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Abstract

A suite of highly accurate numerical algorithms has been developed and validated
for use in the simulation of crossflow instabilities on supersonic swept wings, an appli-
cation of potential relevance to the design of the High-Speed Civil Transport (HSCT).

Principal among these algorithms, and the primary focus of this report, is a direct
numerical simulation (DNS) scheme embodied in the code CMPSBL, which solves
the unsteady, three-dimensional compressible Navier-Stokes equations in orthogonal,
body-fitted coordinates. The DNS algorithm is fully explicit in time and exploits a
combination of spectral and high-order compact-difference techniques for spatial dis-
cretizations. A companion code WINGBL2, documented in a previous technical report,
exploits spectral-collocation techniques to solve the compressible boundary-layer equa-
tions to provide an accurate basic state to the DNS. In addition, the algorithm INTBL
uses spectral techniques to interpolate the boundary-layer solution onto the computa-
tional grid of the DNS. These algorithms are then used to examine the development of
stationary crossflow instability on an infinitely long 77-degree swept wing in Mach 3.5
flow. Crossflow disturbances are generated by simulating spanwise-periodic roughness
elements downstream of the computational inflowboundary. The results of the DNS are
compared with the predictions of linear parabolized stability equation (PSE) method-
ology obtained with the code ECLIPSE (developed independently of this effort). In
general, the DNS and PSE results agree closely, thereby providing a reasonable valida-
tion of both approaches. Specifically, both methods show the alignment of stationary
crossflow vortices along inviscid _treamlines as anticipated. Moreover, the methods
agree well in the predicted spatial evolution of a small-amplitude (linear) crossflow
mode and in the structure of this mode. Although further validation is warranted (for
large-amplitude stationary and traveling crossflow disturbances), the present results
demonstrate a new numerical capability relevant to a problem of practical importance.



1 Introduction
o

Understanding, predicting, and controlling laminar-turbulent transition remains the holy
grail of aeronautics research despite more than a century of assault from the combined forces
of theory, experiment, and computation. Recent advances on each of these fronts and in the
areas of materials processing and micro-actuators (Ho and Tai [13]), however, have brought
this elusive goal within sight, and there is renewed interest in laminar-flow control (LFC)
technology.

Because surface friction and heat transfer increase dramatically as the boundary layer
transitions from a laminar to a turbulent state, the design of efficient aerospace vehicles
depends upon accurately predicting the transition location and the extents of the regions of
laminar, transitional, and turbulent flows. Although, in the current economic environment,
it is questionable whether laminar flow control (LFC) technology can be made commercially
viable in the near future for subsonic aircraft, the potential economic benefit could be sig-
nificant for supersonic transport aircraft such as the proposed High-Speed Civil Transport
(HSCT). This is because maintenance of laminar flow over a substantial portion of the wing
of the HSCT, for example, would not only reduce drag but would also reduce thermal loads
on the structure.

The practical attainment of LFC technology will require fundamental understanding
of the stability of three-dimensional boundary-layer flows. Examples of prototypical three-
dimensional boundary-layer flows are flows past rotating cones and spheres, flow on a rotating
disk, flows in corners, and flows over swept wings, the latter of which is of the most practical
relevance.

Whereas the stability of two-dimensional flows has been studied extensively, researchers
are only beginning to focus attention on three-dimensional boundary-layer flows. Theoreti-
cal and experimental results demonstrate that there exists a far greater variety of paths to
transition for three-dimensional boundary layers than for two-dimensional flows. For exam-
ple, in the case of the swept wing, the flow may be susceptible to Tollmien-Schlicting (TS)
instability, Goertler instability (associated with the concavity of the lower surface; e.g., see
Hall [12]), crossflow instability (the subject of the discussion to follow), and attachment-line
instability (instability of the flow along the leading edge; e.g., see Joslin [17]). For the wing
of the HSCT, to be specific, crossflow instability is likely to be the most "dangerous" in the
sense of leading most rapidly to transition.

Crossflow instability was first identified in the 1940's in experiments related to the
Northrop flying wing. As stated by Reed and Saric [28] in their review paper, "Although ._
unyawed wind-tunnel tests showed laminar flow back to 60 percent chord, yawed flight tests
showed turbulent flow from the leading edge on both the upper and lower surfaces." In flow
over a swept wing, the inviscid streamlines form S-curves because the pressure gradients
associated with body curvature accelerate or decelerate the flow in the direction perpendic-
ular to the leading edge while leaving the velocity component parallel to the leading edge
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virtually unchanged. The combination of curvilinear inviscid streamlines and the viscous
no-slip condition at the wall generates a crossflowvelocity perpendicular to the local inviscid
streamline. The crossflow velocity is zero both at the wall and in the freestream (by defini-

. tion), and thus, in between it experiences a maximum and a point of inflection. Maxima for
crossflow velocities are typically on the order of 3-4 percent of the velocity in the direction
of the streamlines.

