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IMPLEMENTATION OF A TWO-EQUATION k-o) TURBULENCE MODEL
IN NPARC

Dennis A. Yoder,* Nicholas J. Georgiadis*
National Aeronautics and Space Administration

Lewis Research Center
Cleveland, Ohio

and

Paul D. Orkwis*
University of Cincinnati

Abstract Pt stagnation pressure

The implementation of a two-equationk-o) turbulence R ratio ofturbulent kinetic energy production
model intotheNPARC flowsolverisdescribed.Motivation to dissipation
for the selection of this model is given, major code
modifications are outlined, new inputs to the code are Rk, Rs,Rto k-_ turbulence model constants
described, and results are presented forseveral validation
cases: an incompressible flow over a smooth fiat plate, a Ret Reynolds number based on turbulent
subsonic diffuser flow, and a shock-induced separated quantities
flow. Comparison of results with the k-Emodel indicate
that the k-o) model predicts simple flows equally well Rex Reynolds number based on axial position
whereas, for adverse pressure gradient flows, the k-o)
modeloutperformstheotherturbulencemodelsinNPARC. Re0 Reynolds number based on momentum

thickness

_Symbols S R surfaceroughness coefficient

a speed of sound t time

Cf skin friction coefficient along flat plate Uref(k-_) reference velocity for turbulent kinetic
energy limiter

Cab C_2 k-_ turbulence model terms
u velocity

C_t k-_ turbulencemodel constant
Ucl centerline velocity for Fraser diffuser

fix,fl, t"2 k-e turbulence model terms
u¢ friction velocity

H throat height of Sajben diffuser
uo, free-stream velocity

I turbulence intensity
u+ normalized velocity

k turbulent kinetic energy

° -uv Reynolds stress
kR average sand-grain surface roughness

x,y Cartesian coordinates
Mt turbulent Mach number

y+ distance from wall normalized by shear
P static pressure length scale

*AIAA member
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(x,ot0,a* k-to turbulence model constants generally involvessolving additional transport equations.
Thus, as the model complexity increases, so does the

_,13" k-to turbulence model constants effort required to implement the model. Higher level
turbulence models are also more computationally

boundary layer thickness expensive because they require more computer memory
and cpu time. Two-equation models are commonly used

rate of turbulent kinetic energy dissipation because they are considered to provide relatively good
results for the demand they place on computer resources.

l,t dynamic viscosity The most widely used two-equation turbulence model,
the k-E,solves two transport equations for the turbulent

IJ.t turbulent viscosity kinetic energy k and the rate of dissipation of turbulent
kinetic energye. Important groundwork onthis model was

/at,max maximum turbulent viscosity limiter performed by Jones and Launder1 and Launder and
Spalding.2The Jones and Launder model is often referred

v kinematic viscosity to as the standard k-¢ model.
The k-tomodel is similar to the k-_model except that the

FI production term in k-_ model second turbulent quantity to is the specific dissipation rate
(dissipation rate per unit turbulent kinetic energy).

p density Kolmogorov3was the first to propose this type of model.
Since then, othershave made modifications to theoriginal

Ok,_,Oco turbulent Prandtl numbers formulation. Among these are Menter4 and Wilcox5.
Wilcox6presentsan interesting historical overview of the

to specificturbulent kineticenergy dissipation k-to model.
rate Recent efforts at NASA Lewis Research Center to

model the flow field inside subsonic diffusers have

_k, _co k-to turbulence model terms demonstrated the inability of current models toaccurately
predict flows with adverse pressure gradients. The k-to

Subscripts: model has been shown to predict separated flows better
than the standard k-E model, especially in flows with

i,j computational corrdinates adverse pressure gradients.7'8As a result, the k-to model
of Wilcox5 was recently installed in both the two- and

max maximum three-dimensional versions of NPARC. Because the k-_

model isatwo-equationmodel,itdoesnotrequire additional
min minimum cpu timerelative to the k-Emodel, and since it is similar in

form to the k-e model, a similar algorithm can be used.
Furthermore, this model has the benefit of improved

