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. Nea.r-to-simultaneous. ultraviolet and visual spectroscopy of two moderate vsing
RS CVn systems, V815 Herculis (vsini = 27 km s~ ) and IM Pegasi (vsini = 24 kms™*
), are presented along with contemporaneous UBV(RI).-band photometry. These data
were used to probe inhomogeneities in the chromospheres and photospheres, and the
possible relationship between them. Both systcms show cvidence for rotationally mod
ulated chromospheric emission, generally varying in anti-phase to thé photospheric
brightness. A weak flare was observed at Mg II for V815 Her. In the case of IM Peg we
use photometry and spectra to estimate temperatures, sizes, and locations of photo-
spheric spots. Further constraints on the spot temperature is provided by TiO observa-
tivus. Fur IM Pey, the anticorrelation bebween chroospheric ewission and brighiness

is discussed in the context of a possible solar-like spot cycle.

Subject headings: stars: chromospheres - binaries: general - stars: late-type -~ stars:
individual: IM Pegasi - stars: individual: V815 Herculis - stars:rotation - stars:activity

— stars:variables



1 INTRODUCTION

A very extensive literature details variability of late-type stars in different transitions
such as Ca Il H and K, He, C IV, Mg I1, and in radio and X-ray wavelength regions. Varia-
tion in the emission in these lines is usually taken as an indication of inhomogeneities in the
chromosphere, transition region or corona. Such emission fluctuations are usually accompa-
nied by visual UBV-band modulation that is now firmly believed to be the result of large, cool
regions located in the photosphere similar to sunspots. In some studies the chromospheric
emission varies in antiphase with the photometric wave (increased emission at photometric
minimum), which suggests that the active regions are compact and cospatial with spots (e.g.,
Rodoné et al. 1987; Huenemoerder, Ramsey, & Buzasi 1990; Dempsey et al. 1993a). Just
as frequently, however, no correlation or a very complex correlation is observed (e.g., Doyle
et al. 1989). Ideally, simultaneous observations should be performed at all wavelengths in
order to develop a coherent 3-D atmosphere model. In practice, observations of several proxy
indicators simultaneously are rare and tend to focus on the same small number of extremely
active systems. Dominating such studies are the RS Canum Venaticorum (RS CVn) and
BY Draconis (BY Dra) binaries. The RS CVn systems, first identified by Hall (1976), typi-
cally consist of a G- or K-type giant or subgiant with a late-type main sequence or subgiant
companion. BY Draconis (BY Dra ) binaries contain two late-type main-sequence stars. We
have been conducting a campaign to probe surface inhomogeneities on a large number of

systems, many with moderate to low levels of activity (Dempsey et al. 1992, 1993a).

In this paper we present near-to-simultaneous visual and ultraviolet observations of two
active binaries with very different periods. The first system, V815 Hercules (HD 166181),
consists of a solar-like G5 V star tidally locked in a short period (P,,; = 1.98) orbit with
an M1-2V companion. Spots are clearly indicated in visual photometric light curves, which

typically show a modulation of 0.m13. Dempsey et al. (1993b) found the system to be



X-ray luminous. An X-ray flare has been observed on the system as well as a possible
modulation of the X-ray emission due to stellar rotation (Dempsey et al. 1993c; Dempsey et
al. 1995). Although it is likely that the spot wave of the visual light curve results from an
inhomogeneous photosphere on the G5 V star, it is quite possible that the observed X-ray

flare originated on either component.

The second, better studied system, IM Pegasi (HD 216489), containsAa K2 III-II primary
plus an unknown companion and has an orbital period of 24 days. Dempsey et al. (1994)
studied spectral line profile variations in this system and concluded that high-latitude, but
not polar, spots were present. IM Peg also exhibits rotational modulation of the Ca II
infrared “triplet” (IRT) and Ho emission (Huenemoerder et al. 1990; Dempsey et al. 1993a).
Although bright in X-rays, Ly ~ 42X 10*2 erg s™!, no coronal inhomogeneities were detected
during the ROSAT All-Sky Survey (Dempsey et al. 1993b, 1995). IM Peg has now been
observed in the visual by us over many years. Dempsey et al. (1994) presented preliminary
results that IM Peg appear to show a solar-like spot cycle with a period of 12-15 years.

Results from the multi-year spot modelling will be presented in full in a later publication.

Ultraviolet observations were obtained with the International Ultraviolet Explorer (IUE)
in September through November 1992. Of primary interest were the Mg II h- and k-lines
and C IV transition, among others. Walter et al. (1987) and Neff et al. (1989) were able to
fit gaussian profiles to the Mg I lines in TUE spectra of AR Lacertae in order to derive a 2-D
image of non-uniform chromospheric emission distribution. Visual spectra of V815 Her and
IM Peg covered several regions, including Ho and the IRT. Dempsey et al. (1992) used profile
assymmetries to model photospheric temperature inhomogeneities, while the chromosphere
was probed with the IRT (Dempsey et al. 1993a). Ground based photometry of both stars
was obtained at the Konkoly observatory.. In this paper we combine the datasets from the
fall of 1992 to obtain a multi-layer snapshot of the outer atmospheres of these two RS CVn

systems.



