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Probabilistic composite micromechanics methods ar; developed that
simulate expected uncertainties in unidirectional fiber composite
properties. These methods are in the form of cowputational procedures
using Monte Carlo simulation. The variables in which uncertainties are
accounted for include constituent and void volume ratios, constituent
elaﬁtic properties and strengths, and fiber misalignment. A
graphite/epoxy unidirectional composite {ply) is studied to demonstrate
fiber composite material property variations induced by random changes
expected at the material micro level. Regression results are presented
to show the relative correlation between predictor and response
variables in the study. These computational procedures make possible a
formal description of anticipated random processes at the intraply

level, and the related effects of these on composite properties.
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CHAPTER 1

INTRODUCTION

fi. Backgrourd

The diverse requirements of recent engineering applications have
motivated designers to explore specialized structural and material
systems. Ceramic materials, for exanple, have several attractive
structural properties, such as their high stiffness/weight ratios, and
low variation of stiffness and strength over wide ranges of
environmental conditions. A significant disadvantage inherent to
brittle structural materials is their vulnerability to failure due to
cracks propagating from flaws. The increased probability of a flaw
occurring in a material as the volume increases leads to bulk strengths
vhich are a fraction of the theoretical strength of the material. The
size effect on material strength (Ref. 1) can be explained by the
~weakest link” concept. Griffith ( Ref. 2) reasoned that very small
solids, for example wires or fibers, might be expected to be stronger
than large ones, due to the additional restriction on the size of the
flaws. In the limit, a single line of molecules must possess the

theoretical wplecular tensile strength of a material. A consequence of




the size effect on strength was the development of fiber composite
materials vwhich consist of thin, strong fibers bound together by a
ductile matrix. The advantages of fine, strong fibers can explain the
current trend toward increased use of fiber composite materials in
.deuanding aerospace applications.

Properties of a composite laminate depend on the properties of the
constituent materials, their distribution, and orientation. Laminates
are composed of layers of unidirectionally reinforced plies {laminae).
The lamina is typically considered the basic unit of material in a
conposite structural analysis, vhich requires knowledge of the material
properties of each individual lamina and its geometric orientation. The
branch of composite mechanics that predicts ply mterial properties
based on the properties, concentration, and orientation of its
constituents is known as composite micromechanics, and frequently
incorporates the traditional Mechanics of Materials assunptions. The
desired laminate is created by stacking of plies in specific directions.
The integration of ply properties to yield laminate properties 1is called
laminate theory. Laminate veriables such as ply orientation and
stacking sequence can be tailored to yield a laminate with the desired
material properties. Thus, the laminated composite is a suitable
material for component design.

fnalysis of fiber composite structures is currently performed using
a variety of computer codes. From the original codes based on classical
micromechanics and laminate theory, recent codes {Ref. 3,4) have been

developed which incorporate the current state of the art. Complete
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mechanical, therml, and hygral properties are calculated, and can be
used to conpute response. fAdvanced failure criteria are used io
calculate composite strengths. Environmental effects are also
quantified. The usefulness of these codes has been demonstrated by

.couparison with experimental and finite element results (Ref. 5,6).

The analytical capability of many codes is limited by the
deterministic nature of the conmputations. Specifically, fixed values
for constituent material properties, fabrication process variables (i.e.
constituent volume ratios) and internal geometry must be used as input.
Hovever, random variations in these parameters are not-only expected,
but easily observed experimentally. (See Fig. 1)

The analysis of composite structures requires reliable predictive
models for material properties and strengths. However, the prediction
efforts have been conplicated by inherent scatter in experimental data.
Since uncertainties in the constituent properties, fabrication
variables, and internal geometry would lead to uncertainties in the

measured conposite properties, the question arises:

How mxch of the “statistical” scatter of experimentally observed
composite properties can be explained by reasonable statistical
distribution of input parameters in conposite micromechanics and
laminate theory predictive models?

The increasing use of probabilistic methods in structural mechanics has
been shown to provide a more realistic depiction of structural response
due to load variations. (Ref. 7) The recognition that material

parameters are characterized by a spectra of values ( that is, are



statistical in nature ) rather than by a unique set of values, points to

probabilistic methods as a logical analysis approach.
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Fig. 1- Photomicrograph of Graphite/Epoxy cross section
showing variation in fiber content. (Ref. 19)



B. Purpose

The aim of this thesis is to dewelop a ocomputational ocapability to
similate the probabilistic variations in the wechanical behavior of
" anidirectional fiber composites. The Monte Carlo wethod is used to
simulate a variety of random processes, tb quantify fiber composite
mterial variations induced by random changes in conposite fiber
alignment, constituent properties, and fabrication process variables.
This random process description is an attempt to more accurately predict
the behavior of manufactured waterials, which inherently include these
random variations. The characterization of fiber reinforced composites
through simuilation of local nommiformities provides an economical

alternative to experimentation to measure mterial properties.



C. Fornulation of the Model

The wodel commonly used in characterizing fiber composites is based
on the calculation of properties of the basic unit of an orthotropic
.ply. The layup geometry is then used in laminate equations to calculate
conposite properites {See Figs. 2a, 2b). In this work, however, the
basic unit is taken as the sub-ply, which consists of only one
fiber-matrix level in the material. Micromechanics theory is used to
calculate the properties of the assumed orthotropic sub-ply, each with
randomly distributed fabrication variables and material properties.
Distributed fiber directions, due to possible misalignment within the
ply, are then used in the laminate equations to calculate ply
properties. This substructuring of the composite ply represents a novel
attempt at characterization of fiber composite material properties based
on probabilistically distributed constituent properties, individual
fiber misalignment, and fabrication process variables (See Figs. 3a,3b).

This formulation is particularly well suited to the probabilistic
description of fiber conposite material properties. Since the
microwechanics and laminate equations can be used to calculate ply
properties at any mumber of points in a ply, a tractable finite elewent
structural analysis based only on simple distributional assumptions for
physical parameter variations can be performed. This model supplies a
rational procedure for conposite material property assessnent, because
it treats the material as the result of a series of random processes

vhich occur at the intraply level.
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D. Method of Investigation

1. Brief Description of ICAN

The Integrated Composite finalyzer (ICAN) is a computer program for
'couprelensive linear analysis of multilevel fiber composite structures.
The program contains the essential features required to effectively
design structural components made from fiber composites. It now
represents the culmination of research conducted since the early 1970's,
at the National Reronautics and Space Administration (NASA) Lewis
Research Center (LeRC), to develop and code reliable composite mechanics
theories. This user friendly, publicly available code incorporates

theories for

1. conventional laminate analysis

2. intraply and interply hybrid conposites

3. hygral, thermal, mechanical properties and response

4. ply stress-strain inf luence coefficients

5. microstresses and microstress inf luence coefficients

6. stress concentration factors around a circular hole

7. predictions of delamination locations around a circular hole
8. Poisson’s ratio mismatch details near a straight free edge
9. free edge interlaminar stresses

10. laminate failure stresses

1i. normal and transverse shear stresses

12. explicit specification of matrix-rich interply layers

13. finite element material cards for NASTRAN, MARC

A detailed description of ICAN can be found in Reference (3). The
ICAN code and documentation are available through COSMIC, the Computer
Sof tware Managewent and Information Center, Suite 112, Barrow Hall,

Athens GA, 30602.



10

2. Summary of Variables
The variables studied in this work can be separated into two
categories. The independent variables to be simulated using random

.sanpling consist of the following (see Fig. 4a for fiber coordinate

system):
Geonetry:
fiber orientation angle (THETA)
Fabrication variables:
fiber volume ratio {FVR)
void volume ratio (VVR)
Fiber properties
longitudinal elastic wodulus {EFP1) -
transverse elastic wodulus {EFP2)
shear modulus, 1-2 plane (GFP12)
shear modulus, 2-3 plane (GFP23)
fiber tensile strength (SFPT)
fiber compressive strength (SFPC)
Matrix properties
elastic modulus (ExP)
matrix tensile strength (SMPT)
matrix compressive strength (SMPC)
matrix shear strength {SMPS)

The dependent variables to be calculated using ICAN consist of the

following ply pruperties, measured about the material axes (see Fig.

4b):
normal modulus in 1-1 direction (EC11)
normal modulus in 2-2 direction (EC22)
shear modulus in 1-2 plane (EC12)
Poisson’s ratio for strains in 2 direction induced
by stresses in 1 direction (NUC12)
Poisson’s ratio for strains in { direction induced
by stresses in 2 direction (NUC21)
Coefficients of thermal expansion
in 1-1 direction (CTE11)
in 2-2 direction (CTE22)

coupling coefficient (CTEL12)
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(a) fiber ‘ {(b) material

Fig. 4- Coordinate Systems s

Losd cards: ihree N“ cards 6

Material system detils:
N cards; 10 entries
rand,

Piy details: Np cards
eight entries per card, 4

Booiesny five cardy
five entries. 3

sSurting & card ’ ?
sne carg thees entries

Thie cave:
one card: 1D charcers.

Fig. 5- Order of ICAN input data cards
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Ply strengths in material directions

longituiinal tensile OCXXT
longitudinal compressive iSCXXC
transverse tensile SCYYT
transverse compressive {SCYYC
in-plane shear (SCXYS)

The descriptions above should be consulted periodically for the

definitions of variables that henceforth will be referred to

synbolically.
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3.Monte Carlo Methods

Complicated stochastic processes can be simulated by a variety of
nurerical methods generally referred to as Monte Carlo methods (Ref. 8).

"The term refers to that branch of experimental wathematics concerned
with experiments on random numbers. Since the advent of high speed
computers, they have found extensive use in nost fields of science and
engineering, in analyzing many physical processes of a statistical
nature, or vhere direct experimentation is not feasible. In general,
they can be economically used to achieve a level of precision between 99
and 95 percent.

A Monte Carlo experiment refers to the procedure of randomly
assigning a value to an independent random variable in a chosen model,
and observing the dependent variable at the conclusion of the process
being wodeled. A Monte Carlo procedure is composed of n such
independent experiments. when n is sufficiently large, the observations
will yield, by wvirtue of the laws of large nuwbers, a statistically
meaningful description of the physical problem.

The form of Monte Carlo used in this study is as follows:

1. Define the system model by assuming

a. model regression function

b. method of error incorporation

c. probability distributions of all errors (for all independent
variables)

d. any equations used to nodel the phenomena of interest

2. Use the computer and random sampling techniques to select
values of the independent variables.

3. Calculate dependent {output) variables using the prescribed
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equations.
Estimate regression parameters for the asswed nodel.

Replicate the experiwent, each tiwe with a new set of input
values.
Use appropriate statistical methods to calculate properties of

the distribution of parameter estimates.



15

E. Brief Summary of Results

fi ply made frowm the @S-Graphite /IMHS epoxy composite system is
studied. The monte carlo scheme is used to generate a nuvber of
" response results, which are analyzed in graphical and mumerical form, to
supply a random process description of conposite ply elastic constants,
thermal expansion coefficients, and strengths. Histogram and
distribution plots of results for assumed narrow and wide variations in
input properties are cowpared with a deterministic base case for an
aligned ply. The f igures demonstrate the range of values that response
variables assume for the exanple data under consideration.

Conf idence intervals are calculated for response variables in
subsequent samples, which are normalized with respect to an appropriate
independent variable, to yield plots of normalized response as a
function of fiber volume ratio, for various values of distribution
parameters for the related independent variable. These plots
demonstrate the sensitivity of ply properties to randomly selected
uncertainties in constituent and fabrication variables.

Several wmultiple linear regression models were calculated for
response variables. The relative correlation of predictor (‘mdependent)
variables with response 1is studied for all output properties considered.
Varying levels of signif icance were achieved in the regression
equations, due to the differences in complexity of response variables.
Elastic constants can be described adequately with simple regressor
functions, and generally explain between 82 and 99 percent of the

observed response variations about a wean. The regression models
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studied for strength, although achieving better reliability with higher
order regressor functions, dewvonstrate suoh low signif icance as to be
practically useless for predictive purposes. This is not an unexpected

.result, because of the complex nature of strength behavior in composite

materials.



CHAPTER Il

METHODS OF CALCULATION

f. Overall plan
1. Input structure for ICAN -
The input data for a typical execution of the available ICAN

program consists of (see Fig S)

1. header card

2. control cards

3. ply data cards

4. material system cards
5. load cards

For repeated use of the ICAN program, input data files must be
created and used one at a time. Each successive run of the master
program {of which ICAN is made a subroutine) writes the input file from
user-supplied parameters and calls ICAN. The ply data cards contain
randomly generated fiber orientation angle values. The material system

cards contain randomly generated values for fiber and void volume

ratios.

17



i8

2. Constituent Property Variations

Each successive execution of ICAN uses a distinot set of material
properties for fiber and watrix. The random number generation is
' perforned with user—supplied paraweters which are stored in a separate
file. The options of using either generated properties or using the
values contained in the resident data bank are available. fny subset of
the parameters described way be generated or held constant with proper
specification of the Booleans which control the input to the ICAN

program. {see Figs. 6,7)
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FIBER STRENGTH VARIES; CONSTANT FIBER VOLUME RATIO OF 0.30;TAPE 003131
STD%TA 15 1 15 T

3 T T
r 060.0 10.0 0.300 0.200 3.00 5
F
T
PLY 70.00 70.00 .0 .000
MATCRDAS-1IMHS AS-1IMHS 0.0 .57 es3

PLOAD  10. 0.8 0.0 0.0

PLOAD 0.0 0.0 0.0

PLOAD 0.0 0.0

OPTION 0
Fig. 6- Command Input

EFPl T 0.3100E 03 0.3000E 07
EFP2 T 0.2000E 07 0.2000E 06
GFP12 T 0.2000E 07 0.2000E 06
GFP23 F 0.1000E 07 0.1000E 06
SFPT T 0.4000E 06 0.1000E 02
SFPC T 0.4000E 06 0.1000E 02
EMP T 0.5000E 06 0.5000E 05
SHPT T 0.1500E 05 0.1000E 02
SMPC T 0.3500E 05 0.1000E 02
SMPS F 0.1300E 05 0.1000E 02

Fig. 7- Constituent varfation Input. Example for AS-1 Graphite
fiber and IMHS Epoxy matrix, with wide variations of
stiffnesses and strengths.
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3. Bepeated runs

The user must specify the number of ICAN runs desired in a given
sample. In this study, Fifty (5@) runs were used throughout, to take
advantage of the simplification in statistics by using suitably iarge
sanples. From elementary statistics, it is known that any process that
is the result of the combined interaction of several probabilities can
be assumed to approximate a norwal distribution. For phenowmens that are
assumed to approximate a normal distribution, the simplest forms ror
calculating statistics apply to suitably large sanples (usually greater
than thirty). The sanple size of fifty was chosen to supply a
practicably large ancunt of data, within the restrictions iwposed on
conputation time.