Introduction transition simulation and is capable of more realistic
rough-wall treatments. This report provides an overview

In NASA's High Speed Research (HSR) program, of some of the turbulence models already available in
computationalfluid dynamics (CFD)is increasinglybeing NPARC, a discussion of the implementation of the k-to
usedtodesignandevaluateinletandnozzleconfigurations model in the code, and results obtained using the new
for High Speed Civil Transport (HSCT) applications, model for several flow fields.
Accuratelypredictingflowseparationsand mixingbetween
primary and secondary flows in highly turbulent mixer-
ejector nozzles as well as pressure losses and bleed flows NPARC Code
in supersonic mixed-compression inlets is a major
challenge. The turbulence model employed is often the The NPARC code, previously known as the PARC
limiting factor in these types of simulations and, as a codegandoriginallydevelopedattheArnoldEngineering
result, is often blamed for providing poor agreement with Development Center (AEDC), uses the Beam and
experimental data. Thus, the search for better models is Warming10approximate factorization algorithm to solve
ongoing, theReynolds-averagedNavier-Stokesequationsat discrete

Turbulencemodelsvaryfromrelativelysimplealgebraic grid points. Generalized boundary conditions allow the
models to one-equation, two-equation, and full Reynolds user to specify any portion of a grid as a boundary.
stress models. Moving to the next level of complexity Noncontiguous multiple block interfacing can also be
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usedtosimplifythegridgenerationofcomplexgeometries, and Cg=0.09, CEI= 1.35,C_2= 1.80, Ok= 1.0, Ce= 1.3.
Cooper 11discusses recent features of the code. The turbulent Mach number is defined as Mt2 = 2k/a2,

The NPARC code contains three algebraic turbulence where a is the reference speed of sound, and is used in
models, the first of which is the Thomas model.12 It Sarkar'scompressibilitycorrection.]7Thiscompressibility
computes turbulent viscosity for wall-bounded and free correction has been incorporated into the NPARC codeto
shearlayerflowsandhasbeenoptimizedforthelatter.The compensate for the apparent increase in turbulent
second, the Baldwin-Lomax model,13 only computes dissipation at higher Mach numbers. The z-equation (3)
turbulent viscosity inwall-bounded regions. An algebraic has been relatively insensitive to compressibility effects
RNG (renormalized group theory) model 14 is also and thereforerequiresnomodification.
available. The termsonthe right-hand sideof equations (2) and (3)

NPARC also contains the Baldwin-Barth one-equation correspond to the diffusion, production, dissipation, and
model 15and a two-equation turbulence model based on near-wall damping terms, respectively. One of the
the Chien low-Reynolds-number k-_ model,16which is difficulties with the k-_ model is that there is no natural
presented below indetail to underscore its similarity to the boundary condition for e near a solid surface. Since the
k-o) model: turbulent kinetic energy and the turbulent viscosity are

both zeroalong a wall, the dissipation rate is set to zero as

k2 well. It is the near-wall damping terms of equations (2)

l.l.t= Cgfgp--_- (1) and (3) that allow all the turbulent quantities to be set to
zero near a viscous surface. Another problem with the
Chien model is that it requires that the distance from the
wall be calculated. In complicated geometries, and

_(pk) _(Puik) _ r( gt ") _k ] especially in three-dimensionalcases, this canbe difficult+_=_ I.t+_
Ot _X i _Xi[ _ Ok) _XiJ tOcompute.Lang and Shihl8 also point out that near-wall

dampingterms whichuse y+arenot desirable,particularly
near separation regions.