2 OBSERVATIONS

2.1 Visual Spectroscopic Data

Spectroscopic observations for V815 Her and IM Peg were obtained in September
1992 from Kitt Peak National Observatory (KPNO) using the coudé feed telescope. The
1024x1024 TI#3 CCD (XX pixels) was used with grating A, camera 5 and the long col-
limator resulting in a two-pixel resolution of 0.32 A at 6400 A. Spectra covered Ha, the
8498 and 8542 lines of the IRT, and the 6390-6430 A region. Additional data for IM Peg
were obtained with the National Solar Observatory (NSO). The NSO observations used the
Milton-Roy grating #1 (1200 lines/mm) in 2nd order with an 800x800 TI CCD (15 um pix-
els) and have a two-pixel resolution of 0.19 A at Ha. Several spectra of the Ho region with
a resolution of 0.11 A were obtained with the Ritter Observatory 1-m telescope employing

| a fiber-fed echelle (see Dempsey et al. 1992 for details). Low-resolution (AA 1.24-2.26 A)
echelle observations covering essentially all of the the 4400-9000 A region were obtained at
the Black Moshannon Observatory (BMO). Spectra obtained at NSO and BMO covered
the Na I-D and He I lines, Ha, HS and several titanium oxide (TiO) bands. The KPNO
data were reduced in a standard fashion using IRAF!. The NSO data reduction followed the
procedures outlined in Neff, O’Neal, & Saar (1995), using IDL routines developed in house
but made publicly available. The BMO data reduction used the IDL-based echelle reduction
package described by Hall et al. (1994). A log of the visual spectroscopic observations is

given in Table 1.

Due to the vsini and lower activity levels of the stars studied here, measuring small

changes in the line core emission is difficult. For example, equivalent widths usually have

'IRAF is distributed by National Optical Astronomy Observatories, which is operated by the Association of
Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.



large errors due to uncertainties in continuum placement, definition of the line wings, line
blends including those of the secondary, and artifacts such as water vapor lines (Bopp,
Dempsey & Maniak 1988). Subtraction of an “inactive” star requires high S/N spectra of
stars with identical properties. Here we measure the residual line core intensity, R.. Bopp
et al. (1988), Dempsey (1991), Dempsey et al. (1993a), and Montes et al. (1995) showed
how R. can accurately measure small changes in chromospheric emission of Ha and the
IRT. For both systems discussed here, the IRT lines usually have an emission reversal in the
high-resolution spectra. In theses cases, R, is the intensity of the peak core emission divided
by the continuum intensity. For the lower-resolution BMO data the emission reversal is
generally not visible and in these cases R¢ represents the lowest point in the absorption line.
Phases for V815 Her were computed from the ephemeris HJD 2,441,930.4877 + 1.8098368E
(Strassmeier et al. 1993) and for IM Peg using HJD 2,422,243.316 + 24.39E (Huenmoerder
et al. 1990).

2.2 Visual Photometric Data

At Konkoly Observatory UBV(RI)c photometric observations were made for both sys-
tems in August and September of 1992 using the 1m RCC telescope. These data are listed
in Tables 2 and 3. Average first and second order extinction coefficients were used. First

order standards are from Landolt (1983), and standard magnitudes recalibrated by Menzies

(1991).

2.3 Ultraviolet Spectroscopic Data

Ultraviolet spectra were obtained with the International Ultraviolet Explorer (IUE) dur-
ing the fall of 1992. The IUE observation log is given in Table 4. Both SWP low-resolution
and LWP high-resolution spectra were obtained at a number of phases that were intended to

evenly cover one rotation cycle of the systems. For V815 Her the spectra were obtained over



15 days, overlapping with the ground-based KPNO observations. IUE spectra for IM Peg
were obtained over a 17-day interval and partially overlapped the visual observations. Spec-
tra were extracted and calibrated from the IUE images with the RDAF package of IDL
routines. Line fluxes for the emission lines were calculated by least-squares gaussian fits to
the line profiles using the ICUR fitting code based on Bevington’s (1969) CURFIT (Neff
1987).

3 V815 Her

3.1 Orbit

While measuring wavelengths of some of the visual lines it became apparent that the
orbit presented in Nadal et al. (1974) did not accurately predict line positions for our
data. We therefore measured 13 radial velocities from the KPNO spectra using the cross-
correlation method discussed in Bopp & Dempsey (1989). For the cross-correlations we used
* the 6390-6430 A and 6570-6590 A regions. For standard stars we used y Her and 8 Com
with radial velocities of ~15.9 km s~! and +6.0 km s™!, respectively. Results are listed in
Table 5. We estimate the errors of the new velocities to be better than 1 km s~ (Bopp
& Dempsey 1989). Overplotting the new data with those from Nadal et al. clearly showed

1 existed between the two sets of radial

that a systematic shift of approximately 12 km s~
velocities. To accurately estimate the shift, we calculated the orbit for both the old and new
data sets using the standard least-squares program of Bopp, Evans & Lang (1970). From
the data of Nadal et al. we find a center of mass velocity, v, of -13.4 + 2.3 km s™! compared
to -1.0 £ 1.5 km s~! for the KPNO observations. Semi-amplitudes, K, of 54.6 £+ 3.3 km s~}
and 54.9 & 1.2 km s™! were found for the old and new datasets, respectively. Except for v

all new orbital elements were also within errors to the published orbit (see Table 6).

While a systematic error in the velocities of Nadal et al. is possible (e.g., Bopp et al.



1989), such a large offset would be unlikely. A more plausible possibility is that an undetected
third body is present in the V815 Her system with an orbit period of many years. Cole et
al. (1992) note that a change of 13 km s™! in the center of mass velocity is reasonable for a
trfple system. The only apparent effect of the third body is to change v and not any of the

other orbital elements.

Since the effect of either possibility is the same from our point of view, we applied a
shift to the Nadal et al. data and computed a single “hybrid” orbit. A systematic shift
of 12.1 km s™! yielded the smallest residuals, within errors of the Ay found above. Errors
for the Nadal et al. radial velocities are larger (~ 3-5 km s™!) than for those derived from
cross-correlation and therefore wére given an arbitrary weight of 0.8, compared to 1.0 for
the KPNO values, when computing the final orbit (see Bopp et al. 1970; Bopp & Dempsey
1989). One value from the Nadal et al. list was consistently poorly fit (O-C ~ 37 km s™1)
for any of the computed orbits and was therefore given a weight of 0.0; it’s likely that the
published sign is in error for this value. The resulting orbit is listed in Table 6 and shown
in Figure 1. No significant changes are seen in the orbital elements besides v, except that it

is more clear that the eccentricity is indeed likely zero.