The data generated by repeatad execution of the ICAN routines is
stored in a sequential access dataset, vhere the 59 output files ars
separated by end of file markers. This arrangenment allows a single
Fortran unit to be used for output throughout. A simple flowchart of
the data generation routines is shown in Fig. 8{a}.

4. Data collection

The ICAN output files are searched to locate the specific material
properties and strengths of interest in this study. The flowchart of
data collection routines is shown in Fig. 8{b). After obtaining the
sanple of ICAN output, the investigator may choose to scrutinize
parameters or calculate statistics aside from those chosen in this
study. This is likely, in light of the large quantity of data available

and the need for limiting the scope of this particular study to
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The user would have to supply additional
The

representative properties.

code or adapt existing code to suit his purposes in this case.

coded modifications to ICAN used in this study are included in fppendix

Aa.




START

CALL GENERATE,
CALL SUBRQUTINE wRITE
SUBROUT INE UPOAT RANDOM
corv DATA
I
| somesi "
SUBROUTIRE
WRITE
IRUT T0 1caen sAnK
REM
w17 ‘k )
=1 [
AL ]
SUSROUTINE
1cew
ENOFILE
oIt
@ :
{a) data generation program
READ
DATA
oIt S
CALL
STATISTICS
SUBROUTINES
mot mor RESRESSION
NISTOGRNGS comFIDEnce LTSS
BISTRISUTI

(b) analysis procedures

Fig. 8- Flow chart of ProBabilistic Integrated
Composites Analyzer
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B. Generation of Pseudo Random Nuwbers

fn integral part of any monte carlo simulation is the use of random
numbers having a specified distribution which is assumed to characterize
' the process under study. Indeed, many statistics textbooks carry tables
of random numbers as appendices. Simulations using large samples
require many repeated calculations, each with different “random”
nuvbers. Since filling of a computer meEWDry with a large table of
random nunbers is wasteful, algorithms have been developed (Ref. 9) to
generate streams of random nunbers whenever needed in the process of
calculations. The nunbers used are usually obtained using some form of

a recursion relation, hence the sequence is termed pseudo-random.

1. Uniform Distribution

The starting point for wany random nuwber schewes is the uniform
random nunber generator, which simulates a sample from the uniform
distribution. A continuous random variable has a uniform distribution
over an interval a tob (b a ) if it is equally likely to take on any
value in this interval. The probability density function is thus

constant over { a,b ) and has the form

1
£(x) = 5 —3 a<x<hb

=0 elsevhere

The probability distribution function is, on integrating

F(x) = © x (a

= a<x<¢h
b-a
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=1 x}»hb
The uniform distribution is shown in density and distribution form in
Figs. 9a and 5b.

Lehmer {Ref. 10) proposed the congruential wethod of generating
pseudo random numbers conforming to the uniform distribution. The
recurrence relation takes the form:

X, = (ax;_, +b ) wodulo m
vhere the notation signifies that x; is the remainder when (ami_‘l + b)
is divided by m. The wultiplier a, increment b, and n:_:dulus m are
integers. The starting value Ky must be assumed, and is known as the
“seed” of the generator. Generators for whichb = @ are known as
wultiplicative. They are called mixed when b is nonzero. Because
selection of the multiplier a and wodulus m strongly influence the
generator, wost generators in use are of the miltiplicative form. A
discussion of the choice of parameters, maximum period, and degree of
correlation of this generator is available (Ref. 11).

For a given uniform random nunber u on the interval (9,1) a random
nunber x having a desired distribution F(x) is often obtained by solving
the equation u = F{x) for x {Ref. 12). Since the process requires the
determination of the inverse distribution function F-‘l(x), its use
depends on the ease of deriving the expression or some approximation.

The following sections describe the distributions used, and methods for

generating random numbers on those distributions.
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2. Normal (Gaussian) Distribution

The wost comon distribution is the familiar norml distribution,

with the "bell shaped™ density function, given by

o, 1 {x-u)?
Blxine™) = == TP T Tt

~w(x{e g{owand o2 O
with mean ¢ and standard deviation 5. The distribution function is

written .

1 X (u-g)?
F(x) = o ]_“ exp[— T du
which cannot be expressed in closed form analytically but can be
nurerically evaluated at any value of x.

The Box-Muller or "Polar™ method {Ref. 13) is most commonly used
for generating random deviates from a mean to approximate the normal

distribution. If X, and X, are independent uniform random variables,

then

Yy o(-2 1ln xl)O.S cos 2nx, *+ H

o{-2 In xl)o's sin 2nx, + ¥

Y2

are independent random variables with the standard normal distribution

having wean g and standard deviation o.
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3. Gamma Distribution
The gamma distribution is a two-parameter distribution which is
flexible in fitting a variety of random processes. It is a one sided
" distribution in that physical quantities that are limited to values in
the positive range are frequently modeled by it. 1Its density function
is given by
k

A ax k-1
e X

f(x) =
r{k)

where x, A, k > @, and k is an integer.
The paranmeters A and k may be interpreted as scale am!.shape paranmeters,
respectively. TI(k) is the well known gamma function,
r(k) = J: uk_le-udu,
vhich is widely tabulated. The gamma distribution function is given by

)‘k X
k-1 _-Au
F(x) = Tx) Jo u e du

r{k,\x)
=g %
=@ elsevhere

where TI{k,u) is the incomplete gamm function
u

r(k,u) = J 1 e ¥ax
o

vhich is also widely tabulated. For integer values of k,
r'(k) = (k-1)?
and the gamm distribution is known as the Erlangian distribution af ter

A. E. Erlang, who introduced it in the theory of queues and Markov

processes.
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Gamm variates are generated using the sequence

U yUyyUgy ses ce o

satisfying the uniform distribution on the interval (o,1).

" The recursion relation is

v; =~ % I» 9

5 1
X = yi=—T1n
i=1

vhere x is a gamm variate having parameters A and k (Ref. 14).



28

4. Weibull Distribution
The Weibull distribution (Ref. 15) is wost popular vhen wodeling
problems of reliability, mterial strength, and fatigue. The Weibull
"density function is given by
f(x;a,B) = a&cp—lexp(-axp)
@Q<x{o a)© B21
where a and B are the shape and scale parameters, respectively. The
cunulative distribution function
y=F(x) = 1-e[-(wB)] .
leads immediately to the inverse relationship

Flly) =x= -8 In(1-y) ]

as the desired Weibull random generator vhen y is a uniform random

1/a

variable.

Figures 9-12 show the above distributions in analytical forw.
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C¢. Distribution fissumptions

The variables chosen for variation are those for vhich reasonable

assumptions can be made to describe their distribution. The fiber
'geonetric conf iguration with respect to ply axes is assumed to follow a
normal distribution with mean of zero (degrees) and some small standard
deviation, to be specified. The fiber volume ratio is assumed to be
normally distributed about some mean between ©.3 and @.7. The void
volume ratio, which is ideally small, is assumed to follow a gamma
distribution skewed toward zero. (Note that in the gamm distribution
used, a value of zero has a probability of zero. This model is chosen
because the state of most present manufacturing technology precludes the
fabrication of a fiber conposite completely free of void.)

The properties of individual fibers and matrix are varied. The
normal and shear roduli are assumed to follow the normml distribution,
and the strengths are assumed to be Weibull distributed.

Figs. 13-2? show the results of random number generation in each
distribution studied. The density (or histogram) and cumlative
distribution plots are shown. Several weibull and gamm distribution
similations are shown, to denmonstrate the effects of assumed paranmeter

variations on the distribution sampling.
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D. Use of ICAN

This section describes the essential theories and assumptions
incorporated in the ICAN program. The sywbolic notation conventions,

" fornulations, and definitions are included in gppendix B.

1. Cowposite Micromechanics
The branch of composite mechanics vhich relates ply properties to
constituent properties is known as composite micromechanics. The inputs
consist not only of constituent material properties (fiber and matrix},
but geometric conf iguration and fabrication process. Output includes
ply hygral, thermal, and mechanical properties. The assumptions for

equation development are: (Ref. 16)

1. The Mechanics of Materials are used to derive the equations,
allowing each property to be individually identified.

2. The ply resists in-plane loads according to the schematic
shown in Fig. 4(b).

3. The ply and its constituents behave in a linear elastic manner
to fracture (see Fig. 28).

q. The ply is transversely isotropic in the 2-3 plane.

S. The matrix is isotropic.

6. Complete bond exists at the fiber-matrix interface.

The direction conventions and terminology used in the equations

are:
1. Properties measured along fiber direction are called
longitudinal.
2. Properties measured transverse to fiber direction are called
transverse.

3. In-plane shear is also known as intralaminar shear.
4. all ply properties are defined with respect to ply material
axes (1,2,3) for description and analysis.
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2. Laminate Theory

Classical laminate theory supplies a convenient procedure to

predict the response of a laminate to external load. The theory uses
" anisotropic elasticity to obtain the stress-strain relationship for the
basic lamina. The stress-strain relations of individual laminae are
transformed to coincide with a global set of reference axes. The
stress—-stain law of the laminate in terms of the properties and
distribution of individual laminae are calculated using a summtion.
Resultant forces and moments are defined by integrating the stresses
through the thickness of the laminate. The plate constitutive equation
is inverted, giving midplane strains and plate curvatures in terws of
applied forces and moments. These strains and curvatures are
substituted into the lamina stress-strain equation to obtain lamina
stresses in the global system. The stresses obtained are then
transformed into the principal material system of the lamina in question

and conpared with ultimate stresses obtained using failure criteria.
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3. Strength Theories

The strength theories in ICAN wmake use of several assumptions.
First, it is assumed that there are five characteristic values of
" strength of a unidirectional composite:
1. longitudinal tensile strength
2. longituiinal conpressive strength (3 separate criteria)
a. rule of mixtures
b. £iber microbuckling
c. delamination . .

3. transverse tensile strength

4. transverse conpressive strength

5. in-plane or intralaminar shear strength
The fracture mdes usually associated with these strengths are shown
schematically in Fig. 29.

Once ply strengths are calculated (in the ply coordinate systems),
geowetric transformations are used to calculate conposite failure loads.
The process used is briefly described below.

{. Calculate loads (in conposite system) required to induce load equal
to ply strengths (in ply systems) for each wode.

2. Calculate minimum of failure loads for each ply.

3. Calculate minimum of failure loads of all plies, and use this load

as the failure strength of the cowposite for a particular failure

mode.
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E. Review of fApplicable Statistical Concepts
rties are calculated for large sanples using a

Cowmposite prope
specific set of distributions of input properties. in this context,
" gmall sampling theory does not apply, because the sawples used are

sufficiently large.

1. Sample Means
Calculation of the mean sanple values proceeds by def ining
n
z X; 2
i=1

mean = X = ——
n

vhere n = sample size

x .= sanple data values

i
on wmean is unknown, so the sample mean is assumed to be the

The populati

best estimator of the population mean.

2. Sample Standard Deviation
population standard deviati

an estimate of the on is calculated

using the stat istically eff jcient estimator

—————————

n e _qi2
[ &) o2

3. Confidence Interval Estimates -

fn important problem in the area of statistical inference is the
(such as wean, variance, etc.) from

estimtion of population paranmeters

Paranmeters x and © are the mean and standard

sanple stat istics.
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deviation of the sampling distribution of a statistic S. The sampling
distribution of § is assumed as approximately normal (vhich is true for
many statistical distributions if n 2 3). Confidence interval
" estimtes are constructed for the statistic S. Thus, intervals are
identified for which it can be asserted with a reasonable degree of
certainty that they contain the parameter considered. Obviously, the
degree of certainty (or conf idence level) will vary with the size of the
interval chosen. Values of confiderce coefficients, z_, are associated
with confidence levels. For exanple, an actual sanple_statistic S is
expected to be found lying in the interval (x - zca) to (x + zco) (vhere
o is the unknown population standard deviation) some percent of the
time. Let the L value in this example be 1. fissuming a normal
sampling distribution, (with z, = 1) the normal distribution area
function specifies that S falls between {(x - o) and (x + o) about
€8.27/ of the tiwe. Similarly, the confidence of x lying in the
interval (S - o) to (S ¢+ o) is about 68.27%. The endpoints of the
intervals are known as conf idence limits. Various conf idence
coefficients 2z, correspaonding to frequently used conf idence levels,
have been tabulated. '

In this work, the conf idence interval for means is given in terws

of the sanple statistics by
c

x +z

¢ /n
vhere 2z, is the confidence coefficient, which takes on values of

1.645, 1.960, and 2.580 for the 90, 95, and 997 confidence levels,
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respectively.
4. Regression

The term “regression” as used in the area of statistics refers to
" the process of formulating a mthematical nodel to explain randomly
observed phenomena. Some functional form for the way each variable
enters the mdel must be assumed. Cowparison of the degree of fit of
different assumed models ideally leads to a better model. The basic
regression strategy used here consists of:

1. Assume a nultiple linear regression mdel. The n:!rnal equations

for such a model are:

vy = (KB} * (&}

vector of dependent variable values

o~
<

~
[}

matrix of functions of independent variable

—
o

—
i

{B} = regression “true” values

errors

~
m

Sy’
1l

The normal equations can be solved as follows:
(K170} = [RITIKI(E) + [XD'(e)
(6} = K] [x] (D

{b} = paraneter estimates

2. Use a standard statistical package (Ref. 1?7) to estimte regression

parameters.
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3. Calculate properties of regression parameter distributions to

assess wodel precision.

In the event that [XTX] is singular, implying that sowe of the
normal equations are linearly dependent, [XTX]"1 does not exist. The
model should be expressed in terms of fewer parameters, or should
include assumed restrictions on the parameters.

The square of the nultiple correlation coefficient, B2, is usmlly
calculated for each regression wodel, and supplies a convenient measure
of the degree of fit between data values (Y} and values {?}

predicted by the regression equation. It is defined by

Sum of Squares due to regression mdel
Total Sum of squares about wmean Y

T - v\2
r (v, -9

r (v, -¥)*

Frequently, it is necessary to determine if inclusion of particular
terms in a regression model is worthuhile. To this end, the extra
portion of the regression sum of squares vhich arises due to the terws
under consideration is calculated. The mean square {defined as the sum
of squares divided by the mrreSpmﬂitxé degrees of freedom) derived from
this extra sum of squares can be compared with s?, the estimate of &%,

to see if it appears significantly large. If it does, the terms under
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consideration should be included. The statistic is frequently compared
to the appropriate percentage point of the F- distribution, which is
tabulated.