+17-pE(1 + Mt2)-2g.k2 - (2) TheWilcoxk-t,omodeldoes nothave theaforementionedshortcomings. The value of (o near a viscous wall can be
related to thesurfaceroughness of thewall. Thiscondition
can be enforced at the boundary and does not require the

_(pE) O(PuiE) _ [( _tt "__ ] use of near-wall terms or y+. The Wilcox k-comodel is

Ot OXi _x i Oe OXi formulated as follows:

, pk
_1.t = _ _ (9)2 ._ £ (-0.5y)

+ C_fl I'I z-.- c_2f2P-z--- 2!.t_-_- e (3) co
r, r, y

where O(Pk) I-O(Puik------_)= _--_-[(IJ.+ I'tt 1 3k ]
_t _xi _xi Lk°)axiJ

au----k(au--k+ u__-ti]
17= (4)

0X i _Xi 3Xj J
+rl-I * po k[1+ kF(Mt)] (10)

flt = 1.0 - e(-0"0115y+) (5)

• fl = 1.0 (6) _ _ _xi =_x i Oo)_xi. ]

f2 = 1.0- 0.22e-`Ret,6)2 (7) +,. (11)

Ret = Pk----_2 (8)
pz
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where below, comparisons are made between the models using
thisrelation. However,since [3*is afunction ofRet, which
in turndepends uponco,theconversion of_ to omakes the

 ui] assumption that [3*= 0.09.
I-I=gt p _+

_Xi [ _Xi _Xj)
(12)

Becauseofthesimilarityin thek-_ andk-o formulations,
o_*= _"Rk ) (13) the current implementation makes use of the existing

I + (Retl Chien k-_ algorithmavailable in NPARC. The algorithm
_,Rk) for solving the k-_ equations dates back to the work of

Nichols19 with recent modifications by Georgiadis,
Chitsomboon, and Zhu.20The most significant changes

+ Ret occurredin thecalculation of the source terms involved in
a0 (_-) the k- and o-equations. The source terms are those on the

5 (oc*)-1 (14) right-hand side of equations (10) and (11) excluding the

°c=9 (Ret) diffusion terms.
1+ _,Ro ) The k-to model is selected by setting IMUTUR (or

IMUTR2) equal to 7. Since it is similar in form to the
k-_ model and uses the same solution algorithm, users

5 (Retl 4 shouldexpect stabilityandconvergence tobe comparable.__ + Usersare advisedtouseappropriate near-wall gridspacing
9 18 _.Rs ) alongviscoussurfaces.Thishelpstoresolvetheboundary[3*= (15)

100 //fRet"_4 layersurfaces.andthe large o-gradients which occur near these
1+_ Rs)

CompressibilityCorrections

[3=-_3 (16) A compressibility correction has been added to the
40 model equations to enhance predictions at higher Mach

numbers. The corrections described by Sarkar 17 or
Wilcox21may beselectedbysettingthe variablesCOMPK,

Ret = p...k_k (17) COMPW, and CMT0 according to the following table:
go

and COMPK COMPW CMTO Correction type

1.0 0.0 0.00 Sarkar (k-eq.)a
c k=2 o_o=[3/3 Rs=8 Ro=2.7

1.0 1.0 0.00 Sarkar (k+o eqs.)

¢so=2 ct0=1/10 R k=6 1.5 1.5 0.25 Wilcox

The compressibility correction is given by 0.0 0.0 0.00 None

aDefanlt.

F(Mt)= Max(Mt2- Mt20, 0.0) Thesevariablescorrespondto_k,_¢o,andMto,respectively,
in equations (10) and (11) and have been included in the

where the turbulent Mach number is the same as before, TURBINnamelistblock. Asdiscussed in reference 21, the
and the constants default to _k = 1.0, _o = 0.0, and Sarkar correction only affects the k-equation in the k-_
Mt0 = 0.00. model. When used with the k-comodel, however, correc-

By comparing the k-o_and the k-_ models, a relation tions should be added to both the k- and o-equations.
between _ and _ can be found. Wilcox5 defines this Computations for theSajben 22diffuser strong-shock case
relation as 0 = v../([3*k).In the results to be presented
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(discussed in the Results section) indicate that adding the The NPARC codecomputes the k_ value specified for the
Sarkar correction to only the k-equation provides the best individualboundarythroughthe auxiliarypressurevariable
results. The Wilcox correction was of little use since the and compares it with the smooth-wall value given by