3.2 Visual Data

Due to the low vsinz (27 km s™!) of the V815 Her primary, the resolution of the visual
data is not high enough to detect profile variations. An emission reversal is visible in the
IRT lines, shown in Figure 2. The level of activity shown at the IRT is consistent with other
active stars with similar periods and spectral types (Dempsey et al. 1993a). Emission filling
in the line core of Ha is also evident as seen in Figure 3. Although line core emission is
clearly evident in the IRT and He profiles (Bopp et al. 1988; Dempsey 1991; Dempsey et

al. 1993a; Montes et al. 1995), measurements of R, did not show any significant variation.



Photometry from September of 1992 is shown in Figure 4. Unfortunately few data
points are available, but a minimum appears around phase 0.0 followed by a steep rise to
maximum around phase 0.3. The light level is roughly constant until phase 0.8 where it again
decreases. Also shown in Fix X are data from August and early September, prior to the
UV and optical spectroscopy. These data show that the light curve for V815 Her is highly

variable, changing shape dramatically in the space of several weeks (a2 10 stellar rotations).

3.3 Ultraviolet Data

An example of the LWP high-resolution Mg II spectrum for V815 Her is shown in
Figure 5. Phases of conjunction sho§v a single strong Mg II h- and k-line. In several cases,
especially at the quadrature phases, emission from both stellar components was resolved. A
weak, unresolved interstellar line might be visible in several spectra, but this feature could
not be reliably fit. The results of fitting gaussian emission lines and a quadratic background
are listed in Table 7. Velocities for the stronger component correspond to the G-star. Based

on the fits we conclude that approximately 19% of the Mg II line flux comes from the M-star.

An interesting feature was observed in the red wing of the Mg II lines at phase 1.37
(LWP23980) as seen in Figure 6. This emission was not evident in any other LWP spectrum.
Therefore, we conclude that we spectrally resolved a flare on the system. Its position implies
redshifts of 60 and 106 km s~! from the G- and M-stars, respectively, either of which may be
possible. The Mg IT h flux in the flare component was 2.7x107!% erg s~! cm™2. There was no
other evidence that the LWP profiles are non-gaussian, as would be the case if the emitting
regions were inhomogeneously distributed in the chromosphere. Due to the resolution of IUE
and the signal-to-noise of the data we cannot make any conclusions on the spatial distribution

of the emitting regions on either star of the V815 Her system based in line profiles.

A representative SWP spectrum of V815 Her is shown in Figure 7. For all features only



a single component can be detected, which is presumed primarily from the G-star. Table 8
lists the SWP line fluxes. Plots of the total fluxes as a function of phase are shown in
Figure 8. Significant variations of 20-90% are evident for the SWP fluxes but very little

change is seen in the Mg 1I h-line.

4 IM Peg

4.1 Visual Data

A typical IRT spectrum of IM Peg is shown in Figure 2. The activity level observed in
the fall of 1992 is the same as that observed previously (Dempsey et al. 1993a). Variations
in the Ha and IRT lines are evident but subtle, as seen in Figure 9. The Ha data, and to.
a lesser degree the A8498 data, show clear modulation in anti-phase to the V-band curve
(Figure 10). The A8542 data mimic that for A8498 but with a smaller amplitude. Too
few of the Hf observations are available to draw any conclusions about variability. Thus
IM Peg appears to have retained the clear anti-phase correlation between brightness and

chromospheric emission as observed previously by Huenemoerder et al. (1990) and Dempsey

et al. (1993a).

Dempsey et al. (1992) first used the Correlative Analysis (CA) technique to estimate
the photospheric spot distribution using profile asymmetries combined with photometric
modulation. Full details can be found in that paper. In CA, a mean profile is obtained from
several lines through cross-correlation with an unspotted template star. The bisector of this
mean profile is then modeled using standard methods. Photometry is used in the modelling
so that a consistent physical spot model can be derived. In both cases the fitting is done by
trial-and-error. In practice any number of spots with any shape and temperature may be
used but in practice 2-3 spots at a single temperature is usually adequate. Although simple,

Hatzes (1993) derived very similar results with conventional Doppler imaging using very high
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S/N data. In a subsequent paper we will present results of multi-season spot modelling of

IM Peg, but here we only study the 1992 data.

Originally, Dempsey et al. 1994 used cool spot temperatures, Typot, of 3520 K based on
two-spot models by Poe & Eaton 1985 using VRI photometry. Based on the TiO data we
adopted a Tip, of 4000 K for the current modeling. It is not clear whether this really repre-
sents an increase in the spot temperature, but a similar effect was observed for & Geminorum
(Dempsey et al. 1992). Using a warmer spot temperature requires larger areas to match the
same light curve. Therefore the spot areas presented in Dempsey et al. (1994) would subse-
quently increase by approximately 40% using Ts,0¢ of 4000 K. This will be discussed in more
detailed in a subsequent publication. For modeling the effective temperature of the primary
was taken to be 4500 K and V,, the maximum brightness, was set at 5™.60, the brigilteét
value observed in 17 years of photometric observation. Total spot area is directly related to
V, and it is likely that the value of 5™.60 above does not represent a truly unspotted star
but rather only the minimum coverage observed to date. TiO observations by Saar, Neff, &
O’Neal (1995) further support this conclusion. Little information is added to the modeling
processing by using the UB photometry (see, for example, Poe & Eaton 1985) so these were
not directly used in the modeling. However, the resulting spot model does adequately re-
produce the light curves in these bands. Limba darkening coefficients were taken to be 0.73,

0.53 and 0.42 for the V-, R-, I-bands, respectively.