Even though crossflow velocities are typically relatively small, the presence of the in-
flection point renders the flow susceptible to crossflow instability, which is of inviscid type.
The instability manifests itself as co-rotating vortices that align themselves roughly along
inviscid streamlines. The spacing between adjacent vortices is on the order of several 6", the
boundary-layer displacement thickness. According to Mack [20], the instability exists for
a whole band of frequencies, including zero. Curiously, linear stability theory predicts the
most amplified disturbances to be traveling waves, whereas stationary crossflow instability
is frequently observed in experiments, except close to laminar breakdown (Reed and Saric
[28]). Choudhari and Streett [10]and Choudhari [9]have shown, on the basis of receptivity
theory, that surface irregularities may favor the development of stationary crossflow modes
by giving them much larger initial amplitudes than those of traveling crossflow waves.

Both theory and experiment concur that crossflowinstability dominates on swept wings in
regions of rapidly changing pressure. Other regions on the wing, however, may be dominated
by TS-like instabilities (which we take to include the first-mode instability of compressible
boundary-layer flow). According to Reed arid Saric [28],a major unanswered question is "the
interaction between crossflow vortices and TS waves." It appears that crossftow vortices can
modify the TS instability to enhance its growth rate. From experiments, it also appears
that the crossflow instability is extremely sensitive to initial conditions, and it has even been
suggested that the theory for crossflowinstability is not well posed (Reed and Saric [28]).

In summary, transition on a swept wing is a highly sensitive and complex process. The
transition location is affected by nonparallelism of the mean flow, pressure gradient, surface
roughness, freestream turbulence, and body curvature. Moreover, these elements give i'ise to
both inviscid crossflow modes and to TS-like instabilities, which may interact. It is unrea-
sonable to ask any approximate theory to accommodate all of these diverse and interacting
elements. As a result, the problem is well suited for numerical investigations using direct
numerical simulation (DNS), for which a minimum of simplifying assumptions are made.

Crossflow instability on swept wings in incompressible flows has been investigated re-
cently with a parabolized stability equation (PSE) approach by Malik et al. [21] and with
DNS by Lin and Reed [19], Fuciarelli and Reed [11], Joslin and Streett [18], and Joslin
[16]. The present work is believed to be the first investigation of crossflow instability on a
supersonic swept wing by means of DNS. Direct simulation is computationally expensive;

• consequently, we believe that simulations are most fruitful when focused along with theoret:
ical and experimental investigations on a single problem of practical importance. To that
end, we have selected a test problem that parallels the quiet wind-tunnel experiment on a
supersonic swept wing by Cattafesta et al. [3]. Moreover, our DNS results are compared



with results obtained by PSE methodology for compressible flows (e.g., Chang et al. [6])
in an attempt to cross-validate both methods for this difficult problem. For computational
efficiency,we must limit consideration to quasi-three-dimensional (infinite-span) swept-wing
flows. This assumption permits highly efficient spectral collocation methods to be exploited
in the spanwise direction. The limitation of the computational model should be kept in
mind in drawing conclusions relative to the experiment. We emphasize, however, that the
full effects of streamwise surface curvature are incorporated into the DNS model, in contrast
to most recent approaches.

The next section discusses the coordinate system and governing equations. Section 3
summarizes the numerical methodology. The computational test case is addressed in Section
4. Results are presented in Section 5, and Section 6 concludes with a few closing remarks.