Supopose the extra sum of squares due to a parameter, given that a
nurber of other parameters are already in the model, is calculated.
Sywbolically,

SS(pi|b0,b1,...,bi_1,bi+1,...,bk) i=1,2,...,k
represents a one degree of freedom ( 1 df ) sum of squares which -
measures the portion of the regression sum of squares due to the
coefficient bi' This is a measure of the value of adding a ‘81 term to
the model which previously did not include 51' The corresponding wean
square, equal to the SS (since it has one df) can be compared by an
F- test to s2. This is known as a partial F- test for the single
parameter ﬁi, vhich is a special case of the F- test described earlier.

The stepwise regression procedure (Ref. 18) is a structured way to
insert variables in order of correlation until the regression equation

is satisfactory. The partial correlation coefficient weasures the

relative importance of terms not yet in the wodel, to choose the next

candidate for entry. The analagous statistic, F- to enter {or F- to
remove) is usually evaluated for each predictor at every stage as though

it were the last term to enter the model, to determine if terms retained

at a previous step have becowme superfluous, because of some linear
dependence with terms now in the model. The largest F- statistic
calculated at each step is compared with the appropriate percentage

point of the F- distribution, and the predictor variable is entered (or



removed) based on the significance of this F- test. Testing of the
least useful predictor is performed at every step. The R? statistic is
calculated, to provide a measure of the value of the regression at each
"step. This stepwise linear regression scheme is used in this work
because of its computational economy, and because it allows the analyst
to assess the relative influence (or correlation) between individual
predictor variables of a selected wodel and response for a particular
data sanple. Other schewes are available (Ref. 18), such as backward
elimination. The stepwise procedure is recommended for its direct

nature in testing the model with only significant predictor terms.



CHAPTER III

RESULTS

fA. Property Histograms and Distributions

In this work, fiber and matrix properties are allewed to assume a
range of values to assess the sensitivity of the composite ply
properties to constituent perturbations. Graphite fiber and epoxy
matrix are used as the constituents. Initially, two separate sanples of
output data are generated and studied to demonstrate the effects of
input parameter changes on conmposite material properties. These two
cases are conpared with a deterministic base case with no random input
property generation. The data for all three cases is given in Table I.

The results of cases 2 and 3 are shown in histogram and cumlative
distribution form in Figs. 30 - 42. The results of the deterministic

case | are summarized in Table 1I, and can be easily conmpared with the

histograms and distributions.

7



INPUT

THETA (degrees)

s

(-4
FVR

Fii

-4
VR

A

Kk
EFP1(ksi)

M

(-4

EFP2(ksi)
3
o

GFP12(ksi)

Y
o

GFP23(ksi)

u“
o

SFPT(ksi)

a
SFPC(ksi)
B

a
BP(ksi)
M
c
SMPT(ksi)
B

a
SMPC(ksi)
B

a
SMPS (ksi )
B

a

TAHLE I- INPUT DATR FOR SAMPLING

CASE 1 CASE 2
0.0 -
- 0.0
- 5.9
.50 -
- 2.5
- o.1
Q.01 -
- 3.0
31000 -
- 31000
- 1500
2000 -
- 2002
- 100
2000 -
- 2000
- 100
1020 -
- 1000
- S0
400 -
- 900
- 20
400 -
- 400
- 20
S0 -
- 500
- 25
15 -
- 15
- 20
35 -
- 35
- 20
13 -
- 13
20

58
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TRELE 1I- CASE 1 RESULTS

PROPERTY

EC11

EC22

EC12

NUC12

NUC21

CTELL

CTE22

CTE12

SCXXC

VALIE

15750 ksi
1065 ksi
516 ksi
0.275
2.018
0.775 x 10 °
®.181 x 10 °
?.220
203 ksi
165 ksi
11.74 ksi
27.41 ksi

10.01 ksi
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B. Fiber Strength Effect
To show the effect of fiber strength changes on the longitadinal

strengths of the composite, several shape parameters of the weibull
distribution for fiber strength are assumed. The nonte carlo procedure
is then conducted at sewveral fiber volume ratio values. All properties
are varied, except fiber volume ratio. The distribution parameters of
all properties except fiber strengths are held constant. The curves
generated are shown in Figs. 43 and 44. In the figures the solid lines
and symbols show the means of the 957 confidence interval estimates for
the sample size of 3@ chosen at each point. The points on both sides of
each curve locate the upper and lower bounds of the conf idence

intervals. The convention described is intended to provide a convenient

indication of the dispersion of the sample values at each point.
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C. Matrix Strength Effect
The effects of changes in matrix strength on composite strengths

are studied by suitable variation of the shape parareters governing the
watrix strength distributions. fnalagous to the plots given for fiber

strength effects, the watrix effects are shown in Figs. 45 - 47.
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D. Fiber Orientation Effect
Assumad values of the fiber arientation angle distribution

parameter are consecutively used in the wonte carlo procedure to assess

" the effects on several composite properties. These plots are shown in

Figs. 48 - 57.

E. Fiber Stiffness Effect
fissumed values of the fiber wodulus distribution paraneter are used
in the simulation to similarly assess the effects an the related

composite properties. The plots thus generated are shouwn in Figs.

58-67.
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Fig. 53- Transverse Tensile Strength; for various
shape parameters of fiber orientation.
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Fig. 54- Transverse Compressive Strength; for various
shape parameters of fiber orientation.
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Fig. 60- In Plane Shear Modulus; for various
shape parameters of fiber modulus.
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Fig. 63- Longitudinal Tensile Strength; for various
shape parameters of fiber modulus.




97

LONG. COMP. STRENGTH

D o =10%
0O o = 5%
\vAL B 1%

] I 1 J
.3 .4 .5 .6 .7

FIBER VOLUME RATID

Fig. 64- Longitudinal Compressive Strength; for various

shape parameters of fiber modulus.
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Fig. 65- Transverse Tensile Strength; for various
shape parameters of fiber modulus.



99

TRANS. COMP. STRENGTH

A120 i N o =10%

%'110 o D c = 5%

“100 F V o= 13

o 90 F

[- 8

x

< 80

[ &]

>

> 70

<

o 60

~

= 50

<

= 40

[ =]

EL : —— :
.3 .‘+ .5 .6 .7

FIBER VOLUME RATIO

Fig. 66- Transverse Compressive Strength; for various
shape parameters of fiber modulus.
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G. Regression Models

The output data of cases 2 through 11 are used as sucocessive inputs
to the regression scheme. The goal of stepwise regression, as used
" here, is to measure the degree of correlation between a deperdent ard a
set of independent variables for a given set of data. The outputs of
the regressions conducted show the independent variables accepted into
the model (based on F-test criteria) in order of degree of correlation
with the dependent variable of interest, along with the final R
statistic. (The R2 values represent the square of the multiple
correlation coefficient, a convenient measure of the f£it between data
values and values predicted by the regression equation.)

The ordering of predictor variables by stepwise regression has
several important uses. In this study, the scheme facilitates easy
investigation of the effects of material changes on composite
properties. Since the monte carlo scheme permits generation of large
amounts of data, the regression is easy, inexpensive, and can provide
insight concerning the sensitivity of dependent variables for assumed
distributions of predictor variables. A variety of mterial
conf igurations and constituent distributions are examined, and a wodel
constructed for each dependent (or response) variable. It wust be noted
that the relative correlations of predictor variables with response
variables will be functions of the assumed distributions, the particular
data sample considered, and the functional manner in which the predictor

variables are incorporated into the wodel.

A siwple regression model was assumed for each response variable.
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The first set of “siwple” regression wodels uses as predictor f:mctions
only the independent variables as individual terms. To be more precise,
the predictor variables used are not simply the independent variable
"values, for there are 15 of these for each layup. The arithmetic wean
of independent variable values is thus used as the predictor variable in
the first set of regression nmodels. The only exception to this is the
use of the sin? of the average of the fiber orientation angles as the
angular dependence predictor, denoted by THETR in the tables to follow.
The sinmpler response variables can be adequately described using the
linear function forms in the regression wodels. The simple variables
include the elastic constants, (EC11, EC22, EC12, NUC12, NIK21) and
coefficients of therml expansion (CTEL1, CTE22). The results of the
regressions performed in the “simple” manner are given in Tables III -
XIV. 1In the tables the input labeled with N1 through NS5 and Wi through
W5 represent narrow and wide distributions of all properties. Input
labeled N6 through N1@ and Wé through W1® describe the same
distributions, except that the cowposite is assumed unidirectional, i.e.
no angular variation. The distinction shows the reduction in predictive
capability induced by deviations of the fibers from aligned orientation.

The models assumed for the response {output) variables are of the

form
Y = By + BjX; + BaXy + By¥3 + ... ¥ ann
vhere
Y = response variable (ECii, EC22, EC12, etc.)
B = regression parameters to be obtained

n
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Xn = average of independent variable values through the

thickness of the ply (THETR, FVR, WR, etc.)
Each wmodel postulated contains all independent variables that

.appear in the equations for the related ply property {see Appendix B).
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TABLE 11I- LONGITUDINAL MODULUS EC11

SIMPLE MODEL
INPUT FVR TERMS ACCEPTED R?
N1 e.3 FVR,EFP1 83.17
N2 2.4 FVR,EFP1,THETA 92.63
N3 0.5 FVR,EFP1,THETR 94.02
N4 2.6 FVR,EFP1,THETA : 94,59
NS 0.7 FVR,EFP1 84.00
1551 e.3 FVR, THETA,EFP1 64.49
w2 0.4 FVUR,EFP1,THETA . 89.68
w 2.5 FVR, THETA,EFP1 72.85
W 0.6 FVR, THETR,EFP1 65.37
us 0.7 FVR,EFP1,THETR 57.83
N6 0.3 FVR,EFP1,E2P 99.83
N? .4 FVR, EFP1 99.81
N8 0.5 FVR,EFP1 99.69
NS @.6 FVR,EFP1,EXP 99.74
N1@ 0.7 FVR,EFP1 99.77
w6 0.3 FVR,EFP1,UVVR 99.13
w7 0.4 FVR,EFP1 98.40
w8 0.5 FVR,EFP1 98.90
w9 .6 FVR,EFP1 99.59

wio 9.7 FVR,EFP1 99.34
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TABLE IV~ TRANSVERSE MODULUS (ECc22)

SIMPLE MODEL
INPUT FVR TERMS ACCEPTED R?

N1 e.3 FVR,EFP2 83.50
N2 e.4 FVR 85.23
N3 e.5 FUR, EFP2 91.83
N4 @.6 FUR,EFP2 93.26
NS e.7 FVR,EFP2, THETA 93.06
w1 e.3 FUR, THETR,EFP2 78.36
w2 0.4 FVR, THETR, EFP2 - 90.73
w3 @.5 FUR, THETR, EFP2 80.15
wa @.6 FUR, THETA, EFP2 86.05
53] @.7 FVR, THETA, EFP2 87.14
N6 e.3 FVR,EFP2 87.13
N? e.4 FVR,EFP2 86.15

@.5 FVR,EFP2 90.97
N9 @.6 FUR,EFP2 93.47
N1@ ®.7 FVR,EFP2 92.05
w6 @.3 FUR,EFP2 79.72
w7 °.4 FVR,EFP2 70.71
;] @.5 FVR,EFP2 81.92
w Q.6 FVR,EFP2 88.62

Wio e.? FVR,EFP2 84.05
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TRELE Y- SHEAR MODULUS (BC12)

SIMPLE MODEL
INPUT FUR TERMS ACCEPTED R?
N1 °.3 THETA,FVR, @P 97.01
N2 e.4 THETA,FVR,@P,GFP23 98.85
N3 0.5 THETA,FVR,G¥P,GFP12 97.50
N4 @.6 THETA,FVR, QP 98.01
NS 0.7 THETA,FVR,G¥,GFP12 98.42
W .3 THETA,FUR, GP 94.79
w2 0.4 THETA,FUR- : 94.27
w3 0.5 THETA, FVR, GFP23 93.71
w 2.6 THETA, FVR 95.62
ws e.? THETA,FVR,@F,GFP23 96.67
N6 e.3 FVR,GP 97.66
N7 e.4 FVR,GP,GFP12 98.02
N8 e.5 FUR,GP,GFP23 96.65
N9 e.s FUR,G@P,GFP12 97.11
N10 e.7 FUR,GP,GP12 98.55
W6 e.3 FVR,QP,GFP12 96.93
w? e.a FUR,GP,GP12 92.45
us @.5 FVR,GP,GFP12 95.16
w @.6 FUR,QP 97.18

wie 2.7 FVR,GQP,GP12 96.90
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TAELE VI- POISSON'S RATIO, MAJOR (NUC12)

SIMPLE MODEL
INPUT FVR TERMS ACCEPTED R?
N1 e.3 THETA, EFP1 96.39
N2 2.4 THETA,FVR 97.88
N3 ?.5 THETA,FUR 96.60
N4 2.6 THETA,FVR, EFP1 98,32
N5 2.7 THETA, FUR, EFP2 96.62
w1 2.3 THETA, EFP1 88.43
w 0.4 THETA, FUR 84.62
w3 @.5 THETA 89.48
wa .6 THETA, VUR 84.05
s 2.7 THETA,FVR 92.05
N6 @.3 FVR 97.83
N7 .4 FVR 98.48
N8 @.5 FVR 97.77
N9 ®.6 FVR 98.40
N1@ @.7 FVR 99.17
w6 e.3 FVR 97.32
w7 @.4 FVR,VVR 96.45
ws @.5 FVR 96.38
w @.6 FVR, GFP12,EFP2 98.34
wie 2.7 FVR,EFP2 96.96
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TABLE VII- POISSON’S RATIO, MINOR {NUC2i)

5

2.4
2.5
2.6
9.7
.3
2.4
.5
2.6
0.7

0.3
2.4
Q.5
2.6
2.7
@.3
0.4
@.5
2.6
.7

SIMPLE MODEL
TERMS ACCEPTED

THETA,FVR
THETA, FUR, EFP1
THETA,FVR
THETA,FVR, EFP1,EFP2
THETA, FVR, EFP1
THETA, FUR
THETA, FVR, EFP2
THETA, FVR

THETA

THETR,FVR, EFP1

FVR,EFP1,EFP2
FVR,EFP1,EFP2
FVR,EFP1,EFP2
FVR,EFP1,EFP2
FVR,EFP1,EFP2
FVR,EFP1,GFP12
FVR,EFP1,EFP2
FVR,EFP1,EFP2
FVR,EFP1,EFP2
EFP1,FVR,EFP2
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RI

91.15
94,78
94.31
97.18
95.87
90.87
89.86
91.93
92.57
94.78

95.64
94.90
95.40
93.12
91.83
87.73
85.06
84.29
99.37
91.42
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~ TRBLE VIII- LONG. THERM. EXPANSION (CTE11)