Fits to the 1992 line bisectors are shown in Figure 11. The CA map derived from the
1992 data is displayed in Figure 12. Projected spot areas of 13.8%, 5.2% and 6.7% are
derived for the 3 spots shown in the figure. The resulting photometric model is shown in

Figure 10 as a solid line.

Neff, O’Neal, and Saar (1995) describe a technique in which the 7100 A and 8860 A

absorption bands of the TiO molecule are used to determine the area and temperature of
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starspots on active stars. Spectra of M giant stars are used to model the spot contribution
to the overall active stellar spectrum; both bands become deeper with decreasing effective
temperature. For spot temperatures between approximately 3000 K and 3800 K, this tech-
nique can independently determine starspot temperature (from the ratio of the strengths of
the two bands) and filling factor (from their absolute depths). The upper temperature limit
for this technique is set by the temperature at which the 8860 A TiO band is first observable.

On IM Peg, this spectroscopic technique is complicated by three factors. First only 4
observations between phase 0.99-0.14 were obtained. Second, no absorption was measured in
the 8860 A TiO band, thus the starspots appear to be warmer than 3800 K. This eliminates
one of the constraints needed to independently derive starspot filling factor and temperature.
Finally, IM Peg is a K2 giant, a star cool enough to show measurable absorption in the 7100 A
Ti0 bands even from the unspotted photosphere. Inactive K2 III comparison stars show a

depth of 1.0 to 1.5% in the leading 7100 A TiO band.

The first TiO band observation was taken at phase 0.99; this is approaching the deeper
of the two photometric minima. At phases 0.02 and 0.11 the TiO strengths indicate spot
filling factors of 2.3% and 1.9%, respectively. By phase 0.14 the derived spot coverage
increased to 12%. See Figure 13. In deriving these starspot filling factors, we assumed that
the lowest observed 7100A depth of 1.3% at phase 0.99 represents no spot coverage and
that the temperature of the spots is 4000 K. Even if these assumptions are incorrect, the

technique yields approximately correct relative spot coverages.

The TiO observations are easily understandable in terms of the map in Figure 12. Near
phase 0.99, only a small portion of the largest spot is in view and with foreshortening and
limb darkening, the TiO area should be a minimum. Towards phase 0.15 the spot is fully in
view consistent with the larger derived spot filling factor. Unfortunately, no TiO observations

were obtained at the later phases.
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4.2 Ultraviolet Data

Huenemoerder et al. (1990) first studied the UV variability of IM Peg using 10 IUE
spectra obtained during the summers of 1985 and 1986. They found the UV fluxes to vary
in phase with the Ca II IRT emission. Our IUE observations (see Table 4) were planned to
cover one complete rotation in as short a time as possible. Figures 14 and 15 show typical
LWP And SWP spectra of IM Peg, respectively. For the Mg II profiles we attempted single
and multiple gaussian fits to the emission along with a single gaussian for the interstellar
absorption. None of the LWP spectra show any evidence of emission from the secondary and
in all cases the single emission gaussian fit the data well. All SWP emission lines were also

well fit with single gaussians.

Line fluxes as a function of phase are given in Tables 9 and 10 and shown in Figure 16.
The Mg II h- and k-lines showed no significant fluctuation over the rotational cycle. Small
changes are seen in the SWP line fluxes. The Si III] and C III] line ratio can be used to
estimate the electron density, N, of the emitting plasma. Signal-to-noise is poor for these
lines in our spectra so error bars are large. From Keenan, Dufton & Kingston (1987) we
estimate that N, &~ 10'® cm™3, with a density at phase 0.8 a factor of 3 lower. Although
the line fluxes vary in IM Peg, there is no evidence for asymmetries in the UV line profiles

themselves.

5 DISCUSSION

The V815 Her UV line fluxes and the IRT emission are indicative of a very active star
(Hartmann, Dupree, & Raymond 1982; Dempsey et al. 1993a). Generally, the UV line fluxes
show a decrease during the early rotational phases followed by an increase after phase 0.6.
This trend is exactly the opposite of that seen in the photometry shown in Fig. 4. Such

behavior is reminiscent of the more traditional solar paradigm with chromospheric emission
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varying with an anticorrelation to photospheric brightness, i.e. chromospheric optical and
UV emission from regions cospatial with spots in the photosphere. Most stellar systems
studied in this manner either do not show such a correlation or, in some cases, show a clear
correlation one season and then do not at another epoch. Such is the case of the similar
RS CVn, ¢ Geminorium (K1 III, P,,, = 19%), studied over two seasons (Dempsey et al.
1993a).

For V815 Her the large UV flux variability, including possible flares, superimposed on a
weakly modulated signal is qualitatively similar to the behavior observed in the X-ray light
curve obtained by ROSAT two years earlier (Dempsey et al. 1993c). This does not, however,
imply a long term correlation, as the August photometry clearly shows that the V815 Her
system 1s highly variable. Lines formed in the lower chromosphere (e.g., Mg 11, Si II, He,
IRT) show the weakest modulation or none altogether. Flaring activity, as indicated by the
Mg 1I data presented here and the X-ray data presented in Dempsey et al. (1993c) and
Dempsey et al. (1995), appears to be common on one or both components in the V815 Her

system.