, turbulent kinetic energy led toan Mt value thatwas below SRDEF. It then uses the larger of these values tocompute
the cutoff turbulent Mach number CMT0 = 0.25. As a toatthe boundary.Failure to specify the auxiliary pressure
result, the Sarkar correction to the k-equationwas chosen willresult inakRvalue ofzero (default),and computations
as the default setting, but the other options have been will be performed using the default surface roughness
included because of the lack of extensive testing of high- givenby SRDEF.Because boundary conditions 62 and 68
speed flows. These options should provide the greatest use the auxiliary pressure variable for other purposes, the
amount of flexibility and limit future code modifications, surfaceroughnessgivenbySRDEFis used.No calculations

have been performed using any surface roughness value
Boundary_Conditions other than the default value (kl_= 1.0), and users are

advised to do the same until such time as this option can
The boundary value for coalonga viscouswallis related be more fully investigated.

to the surface roughness of the wall. This relation is given All other boundary conditions remain unchanged. As
by WilcoxS: withthek-e model,theturbulentquantitiesareextrapolated

from the interior of the flow field along slip walls and at

u2 free boundaries. Values of turbulence intensity I and
to= -_ SR at y = 0 (18) turbulent viscosity I.ttmay be specified for free inflow

v boundaries as described by Georgiadis, Chitsomboon,
and Zhu.2° Using a fixed inflow will cause the turbulent

where quantities alongthat boundary to remain unchanged from
those in the restart file.

1,0?
k_ ) k_ < 25 Stability Considerations

SR = (19) The limiters used by NPARC to increase convergence
100 andstabilitybycappingthevaluesoftheturbulentquantities

k_ k_ > 25 at both the high and low extremes were modified toaccommodate the k-tomodel. These limiters are used on

the interior of the flow field, not along boundaries. The
current implementation is similar to that used by the k-e

.4-
andis valid forkR= uxkR/Vvalues up to400.The NPARC model, but because toapproaches infinity near a smooth
code has been modified to allow the user to input the wall viscousboundary,numerical stability problems may arise
surface roughness for no-slip wails. This value is read in ifit is limitedin this region.In regions where the turbulent
through the auxiliary pressure variable. The variable kinetic energy is found to be very small, k is set to a
SRDEF has been added to the TURBIN namelist block minimum value, but to is not changed. If tobecomes too
and is used to specify the default smooth-wall surface small,both kand toare setto minimum values. Should the
roughness. When this variable is used, the surface rough- turbulentkinetic energyexceed themaximum value given
ness along all the viscous boundaries can be adjusted at by kmax= 0.10xU2f(k-_),it is set to the maximum value
once. The hydraulically smooth k_ value of 1.0 is the and to is computed using
default value. In specifying the surface roughness for

either input, values greater than zero aretreated as kl_and co= Maximum(to_- Calculated; (x*pk max/l.tt.maxvalues less than zero are treated askR (averagesand-grain /

surface roughness nondimensionalized by the reference
length). According to reference 23, the effective sand- wherel.tt,maxisspecifiedthroughtheuserinputTMUMAX.

• grain surface roughness is classified as follows: No upper limit check is made onco.Users who experience
convergence difficultiesor erroneous resultsshould check
to make sure the upper limits for the turbulent kinetic

k_ < 5 Hydraulically smooth energy (adjusted through the variable UREFKE) and the
turbulent viscosity (adjusted through TMUMAX) are set

+ <70
5 < kR _ sufficiently high. The output file (26) lists the iteration

70 < k_ < 400 Transitional number and the number of points where the turbulent
quantities are limited by kmin,kmax,and tomin-
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We found that near regions of rapid acceleration or Example 2
deceleration, such as near leading edgesand behind shock
waves, the turbulent viscosity can becomevery large. The Next, consider a two-dimensional channel flow to be

variable C_toption in thek-e model has been modified for computed on a 101x51 grid. The formatted inputs for this
use in the k-o_ model and has helped to alleviate this flow are given as
problem. The modification involves scaling the turbulent
viscosity basedon the ratio of production to dissipation R &INPUTS
as: NC=5000,