2 Governing Equations

The flow is governed by the compressible Navier-Stokes equations in the form given in Eqs.
(1)-(15) of Pruett et al. [26], which is appropriate for body-fitted coordinates on either
axisymmetric or two-dimensional bodies. Here, we consider only two-dimensional (infinite
in span) wing-like bodies. Let the wing be imbedded in a rectangular cartesian coordinate
system (_, 71,¢), with the wing cross section specified as ¢(_). Let (x, y, z) denote body-fitted
coordinates such that x is the surface arc length normal to the attachment line, Y is the
spanwise coordinate (parallel to the attachment line), and z is the wall-normal coordinate.
(The reader will note that, for consistency with the coordinates of Pruett et al. [26], the
Y and z coordinates are switched relative to the normal convention.) Accordingly, u, v,
and w are the velocity components in the streamwise, spanwise, and wall-normal directions,
respectively. The fundamental metric tensor has only one non-constant quantity s, which
arises from streamwise curvature and is defined in Eq. (2) of Pruett et al. [26]. Moreover,
by p, p, T, g, and t;, we denote the density, pressure, temperature, viscosity, and thermal
conductivity of the fluid, respectively. The viscosity /_ is modeled by Sutherland's law,
and n = I_/Pr, where Pr is the Prandtl number. For computational efficiency, the energy
equation is cast in terms of the pressure, as given in Eq. (15) of Pruett et al. [26]. All flow
variables, except pressure, are non-dimensionalized by post-shock reference values, denoted
by subscript r. Pressure is scaled by t'r_'r-*".2. Lengths are scaled by the boundary-layer
displacement thickness _* at the (computational) inflow boundary. Throughout this work,
dimensional quantities are denoted by asterisk.

3 Methodology

The conventional approach to (spatial) stability analysis, adopted here, consists of three
basic steps: determination of a laminar base state whose stability is to be investigated,



perturbation of the base state by superposition of disturbances at or near the computational
inflow boundary, and calculation of the spatial evolution of the disturbances. Each of these
steps is addressed in turn below.

3.1 Base Flow

The base state is computed by the spectrally accurate boundary-layer code WINGBL2 of
Pruett [25], which was specifically designed for the infinite-span swept-wing problem. The
effects of streamwise curvature, streamwise pressure gradient, and wall suction/blowing are
taken into account in the governing equations and boundary conditions. The boundary-layer
equations are formulated both for the attachment-line flow and for the evolving boundary
layer. The equations for the evolving flow are solved by an implicit marching procedure
in the direction perpendicular to the leading edge, for which high-order (up to 5th) back-
ward differencing techniques are used. In the wall-normal direction, a spectral collocation
method based on Chebyshev polynomial approximations is exploited. Spectral accuracy is
advantageous in that 1) the solution is highly accurate even for relatively coarse grids, 2) the
boundary-layer profiles and their derivatives are extremely smooth (a necessity for stability
analyses), and 3) interpolation to other grids can be accomplished with virtually no loss of
accuracy.

A few comments in regard to point 3) above are in order. Because WINGBL2 is de-
signed specifically for applications to stability analyses, DNS, and large-eddy simulation
(LES), special attention has been paid to the process of interpolating data to other grids,
for example, to a DNS grid. For this purpose, a companion code INTBL was written. In
brief the procedure is as follows. In the output from WINGBL2, lengths are scaled by 6",
which grows with x'. The outer edge of the boundary layer typically lies between 2 and 4
displacement thicknesses from the wall. Let Ze(X) denote the location of the boundary-layer
edge. To interpolate to a grid uniform in z, for example, we first perform spectrally accurate
interpolation in the interior region 0 < z < Ze coupled with analytic extrapolation outside
the boundary layer (z > Ze). This step is followed by high:order (typically 5th) polynomial
interpolation in x.

The analytic extrapolation in the far field is accomplished at each x by solving the
ordinary differential equation that results from the continuity equation in the asymptotic
limit z ---+_. In many boundary-layer approximations, some curvature effects are neglected,
in which case the continuity equation may be inexact. Indeed, it was determined that Eq.
(7-100) on page 397 of Anderson et al. [1], on which the continuity equation for WINGBL2
was originally based, is inexact for compressible flow; an exact continuity equation was
subsequently derived. That the continuity equation be exact is essential if the near-field

• solution and the far-field extrapolation are to merge continuously, as they must for DNS.
The method proposed by Pruett [24] to extract wall-normal velocity accurately, adopted here
also, permits an independent check of continuity. Typically WINGBL2 conserves continuity
nearly to machine precision, as shown in Figs. 1 and 2.
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The input to WINGBL2 consists primarily of three files that contain the wing geometry,
the wing pressure distribution in the form of tabulated pressure coefficients, and the reference
conditions. Cubic splines are used to interpolate as necessary between the tabulated values.
The reference conditions are presumed to be downstream of leading-edge shocks.