The anticorrelation between photometric brightness and UV emission is more evident
in IM Peg. The IM Peg anticorrelation was also the observed in IRT data in 1985 and 1986
(Huenemoerder et al. 1990) and 1989 (Dempsey et al. 1993a) suggesting the phenomenon
is relatively stable. However, even this is over simplified. While Huenemoerder et al. (1990)
observed Ha to be essentially constant in the summers of 1985 and 1986, we do observe a
significant modulation in the Ha emission. Dempsey et al. (1994) tentatively identified a
solar-like cycle on IM Peg based on 15 years of photometry. If valid, the Huenemoerder et al.
Ha observations would roughly correspond to the spot minimum phase of the cycle, while
those reported here occurred during spot maximum. This suggests a possible change in the

chromospheric network over the cycle.
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Figure 1: Radial velocities for V815 Her (+’s are from this paper, *’s are from Nadal et al.)
with final combined orbital solution (solid line). The value near phase 0.2 with an O-C of
40 km s7! is believed to be a misprint and was not used in the solutions.

Figure 2: IRT region of V815 Her (middle spectrum), IM Peg (top spectrum) and the
standard star o Arietis (K2 III, bottom spectrum). Emission reversals are clearly seen in
the A 8498 and A 8542 lines in both of the RS CVn spectra. Spectra have been normalized
to unity and the upper two shifted arbitrarily in the vertical direction for clarity.

Figure 3: HI Balmer-a region of V815 Her (middle spectrum), IM Peg (top) and a Ari
(bottom). Note that the shallowness of the line cores in V815 Her and IM Peg result
from both rotational broadening and chromospheric emission (see further Bopp, Dempsey
& Maniak 1988; Dempsey 1991). Spectra have been normalized to unity and the upper two
shifted arbitrarily in the vertical direction for clarity.

Figure 4: V-band light curve for V815 Her from August and early September (top) and for
later September when the IUE observations were obtained (bottom).

Figure 5: Sample LWP spectrum for V815 Her. The spectrum (LWP24075) represents a
typical or “quiescent” level (see also Fig. 5).

Figure 6: Model fit to the Mg II h-line for LWP23980. The most blueward component is from
the secondary while the strongest profile arises from the primary. The reward component is
attributed to a flare.

Figure 7: Sample SWP spectrum for V815 Her. Several prominent lines are identified. The
heavy “X”s along the bottom indicate camera reseau marks.

Figure 8 IUE fluxes versus phase for several transitions in V815 Her. In the bottom panel,
the left- and right-hand y-axis labels correspond to the C IV and Mg II fluxes, respectively.
For Si Il and Si IV the flux is the sum of both lines listed in Table 8.

Figure 9: (a) R, for A8498 (asterisks) and Ha (pluses and diamonds) for IM Peg. For Ha,
pluses indicate KPNO and NSO data while the diamonds represent the RO data. Values of
R, for A8542 are similar to those of 28498 but with a smaller amplitude in the variation. (b)
Data from BMO are shown in the bottom panel. Asterisks and triangles represent IRT data
from August and September, respectively. R, for Ha is designated by pluses and diamonds
for the August and September data, respectively.
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Figure 10: V-band (top) and Iband light curves for IM Peg from fall of 1992. The solid
line represents the spot model displayed in Fig. 12 and discussed below. Similar results are
observed for the UBR-band light curves.

Figure 11: The observed and theoretical bisectors for IM Peg. Model bisectors are fitted by
eye using a trial and error method.

Figure 12: Resulting spot map for IM Peg. Dark shaded regions indicate a uniform Typ,¢ of
4000 K.

Figure 13: 7100 A region spectrum of IM Peg taken at phase=0.14. Arrows indicate positions
of the 7055 A, 7088 A, and 7126 A bandheads of TiO. This spectrum exhibits the deepest
Ti0 bands among our IM Peg observations.

Figure 14: Sample LWP spectrum for IM Peg.

Figure 15: Sample SWP spectrum for IM Peg. The heavy “X”s along the bottom indicate
camera reseau marks.

Figure 16: IUE fluxes versus phase for IM Peg. For Si Il and Si IV the flux is the sum of
both lines listed in Table 10.
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Table 1: Log of Visual Observations

Target UT Date Exposure UT Start Region Observatory®
(Sec)
IM Peg  02-aug-1992 900 07:17 echelle BMO
IM Peg  03-aug-1992 900 07:02 echelle BMO
IM Peg 05-aug-1992 900 06:51 echelle BMO
IM Peg  06-aug-1992 600 06:52 echelle BMO
IM Peg 07-aug-1992 900 06:33 echelle BMO
IM Peg 12-aug-1992 900 05:22 echelle BMO
IM Peg 20-aug-1992 900 04:27 echelle BMO
IM Peg 22-aug-1992 900 05:39 echelle BMO
V815 Her 11-sep-1992 1800 02:49 He NSO
IM Peg 900 04:06 Ho NSO
IM Peg 600 08:12 Hp NSO
IM Peg 12-sep-1992 600 07:16 He NSO
IM Peg 600 10:54  Hp NSO
IM Peg 14-sep-1992 420 07:25 He NSO
IM Peg 600 11:07 Hp NSO
IM Peg 14-sep-1992 420 07:53 Hea NSO
IM Peg 16-sep-1992 480 08:14 Ha NSO
V815 Her  22-sep-1992 2000 02:16 6420 CF
IM Peg 600 04:05 6420 CF
V815 Her 1800 04:38 6420 CF
V815 Her 1800 05:28 IRT CF
IM Peg 2700 06:56  IRT CF
IM Peg 300 09:24 Ha CF
V815 Her  23-sep-1992 1800 02:18 IRT CF
V815 Her 2100 02:58 6420 CF
IM Peg 300 06:39 Ha CF
IM Peg 1200 07:41 IRT CF
V815 Her 24-sep-1992 2100 02:09 IRT CF
V815 Her 2000 03:50 6420 CF
V815 Her 900 04:50 Ha CF
IM Peg 300 05:33  Ha CF
IM Peg 300 06:46 6420 CF
V815 Her 25-sep-1992 2100 02:15 IRT CF
V815 Her 2000 03:50 6420 CF
V815 Her 900 04:50 Ha CF
IM Peg 3081 05:44 He CF
IM Peg 300 06:50 6420 CF
IM Peg IRT CF