&END
&TURBIN

0.10738 (0.64286+ 0.19607R) 0_*pk (20) IMUTUR=4, IMUTR2=7, NTURB=5200,/..tt= 0.09
[1+ 0.357(R_ 1)]2 CO COMPK=I.5, COMPW=I.5, CMT0=-0.25,

SRDEF=I.0,

Details of the formulation may be found in reference 24. &END
Even though the variable Crtoption may be turned on or &BLOCK
offinthek-_ model byadjusting thevalue ofICMU, ithas INVISC(1)=I, LAMIN(1)=0, NBCSEG=5,
been included in the k-o_model regardless.Results for the INVISC(2)=I, LAMIN(2)=I,
cases discussed next were not adversely affected by this &END
modification. In fact, some results showed a slight
improvement. 1 1 2 50 0 1 0.7000 1.0000

101 101 2 50 0 -1 0.6000 0.9800

Example 1. 1 31 1 1 60 1
32 101 1 1 60 1 50.0000

Consider the two-dimensional flow over a smooth flat 1 101 51 51 61 -1 -0.0001 0.9900
plate. For a 11lxS1 grid the NPARC2D formatted input
file is given as In this case, the k-o_ model will be initialized from the

k-e solution at iteration 5200. To do so, IMUTUR is set to
&TURBIN the k-_ model and the current iteration is reset to a value
IMUTUR=2, IFMAX=1, lower than NTURB(on subsequent runs, NC should be set
NTURB=5200, IMUTR2=7, to -1). IfNC is not set below NTURB for the initial run,
&END NPARC will readin k, _, and I.tt believing them tobe k, o_,
&BLOCK and I.tt.However, the values of tzand to can differ by
INVISC(1)=I, LAMIN(1)=0, NBCSEG=5, several orders of magnitude, and this may result in poor
INVISC(2)=I, LAMIN(2) =1, convergence or erroneous results or both. The tom-
&END pressibility correction of Wilcox has been chosen to

override the Sarkar default settings. The minimum
1 15 1 1 50 1 allowable surfaceroughness SRDEF has been set to a kl_

16 111 1 1 60 1 value of 1 (which is what the default value would have
I I I I 81 81 50 -I been had this line been omitted). The lower boundary has

111 111 2 80 0 -1 0.7143 1.0000 been specified as a no-slip adiabatic surface. Since no
1 1 2 80 0 1 0.7345 1.0080 surface roughness has been specified for the first 31 grid

points, the default roughness given by SRDEF will be

In this example, the k-o_model will be initialized from used.Along the remainder ofthe lower wall, a k_ value of
the Baldwin-Lomax model at iteration 5200 (assuming 50.0 will be used. The upper boundary is a no-slip iso-
thecurrent iteration NC is lessthan 5200).The first 15grid thermal wall. Along this boundary, a surface roughness
points are treated as a slip wall to allow for a uniform kR(nondimensionalizedbythereferencelength)of0.0001
profile at theleading edge of the flat plate.The inflow and will be used. If the k_value corresponding to this kRat any
outflow boundaries are both free boundaries. The free point along this boundary becomes less than the smooth-
stream is modeled using a slip boundary that is farfromthe wall surface roughness given by SRDEF (k_ = 1.0), the
flat plate so as not to disturb the boundary layer. The flat value of SRDEF will be used instead.
plate is smooth, and the default surfaceroughness is used.
Since no compressibility corrections have been specified,
the default setting (Sarkar's correction to the k-equation)
will be used.
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Results diffuser of Fraser28represents one of the simplest ofthese
types of flows. This flow enters a reducing section after

Smooth Flat Plate whichit passes through a straightpipe (fig.7(a)). Here the
subsonicflow is tripped sothat it becomes fully turbulent

