data objects by icons in a display, and let
users interactively explore the relations between those icons as defined by the
functions in F. Finding a systematic way to interpret displays of abstract data types
seems like a very open ended and interesting problem.

It is interesting to note that in the case of abstract data types, we can use
the generality of the framework to add our display model to an existing set of
abstract data types defined by 7, F and E. Take TyaT, FiAT and £7 o7 as defined
in 5.2.1, and define

T'=Twv TLAT

F'=F v Fj o1 {embeddings of the types in T into U}

E'=E U Ey o1 v {monotonicity conditions on the embeddings
from T into U}

Of course, there is no algorithm for deciding if the conditions in £’ are satisfiable or
for constructing the lattice U and V if they are. Furthermore, this tells us nothing
about how display objects in V are interpreted in terms of a physical display device.

6. Conclusions

The design of the VIS-AD data model is tightly integrated with a
computational model and a display model. The result is a data model whose data
objects can be uniformly visualized using polymorphic display functions, and which
has the flexibility to adapt to scientists' computations. Several kinds of metadata are
integrated with this data model, providing a novel and useful programming

66

language semantics, and also providing the capability to display multiple data
objects in common frames of reference.

The VIS-AD data model is based on lattices. These lattices may be applied
to models of both data and displays. This provides an interesting context for
analyzing visualization processes as functions from data lattices to display lattices.
There are also interesting prospects for extending the lattice theory of visualization
to more complex data models that involve recursively defined data types, abstract
data types, and the object classes of object oriented programming languages.

References

[1] Bertin, J., 1983; Semiology of Graphics. W. J. Berg, Jr. University of
Wisconsin Press.

[2] Davey, B. A. and H. A. Priestly, 1990; Introduction to Lattices and Order.
Cambridge University Press.

[3] Gorlen, K. E., S. M. Orlow and P. S. Plexico, 1990; Data Abstraction and
Object-Oriented Programming in C++. John Wiley & Sons.

[4] Gunter, C. A. and Scott, D. S., 1990; Semantic domains. In the Handbook of
Theoretical Computer Science, Vol. B., J. van Leeuwen ed., The MIT
Press/Elsevier, 633-674.

[S] Hibbard, W., C. Dyer and B. Paul, 1992; Display of scientific data structures
for algorithm visualization. Visualization '92, Boston, IEEE, 139-146.

[6] Hibbard, W., C. Dyer and B. Paul, 1993; A lattice theory of data display.
Submitted to [EEE Visualization '94.

(7] Hibbard, W. L., and C. R. Dyer, 1994; A lattice theory of data display.
Tech. Rep. # 1226, Computer Sciences Department, University of
Wisconsin-Madison. Also available as compressed postscript files by
anonymous ftp from iris.ssec.wisc.edu (144.92.108.63) in the pub/lattice
directory.

[8] Mackinlay, J., 1986, Automating the design of graphical presentations of
relational information; ACM Transactions on Graphics, 5(2), 110-141.

{9] Mitchell, R., 1992; Abstract Data Types and Modula-2: a Worked Example
of Design Using Data Abstraction. Prentice Hail.

[10] Moore, R. E., 1966; Interval Analysis. Prentice Hall.

[11) Robertson, P. K., R. A. Earnshaw, D. Thalman, M. Grave, J. Gallup and E.
M. De Jong, 1994; Research issues in the foundations of visualization.
Computer Graphics and Applications 14(2), 73-76.

[12] Schmidt, D. A., 1986; Denotational Semantics. Wm.C.Brown.

[13] Scott, D. S., 1971; The lattice of flow diagrams. In Symposium on Semantics
of Algorithmic Languages, E. Engler. ed. Springer-Verlag, 311-366.

[14] Scott, D. S., 1976; Data types as lattices. Siam J. Comput., 5(3), 522-587.

{15] Scott, D. S., 1982; Lectures on a mathematical theory of computation, in: M.
Broy and G. Schmidt, eds., Theoretical Foundations of Programming
Methodology, NATO Advanced Study Institutes Series (Reidel, Dordrecht,
1982) 145-292.

67

[16] Treinish, L. A., 1991; SIGGRAPH '90 workshop report: data structure and
access software for scientific visualization. Computer Graphics 25(2), 104-

118.

[17) Wirsig, M., 1990; Algebraic specification. In the Handbook of Theoretical
Computer Science, Vol. B, J. van Lecuwen ed., The MIT Press/Elsevier,
675-788.

68