INPUT FVR
Ni 0.3
N2 @.4
N3 2.5
N4 Q.6
NS @.7?
W1 2.3
w2 2.4
w3 2.5
wa 0.6
w @.7?
N6 .3
N7 @.4
N8B 2.5
N9 2.6
NiQ .7
W6 0.3
w? 2.4
w3 2.5
w9 a.6
W10 e.7

SIMPLE MODEL

TERMS ACCEPTED R?
FVR, THETA,EFP} 99.29
THETA, FVR,EFP1,VR 94.46
FVR, THETA,EFP1,VUR 95.72
FVR, THETA, EFP1, VR 95.23
THETA,FVR ' 87.63
THETA,FVR,EFP1 80.53
THETA,FVR - 78.91
THETA,FVR 84.77
THETA,FVR, VUR 74.37
THETA 80.50
FVR,EFP1,VVR 97.21
FVR,EFP1,VVR 96.96
FVR,EFP1,VVR 96.53
FUR,EFP1 96.60
FUR,EFP1 . 96.24
FVR,EFP1 91.60
FVR,EFP1 90.88
FUR,EFP1 91.55
FVR,EFP1,VUR 96.03

FVR,EFP1 94.13
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TAHELE IX- TRANS. THERM. EXPANSION (CTE22)

8

0.4
0.5
Q.6
2.7
0.3
2.4
@.5
o.6
e.7

2.3
2.4
2.5
Q.6
.7
.3
0.4
Q.5
2.6
0.7

SIMPLE MODEL
TERMS ACCEPTED

FVR, THETA, WR

FVR, THETR, VVR

FVR, THETR, WR

FVR, THETA

FUR, THETA

FUR, THETA

FVR, THETR, EFP1,VUR -
FVR, THETA

FVR, THETA

FUR, THETA

FUR, VR, EFP1
FVR,VVR
FUR,VUR
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99.60
99.21
99.46
99.69
99.79
95.04
98.60
95.19
94.84
97.98

99.70
99.53
99.65
99.67
99.75
99.15
98.81
98.88
99.47
99.22
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2.4
2.5
2.6
e.7
@.3
0.4
@.5
0.6
0.7

0.3
0.4
2.5
2.6
0.7
e.3
0.4
Q.5
Q.6
0.7

TABLE X- LONG. TENSILE STRENGTH {SCXHT)

SIMPLE MODEL
TERMS ACCEPTED

FVR

FVR,SFPT

FVR

FUR,SFPT, THETA

FVR

FVR,SFPT

SFPT,FVR -
EFP1,SFPT

FUR, EXP

FVR,SFFT

FUR,SFPT
FVR, SFPT,EFP1
FVUR,SFPT
FVR, SFPT
SFPT,FVR
SFPT,FVR

FUR,SFPT
FVR,SFPT
SFPT,FVR
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RZ

12.25
43.72
21.68
43.68
40.97
33.37
3%8.02
26.13
42.27
33.55

52.12
68.43
34.89
49.00
24.00
46.61
19.33
33.13
34.30
37.65
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TABLE XI- LONG. COMPRESSIVE STRENGTH (SCHXC)

5

2.4
2.5
2.6
0.7
.3
0.4
2.5
2.6
0.7

2.3
@.49
Q.5
0.6
Q.7
e.3
Q.4
2.5
2.6
0.7

SIMPLE MODEL
TERMS ACCEPTED

GP,SMPC
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12.25
18.23

8.52
B8.08
8.02
9.29
20.59
9.18

11.30 .

12.01
9.490
10.76
9.85
8.87
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TABLE XII- TRANSVERSE TENSILE STRENGTH {SCYYT)

SIMPLE MODEL
FUR TERMS ACCEPTED R?
0.3 FUR 27.03
0.4 FUR 32.91
.5 SMPT 8.10
@.6 FVR 41.92
0.7 NONE
@.3 FVR,VVR,SIPT 26.89
0.4 FUR . - 41.43
0.5 FVR 14.74
©.6 NONE
0.7 FUR, SMPT 31.05
0.3 FVR 9.43
2.4 FUR 8.19
0.5 FVR,EFP2 15.58
0.6 NONE
0.7 NONE
0.3 FUR 33.87
0.4 FUR 13.39
0.5 SMPT 8.62
0.6 FVR 27.85
.7 FVR 32.77
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TABLE XII1I- TRANSVERSE COMPRESSIVE STRENGTH {SCYYC)

E

0.4
0.5
@.6
.7
2.3
0.4
@.5
@.6
e.7?

.3
e.4
@.5
2.6
0.7
.3
.4
Q.5
@.6
0.7

SIMPLE MODEL
TERMS ACCEPTED

FVR,SMPC
FVR

NONE

FVR

NONE
FUR,VVR
FVR
FVR,SMPC
NONE

FVR

NONE
NONE
NONE
NONE
NONE
FVR
FVR
NONE
FUR
FVR
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BI

33.17
30.10

38.93

28.19

43.26

19.57

15.85

28.68
11.64

31.97
33.e5
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TABLE XIV- IN PLANE SHEAR STRENGTH {SCXVS)

3

Q.4
2.5
2.6
.7
.3
2.4
2.5
@.6
2.7

@.3
0.4
@.5
@.6
2.7
0.3
2.4
@.5
2.6
.7

SIMPLE MODEL
TERMS ACCEPTED

FVR, THETA, GFP12

FVR

THETA

THETA,GFP12,FVR,SMPS

NONE

THETR, VR, SMPS, FUR

FVR -
THETA

THETA

NONE

SMPS

FVR, S1PS, QP

GFP12,FVR
SMPS
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28.51
8.74

14.96
31.84

48. 16
43.26
8.40
14.75

8.25
8.33
29.06

22.20
17.73
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Further regression wodels were studied, in an attempt to improve
the predictive capability of the wodels, especially for the strengths.
These wodels, incorporating higher order functions and combinations of

-pnedictor variables used in the sinple wodels, show some improvement
over the simple wodels, proving the value of including the “interaction™
effects of predictor variables in the regression wodels. In addition,
the higher order interaction nodels can fit response functions over a
wider range of fiber volume ratio, with associated improvements in the
R? statistics. The data cases CON1 and CON2 contain selected points
from the entire range of fiber volume ratios, to supply the samples for
these runs. Furthermore, since higher order models are postulated,
THETA is taken to be the cosine of the average of fiber orientation
angles. The variable MVR is a "dumwy” variable, that is a function of
other variables in the model. It is defined as

MR = 1 - FUVR - VUR
and is intended to represent an "average” matrix volume ratio over the
thickness of the ply. The interaction wodels are shown in Tables XV -
XRVI.

The general form of the postulated wodels now includes higher order
terms, so the predictor variables are tested up to the fourth power.
Synbolically,

Y = By + B,(THETR) + B,(FVR) + B;(VUR) + By(EFP1) + Bs(EXP) +
B¢ (MVR) + B,(THETR)? + By (THETR){FVR) + By (THETR)(VVR) +
B, o(THETA) (EFPL) + ... + B;;(THETA)?(FVR)(EFP1) + ...

BIQ(M)“ + Blg(FvR)z"' ... 8tc.



117

The nunber of terws possible in a complete fourth power polynomial

expansion becomes unwieldy for the cases studied. Considering the
limitation of the size of the predictor matrix in the regression package
" used (120 x 100}, the terms are intuitively grouped in the hope of
eliminating large groups at one time. The regressions are conducted
using “unlikely” candidates for admission into a particular wodel, and
if no terms are entered, subsequent regressions are conducted without
those terms. The justification for this approach is not a statistical
arguent, rather an interpretation of the physical principles active in_
any chosen model. The regressions to eliminate terms are merely used as

a check on what seems intuitively reasonable.
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CON1L
COoN2

£

0.4
2.5
2.6
0.7
.3
2.4
9.5
@.6
0.7

2.3
0.4
.5
.6
.7
0.3
2.4
@.5
9.6
.7

VARIES
VARIES

TABLE XV- LONGITUDINAL MODULUS (EC11)

INTERACTION MODEL

TERMS ACCEPTED

THETA"“»FUR*EFP1
THETA"YSFURKEFP1
THETAYSFURMEFP 1
THETA“*FURXEFP1
THETAYXFURXEFP1
THETA"SFURXEFP1
THETAYSFURXEFP1
THETA“SFURXEFP1
THETA''#»FUR*EFP 1
THETAYSFURNEFP!

FURWKEFP1, EMP2%MVR
FVR»EFP1,FUR"

FURXEFP1
FURXEFP1 , EMP2%UUR, VUR"
FURKEFP1 , EMP*IMVR
FVR®EFP1,VUR
FURXEFP1,MVR?%FVR
FUREFP1, MURZ%EXP
FVRXEFP1

FVR*EFP1, EMP*MUR

THETA#FURKEFP 1
FURREFP1,VURY
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84.50
92.66
93.76
94.24
85.08
63.84
89.86
?1.79
64.37
55.68

99.82
99.83
99.72
99.79
99.79
99.17
98.53
98.99
99.58
99.38

96.48
99.92
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CONi
CON2

0.3
2.4
.5
Q.6
2.7
2.3
2.4
Q.5
2.6
e.7?

2.3
9.4
@.5
2.6
@.7?
©.3
2.4
2.5
2.6
Q.7

VARIES
VARIES

TARLE XVI- TRANSVERSE MODULUS (EC22)

INTERACTION MDDEL
TERMS ACCEPTED

FURXEFP24E}P , EFP22%FUR, THETA*FURRMVR
FURXEFP2%EMP , EFP22%FUR, THETR
FURKEFP2%EMP , THETAZ*EFP2, MVR"
FURXEFP2%EYP , THETA2#EFP2, EFP2?#FVR
see NEARLY SINGULAR
THETA?*MVR, I 2#EFP2, WR?

FURNEMP, THETA, EFP22#FUR .
FURNEFP2%EMP , THETA, FURNEFP2%MVR
THETA2*MVR, MVR2*EFP2, 2P*IVR

sw% NEARLY SINGULAR

FURXEFP2%EIP, EFP22#FVR, EMP*IVR
FURXEFP2¢EXP , 2P 2FUR

FURSEFP2%EIP , FVRXEFP2%IVR
FURXEFP2%E}P , FURZ*EXP

FVRY,EFP2xEXP
FURNEFP2%EYP , EFP2, EFP22#EXP , FURNEFP2
FURNKEFP2%E}P , FURNEFP2%IUR, FUR¥VUR
FURMEFP2+EMP , FVRAEFP2%IVR
FURXEFP2%E}P , EFP21%IVR

FURKEFP2%EMP , MVR?¥FVR

wxxx NEARLY SINGULAR
FURNEFP2#EMP , FUREFP25IVR

119

B!

99.19
99.55
98.92
99.22

93.26
96.79
93.49
88.35

99.22
99.07
98.89
99.14
99.23
98.62
98.28
97.93
98.44
97.86

99.79
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CON1
CON2

TRAELE XVII- IN PLANE SHEAR MODULUS (BC12)

£

.4
@.5
2.6
e.7
9.3
0.4
@.5
2.6
@.?

2.3
0.4
@.5
.6
@.7?
.3
2.4
2.5
2.6
0.7

VARIES
VARIES

INTERACTION MODEL
TERMS ACCEPTED

THETA, FVRG'P, THETA'sFURXGP

»#x NEARLY SINGULAR

THETA? ,FUR2%QP,GFP12%GP

THETA, FVURZ?%MVR
THETA,FVR?%Q@P,GFP12
THETAY,FUR'*GP,FVR?

axx NEARLY SINGULAR -
THETAY*FUR¥MVR, THETA''#VUR, VURXGP
THETAY , FUR3»@P, THETA

sx NEARLY SINGULAR

FURNGIP, MVR2%GFP12

FUR*GP ,GFP12

FUR®GMP , FVR¥GFP12

FURGT ,FURZaGFP12
FURY#G'P, FVRKGFP 12%GP , IR xQIP
FVRN@P ,FURNGFP12

FUR*QP ,FURNGFP12

FURXGP ,FURNGFP12

FURXGP ,FVR2%GFP12
FURY»@¥P , FVRNGFP12%GP, VR %P

FUR2xUUR, UURNIMVR, FURXQ'P , THETR '»FURXGP
FURZxQP , VVUR*GP , GFP12xQP

120

97.86

97.75
98.01
98.46
95.49

91.04
96.70

97.73
97.97
96.52
97.10
98.90
96.91
92.37
95.08
97.42
96.85

99.09
99.54
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TABLE XVIII- LONG. THERMAL EXPANSION (CTE11)

e.3
0.4
a.5
2.6
0.7
Q.3
0.4
2.5
2.6
.7

@.3
0.4
@.5
.6
Q.7
2.3
2.4
9.5
2.6
0.7

VARIES
VARIES

INTERARCTION MODEL
TERMS ACCEPTED

THETA2*MVR, MVR? , FVRXEFP 1 ¥MUR , EMP 2 %EFP1
THETA2#MVR, THETA" ,EFP1" , EMP 2%FUR, IWR*#EFP1
THETA2*MVR, MVR, P 2%MVR, EXP 2xEFP 1

FURXEFP 1 , THETAFURXEFP1, EMP*%MUR

THETA, EMP*MVR

wxx NEARLY SINGULAR
THETAY ,MVR2%E}P
THETAY , P 2%MVR,
THETAY, MVRZ#VUVR
THETAY, FUR2%MUR

MUR2»EXP , EFP1 2xE2P , FURY
MUR2%EMP , FURXEFP1%IVR, MIVR2%VUR
MUR2%EMP,EFP1,FUR"
MVR2xEXP,EFP1 2#MUR

MVR2#EXP ,EFP 1%MVR .
MVR2»E}P , FURNEFP 1 ¥MVR
MURZ»EIP , FURNEFP 1%MVR

MVRZ%EIP ,EFP12#MUR
MVR2%EMP,EFP12%INVR
MVRI=EFP1,EMP2¥IVR

THETA,MVR? , EFP12#UVR, FURSUURKEFP |
MUR2%EMP , FURXEFP1#MVUR, FUR" , FUR?#VUR. . .
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82

92.51
96.38
97.26
96.32
90.66

80.81
87.98
75.20
82.97

99.29
99.17
98.94
98.94
99.33
98.35
98.55
98.56
99.00
98,20

96.82
99.84
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TABLE XIX- TRANS. THERMAL EXPANSION (CTE22)

3

2.4
2.5
2.6
.7
2.3
0.4
@.5
2.6
0.7

@.3
9.4
2.5
2.6
.7
0.3
0.4
0.5
2.6
0.7

VARIES
VARIES

INTERACTION MODEL
TERMS ACCEPTED

THETA2*MVR, VUR

THETAT*MVR, MVR?%FUR,, FURNEFP 1 *E2P
THETA2#MVR, MVR2*FVR, FUR"
THETA2#MVR, MURZ¥FUR, P 2% VUR, MVR2#VUR
FVR?, THETA, THETA?»FVR
THETA2%MVR, MR, EFP12%UVR

THETA2#IWR, VR, FURNEFP 1 ¥IVR -
THETA2%MVR, MUR2#FUR, EFP 1 2%UVR
THETA?»*MUR, THETA, THETA"

s NEARLY SINGULAR

FVR,MVR?
FVR,MVR"
FUR,MVR?