Incompressible flow over a smooth flat plate was used before entering the 5° half-angle diverging channel.
asaninitialtestcaseforthek-to model.A 11lx81 gridwas Experimental results indicate that the flow very nearly,
used to model a Mach 0.2 flow. The first 15grid points butdoes not quite, reaches separation at the diffuser exit.
were treated as a slip wallin order for the flow to reach the A computational grid with 121 axial and 71 radial
leading edge of the flat plate with a uniform profile. The points was used to model this axisymmetric flow
gridwas sufficiently packed in the streamwisedirection to (fig. 7(b)). A small circular arc was used as a transition
resolve the flow gradients at the leading edge of the flat between sections to promote grid orthogonality. The grid
plate and normal to the surface to resolve the boundary was alsoclustered near the wallsand the inflow to resolve
layer. The k-to solution was initiated from the Baldwin- gradients in these regions. The inflow was modeled using
Lomax algebraic model by assuming that the production afree boundary, and theoutflow was specifiedthrough the
in turbulent kinetic energy was equal to the dissipation useof themass-flux boundarycondition. Boththe k-Eand
rate. The solution was determined to be converged when k-to models were initialized from a Baldwin-Lomax
fluctuations in the mean flow and turbulent quantities at solution.The three-dimensionalk-toresultswereinitialized
the last streamwise coordinate ceased. This corresponded by mapping the Baldwin-Lomax axisymmetric solution
to a drop in the L2 residual error of four orders of ontoathree-dimensionalgrid.Fifteenplaneswereusedin
magnitude, the circumferential direction to model one quarter of the

Figure 1shows the variation inskin friction coefficient flow.This testwas performed to validate the ability of the
Cf along the flat plate. Both the k-e and k-to models give three-dimensional code to model an axisymmetric flow.
similarresultsandoverpredicttheskin frictionascompared Figure 8 compares the velocity profiles of each of the
with the experimental data of Wieghardt.25 Figures 2 to modelsat two axial locations. The skin friction along the
5 show the turbulent quantities and velocities at Rex diffuserwallisgiveninfigure9.BoththeBaidwin-Lomax
values of lxl06, 4x106, and lxl07. From the turbulent and Baldwin-Barth modelspredict a separation beginning
kineticenergyprofilespresentedinfigure2,themaximum roughly halfway through the diffuser. The k-e model
value predicted by the k-to model is less than that of the shows little sensitivity to the adverse pressure gradient
k-_ model.This was alsotruein theinvestigationconducted and predicts a very well attached flow. The k-to model,

18
by Lang and Shih. Figure 3 indicates close agreement in however, is much more accurate at predicting the near
the turbulent viscosity values predicted by each model separation at the diffuser exit. Results from the three-
close to the wall. The large differences between the dimensionalNPARCcodewerefoundtobenearlyidentical
maximum values do not have a dramatic effect on the to the two-dimensional results.

turbulent shear stress, as shown in figure 4. The small
discontinuity in the Baldwin-Lomax results is caused by Sajben Diffuser
the turbulent viscosity, which is not smooth atthe location
where the inner and outer layers of the model meet. The The Sajben22 diffuser weak- and strong-shock cases
velocity profiles presented in figure 5 compare well with were selected as the next validation cases for several
the k-E model and the experimental data of references 26 reasons: (1) They furnish an additional test for the k-to
and 27. Results from the three-dimensional code (fig. 6) model in an adverse pressure gradient. (2) They are
werenearlyidenticalto thetwo-dimensionalresults, except compressible flow cases and provide an opportunity to
for a small deviation near the leading edgeof the flatplate, investigate the compressibility corrections of Sarkar and

At no timewhile running this test case was coobserved Wilcox. (3) They involve a shock-induced separation and
to be limited near the viscous wall. Both k and coreached are more indicative of the types of flows many NPARC
minimumallowable values in the free stream,as should be users investigate.
expected.The large difference in to-valuesof the slip wall The Sajben geometry is shown in figure 10(a), and the

, and flat plate solutions did not present any numerical 8lx51 grid on which bothcases were computed is shown
stability difficulties, in figure 10(b). Both the inflow and outflow boundaries

were specified as free boundaries. Computations on the
Fraser Diffuser weak-shock case were performed first with the k-e and

k-to models initialized from theBaldwin-Lomax solution.