3.2 Disturbances

The base flow is perturbed in the manner of Joslin [16], who simulated crossflow instability
in incompressible flow on a swept wing. Disturbances are introduced by mass-preserving
suction and blowing at the wall. Currently, we explo!t steady suction/blowing in order
to induce stationary crossflow modes. The suction/blowing strip spans the width of the
wing, but is localized in x. (Henceforth, for brevity, we will refer only to the "suction"
strip.) As noted by Joslin [16]: "This mode of disturbance generation would correspond
to an isolated roughness element within the computational domain." Joslin has found by
numerical experimentation that the suction strip should not be located farther upstream than
approximately 10 percent chord. Otherwise, the crossflow modes are not swept downstream.
The spanwise wavenumber fl of the disturbance strip is a fundamental parameter of the flow,
as is the maximum amplitude of the wall velocity Wwall. Typically, very small normalized
wall velocities (say, Wwall = 10-4 or less) suffice to trigger stationary crossflow instability.
The suction/blowing profile is a full sine wave in the spanwise direction; to ensure continuity
of derivatives, the cube of a half sine function is used to shape the wall velocity in the
streamwise direction.

3.3 DNS Methodology

For the present application, we exploit the highly accurate DNS methodology of Pruett et
al. [26] with minor modifications. To summarize briefly, time is advanced fully explicitly by
the third-order low-storage Runge-Kutta scheme of Williamson [30]. Spatial derivatives are
approximated by a combination of spectral-collocation techniques and high-order compact-
difference schemes. In the streamwise and wall-normal directions, we exploit fourth- and
sixth-order compact-difference operators, respectively. In the spanwise direction, the flow
is assumed to be periodic, making possible the use of a spectral collocation technique with
Fourier exponential basis functions. The assumption of spanwise periodicity restricts the
basic flows under consideration to quasi-three-dimensional; that is, all base-flow quantities,
including the three velocity components, are assumed to be functions only of the streamwise
and wall-normal coordinates. This is equivalent to assuming that the wing is of infinite span
with constant cross-section.

The boundary conditions require some modification from those given in Pruett et al. [26].
For a well-designed wing, the streamwise component of velocity should be everywhere sub-
sonic. Therefore, the streamwise velocity at the computational inflow boundary is subsonic,



and in the outer (Euler) region of the domain, there exists an upstream characteristic veloc-
' ity. Accordingly, we specify the Riemann invariants along the inflow boundary. This inflow

treatment, correct for inviscid flow, is not entirely satisfactory in the viscous layer, where all
. flow quantities should be specified (Poinsot and Lele [22]). The wall and far-field boundary

treatments are the same as described in Pruett et al. [26], except that suction and blowing
are introduced at the wall to induce the disturbance, as described previously. We currently
exploit a buffer domain (Streett and Macaraeg [29]) in the vicinity of the outflow boundary,
as was done successfully by Pruett et al. [26]. However, for this particular application, we
are presently experiencing some reflection from the outflow boundary. It is not yet known
whether the reflection is of numerical or physical origin (or both). Additional effort should
be directed to diagnosis and refinement of the inflow and outflow boundary conditions.

The work of Pruett et al. [26] and the present work differ conceptually in that, for the
latter, which is concerned with stationary crossflow instability, only the time-asymptotic
solution is of interest. Time integration is accomplished solely as a means of relaxation
toward the steady state. Physically, from the point at which a disturbance is introduced, a
wave packet propagates (predominantly) downstream, depositing in its wake the stationary
crossflow instability of interest. Once the leading wave packet has exited the domain, the flow
settles to its perturbed steady state. Attainment of a steady state is assessed by computing
the residuals of the time-independent compressible Navier-Stokes equations. In practice,
in the context of fully explicit time advancement, the residual is simply the discrete update
vector. Evolution of the global maximum residual for the calculation of the "Results" section
is shown in Fig. 3. The largest residuals are associated with the continuity (p) and spanwise
momentum (v) equations. The maximum residuals grow approximately exponentially in time
as the leading wavefront propagates downstream at a nearly constant velocity, as implied by
Fig. 4. Different formulations for the buffer domain may change the velocity of propagation
in this region. For example, the buffer domain treatment that resulted in the least reflection
also unfortunately significantly diminished the propagation velocity in the buffer region,
necessitating a relatively long integration time. Following the exit of the leading wavefront
from the domain (not shown), the residuals decay rapidly, provided the outflow boundary
treatment is non-reflecting. Moreover, examination of the local residual field (also not shown)
indicates that the flow is essentially stationary a short distance upstream of the trailing edge
of the propagating wave packet. Finally, Fig. 5 shows the location of the maximum residual
in terms of the wall-normal gridpoint index k. The initial outward movement of the residual
is associated with a weak acoustic pulse that radiates from the receptivity region near the
suction strip. Following the exit of this wave from the upper boundary, the maximum
residual remains near k = 40, a distance of approximately 1.5_* from the wall, until the
wave encounters the buffer domain. The wall-normal location of maximum residual coincides
closely with the maximum perturbation amplitude of the crossflow instability.
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3.4 PSE Methodology
wo