FUR, EMP2xEFP1
FVR,MVRY

FUR, FURREFP 1 *E2P
FUR, VR

FUR

FVR, MVR"
FVR, P 2»FUR

THETAZ®MVR
FVR,FVR?,MVR2%EXP

122

99.60
99.38
99.48
99.73
99.81
95.16
98.71
95.91
95.69

99.70
99.59
99.67
99.7%
99.82
99.26
98.97
98.88
99.57
99.29

99.32
99.95



INPUT

RESEREGEGRE

- 4
(-]

28 8

)

FESE

wio

CON1
CON2

TABLE XX- POISSON RATIO; MAJOR (NUC12)

5

0.3
0.4
.5
2.6
2.7
.3
0.4
.5
2.6
2.7

@.3
.4
2.5
2.6
.7
0.3
.4
2.5
@.6
.7

VARIES
VARIES

INTERACTION MODEL
TERMS ACCEPTED

s NEARLY SINGULAR
THETAR, EFP2%MVR
THETA,GFP112%MUR
THETA, EFP1#MUR

. THETA,FVRSEFP2

s NEARLY SINGULAR
THETA, THETRYSFURXGFP12
THETA

THETA, VURGFP12
THETA,FUR*MVR

FUR, VURNEFP2

FVR

FUR, EFP1#EFP2,GFP12#IVR
FVR, FURMEFP2

e SINGULAR
MVR,FURXMVR, EFP 1¥I'VR

123

82

97.96
96.71
98.17
96.48

84.73
89.43
84.27
92.10

97.83
98.48
972.77
98.32
99.17
97.32
96.50
96.38
98.41
96.97

99.77
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REGEEGESR

&

2% 8

§8SE

Wio

CON1
CON2

TABLE XXI- POISSON RATIO; MINOR {NUC21)

£

2.4
@.5
2.6
@.7
e.3
2.4
2.5
2.6
.7

2.3
2.4
Q.5
2.6
2.7
2.3
0.4
2.5
2.6
2.7

VARIES
VARIES

INTERACTION MODEL
TERME ACCEPTED

THETR, THETA“%FURXEFP1

THETA, FURKEFP1
THETA,FUR®EFP1,EFP2#GFP12

THETR, THETAYXFURXEFP1 , EFP2

THETA, THETA'%FURKEFP1

THETA,FURXGFP12

THETA, EFP2%MVR

THETA, FURREFP1

THETA

THETA, FURNKEFP 1, THETR'#FUR*IMVR , EFP2%MVR

FURXEFP1,FURXEFP2

FUR®EFP1 , FURNEFP2
FVURKEFP1,FURSEFP2,FURKGFP12
FURSEFP1,FURXEFP2

FURSEFP1 , FURNEFP2
FURSEFP1,GFP12#IVR
FURMEFP1,FURXEFP2,FURMIVR
FURMEFP1,EFP2

FURSEFP1 , FUR®EFP2

FURMEFP! , FUREFP2

ﬁlETA,FRV*@'PlZ,EFP2,ﬂ-IETQ"*FWmR, ceo
FUREFP1,FUR*MVR,EFP2 , VURNGFP12

124

91.69
94.66
95.10
97.15
95.82
91.16
89.52
92.06
92.53
95.60

95.48
94.69
95.52
92.85
91.77
87.83
86.48
84.36
89.84
91.55

98.70
98.35



INPUT

FEEEEGEBRE

& 3 &

Ni©

585K

Wi@

CON1
CON2

TABLE XXII- LONGITUDINAL TENSILE STRENGTH {SCXXT)

9.3
Q.4
9.5
Q.6
2.7
0.3
©.49
2.5
@.6
2.7

9.3
2.4
2.5
2.6
2.7
2.3
0.4
2.5
2.6
0.7

VARIES
VARIES

INTERACTION MODEL
TERMS ACCEPTED

THETAY*FURXSFPT
THETA"*FUR®SFPT, MURY
THETA“*FURRSFPT
THETA*FURRSFPT, FUR2 %P
THETAY*FURXSFPT
FUR%SFPT, FURMEFP 1¥IMVR
FURNSFPT, FUR2#MVR

EFP 1#SFPT, MP*MVR

EMP 2%MUR, THETA2%SFPT*IMVR
THETA2*FVRXSFPT

FURXSFPT, FUR?»EXP
FUR%SFPT, FURNEFP{
FVRXSFPT, MVRZxFUR
FURNSFPT

FURXSFPT, FURKEMP
FUR®SFPT, MVRIXEFP1
FURXSFPT

FURNSFPT

FVR®SFPT

FVRSSFPT

THETA"“SFURXSFPT, FURXVURXMVR, FURXEFP 1 ¥IVR
FURXSFPT, FURNVUR, MVR2%SFPT

125

17.72
47.65
27.65
44.67
45.35
39.18
42.87
33.97
45.09
32.56

52.95
64.41
39.12
47.13
27.43
49.71
25.19
32.16
34.06
35.09

81.20
84.79



FEEEEHEBRE

$ 8 3 &

Ni@

EESE

wio

CON1
coN2

TABLE XXIII- LONGITUDINAL COMPRESSIVE STRENGTH {SCRXC)

8

0.4
2.5
Q.6
0.7
2.3
2.4
2.5
0.6
Q.7

2.3
0.4
@.5
2.6
.7
2.3
2.4
@.5
2.6
Q.7

VARIES
VARIES

INTERACTION MODEL
TERMS ACCEFPTED

SFPC,GFP12%SMPC
NONE

NONE

NONE

GFP12#EXP
FURMUR

GPr124

FUR*UUR
FVR®UUR, SFPC

126

12.53
19.45

9.81
10.20
10.40
9.32
23.32
9.20

14.96
11.91
10.76
9.85
9.10

46.48
44.44



N1

FEEBESEHEGR

58 3&

Ni@

§ESEK

W10

CON1
CON2

TABLE XXIV- TRANSVERSE TENSILE STRENGTH {SCYYT)

5

0.4
@.5
2.6
0.7
2.3
2.4
Q.5
@.6
.7

Q.3
2.4
2.5
2.6
0.7
2.3
e.4
.5
2.6
0.7

VARIES
VARIES

INTERACTION IMODEL
TERMS ACCEFPTED

MUR2%SMPT

MURZxSMPT

EMPxSMPT

FURZxMVR

NONE

FUR2»UUR, SMPT

SMPT*IUR -
MUR2%FVR

FUR*UURXEFP2,E2P

FVUR*SMPT

FUR%IMUR
MVR2%FVUR
FURKEFP2%SMPT
SMPT2xMVR
FURXEXP
MFRZIxEXP
MURZ®UUR
SMPT2xIVR
FURZ#EFP2
MUR2xSMPT

THETAY#SMPT*IVR, FURKEFP2¥MVUR, ¥SMPT 2R

SMPTZ#MVR, FURFUURSIMVR

127

Rz

31.60
37.23
9.61

47.59

25.39
43.94
16.32
24.10
30.29

10.47
8.94

13.54
9.40

9.13

35.13
19.34
12.89
29.27
36.7?

73.42
76.40



FESESEFEERE

2EEEIE

@

EESEK

wo

CON1
COoN2

TABRLE X{V- TRANSVERSE COMPRESSIVE STRENGTH (SCYYC)

e.3
2.4
2.5
2.6
0.7
0.3
0.4
2.5
2.6
0.7

2.3
2.4
@.5
2.6
.7
2.3
2.4
@.5
2.6
©.7

VARIES
VARIES

INTERACTION MODEL
TERMS ACCEPTED

SMPCHMVR

FURZxE2P

NONE

FURZ%MUR

NONE

FUR2»UVR

mz*m -
SMPC2%MVR

FURXUURNEFP2,EXP

SMPCHMVR

SMPC2xMVR

EFP2%MVR

FURSEFP2

NONE

SMPC2xMVR, FURZ%IMUR
MUR2xEXP

EFP2%MVR

NONE

MUVR2xSMPC

mﬂ

THETA“%SMPC*MVR, FUR"
MURY, FURZ%IMVR, VR 2%SMPC

128

83

33.39
32.99

42.31

26.24
43.86
21.13
25.75
18.63

11.57
9.03
9.87

19.07
32.50
14.58

32.85
35.79

76.43
75.59



INPUT

FEEESEGEBRE

E8 3 &

Ni0@

5 ESF

uie

CONi
CON2

TABLE XXVI- IN PLANE SHEAR STENGTH (SCXVS)

5

0.3
e.4
0.5
2.6
©.7
2.3
2.4
9.5
@.6
0.7

.3
0.4
0.5
Q.6
.7
0.3
.4
Q.5
2.6
@.?

VARIES
VARIES

INTERACTION MODEL
TERMS ACCEFPTED

FVURXGFP12%Q@¥P , THETA"

FURKGFP12¢EXP

THETR

THETA"%GFP12,SMPS*IMVR

NONE

THETA , FUR*VVRMEIMP , THETA " ¥SMPS,, FURKIMVRE
THETAY#FUR, THETA'*GFP12 .
THETAY

THETA, FUR*VVR

THETA"“*FVR

NONE

SMPS*MUR

NONE
sMPS,SMPSs*
FURZ#MVR
SMPS*MVR, QP
FURNGFP12¥IMVR
NONE
FURXGFP12%MVR
SMPS

THETA"*FUR, FURZ%SIPS
FURXVUR, MUR" , FUR2%VUR

129

R!

27.64
13.51
14.97
30.84

52.20
26.58
12.89
22.33
10.72

11.24

16.14
11.90
28.58
B8.28

19.20
17.73

36.74
61.46



CHAPTER IV

DISCUSSION

fA. Overview -

The numerical simulations conducted show that certain assumptions
about the statistical distribution of local nonumiformities in fiber
composites lead directly to quantifiable variations in mterial
properties. The advantages inherent in the stochastic characterization
are numerous. The development of quality control and reliabilty
measures for composites is crucial to their acceptance in aircraft
designs. The reduction in needed experimental data achievable through
judicious similation of the wide variety of available composite material
systems could significantly lower the costs of meterial selection and
acceptance testing. In the results of this study, the confidence
intervals calculated can be interpreted as the product of an
experimental program, specifically designed as an analog of the physical

processes which occur in real materials.

130



131

B. Histograms and Distributions

Data cases 1, 2, and 3 demonstrate the differences between a

deterministic base case and random cases with narrow and wide dispersion
'of input data about the base case.

In Fig. 30, it is apparent that the deterministic case 1 value of
1575@ ksi. for longitudinal modulus falls near the mean of the case 2
data. However, the case 3 sample appears to have a mean slightly lower
(approximately 15000 ksi.). It should be noted that the size of the
interval over wvhich the sample cccurs is noticeably larger in the widely
distribuwted case 3 run.

Transverse modulus, (Fig. 31) denonstrates a higher mean value for
the wide distribution than for the narrow, vwhich is greater than the
deterministic value of 1065 ksi. reported in Table II. The increased
transverse modulus is related to the added stiffness available in fibers
with high misalignment relative to longitudinal direction.

Shear modulus, (Fig. 32) is measurably changed by nonmiformities.
The deterministic value of 516 ksi is exceeded by the case 2 value of
approximately 620 ksi, vhich is further exceeded by the case 3 value
near 920 ksi. Fiber misaligment has a significant effect in shear

modulus variation.

Poisson's ratios (Fig. 33, 34) show similar trends in location of
sample means and relative dispersion of the sample for the data stulied.

Poisson’s ratios generally increase with fiber misaligment and volume

fraction changes.
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The coefficients of thermal expansion (Figs. 35, 36) for the sample
studied reflect the longitudinal contraction of graphite fibers vhen
heated. The longitudinal coefficient of thermal expansion for
AS-graphite fiber is -2.950 x 10 &/ F, while the transverse coefficient
is ©.560 x 10 5/ F. The offset orientation of crystal lattice planes
in graphite fibers can explain this behavior. These walues, the fiber
misalignment, and fiber volume ratio near @.5 all contribute to the
occurrence of a negative longitudinal coefficient of thermal expansion
for the conposite. At higher fiber volume ratios, the values calculated
would be less than in the present case, because of the contolling fiber
behavior for high fiber volume ratio.

The longitudinal strengths (Fig. 38, 39) are significantly reduced
when nonuniformities are present. The deterministic case 1 value of 203
ksi. for tensile strength is compared to a wean near 160 ksi for case 2
and a mean near 130 for case 3. In conpression, the deterministic value
of 165 ksi. compares to means near 10@ ksi. and 80 ksi. for the narrow
and wide distributions, respectively. The failure mode in compression
varies in the random samples.

Transverse strengths {(Fig. 4@, 41) show sensitivity to the
variations assumed. Misalignments, volume fraction nonumiformities, and
constituent strength variations all contibute to reduction in the
strength values. Sub-ply shear failures occur, which undermine the
already low transverse cowposite strengths.

In plane shear strength (Fig. 42) values decline from 10.01 ksi.

for case 1 to a mean near 8.0 ksi. for case 2. However, case 3 shows a
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value of a mean near 8.0 also. It appears that the added shear strength
due to fiber misalignment is balanced by the reduced strength due to

variable fiber volume fraction.

C. Confidence Curves

The effects of various shape parameters of fiber strength are shown
in Figs. 43 and 44. The higher weibull distribution shape parameter of
20 produces a narrow distribution of fiber strength values. The
conposite that has few weaker flj.tE‘l‘S is expected to be stronger, and
Fig. 43 dewonstrates this for lonitudinal tensile strength. However,
conpressive failure (Fig. 44) is a more complex phenomenon. In the
region of low fiber volume ratio, the ‘rule of mixtures! failure
‘criteria for a subply can control the failure mode. At higher fiber
volume ratio, however, cowpressive failure can be initiated by
delamination, or by a shear failure in a sub-ply. The mixture of
failure nodes in compressive failure is not well understood, but can
explain the seeming inconsistency of the intersection of the curves in
Fig. 44. At a fiber volume of 0.7, the weakest fibers (a = 10) are in
the strongest composite, when strength is normalized with respect to
f iber compressive strength.