Having found that the k-to model works as well as the The outflowpressure ofthe k-Eandk-tosolutions was then
k-E model for the flat plate, the model was then examined lowered to obtain the corresponding strong-shock results.
for an adverse pressure gradient test case. The conical The three-dimensional solutions were initialized by
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copying thecorresponding two-dimensional solutiononto Conclusions and Future Work
consecutiveplanes. Comparisonsof thethree-dimensional
and two dimensional results are made using the middle Thek-comodelwasrecentlyimplementedintheNPARC
plane, code. Results from the validation cases indicate that this

Weak Shock.mFigure 11 shows the pressure model is better suited to adverse pressure gradient flow
distributions along the top and bottom surfaces of the calculations than are other turbulence models currently
diffuser. The results from the various models arebasically availableinNPARC.A description ofthe modelequations
the same with the exception of the shock location. The andboundaryconditionswas givenalong withadiscussion
k-e model predicts the earliest shock, followed by the of several other model features not completely validated
Baldwin-Lomax and k-co models. Both the k-e and in this study. Future work using this model will include
Baldwin-Lomax models compare well with the further validation and an examination of the model's
experimental data, while the k-comodelpredicts the shock ability to simulate transition and surface roughness.
location slightly further downstream.

Figure 12displays the velocity profiles at two locations
downstream of the shock. From these profiles, it can be References
seen that the k-_ model predicts a larger core velocity,
while the k-comodel is more accurate in the near-wall 1. Jones, W.P.; and Launder, B.E.: The Prediction of
regions. A comparison of the results obtained using the Laminarization With a Two-Equation Model of
two- and three-dimensional versions of NPARC is given Turbulence. Int. J. Heat Mass Transfer, vol. 15,
in figure 13. Both give similar results. 1972, pp. 301-314.

Strong Shock.mThe top and bottom wall pressure 2. Launder, B.E.; and Spalding, D.B.: The Numerical
distributions for the strong-shock case are given in fig- Computation of Turbulent Flows. Comp. Methods
ure 14. These results show that downstream of the shock, Appl. Mech. Eng., vol. 3, 1974, pp. 269-289.
the Baldwin-Lomax model has difficulties converging to 3. Kolmogorov, A.N.: Equations of Turbulent Motion
asteady-statesolutionforthiscase, andtheresultspresented of an Incompressible Fluid. Izv. Ak. Nauk. SSSR.
represent an instant in time. Examining the two-equation Ser. fizicheskaya, vol. 4, No. 1-2, 1942, pp. 56-58.
models reveals that the k-comodel still predicts the shock 4. Menter, F.R.: Improved Two-Equation k-co Tur-
location further downstream than the data suggest, but it bulence Models for Aerodynamic Flows. NASA
does amuch betterjob predicting the pressure distribution TM-103975, 1992.
in the separation region. 5. Wilcox, D.C.: Simulation of Transition With a Two-

Velocity profiles downstream of the shock location are EquationTurbulenceModel. A!AA Journal, vol.32,
given in figures 15(a)to (c). Although none of the models no. 2, Feb. 1994, pp. 247-255.
accurately predicts the velocity profile near the upper 6. Wilcox, D.C.: A Half Century Historical Review of
wall, the k-comodel provides the best agreement. It also the k-coModel. AIAA Paper 91-0615, Jan. 1991.
gives very good results along the lower boundary. Both 7. Wilc°x'D'C':Reassessment°ftheScale'Determining
the k-e and k-comodels predict roughly the same peak Equation for Advanced Turbulence Models. AIAA
velocity, but the k-comodel more accurately matches the J., vol. 26, no. 11, Nov. 1988, pp. 1299-1310.
core-flow profile. Results from the two- and three- 8. Wilcox, D.C.: Comparison of Two-Equation
dimensional codes were again foundto be nearlyidentical Turbulence Models for Boundary Layers With
(fig. 16). Pressure Gradient. AIAA J., vol. 31, no. 8, Aug.

A comparison made of the different compressibility 1993, pp. 1414-1421.
correctionstothek-comodelisgiveninfigurel7.Adding 9. Cooper, G.K.; and Sirbaugh, J.R.: The PARC
the Sarkar correction to only the k-equationgives the best Distinction: A Practical Flow Simulator. AIAA
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