’

1200

07:51



Table 1: Log of Visual Observations (continued)

Target UT Date Exposure UT Start Region Observatory®
(Sec)
V815 Her 26-sep-1992 2100 02:09 IRT CF
V815 Her 2000 03:29 6420 CF
V815 Her 1000 05:25 He CF
IM Peg 300 06:06 Ho CF
IM Peg 1200 06:49 IRT CF
IM Peg 300 08:12 6420 CF
V815 Her  27-sep-1992 2000 02:04 IRT CF
V815 Her 2000 03:48 6420 CF
V815 Her 1000 05:24 He CF
IM Peg 300 06:04 He CF
V815 Her  28-sep-1992 1800 02:3¢ IRT CF
V815 Her 2000 03:58 6420 CF
V815 Her 900 04:35 He CF
IM Peg 300 05:30 He CF
IM Peg 1500 06:43 IRT CF
IM Peg 400 08:10 6420 CF
IM Peg 14-oct-1992 450 02:34 echelle BMO
IM Peg 22-0ct-1992 3000 02:20 He RO
IM Peg 25-0ct-1992 2500 01:24 He RO
IM Peg 26-oct-1992 2500 01:30 He RO
IM Peg 27-oct-1992 450 02:07 echelle BMO
IM Peg 27-0ct-1992 1200 02:45 echelle BMO
IM Peg 27-oct-1992 450 02:07 echelle BMO
IM Peg 28-oct-1992 600 02:19 echelle BMO
IM Peg 28-0ct-1992 600 02:31 echelle BMO
IM Peg 28-oct-1992 600 02:41 echelle BMO
IM Peg 28-oct-1992 600 02:51 echelle BMO
IM Peg 29-0ct-1992 600 01:42 echelle BMO
IM Peg 29-oct-1992 600 01:53 echelle BMO
IM Peg 29-oct-1992 600 02:03 echelle BMO
IM Peg 29-0ct-1992 600 02:14 echelle BMO
IM Peg 08-nov-1992 420 02:50 echelle BMO
IM Peg 08-nov-1992 420 02:57 echelle BMO
IM Peg 08-nov-1992 420 03:05 echelle BMO
22

9NSO0 indicates the National Solar Observatory observations, CF are the Coudé Feed spectra, RO designates
Ritter Observatory, and BMO designates Black Moshannon Observatory.



Table 2: V815 Her Photometry

HID Phase AV (U-B) (B-V) (V-I) (V-R)
48748.4219  0.15 0.863 0.103 0.079 0.174 0.079
48798.4414  0.79 0.859 0.094 0.080 0.165 0.068
48800.4141  0.88 0.882 0.089 0.085 0.181 0.078
48801.4102  0.43 0.855 0.092 0.077 0.172 0.074
48802.5469  0.06 0.875 0.089 0.081 0.173 0.076
48803.5391  0.61 0.841 0.104 0.080 0.162 0.074
48804.4609  0.12 0.866 0.097 0.079 0.176 0.077
48805.4062  0.64 0.832 0.093 0.081 0.168 0.071
48808.5391  0.37 0.872 0.087 0.079 0.176 0.077
48859.3555  0.45 0.863 0.086 0.089 0.175 0.079
48860.3789  0.01 0.867 0.090 0.084 0.173 0.067
48861.3789  0.57 0.875 0.087 0.079 0.169 0.073
48883.3633  0.71 0.835 0.090 0.071 0.165 0.070
48884.2617  0.21 0.854 0.088 0.077 0.170 0.074
48885.273¢  0.77 0.851 0.091 0.079 0.169 0.073
48886.2734  0.32 0.838 0.080 0.076 0.167 0.070
48888.2539  0.42 0.837 0.084 0.081 0.158 0.066
48888.2812  0.43 0.836 0.086 0.074 0.159 0.071
48890.3516  0.58 0.837 0.076 0.078 0.160 0.071
48891.2461  0.07 0.890 0.096 0.084 0.182 0.074
48892.2500  0.62 0.840 0.080 0.078 0.165 0.070

Mean 0.856 0.900 0.080 0.170 0.073
o 0.017 0.007 0.004 0.006 0.004

“Differential photometry using comparison star BD +29° 3190 V=6.85 U-B=0.22 B-V=0.64 V-R.=0.34 V-
1.=0.71
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Table 3: IM Peg Photometry

HID  Phase AV (U-B) (B-V) (V-I) (V-R)
48859.4453  0.27 -0.795 0.204 0.131 0.116 0.086
48860.6016  0.32 -0.792 0.192 0.124 0.117 0.084
488625625  0.40 -0.759 0.196 0.136 0.132 0.090
48863.5703  0.44 -0.732 0.200 0.140 0.133  0.097
48883.5000  0.26 -0.779 0.207 0.123 0.127 0.091
48886.3906  0.38 -0.765 0.204 0.132 0.135 0.095
48888.4336 046 -0.730 0.212 0.143 0.142 0.095
48890.4258  0.54 -0.701 0.202 0.143 0.146 0.098
48891.3789  0.58 -0.701 0.205 0.149 0.154 0.099
48892.5273  0.63 -0.693 0.206 0.138 0.150 0.098
48397.4102  0.83 -0.705 0.206 0.132 0.152 0.095
489541953 - 0.16 -0.701 0.215 0.136 0.158 0.106
489543164  0.16 -0.689 0.213 0.126 0.159 0.103
48956.1914  0.24 -0.757 0.211 0.128 0.133 0.090
48957.3242  0.29 -0.780 0.203 0.128 0.127 0.089
48974.2773  0.98 -0.666 0.208 0.133 0.164 0.109
48975.1875  0.02 -0.659 0.199 0.142 0.164 0.101
48979.1680  0.18 -0.715 0.202 0.143 0.153 0.094