The effects of various shape parameters for matrix strengths are
studied in Figs. 45, 46, and 47. Transverse tensile and compressive
strengths show expected reductions for lower matrix strengths. In-plane
shear strength shows lower dispersion at a large fiber volumwe of 0.7,

and also declines in general for higher fiber volume.
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The fiber misalignment effects are studied in Figs. 48-57.
Longitudinal modulus {Fig. 48) shows narrow intervals and slight
reductions for greater misalignment. Transverse modulus (Fig. 49) and
"in plane shear modulus (Fig. 5@) are enhanced by fiber misalignment.
Longitudinal tensile and compressive strengths are degraded by
misalignment (Figs. 5%, 52). Transverse tensile and conpressive
strengths are enhanced (Figs. 33, 54). In-plane shear strength shows
total separation of confidence intervals between curves with different
degrees of misalignment. Poisson's ratios (Figs. 56, §7) increase for
high fiber misalignment values.

The fiber stiffness effects (Figs. 58-67) are very small for the

distribution parameters studied.

D. Examination of Regression Mbdels

The regression models for thermpelastic properties denonstrate
resonably high predictive capability in the simple models assumed.
Marginal inprovements are achieved in expanding the wmodels to include
higher order interaction terms. Further improvement is gained by using
sanple data from the wide range of volume percent values. The higher
multiple correlation coefficients of these models may be due to the
additional information available in the sample size of 100 that was
used. The nearly singular predictor matrices vhich occur in the higher
order models indicate that terms must by selectively removed to
eliminate linearity between assumed predictor terms. The regression

results support the use of the simple mdels for thermpelastic
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properties, because inmprovements in predictive capability in the higher
order nodels for the same data are small.

Strengths are not wodeled well by the simple or the interaction
models. The predictors chosen are average properties, vhereas the
strengths are based on the weakest points in the material. Even the
unidirectional cases (N6-N1®, W6-Wi®@) present data that the interaction
models have considerable difficulty in accomndating. Somevhat greater
predictive value is gained by using the expanded data for strength wodel
prediction. Using fourth order algebraic functions, values of the
multiple correlation coefficient square approach 85Z for longitudinal

tensile strength. The other strengths generally have poorer results.



CHAPTER V

CONCLUSIONS

A tractable, constituent based, probabilistic analysis procedure
for fiber composites has been developed using the ICAN program as a
basis. Within the limitations of the mechanics of material nodel,
properties and strengths of a variety of composite material
conf iqurations can be simulated.

This study quantifies the thermoelast ic and strength properties of
a graphite/epoxy ply subject to assumed uncertainties for fiber
misalignment, constituent volume fractions, and constituent properties.
The results show several advantages of probabilistic characterization of
this material. These include the identification of unforseen variations
in composite material properties, and the mechanical effects of local
nonuniformities. The relative importance of the various fabrication and
material variables on composite properties is identified, and the
resulting behavior quantified.

The advantages of a probabilistic formilation of cocmposite material

136
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properties over a deterministic one are numerous. Cowparison of the
results of this study with test data oould reveal some souroes of
previously unaccounted scatter in the data. Expected value ranges could
be predicted for experimental results. Since the simulations provide
data that is analagous to experimental data at lower cost, laboratory
classification, material selection, and acceptance testing of composites
can be guided by the information made available by these methods.

filthough the method presented provides results for only the basic
ply, extension of the simulation to include lamination angle variations
in a general layup is feasible. Since finite elewment material property
cards are generated, structural analysis of components with randomly
varied properties defined at a nunber of points in the body can supply a
more realistic description of the random nature of structural response
due to material inhowngeneity.

The stochastic formulation of material properties is generally
recognized as one requirement of failure theories for materials.
flthough the failure criteria in the models used in this study are
conservative, progressive failure of fiber composites could be wodeled
by incorporating load redistribution and material property recalculation

in the vicinity of failed material.
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PROBABILISTIC INTEGRATED COMPOSITES ANALYZER ( P I C AN
A COMPUTER CODE FOR ANALYSIS OF PROBABILISTIC VARIATIONS IN
COHPOSITE PROPERTIES USING THE INTEGPATED COMPOSITES ANALYZER
(ICAN). THE ANALYSIS SAMPLES FROM INPUT DPISTRIBUTIONS TO OBTAIN
COMPOSITE PROPERTIES ARD GEONETRY. WHICH ARE THEN INPUT TO ICAN.
AS NANY TIMES AS THE USER REQUESTS.
FINAL OUTPUT INCLUDES QUTPUT DATASETS OF ICAM WHICH ARE NANED
*JCANOUT"®, AND CAN BE REPEATEDLY USED BY ANALYSIS ROUTINE.

aonacannannanan

THIS I3 A MASTER PROGRAM FOR “ICAK™ WHICH ALLOCATES -
DYNAMICALLY SUFFICIENT STORAGE FOR THE ARRAY VARIABLES ---
IN "ICAN® AND "PICAN™ CODES.

COMMON A(9008)

COMON /PSIZE/ MAKLEN,N(108)
MAXLEN = 9000

CALL SPINIT

STOP

END

Qnaan
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SUBROUTINE SPINIT

C READ !NPUT DATISET 10 OLTCAMINZ IF PRODABILISTIC ANALYSIS IS DESIRED

c srt

1)
COﬂHON 7ILABIS/ INWYDI,OUTF,INF.INPF,INDS,IDBK

DIMENSION L(8)
LO0GICAL leIT.lNGltV.VOIITV.'!IITV
CHARACTER" ¢
lNiEGEI rxu.uuns.lunuo outr
DATA PIN/
READ (PIN. llll’ coun
IEID (PIN.IOIZ) NL. HUHS.ISTIT
F (.NOT. BSTAT) GO TO 509

READ (PIN,1001) RUNS
UP POINTERS FOR MASTER ARRAY

L(1) = 1
1(2) = L(1) ¢ Nuns
L(3) = L(2) ¢ NUNS
L(4) = L(3) ¢ NuUMS
L(3) = L(4) ¢ NUKS
L(6) = L(3) ¢ NUms
L(2) = Li6) ¢ ML
L(8) = L(7) ¢ NL
Ll = L(L) .
12 » L(2)
Ly = LtY)
Lé » L(s)
13 = L(5)
¢ = L(O)
L2 = L(D)

* L(8)

Ls » L(8
C LOOP 'RUNS’ 7!"!8 TKIO"OH DATA CREATIOM AND ICAN ROUTINE

DO 100 RUNNO = 1,
CALL UPDAT(A, I(Ll).l(l)).llbt’.l(t’).lllt).I(LI).A(LIJ +NL,NUNS)
REWIND 1DBK
CALL ICANMM
ENDFILE OUTF

900 CONTINUE
CALL COPY

1))
1002
1003
000

CALL ICANNN

FORMAT (¢X.I6)

FORMAT (8X.I8,8X.18,2X,14)
FORMATLAG)

CONTINUE

RETURN

END

(448



SUBROUTINE UPDIT(V"S.VSC.VVS.VI’P.VVP.TNETI.'I'NHU.T“SIG.NL.NU"S'

¢ !I-lnnunlullnnlluullnlnllunlllnnnl-nlun-u--nun-nnunvnul-l--nln--uunlnl

C ROUTINE UPDAT READS INPUT AND GENERATES STATISTICALLY VARYING INPUT *

¢ FILE TO ICAM USING VARIOUS RANDON NUNBER GEMERATION SCHEHES "
l!ll!!lilullionlnallnlﬂclcnllnllu-nnnnuanull-pnnunnlnululllulllunillnl

DINENSION DECK(IOl.'Ll75.\).CO0ES(2.2.!).VFS(I).VSC(I),VVS(II.

1THETAL)

INTEGER
INTEGER
CHARACT
- COMMON

COMHON
DATA P1

).le(!!.li.DlS(O.l).HIS(!.!).VTP!Il.VVP(I).!D[NT(S)
CSINI.COHSIT.I!DE.IINDV.NONUD'.INGL!V.VOIlTV.flI&TV.CONV
NL.NLC,NNS, INT, IR, INPS
PIN.ISEEDF,ISCED
£a"g PLY, IDENT
/SCED7 ISEED
/CONST/7 CONV
N.lNPf.ISE!DFI!l.’.!SI

REAL TU,TCU.NBS.NB3
DATA PLY/' LY/

REMIND

AZAD IN UNIVORM RANDOR HUMBER GEMLRATOR SLED

ISEEDF

L
AZAD(ISEEDF,4) ISEED

AEUIND
REW

INPr

IND PIN
READ(PIN.?) (DECK(T), X=1,20)

HRITE

Iner.7) (pECK(1),123,20)

READ(PIN,9) IDENTLL) ML, NLC, NS
IT(NL.EQ.MRS) GO TO 3¢

HRITE
stoP

38 MRITE

READ(PI
MRITE (

INPF.260)

INPT.10) IDENT( 1), NL, NLC, WS

H.12) COHSIT.]NGLIV.'II!TV.VOII?V.CONV
INPF, 1)) CONSAT

ACADC(PIN.1Y) CSINI.TNﬂU.THSIG.V'PHU.VFPSIG.VVPLIH.KVVP

URITE ¢

INPF,11) CSAND

READ (PIN.11) BIDE

INPF,.11) BIDE

MRITELINPE, 11) RINDY
READ(PIN.11) MOWUDF

HAXTE (

INPF,11) NONUDY

'€ READ LAYER DATA
READ (PIN.14) XD!NT(!).TU.TCU.PL(7!.l’.PL(Y.l)
{4 CIDENT(2) . EQ.PLY) GO TO 80

HRITE
MRITE (
stop

INPF.8)
INPF.2) IDENT(2)

80 Ir (AMGLEV) GO TO [ L]
Do 82

IR = 1.NL

THETA(IR) = THIW
82 CONTIMUE

£hT



c
c

c

c

c

[+
C

Go 70 101
po 100 IR = 1,
CALL URANDIX1)
CALL URAND(X2)
CALL NOIH(KI.XZ.THHU.THSIG.I)
THETACIN) o Y
100 CONTINUE
101 DO 105 IR = 1,ML

WRITCUINPF,15)

103 CONTINUL

BEAD MATERIAL DATA
READ(PIN,18) IDENTEA), (CODES(),J,1)
l(CODtS(Z.J.I).J-I.2).VSC(I).VT (.

Iv (FIRATY) GO TO 114
po 110 IR = 1,
VFPLIR) ® VPP

L) NL

) -

!DENt(!).II.XI.TU.TC".PL(12.l).TNETl(lI).PLl7.I)

114 DO 125 IR ©
113 g

Ir [
.vreQIn) = Y
123 CONTINUE

128 IF (VORATV) GO TO 148
pO 136 IR = 1,MAS
vP(IR) = VVPLAN

130 CONTINUE

GO TO 20¢

148 DO 190 IR = 1, NS
CALL GIH(VVPLI“.KVVP.VV'(II))
VP(IR) = VVPLIR)/10G.

190 CONTINUE

200 DO 203 10 = 1,
MRITE (INPP.1?
1(CODES(2.9.1).
203 CONTINUE

READ LOADING CONDITIONS

DO 368 IR = 1.NLC
AEAD (PIN,18) !DSNT(l).NISlI.ll).NIS(Z.IIl.N!S(!.ll).TNCS
URTTELINPF. 1Y) lD[NT(!).NlS(l.ll).NBS(?.!l).NIS(!.ll).THCS
READ (PIN.1B) lD(NT(l).ﬂls(l.lR).HIS(Z.[I).hﬂS(S.IID
WUALITE (INPF, 19} lDCNT(!l.ﬂIS(l.lli.ﬂ!s(z.ll).ﬂas(!.ll)
READ(PIN.1B) lDENT(ll.(blSll.lll.lﬂl.ﬁ)
WRITE CINPF,19) IDENTIS).(DIS(I.ll'.l*l.i)

NnS
IDENT(S) (CﬂetS(I.J. ),

) (s8], 1 21.2),VFPUIRD), VVPLIR),
Ju1,2),VsC(1), Fs(1),vvsQ1)

13- 20
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300 CONTINUE
AZAD OUTPUT OPTIONS

READ(PIN,20) IDENT(S).IO0UT
WRITE (INPF.21) IDENT(S),IOUT

INCREMENT AND REFILE SEED FOR FUTURE RUNS
ISEED = ISEED ¢ 160

REUIND ISEEDF

WRITE (ISEEDF,$) ISEED

TORMAT (31X, 1OHIDENT(2) =,A8)
(14)

2

¢ FORMAT

7 FORMAT (20A4)

s FORMAT (° THERE IS A MIX UP IN THE LAYER PROPERTIES CARD')
9 FORMAT (A8,318) .

19 FORMAT (AS,318)

11 FORMAT (Lé)

12 TORMAT (L6.6X.4L¢)

13 FORMAT (Lc.tx.z(zx.rs.l).:(:x.ri.s).zx.rs.z.zx,x~)
16 FORMAT (AB,16X,3F8.3.8X.F8.3)

13 FORMAT (A8,.218,5r8.3)

16 FORMAT (AB.2A4,16X.2A4,378.2)

17 FORMAT (AS,2A6,2r8.2,206,3F8.2)

18 FORMAT (AS,7F8.4)

19 FORPNAT (AS,7r8.4)
20 FORMAT (A8.IS8)
21 FORMAT (A8,I8)
22 FORHAT (I5)

23 FORMAT (4E160.3)

24 FORMAT (' INPUT ERROR... NnS MUST BE SET EQUAL TO NL.')

e
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SUBROUTINE URANDIZ)
€ PO ONI N0 00 000

C SUBROUTINE FOR GENERATING RANDON NUMBERS HAVING A UNIFORN
DISTAIBUTION, BY THE MIXED HULTIPLICATIVE CONGRUENTIAL HETHOD.

8 L e L L L LT LY T
DATA 170/
INTEGER A, X
COMMON /SEED/ ISEED
IF (X .2Q. §) GO T0 1
o0
n = 2uN29
Ft s
X = ISELD
A= 28W10 ¢ 3

1 X = MODUASX, M)
meXx

T s FX/M
RETURN
END

c

9pT



SUBROUTINE NORM(X1.X2,MU,SIGHA,.Y)
c ulunlnllul-uuuunua-uuuluuulluunnluuuunnu-nu---lnu-nn-nu-----ununnnnnnn
C SUBROUTINE FOR GEMERATING RANDON VARIABLE Y ACCORDING
C T0 THE NOAWAL DISTRIBUTIONM H(MU,SIGHA), USING THE
c UNIFORT RANDOM VARIABLES X1 AND X2.
c nulun-nnullllu-nn-unun-nnu--un-nnunuu-n-nlnn---n-nn-nnuuuununnnnnnu-un
REAL PX,HU,SIGHA.X1,X2.¥
PI = ATAN(1.)*6
) (SIGHI'((—Z'lloolll))"..5)'(005(2'?1'!2)))OHU
%5;0!"