The PSE method, developed originally for incompressible flow, has been extended to com-
pressible boundary layers by Bertolotti and Herbert [2] and by Chang and coworkers (See
references [4] and [7]). The method is rapidly gaining favor as a powerful and efficient tool
for analyzing the stability of spatially evolving boundary layers. The method treats both
nonparallel boundary-layer effects and moderately nonlinear wave interactions. The method
has recently been adapted for application to supersonic swept wings by Chang and coworkers.
The theory is presented in Reference [6]; a user-friendly code ECLIPSE for industry applica-
tions has also been developed and is documented in Reference [5]. The reader is referred to
these references for a thorough discussion of the theory and practice of PSE methodology.

4 Test Problem

As implied in the introduction, the computational experiment is an approximate analog to
the quiet wind-tunnel experiment of Cattafesta et al. [3]. In this section, we compare and
contrast the physical and numerical experiments.

4.1 The physical experiment

The reader is referred to Cattafesta et al. [3], which is summarized briefly here. A 15-
inch-long model of a wing section with a leading-edge sweep angle ¢ = 77.1° is being
tested in NASA Langley's Mach 3.5 quiet wind-tunnel to investigate crossflow instability
and transition. A three-dimensional view of the model is shown in Fig. 2 of Cattafesta et al.

[3]. The model was designed originally to experience flow similar to that on the 70-degree
swept wing of an F-16XL, which is undergoing flight experiments by NASA. The model cross
section is geometrically similar to that of the first 6.25 percent chord of the wing glove on
the modified F-16XL. However, the sweep angle on the wind-tunnel model was increased
to 77 degrees to match the leading-edge-normal Mach number of the Mach 3.5 wind-tunnel
experiment to that of the Mach 2.4 flight experiment, for which the normal Mach number is
0.78.

Because crossflow-dominated transition is quite sensitive to controlled and random influ-
ences, it was deemed necessary to conduct the experiment in a quiet facility. In the physical
experiment, the freestream unit Reynolds numbers were varied from 1.5 to 8.0 million per _.

foot by varying the tunnel stagnation pressure, and the angle of attack was incremented
from -2 to 5 degrees. In support of the experiment, Euler and Navier-Stokes calculations
were conducted, as were N-factor studies using the stability code COSAL (Iyer et al. [15]).
As in most theoretical studies of crossflow instability, traveling waves were predicted to have

the highest growth rates; peak N-factors were observed for frequencies in the range of 40
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to 60kHz. The transition front on the model was estimated on the basis of recovery fac-
' tors obtained from surface thermocouples. More recently, temperature-sensitive paint has

been used to more finely resolve the transition front. The measured and predicted transition
• fronts correlated approximately for N = 14. However, regions on the model with microscopic

surface scratches showed the telltale streaks of stationary crossflow vortices.

4.2 The numerical experiment

Data for the numerical experiment were inferred from an Euler calculation of the flow on
the wing model by Iyer [14],for which the freestream conditions were

M_ = 3.5 (1)
Too - 173.9° R (2)

Re1 = 2.6x106 per ft. (3)

a = 0.145° (4)

Fig. 6 shows isobars on the upper and lower surfaces of the model for the freestream
conditions given above. Near the aft stations on the wing, the wing sections are similar
(Cattafesta et al. [3]), and the isobars are nearly parallel, which suggests that the flow can
be approximated as quasi-three-dimensional (although Cattafesta et al. caution against this).
Accordingly, we consider a wing section perpendicular to the leading edge at a station 1.091
ft. along the leading edge, as shown in Fig. 7. The chord length c_, normal to the leading
edge at the section of interest is 0.2496 ft. The surface pressure coefficients interpolated
from the Euler grid to the wing section are shown in Fig. 8. The surface pressure coefficients
were then used as input data for the boundary-layer code WINGBL2 (described earlier)
to derive the base state. Some additional interpretation of the Euler data, however, was
necessary to provide post-shock reference conditions to the boundary-layer code. From the
Euler data, the post-shock Mach number at the point of maximum wingspan was taken to
be 3.29. Because of the outward turning of the flow through the shock, the effective wing
sweep angle €eft increased by a few degrees over the physical value. Finally, the post-shock
reference temperature was adjusted to force agreement between the Euler and boundary-layer
stagnation temperatures. These self-consistent post-shock reference values are summarized
as follows:

Mr = 3.29 (5)
• Tr - 189.6° R (6)

Ur = 2220.4 f/s (7)

Pr = 64.06 psia (8)

9



Ceff = 80"81° (9)

From the geometry, reference values, and pressure coefficients, the boundary-layer solu-
tion was computed based on the approximation of isentropic post-shock flow. The boundary- °
layer and Euler solutions for the edge Mach number and edge temperature are compared
in Figs. 9 and 10, respectively. The small disagreement between the two solutions can be
attributed to two sources. First, although the shock is weak, shock strength varies in az-
imuth due to the asymmetry of the body. Consequently, the post-shock flow is not strictly
isentropic. Second, of course, the base flow is not perfectly two-dimensional. Nevertheless,
the close agreement between the two solutions suggests that the simplifying assumptions are
reasonable.

Growth of the boundary-layer displacement thickness, obtained from WINGBL2, is pre-
sented in Fig. 11. The favorable pressure gradient induces a boundary layer that grows
linearly, except during the most rapid acceleration near the leading edge. The boundary-
layer solution is compared at two stations, xc =- _*/c_ = 0.0 and xc = 0.173, in Figs. 12
and 13, which show velocity and temperature profiles, respectively. By definition, of course,
the streamwise velocity vanishes along the attachment line, which corresponds (nominally)
to x_ = 0.0. Figure 14 shows the solution also at x¢ = 0.173, but in a coordinate system
oriented along the inviscid streamline. In the rotated coordinated system, u_ and u_ de-
note the tangential and crossflow velocities, respectively. Note the inflectional nature of the
crossflow velocity (the component perpendicular to the inviscid streamline). The crossflow
Reynolds number, defined in Reed and Saric [28], is shown as a function of x_ in Fig. 15.
The maximum crossflow Reynolds number is attained at approximately 20 percent chord
and decreases gradually thereafter.

Finally, the boundary-layer solution is interpolated onto the DNS grid by the interpolation
code INTBL described previously. The computational domain for the DNS spans approxi-
mately from 1 to 70 percent chord in streamwise extent and from the wall to z ---z*/_* - 25
in wall-normal extent. At the inflow boundary, _* = 0.00053 ft. An algebraic mapping
is used in the wall-normal direction to cluster points close to the wall. A second (lin-
ear) mapping is used to remove the major effects of the boundary-layer growth shown in
Fig. 11, so that the boundary layer remains of nearly constant thickness in the scaled coor-
dinate z*/_*(x*). N-factor studies by Chang [8], who used PSE methodology, determined
that a stationary crossflow mode of spanwise wavelength _ = 10 mm (0.0328 ft.) was
strongly amplified. Accordingly, the fundamental spanwise wavenumber was chosen to be

fl -_-fl*6* = 2_r_*/A_ = 0.1018. The width of the computational domain was one spanwise
wavelength; that is, 1 × _ = 0.0328 ft. The suction strip spanned from 6.7 to 9.6 percent
chord, and Wwall = 10-4.

10



5 Results

The DNS calculation was made with a resolution of 577 x 4 x 97 in the streamwise, spanwise,
• and wall-normal directions, respectively. The streamwise and wall-normal resolutions were

based on the DNS experience of Joslin [16] and of Pruett and Chang [27]. The spanwise
resolution was sufficient to resolve only the mean and a single crossflow mode; hence, dealias-
ing was exploited (in Fourier spate) in the spanwise direction to remove energy in the first
harmonic of the spanwise fundamental.

To establish the crossflow disturbances throughout the domain required an integration in
time to approximately t = 1800, at which time the leading wavefront had encountered the
outflow boundary. Because the present outflow conditions are not completely satisfactory, a
fraction of the incident energy was reflected by the boundary and contaminated the upstream
solution. Hence, the computation was halted prior to the exit of the leading wavefront from
the domain. Fig. 16 shows the evolution of the maximum of the (dealiased) perturbation
spanwise velocity as a function of the streamwise coordinate. Superimposed on the plot is
the amplitude of the v component of the crossflow instability as predicted by linear PSE
methodology. The initial amplitude of the PSE result is arbitrarily scaled for the purpose
of comparison. In the vicinity of the suction strip, where receptivity is enhanced, spatial
transients are observed. Downstream of the suction strip, apparently a stationary crossflow
mode is established, which grows in close agreement with the prediction of linear PSE. The
leading wavepacket is broad and spans approximately 0.35 < xc < 0.7 at termination of the

•calculation. Moreover, by comparison with the linear PSE result, it appears that the leading
wave packet experiences amplitudes one to two orders of magnitude larger than the crossflow
instability that is deposited by its passing. Thus, despite the initially low amplitude of the
disturbance, strong nonlinearities are encountered as the leading wavefront passes. Indeed,
in a previous simulation with a different buffer-domain treatment, in which the wavefront
completely exited the computational domain; nonlinearities and their associated Lighthill
stresses were strong enough in the wave-packet region to generate significant acoustic energy,
as shown in Fig. 17. Following passage of the wavefront, the acoustic radiation vanished.