Mean -0.729  0.205 0.135 0.142 0.096
o 0.042 0.006 0.007 0.015 0.006

9Differential photometry using comparison star HD 216635 V=6.617 U-B=0.74 B-V=1.04 V-R.=0.555 V-
I.=1.053.
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Table 4: Log of IUE Observations

Image Target UT Exposure Start  Duration
(Seconds)

LWP 23976 V815 Her 20-sep-1992 03:46:12  1800.000
SWP 45689 V815 Her 20-sep-1992 04:23:17  9000.000
LWP 23980 V815 Her 22-sep-1992 03:54:57  1800.000
SWP 45740 V815 Her 22-sep-1992 04:33:01  8400.000
LWP 23988 V815 Her 23-sep-1992 03:05:24  1800.000
SWP 45752 V815 Her 23-sep-1992 03:40:18 11100.000
LWP 23993 V815 Her 24-sep-1992 03:36:12  1800.000
SWP 45764 V815 Her 24-sep-1992 04:11:28  9600.000
LWP 24000 V815 Her 25-sep-1992 03:31:55  1800.000
SWP 45768 V815 Her 25-sep-1992 04:07:28  9720.000
LWP 24005 V815 Her 26-sep-1992 03:43:53  1800.000
SWP 45775 V815 Her - 26-sep-1992 04:18:55  9000.000
LWP 24010 V815 Her 27-sep-1992 03:45:47  1800.000
SWP 45782 V815 Her 27-sep-1992 04:20:34  9000.000
LWP 24018 V815 Her 28-sep-1992 03:33:04  1800.000
SWP 45785 V815 Her 28-sep-1992 04:08:10  9823.000
LWP 24075 V815 Her 05-oct-1992 01:40:06  1800.000
SWP 45842 V815 Her 05-oct-1992 02:14:55  9300.000
LWP 24134 IM Peg 22-0ct-1992 10:18:55  1800.000
SWP 46035 IM Peg  22-0ct-1992 10:55:28  5400.000
LWP 24135 IM Peg 22-0ct-1992 12:31:33  1080.000
LWP 24141 IM Peg 24-0ct-1992 10:09:10  1800.000
SWP 46049 IM Peg 24-0ct-1992 10:45:02  5400.000
LWP 24142 M Peg 24-0ct-1992 12:26:56  1200.000
LWP 24156 1M Peg 26-0ct-1992 09:35:08  1800.000
SWP 46066 IM Peg 26-0ct-1992 10:13:18  5400.000
LWP 24157 IM Peg 26-0ct-1992 11:47:56  1200.000
SWP 46067 IM Peg 26-0ct-1992 12:19:11  1800.000
LWP 24171 IM Peg 28-0ct-1992 10:00:28  1800.000
SWP 46084 IM Peg 28-0ct-1992 10:38:38  6600.000
LWP 24172 1M Peg 28-0ct-1992 12:33:32 960.000

(continued)
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Table 5: Log of IUE Observations (continued)

Image Target UT Exposure Start  Duration
(Seconds)

LWP 24193 IM Peg 30-o0ct-1992 09:31:21  1800.000
SWP 46098 IM Peg 30-oct-1992 10:14:19  6600.000
LWP 24194 IM Peg 30-oct-1992 12:13:03  1200.000
SWP 46120 IM Peg 03-nov-1992 07:44:52  6600.000
LWP 24249 IM Peg 03-nov-1992 07:19:52  1200.000
LWP 24250 IM Peg 03-nov-1992 09:45:00  1500.000
LWP 24290 IM Peg 07-nov-1992 07:59:00  1500.000
SWP 46150 IM Peg 07-nov-1992 08:29:47  6600.000
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Table 6: V815 Her Radial Velocities

HJD Phase RV  Weight 0-C

km s7! km s™!

2432760.6650 0.1592  -44.20 0.8 2.28
2433136.5870 0.8699  -19.10 08 -0.84
2433507.6530 0.8975  -20.60 0.8 6.73
2433772.8750 0.4423  42.90 0.8 5.82
2434303.5210 0.6437  41.50 0.8  -5.37
2441840.5790 0.1445 -11.80 00 37.53
2441488.5390 0.6295  50.70 0.8 1.98
2441812.5380 0.6508  45.20 08  -0.62
2441864.4600 0.3396 7.80 00  -0.04
2441865.4540 0.8888  -23.00 0.8 1.55
2441866.5030 0.4684  41.60 08  -0.85
2441867.4550 0.9944  -49.10 0.8 2.18
2441868.5410 0.5945  53.70 0.8 2.11
2441869.5570 0.1559  -49.80 0.8  -2.64
2441870.4800 0.6659  42.70 0.8  -0.57
2441930.3330 0.7368  20.70 0.8  -5.57
2441930.4880 0.8225 1.20 0.8 2.99
2441931.3220 0.2833  -14.20 0.8  -3.25
2441932.3370 0.8441 -9.40 0.8  -0.03
2441933.3340 0.3950  23.40 0.8  -1.53
2441934.3280 0.9442  -45.40 0.8  -4.60
2441935.4240 0.5498  50.10 0.8  -1.69
2441936.3400 0.0559  -58.60 0.8 -1.84
2448678.9941 0.6194  52.20 1.0 2.42
2448679.9753 0.1616  -42.20 1.0 3.79
2448681.0076 0.7319  31.80 1.0 4.13
2448681.9170 0.2344 -23.40 1.0 3.35
2448887.6062 0.8852 -26.50 1.0 -3.12
2448888.6359 0.4542  36.40 1.0 -3.25
2448889.6713 0.0263  -55.70 1.0 -0.49
2448889.7066 0.0458  -57.20 1.0 -0.74
2448890.6713 0.5788  52.30 1.0 0.19
2448890.7066 0.5983  54.70 1.0 3.31
2448891.6566 0.1232  -53.80 1.0 -1.13
2448892.6698 0.6831  36.40 1.0 -3.47
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Table 7: Orbital Solutions