AAR



SUBROUTINE GAM(ALAHDA.K.X)
c lnnu--nnuuul--lan-naunnnnnnununnuununn-uuuuulnnlnulnnn-n.uu-uunnnnn-u-

c SUllOU:{::n:OI GENERATING GAMMA VARIATES HITH PARAMETERS

g Illlllﬂ.lllllllliﬂl‘llilll!llllllﬂlﬂl!llIllllllllll!lll!l!!lllllllnlll
DINENSION U(100)
DINENSION P(100)
COtI0N /3SLED/ 1SEER

DO %0 X » I.K
39 CALL URANDLU(I))

p(1) = V(D)
DO 100 I = 2.%
108 PLI) = UCI) * PLI-1)
R = (=).0/ALAMDA) * ALOG(P(K))

-1 41



SUBROUTINE WEIRC(X1,ALPHA.BETA,Y)
unlllann||ll¢l|l|l-nnnnuunnllnnnuunnlnlun-nuunnnnunn-uuunnu-nn-nnu
THIS ROUTINE GENERATES THE DESIRED WEIBULL DISTRIBUTED RANDOM

VARIABLES PRESCRIBED BY INPUT OF SHAPE AND SCALE PARAHETERS.
lllllllnllllllllllnllﬂllllllllﬂiﬂlllllIliﬂlﬂllllnlilllnIII!‘I
VARIABLE DISCRIPTIOHS
ALPHA = SHAPE PARANLCTER
BETA SCALE PARAMETER
X1 UNIFORHMLY DISTRIBUTED RARDOM VARIABLE ON (8,1)
4 WEIBULL DISTRIBUTED RANDON VARIABLE

USE IS MADE OF THE WEIBULL DISTRIBUTION FUNCTION

FIX) = 1 = EXP( = (X/BETA) ¥M ALPHA) FOR X .GE. ZERO
oy = 1 - Xl

Y = DETA W ( -ALOGLOMX1)) %¥ (1/ALPHA)

RETURN
END

aananaanaaaaan

66T |



' C wane

SUBROUTINE COPY

C  THIS ROUTINE SINP

C |
LT

JCAN.
T LI LI
DINENSION DECK!(

nunu-la-nnn-u--nnllnuunlIn--llnnnlu-uuullnunnl-u-nu
LY COPIES THE INPUT DATA INTO THE FILE TO BE READ

I.I.Il.llll.l.ll'ﬂ..lllI.IIII'!.Il.lllll!ll"!!llll
zil.lliis.lil.lr(lt).lNP(?l).COth(!.?.!OD.Vrsll). -

IVSC(.).VVS(I).T”ETI(ISD.NIS(!!.l).DIS(Q.I'.HIS(l.l’.VTP(I).VVP(I)

DINENSION IDENT

(s)

CHARACTER"S IDENT,PLY
LOGICAL CSAND, CONSAT, BIDE. RINDV, NOXUDF

READCPIN, &) (

INTEGER HL,NLC.
INTEGER PIN.POU
DATA PIN/5L/,POUT/S/
L0188
PLY'/

aCAL TU,TCU,NBS
DATA PLY/'

URITE (POVUT.?)

RCADCPIN,

MRITE (POUT.10)

PEADC(PIN,12) COMSAY
MRITE (POUT,13) CONSAY

HRITE
ACAD (PIN,12) BIDE

MNAITE ¢
READ (PINM.})

AEADLPIN,12) C3
TE (POUT,13)

POUT,13)

NNS, INT, IR
T

DECK(1),I51,28)

(DECK(X),151,20)

9) IDENT(1),ML NLC,IMS

IDENT(1),NL, NLC, NIS

AND
CSANS

MIDE

2) RINDV

MRITE(POUT, L3 IRINDY
READ(PIN, 12} NONUDF
MRITE (POUT,13)

c
c RCAD LAYER DATA

IRe)
180 READ (PIN,14
1PLE7,IR)

Ir (IDENT(2).NE
GO T0 104

105 WRITE (POUT,S)
:IITE (POVT, 2
106 WAITE (POU

7,1
ITHETACIN)  PLL
Ir (IR,.LQ.NL)

)
TOP
S
?

IRIN¢)
GO TO 100

c
g AEAD MATERIAL DATA

109 IR=9
116 IR=IRe]

READ(PL

[

NONUOT

) lﬂlﬂ'(!).lﬂ'(!l).l?lll).TU.TCU.PL(T?.II)cTHlTl(ll)o -

.PLY) GO 10 108

IDENT(2)

:2!"?(2'.!"?1!!’.I'(Il).TU.TCU.PL(72'II). -

)
GO 10 109

N, 18) XDEN?(Q).(CODIS(l.J.!l)‘Jll.2).Vr?(ll).VVP(IR). -

l(CODlS(ZoJ.!I).J'I.Zl.VSC(lI).VfS(Il).VVS(lI)

© b g e - -

@Ss1

L ey



WRITE (POUT.17) IDENT(4),(CODES(1.J.
1(CODES(2,J.IR},J31,2).VSCLIR),VFSIIR
IF (IR, EQ.NNS) GO TO 129

IR
)

Y.J51,2), VFPCUIR) . VVP(IR),
LVVSLIR)

c ao 10 110
g REZAD LOADING CONDITIONS
126 IRs0

130 IRsIN4)
RCAD (PIN,18) IBINT(!).N!S(I.ll).NIS(Z.IR).NBS(!.IR).THCS
WMAITE(POUT, 1Y) IDENT(3),MBS(1,IR)  HBS(2,IR),NBS(3,IR), THCS
READ (PIN.18) IDENT(3),MBS(1, IN),NBS(2,IR) MBS(3, IR)
WRITE (POVUT,)?) IDENT(3).1BS(1, IR) . HBS(2, IR, HBS(3, IR)
AEAD(PIN,18) IDENT(3),(DBS(I,IR),I21,4)
- WALTE (POUT,19) IDENT{3),(DBS(I,IR),I=1.,4)
IF (IN.EQ.NLC) GO TO 14¢
GO T0 13¢

140 CONTINUE
READ OUTPUT OPTIONS

READ(PIN,19) IDEWT(3).I0UT

WAITE (POUT,20) IDENT(S),IOUT

FORMAT (1X,JOHIDENT(2) =.A8)

FORMAT (20A4)

FORMAT (2014)

FORMAT (° THERE IS A MIX UP IN THE LAYER PROPERTIES CARD')
FORNAT (A8,518)

FORMAT (AB,518)

FORMAT (L¢)

FORMAT (Lé$)

TORHAT (AS,218,5r78.3)

FORMAT (AS8,21I8,3F8.3)

FORMAT (AS.2A4,2F8.2,2R4,370.2)

FORMAT (AS,2h4,2F8.2,2A4,3F8.2)

FORMAT (A8,7F8.4)

FORMAT (AS8,778.4)

FORMAT .18)

FORMAT I8)

FORMAT
TORMAT
RETURN
EXD

ann O
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anna

C
c
c
c
c

1 CODES(2,2,
VARY EACH PROPE

SUBROUTINE VARCON(PT®,PFS, P1P,PNS, CODES. NNIS)
T e e et LU LA T L LD DL LD L
SUBROUTINE TO SUPPLY VARIATIONS IN CONSTITUENT PROPERTIES

AS DESIAED BY THE USER ON INPUT PRONMPT BOO
IIIII...l.'..'llllﬂllll.lllllllIl.llllll.ﬂl'I

INTEGER PIN
DATA PIN/S2/
LOGICAL

800L
DINENSION Dg?l(l’)."'(!l.ll.P'Sl!l.l’.Pﬂ?(lt.l’.?ﬂﬁ(l‘.l).
ATY WNICH CORRESPONDS TO A BOOLEANW WITH VALUE ‘TRUE'

DO 36 J = 1,NnS

GEMERATE TIBER PROPERTIES

BREAD(PIN,1801) BOOL,SHEAN,STDEV
IF(.NOT. BOOL) GO TO S
CALL URAND(X1)
CALL URAND(X2)
CALL NORM(X),X2,SHEAN,STDEV,.ETPIY)
Pre(s,d) = £rrll

READ(PIN,1001) BOOL,.SHEAN,STODLV
1 B00L) GO TO &

FC.NOT.
CALL URAMD(X1)
CALL URAND(X2)
CALL NORNIX),X2,SNEAN,STDEV,EFP22)
PFPLA,J) = ETP22

READ(PIN,1001) BOOL,SHEAN,STDEV
IF{.NOT.BOOL) GO TO ?
. CALL URAND(X1)
CALL URAND(X2)
CALL NORR(X),X2,SNEAN,STDEV,GFP12)
PFP(?7,d) = OFPI2

READ(PIN,1001) B0OL,SHEAN,STDEV
IF(.NOT.000L) GO TO &
CALL URANDIXL)
CALL URAND(X2)
CALL NORM(X],X2.SHEAN,STDLV.GFP23)
PFP(8.J) = GFP23

READ(PIN,.100)) B0OL,BETA,ALPHA
IF(.NOT. 800L) GO TO 9
CALL URAND(X1)
CALL WEIB(X),.ALPHA,BETA,SFPT)
PFP(14,J) = SFPT

RCAD(PIN,1001) BOOL.BETA.ALPHA
1F{.NOT. BOOL ) GO TO 10

CALL URAND(X1)

CALL HEIB(X),ALPHA,BETA,SFPC)

A3

© s baeve = vhihe e



aan a

PrP(13,J) » SFPC
18 CONTINUL
GENERATE MATARIX PROPERTIES

26 READ(PIN,1081) BOOL,SMEAN,STDEV
IF(.HOT. 800L) GO TO 21
CALL URAND(X1)
CALL URAND(X2)
CALL NORM(X1,X2,SHNEAN,STDEV,EMNP)
PHP(3,J) = EMNP

21 READ(PIN,1001) BOOL,BETA,ALPHA
IF(.NOT. 300L) GO TO 22
CALL URAND(X1)
CALL MEIB(X1,ALPHA,BETA,SHTP)
PHP(9,J) = SHTP

22 I!lD(PIN l..l) S00L.BETA, ALPHA
1F( . HOT. BOOL) GO 10 23
CALL URAND(YX
CALL HEII(X‘.ILPNA.I:TI SHCP)
PrP(18,J) = SHCP

23 ltlﬂ(’l" l..l) IOOL.ltTl ALPHA
IF(.MOT. BOOL) GO T0 2
CALL URAND(X
CALL Htll(ll.lt'"l BETA,SNSP)
PHP(11,J) = SHSP

24 CONTINVE
REWIND PIN
30 CONTINUE
1091 FORMAT(16X,L6,2£20.10)
RETURN

eST
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This appendix outlines the theories and equations in the ICAN
program that are used in this project. In the first section on
conposite micromechanics, the elastic and thermal properties of a
composite ply are defined with respect to its principalvnaterial axes.
The next section, devoted to laminate theory, contains the
transformations and summations of ply properties used to arrive at
laminate properties. The last section contains a brief discussion of

the failure criteria.

1. Composite micromechanics

The theory for calculation of the properties of a unidirectional
fiber composite ply based on the properties, volume fractions, and
orientation of its constituents is known as composite micromechanics.
In this section, the subscripts £, m, V, and I/ represent fiber, matrix,
void, and laminate, respectively. The symbolic notation and the
equations used are summarized below:

Volume fractions:

k; + km + kv =1

Longitudinal Modulus:

E;yy = ReEpyy R,

Transverse Modulus:



S omachbethie gndite

E
m
E... =E,.. =
r22 = ©133
1 - A (1 - B /E)
Shear Moduli:
G
m
Gyyo =
1 - (1 - 6,76, ,)
G
™
Graz =
1 -k, (1-6,./6.,.)
Poisson'’s Ratios:
Vygp = Vyga = Y tRe(ve o vp)

v

112
Viog = Kp Vpon t R | 20, - E;, Ero

Coefficients of thermal expansion

Gpyy * R (G E /Epy ) - o]

£ll

11
1+ k(B /Epyy — 1)

1+ kv By

Gpp = Gl = e ) | E,., * K (E, -

Efll)

33 22

* apXKe
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2. Laminate Theory

This section describes the methods which are used to calculate the
elastic properties of laminates from the properties, orientation, and
"distribution of individual laminae. The elastic properties are then
used to predict the response of the laminate to external loads. The
methods used to predict stresses in the laminae under application of
external loads are also described. Failure loads can be predicted by
using these methods; as described in a following section.

a. Generalized Hooke's Law

The stresses acting at a point in a solid can be represented by the
stresses acting on the planes normal to the coordinate directions, or
equivalently, on the surfaces of an infinitesimal cube as shown in Fig.
B-1. The stresses (ai.i) on each face are resolved into three
components: one normal sfress and two shearing stresses. The first
subscript refers to the direction normal to the plane in vhich the
stress acts and the second subscript to the direction in which the
stress acts. The stress components shown on the faces of the cube are
taken as positive and can be taken as the forces (per unit area) exerted
by the material outside the cube upon the material inside. A stress
component is positive if it acts in the positive direction on a positive
face of the cube. Thus normal tensile stresses are positive, and normal
compressive stresses are negative. Nine stress conponents mist be used
to define the state of stress at a point, namely o1 Gap9 033, Ty
and o, There are nine correspording strain

G3qr %120 %320 %13 1°
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conponents, following the same subscript convention.