Figure 16 suggests that a linear crossflow mode has been established in the DNS calcu-
lation in the region 0.10 < xc < 0.35." Further confirmation of this is evidenced in Fig. 18,
which compares the amplitude of the fundamental spanwise Fourier harmonic of the DNS
calculation with the amplitude of the crossfiow mode predicted by the PSE method at the
station xc = 0.22. For the comparison, the PSE and DNS results are each normalized so that
the maximum spanwise perturbation velocity is unity. The predictions of the two methods
agree very well for all perturbation components. Consequently for the DNS calculation , the
principal effect of the receptivity of the flow to the simulated roughness element is the gen-
eration of a linear crossflow mode immediately downstream of the suction strip, an expected

• result.

Fig. 19 depicts the alignment of the crossflow vortices immediately downstream of the
suction strip in the DNS calculation. The disturbances are made visible as contours of con-
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stant disturbance density in a plane approximately 1.5 displacement thicknesses from the
wall. By slicing Fig. 19 in a specific spanwise plane, the vortex alignment angle can be
estimated on the basis of the ratio of the wavelengths in the spanwise and the streamwise
directions. Whereas the dimensional spanwise wavelength is fixed, the streamwise wave-
length )_ varies, as shown in Fig. 20. Relative to the x axis, the vortex alignment angle
is tan-l(a;/fl*), where the streamwise wavenumber a; = 2_r/_;. Shown in Fig. 21 are the
vortex alignment angles as computed by linear stability theory (which assumes the flow to
be locally parallel) and by the (nonparallel) PSE method. For comparison, the angle of the
local inviscid streamline relative to the z axis is also shown. The inviscid streamline angle
is derived from the boundary-layer solution as tan (Ve/Ue). The vortex angle at xc = 0.2
as derived from the DNS results is also shown and agrees closely with the PSE result. Both
the DNS and PSE approaches clearly show the tendency of crossflow vortices to align nearly
along inviscid streamlines. The maximum deviation in the streamline and vortex alignment
angles is approximately three degrees at xc - 0.13.

6 Conclusions

• Direct numerical simulation of crossflow instability in compressible flows on swept
wings is computationally intensive. The simulation discussed in the previous section
required 100 hours of CPU time on a Cray Y-MP, despite relatively coarse streamwise
and spanwise resolution. Several factors contribute to this expense. First, long-time
integration is required to established the instability. Whereas the use of implicit or
semi-implicit methods of time advancement could reduce the computational expense by
allowing longer time steps, such savings are not guaranteed. Joslin [16] implies that the
time step needed to suppress temporal transients and numerical error is considerably
less than that permitted by the stability of his semi-implicit approach. Second, because
even small disturbances quickly generate a large-amplitude leading wave packet, fine
grid resolution is needed to resolve nonlinearities, even if the goal is to investigate
linear disturbances.

• At the present stage of development, additional effort is needed to refine both the inflow
and outflow boundary conditions. It is not presently known whether the reflections
experienced at the outflow boundary are physical or numerical in origin; however, given
our previous experience with boundary difficulties (Pruett et al. [26]), we believe the
problem can be rectified given sufficient attention.

• Despite the limitations of the numerical experiment, the qualitative and quantitative .-
agreement between the DNS and PSE results is good. The DNS confirms that the
crossflow modes predicted to be unstable by PSE are indeed unstable. Moreover, the
rate of growth, the the vortex orientation angles, and the modal structures predicted by
the two methods are shown to agree closely. Although more validation is warranted,
particularly of strongly nonlinear interactions, we believe that, given the agreement

12



between the PSE and DNS methods, PSE methodology can be used reliably and inex-
" pensively to investigate stationary crossflowinstabilities on swept-wing configurations

relevant to the design of the HSCT.