Dataset y K e w T, Py
kms™! kms™? deg days

Nadal et al. -13.4 54.6 0.03 219.1 2,441,931.13 1.8098369
= 2.3 3.3 0.05 132.7 0.67 0.0000083

KPNO -1.6 54.9 0.05 103.2 2,441,926.80 1.8098664

= 1.0 1.2 0.02 289 0.56 0.0001400

Both -1.0 54.5 0.02 156.0 2,441,929.00 1.8098347

+ 1.5 1.9 0.04 79.1 0.39 0.0000039
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Table 8: V815 Her MglI Fluxes®

JD Phase % hy hy
LWP  (42440000) 2803 A
23976  8886.1681  0.26 0.93 0.22
23980 8888.1736  1.37 0.65 0.14 0.27
23988  8889.1396  1.90 0.96
23993  8890.1611  2.47 1.08
24000  8891.1576  3.02 1.18
24005 8892.1660  3.58 1.03
24010  8893.1674  4.13 1.23
24018  8894.1583  4.68 0.57 0.14

24075  8901.0799 8.50 0.93

Mean® 1.01
ot 0.06

°Fluxes are in units of 107? erg s™! em™2.

5The numbers 1 and 2 designate the G- and M-stars, respectively, while the f subscript indicates the flare
component.

¢Two-components were added for computing the mean and o.

4Standard deviation of the mean.
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Table 9: V815 Her SWP Fluxes®

SWP JD Phase OI1 CII SiIV SilV CIV Hell CI°* Sill Sill
(4+2440000) 1305 1335 1396 1402 1550 1640 1658 1808 1817

45689 8886.2354 - 0.30 049 0.65 0.82 030 292 167 065 094 0.52
45740  8888.2383 141 031 110 0.63 033 287 1.72 110 134 -
45752  8889.2178 1.95 038 1.05 052 055 369 196 1.05 093 0.27
45764  8890.2305  2.51 0.12 1.05 055 035 347 1.77 1.05 095 0.58
45768  8891.2285 3.06 080 1.41 081 057 438 218 141 0.79 0.58
45775 88922314 361 056 165 0.77 0.74 339 1.76 1.65 0.89 0.26
45782  8893.2334  4.17 067 133 073 031 334 167 133 1.00 0.29
45785 8894.2295 4.72 063 0.92 063 049 397 1.83 092 1.01 0.67
45842 8901.1475 854 0.62 1.27 0.83 0.58 294 1.66 1.27 090 0.65
Mean 0.53 1.16 0.70 047 344 1.80 1.16 097 048
o 0.06 0.09 0.04 005 016 005 0.09 0.05 0.06

2Fluxes are in units of 1073 erg s7! em™2.

®Blended line.
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Table 10: IM Peg Mg II Fluxes®

JD Phase Fh Fk
LWP (+2440000) 2803 A 2795 A
24134424135 8917.9766  0.67 1.63  2.21
24141424142 8919.9688  0.75  1.68  2.23
24156424157 8921.9453  0.83  1.68  2.18
24171424172 8923.9688 092 1.68  2.18
24193424194 89259531  1.00 1.59  2.15
24249+24250 8929.8555  0.16  1.70  2.09
24290424291 8933.8828  0.32  1.73  2.34
Mean 1.67 2.20
o 0.02  0.03

®Fluxes are in units of 107! erg s™! em~

2
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Table 11: IM Peg SWP Fluxes®

SWP JD Phase O1 CII SilV SilV CIV Hell CI* Sill Sill Silll] C IIIj

(+2440000) 1305 1335 1396 1402 1550 1640 1658 1808 1817 1893 1909
46035 8917.9551 0.67 15.98 4.02 225 217 9.65 4.70 4.02 7.07 3.06 2.75 1.68
46049 8919.9482 0.75 16.66 593 4.32 4.65 17.33 8.94 593 7.31 3.65 3.02 1.84
46066 8921.9258 0.83 17.50 5.07 298 210 894 836 507 7.31 3.65 544 1.83

46067 8922.0137 0.84 - 480 3.49 293 16.13 6.35 4.80 7.36 3.61 513 1.92
46084 8923.9434 0.92 - 596 4.64 349 16.40 - 596 8.53 3.48 3.82 2.93
46098 8925.9268 1.00 - 6.29 546 3.90 - 7.93 6.29 - - 414 1.85
46120 8929.8223  0.16 - 514 3.79 292 1613 7.05 5.14 7.54 3.23 4.92 2.33

46150 8933.8535 0.32 14.99 4.25 3.16 4.30 14.22 8.13 4.25 7.35 4.78 4.09 347

Mean 0.69 16.28 5.18 3.76 3.31 14.11 7.35 5.18 7.50 3.64 4.16 2.23
o 010 046 0.27 034 031 120 0.51 027 017 019 032 0.21

®Fluxes are in units of 1073 erg s~! cm™2.
*Blended line
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