• • An unexpected observation was the radiation of acoustic energy from the (highly non-
linear) developing wavefront as the crossflow instability was being established. Al-
though this phenomenon is likely an artifact of the method used to generate distur-
bances, it underscores the capability of the DNS algorithm and suggests that the
method could readily be adapted to applications in the area of aeroacoustics.
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3. Temporal evolution of global maximum residuals of time-independent
compressible Navier-Stokes equations.
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4. Streamwise index of global maximum residual versus time.
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5. Wall-normal index of global maximum residual versus time.
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6. Euler solution displaying isobars of constant pressure on upper and
lower surfaces of wing model of Cattafesta et al. [3]

22



0.15 ; I ' I ' I ' I ;

0.10 -- I_

4--

' ' 0.05

0.00 -

-0.05 , I , I i I , I ,
0.00 0.05 O.10 O.15 0.20 0.25

[ft]
7. Wing section perpendicular to leading edge.

23



0.10 ' I ' I ' I ' I '
m

0.05

Upper Surface

o 0.00
I

Lower Surface
-0.05

-0.10 I v I , I v I ,
0.0 0.2 0.4 0.6 0.8 1.0

Xc

8. Surface pressure coefficients for wing section of Fig. 7.

24



• 4.0 ' I ' I ' I ' I '

3.8 -/_ Euler _

:_°3"6 ............BE

3.4 ..............................................--....-- .
3.2

3.0 , I , I , I , ,
0.0 0.2 0.4 0.6 0.8 1.0

Xo

9. Edge Mach-number distribution for wing section of Fig. 7.

25.



210 _ I I I ' I i I i
i

200 _- Euler -- :

,oo ii.iiiiiiii.i.i___*_-" 180 ................................... --
i

170
i

160

150 _ _ I w I i I _ I w
0.0 0.2 0.4 0.6 0.8 1.0

Xc

10. Edge temperature distribution for wing section of Fig. 7.

26



• xlO -3
5 ' I ' I ' I ' I '

E

D

3--
% -

2-
m

1 -
f u

0 , I , I , I , I ,
0.00 0.05 0.10 0.15 0.20 0.25

S

X

11. Evolution of boundary'layer displacement thickness on upper surface
of wing section of Fig. 7.

27



x10 3

2.5 I I ' I ' I ' I ' I '
i ..

,,z_,,.'_.";-'='_
f °°

2.0- ,.
/ ," .

,. u(xo=O.OOO)/ o'

/ j
/,'

=1. , (xo- oo) -5 - ,.. v -0 0
/ st •

] j

>" " ( 3)-_.- ,.,,,, ......... u xc-O. 17
1.0 - ,Y , -

' (xc 73),......... v =01
/,'

> /'0.5 , .--............................................................
/ /

/ /"

/./" i

0.0 " ' I , I , I , I , I ,
0 1 2 3 4 5 6

Z

12. Wall-normal distributions of streamwise and spanwise velocities at at-
tachment line and at xc - 0.173 on upper wing surface.

28



• • . °

• 600 ' I ' I I I ' I I I '
(9

• .'- 500 • (x_=O.OOO)r" _

•( _ )400 ',, ............T Xc-0.173 _

:_ ',

-,--'300 ,
_1_ "
IL ',

E 200 - "",................................................................................
(1.)

100 , I , I , I , I , I
0 1 2 3 4 5 6

Z

13. Wall-normal distribution of temperature at attachment line and at xc =
0.173.

29
#



xlO 3
2.5 I ' I ' I ' I ' I '

2.0

ffl
_ 1.5 , --
'+- ............"'c -i i

>- 10
°_ _
0
-_ 0.5
>

00. ......................................................................................

-0.5
0 1 2 • 3 4 5 6

Z

14. Comparison of tangential and crossflow velocities at xc = 0.173 on
upper wing surface.

3O



100
m

0 I ; I ; I ;
0.0 0.2 0.4 0.6 0.8 1.0

Xc

15. Streamwise evolution of crossfiow Reynolds number on upper wing sur-
face.

31



10° I ' I ' I ' I ' ---

10-1 i

-g lO-2 ............ _

E lO-3 DNS "
-_ 10-4 ............PSE_.

, ......... suction on =
10-5 i suction off --= i

E i =

10-6 - !,11 I , I , I , I ,
0.0 0.2 0.4 0.6 0.8 1.0

X¢

16. Streamwise evolution of maximum of fundamental of spanwise velocity
perturbation.

32



17. Contours of constant disturbance density in computational plane nor-
mal to both leading edge and wing surface showing acoustic energy
generated by strong nonlinearity in wave-packet region.
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