For bodies in which each strain component is a linear function of
all six stress cowmponents, the generalized Hooke's Law can be expressed
% = Eijk1 k1

where Eijkl is a fourth order tensor of elastic constants. For nine
stress conponents and nine strain components, there must be 81 elastic
constants def ining Ei,jkl' Certain reductions in the number of
independent constants for an anisotropic body are due to symmetry
properties of the tensor Eijkl' By considering wowent equilibrium about
the center of the cube, it can be shown that at any point Oyq = Ogps

and o =0 is symmetric with respect to the

31 = %13’ 12 = %
first two indices. Second, because the strains are symmetric (that is,

Thus, E.

e ijkl

€15 = %1l Biga
indices. This reduces the number of elastic constants to 36. Further

mist be symmetric with respect to the second two

reduction to the final 21 elastic constants for a general anisotropic
material is accomplished by assuming the existence of a strain energy

density function, such that

U= U(Eij)
with the property

ou_ o

asij ij

From the generalized Hooke’s Law,

os. . ijkl kl
1J

Partial differentiation with respect to €1 yields
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a [ au ]
o€ as”

K1 ijkl

Since the order of partial differentiation is immterial,

a [ au _ _@ [ au
Bskl asi‘i aeij as“
and the subscripts can be interchanged to yield
d [ au ] _
askl aei‘i Eklx,)

so that
E; k1 = By

Thus the first pair of subscripts in Eijkl can be interchanged with the
second pair without any change in the values. The number of elastic
constants is thus reduced to 21.

b. Lamina Constitutive Relation

Several simplifications to the generalized Hooke's lLaw can be made
for the special case of a thin orthotropic material, which approximates
a wnidirectional fiber composite lamina. By considering the invariance
of elastic properties under coordinate transformation for planes of
symmetry, the tensor Eijkl can be reduced to the following nine
constants:
Ejnnn Enize Eniss
Ej120 Ez220 Fa2a3
E E E

E.., = 1133 2233 73333
ijkl '

h 4

It is now convenient to wake the following notation changes:
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%1% €1 =5
922 T 92 €22 " %2
933 = 93 €33 = 3
%23 = T23 = 2853 = Y33 = &
%93 = 743 = % 2213 = Y43 = 55
%12 = 712 = % 2212 =712 = %
The generalized form of Hooke's Law can now be written
6
o; = jfx CiJ.EJ. for i,j=1,...,6

The matrix C‘.J. is known as the stiffness matrix, and's‘i are the

engineering strain components. In matrix form Hooke'’s Law is written

% Ciy €2 3 @ o @ 1 [ =
2 Cig Cpp €3 @ © 0 £
L B T Cxy G55 ¢ 2 © €3
Tos "l e o o Cag @ © -
Tay © © © o C © 74
Ty, © © e @ © Cg Yo

vhere the coor'di;xate .axes coincide with the symtr;r axis o;‘ the
m;terial. For laminae that are assumed sufficiently thin, the through
the thickness stresses are zero. Thus Oy =04 =0g = @, for plane
stress. It is apparent that £4 = 5= "/

The stress strain relations for a thin unidirectional lamina are

witten
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- "

o Q; 92 °© £

o, | = | Q2 Q2 @ 2

Ty2 ° ° Nl LT Y2
1

using the tensorial strain ¥ 112 instead of the engineering strain 712.

The Q terms are known as reduced stiffnesses, i.e.

E,
Qi1 =11 ° 1= vizva1

v12E2 va21E;
le = C12 = VizVv2y = 1 - V32V2)
E;
022 = c22 = 1 - viaVv2)

1
Qee = T (Cyy - Cia) = 6y

where E,, E;, V2, V21, and Gy, are the ply elastic constants, measured
with respect to the natural material system. It may be noted that only
four of these constants are independent.

The stress- strain relation above shows that there is no coupling
between tensile and shear strains, as long as the applied stresses are
coincident with the principal material directions. However, coupling
appears vwhen a lamina is tested at arbitrary angles with respect to the
principal material directions. The general form of the >stress-strain
relation for any angular orientation of a lamina is considered next.

c. Stiffness matrix transformations

A lamina is loaded along 2 coordinate system x-y criented at some
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angle € with respect to the principal material directions as shown in

Fig. B-2. Since stress and strain are second order tensors, they are

transformed by

9 "
02 = [T] Gy
Tia Txy
and
e.I. ex
£, = [T] £, .
1 1
¥ ’112 L 3 ny

where [T] is the transformation matrix for plane stress and plane strain

transformed by clockwise rotation about the (3,z) axes, given by

cos2?8 sin?g 2 sinf cosé
[T] = sin?g cos?8 -2 sin@ cos@

—sinf cosf sind cosf cos?8 - sin?g

Inversion and substitution yields

-1
[a,‘ MURCICHES
Txy ¥ Vyy

which is the stress strain relation for a lamina referred to arbitrary
axes. For simplicity, the notation [ Q ] is introduced

= -1

Q] = [T] "[QI[T]
vhere [Q] is called the transformed reduced stiffness matrix.

Using the approach outlined above, it is possible to obtain
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expressions for the elastic properties referred to the x-y coordinate
system. |

d. Elastic properties of laminates

A number of assumptions are made in laminate theory to obtain

theoretical predictions. These are:

i. the lamina are perfectly bonded and do not slip relative to

each other
2. the bond between the laminae is infinitesimally thin
3. the laminate has the properties of a thin sheet

These assumptions allow the laminate to be treateci as a thin
elastic plate. The classical hypothesis of Kirchhoff is applied to
derive the strain distribution throughout the plate under external
forces. Because the laminate is composed of laminae oriented in
different directions with respect to each other, the stress-strain

equation for each layer (k) is defined as

% Q; 92 Y6 £x

Oy = | Q2 %2 9% £y
-— - - 1

Ty Ik Qe 26 %6 k1T 'y

Thus for a given strain distribution, the stress in each layer can be
determined. The strain at any point in a laminate undergoing
deformation must be related to the displacements and curvatures of its
midplane. The discussion which follows assumes that the laminate is
thin. Eirchhoff plate theory is used in this formulation.

The deformation of an arbitrary section of a laminate is shown in

Fig. B-3. It is assumed that lines straight and perpendicular to the
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midplane before deformation remain so after deformtion. This- is
equivalent to neglecting transverse shearing deformations. dearing
Fig. B-4(b) with Fig. B-4(a), in which the normals to the midplane
'renain perpendicular after deforssticn, it is seem that the upper and
lower surfaces of the plate must not shift their relative positions. It
is obvious that the resistance of a thin plate to such deformation is
large, mxh larger than its resistance to deformations perpendicular to
the midplane.

It is assumed that the point B at the wmidplane undergoes
displacements ug, Vo, and wp along the x, y, and z axes, respectively.
The displacement u in the x direction of a point € located on the normal
ABCD at a distance z from the midplane is given by

u

ug — za

where a is the slope of the midplane in the x direction,

Bwg

Ox

The last two equations can be used to obtain the displacement u of an

aqa =

arbitrary point at a distance z from the midplane as
aw°
ox

u=Ug ~ 2

Similarly,
awp
U =Vg — 2Z ay

Since the strains norml to the midplane are neglected (plane
strain), the displacement w at any point is taken equal to the
displacement w, at the midplane. The strains in terms of displacement u

and v are
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du dug 2wy
Ex " Bx “ox 2 Tox?

v 3, 3w,
fy=ay a3y ° oy’

du dv du, &y 9%wy
ny=-a—y—+-67=3y—+5x—--2zaxay

In terms of midplane strains and plate curvatures, the strains in a

laminate vary linearly through the thickness,

£ £° k
X ® x
£ = € +z ]k
y y y
Y v° k i
xy Xy Xy
where midplane strains are given by
3ue ‘
o ] —_—
x Ix
dvo
£ = -
y 9y
8uy 9vg
0 — —
Yxy | &y T ax
and the plate curvatures by
aleo ]
kx IxZ
62W°
k = - | =z
y oy
8w,
k
L xy4 L axay 4

The stresses in any {k) lamina can be obtained by substituting the

previous equation into the stress strain equation

P O 0 [

%x Q1 Q2 %6 £x k,
- oy N 0 0

ay - Q12 Q22 Q26 sy tz ky
= A pat o

Txy Jk Qe %6 % k!l Yuy Kyy
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e. Laminate Stiffness Matrix

Classical laminate theory provides a method of caloulating the

resultant forces and moments per umit length acting on the laminate by

' integrating the stresses acting in each lamina through the thickness (h)

of the laminate.

N
Xy

Resultant forces are obtained by

h/2
T dz
_}1/2 xy

4

The moment resultants are obtained by integration through the thickness

of the corresponding nmoments of stresses about the midplane:

M
Xy

N are
Xy

moment per unit length.

The wnits of N, N ,
x Yy

o]

-

force per unit length and Hx,

o z dz
x

o z dz
~h/2

h/2
4 z dz
-2 9

M, M are
y xy

The sign conventions are shown in Fig. B-S.

Using the resultant force and mowent relations, a system is defined

that is statically equivalent to the laminate stress system, but applied
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at the midplane. Thus, the external loading has been reduced to a

system that does not contain the laminate thickness or z coordinate
explicitly.

For a laminate consisting of n laminae (Fig. B-6), the resultant
force-moment system acting at the midplane can be obtained by adding

integrals representing the contribution of each layer by

N c o
X h/2 X n hk X
Ny = J ay dz = 2 J ay dz
-h/2 k=1 hk"l
N T T
Xy xy _xy ‘K
nx Oy n O
h/2 hl
ny = J cy zdz = 2 I ay z d=z
-h/2 k=1 h'k- 1
M T T
xy xy 'k

Using the expressions for the stresses in the k-th lamina derived
earlier, and noting that the midplane strains and plate curvatures are
constant not only within the lamina, but for all laminae, it is apparent
that they can be taken outside the integral sign. The stiffness matrix
[Q] is constant within a lamina so it also can be taken outside the

integration to give

N, a1 Q2 Qe by £
N, = } Q. 9 U jhk dz ‘;
k=t |2 = =& -1
Ny L Qe %6 %6 Yy
n 11 Q12 016 hk kx
* 2 Qo 92 s J z dz}| | k,
k= [ = = 6 hk-l
l Q6 Q6 Y66 Xy
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" n | U1 %2 e b o
n, = Qo Q7 9% J%z” £
k=1 | 7 A = -1
L Qe % %6 Mk L
n | % %2 %e h K
+ } 192 % 9 J 2 dz ky
k:l =4 =4 6 h'k‘l k
Qe % %6 Xy
Three new matrices, aij’ Bi.i' and Di,i’ are defined, where
n
85 ° z CQ M (e = Byy)
=1

[
o

|
M| (o
N8

{ 6ij)k (h; - h;-l)

L2
1]
[y

(=)
(™
[ 9
[}
U| -
(a g I

( 6ij)k (”13: - hﬁ—i)

~
1]
[y

These new matrices, A, B, and D, sinplify the resultant force and noment
relations, and are known as the extensional, coupling, and bending

stiffness matrices, respectively. The total plate constitutive equation

o Al

It may be recalled that in an orthotropic lamina with arbitrary

is then

N
M

orientation the shear stress is coupled with the normal strain and the
normal stresses are coupled with the shear strain. In general, a
resultant shearing force on a laminated plate produces midplane normal

strains in addition to the expected shearing strain. Similarly, a
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resultant normal force will induce shear strains in addition to midplane
normal strains.

The nonzero coupling matrix B in the plate constitutive equation
'explains the coupling between bending ard extension of the laminated
plate. Thus, normal and shear forces at the midplane induce not only
midplane deformations, (and hence, midplane strains) but also twisting
and bending, producing plate curvatures. Similarly, resultant bending
and twisting nowents induce midplane strains.

£. Lamina stresses and strains -

The aim of the analysis of a laminated composite is to determine
the stresses and strains in each of the laminae forming the laminate.
These stresses and strains are used with failure criteria to predict the
loads for failure initiation for a laminate. The failure criterija are
discussed in the section devoted specifically to that purpose.

The strains in a lamina caused by external loading are a function
of laminate midplane strains and plate curvatures, as previously
discussed. Once the lamina strains are known, lamina stresses can be
found using the lamina stress-strain law. Thus, the starting point for
calculating lamina stresses is the determination of laminate midplane
strains and plate curvatures in terms of the applied loading. The plate
constitutive equation given previously can be inverted to give the
midplane strains and plate curvatures explicitly in terms of the

resultant external forces and mowents. The result of the inversion

process is
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R N e

vhere A’, B’, and D’ are simplified forms of the inversion process

_results, and are functions of the A, B, and D matrices of the original
form of the plate constitutive equation.
It is now apparent that with these equations, an analysis of a
laminate subjected to external forces and woments can be conducted:
1. calculate midplane strains and plate curvatures
£ A' B’ N
NEEFSSIHE.

2. calculate lamina stresses in global (x-y) system

O 0 0 ]
%x Qll Q12 Q16 x kx
- 5 5 5 0
%y = | Q2 9% 9% g 1zl
5 5 5 o
Ty k Qe %6 %s lill Yy Ko
3. calculate lamina stresses in natural (longitudinal and

transverse to fiber)} system.

c = [T] | ¢
12 Txy

The strain variations in a lamina are calculated in an analagous
manner. The stress-strain variation is compared with the allowable
stresses and strains in each lamina. Thus the load at which failure is
initiated in one of the lamina can be calculated, as long as a strength

criteria exists in terms of the lamina natural axis system. The

formulation of lamina failure criteria is discussed in the next section.
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3. Strength Theories

It is assumed that the strength of a laminate must be related to
the strengths of the individual laminae. R simple failure criteria
'consists of evaluating the lamina strengths in their principal material
directions subject to induced stresses or strains at the boundaries of
the lamina. In this context, it is assumed that the lamina and its
constituents behave in a linear elastic manner to failure. The strength
analysis described here assumes that the behavior of each lamina in an
arbitrary laminate is the same as the behavior observed in the natural
axis system when the lamina is part of any other laminate under the same
stresses or strains. In other words, it is assumed that the strength
criteria for a lamina in plane stress is valid for any orientation of
the lamina in a laminate. In the ICAN program, the lamina strengths are
calculated using the expressions given below.

longitudinal tension

Spat = Ser (e * KoBn/Fryy)

longitudinal cowpression:

The longitudinal compressive strength must be computed on the basis
of three different criteria:

a. rule of mixtures

S;1c = Sec (K * %oFn/Fryy)

b. delamination

Sy = (13S0 * Sec)



c. fiber microbuckling

l'.2 Ga
S =
111C 1 - k‘.(l Gm/Gflz)
Transverse tension
81221_ = Sm.r(FACT/IElOH)
Transverse conmpression
5122(: = SmC / DENOM
Transverse shear
[(Fy - 1 + G761 ,)F, Gy Spgl
s = FACT

112 G F
w1

\dereFlandF2aregiuenby

J n
Fo=J

The variable DENOM is introduced for convenience:

DENOM = [1 - (1 - E /E. )] ¥ 14 #(F-1) ¢ T73(P - 1)2

where ¥ is given by

E
m

1 E‘.22[l - Jk‘.(l - Em/E£‘22)]

Fl—l

F
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The variable FACT is used to correlate the strengths of H'S and Kevlar
fiber composites with the experimentally observed values. Since neither

of these fibers is used in this work, FACT takes the value unity.
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Fig. B.1- Components of Stress acting
on elemental unit cube.

Fig. B.2- Rotation of coordinates from 1-2 to x-y.
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Fig. B.3- Bending geometry in the x-z plane.

S=eRS=S

a. Deflected bar witheut shear b. Deflected bor with shear de-
deformations formations

Fig. B.4-Shearing force deformations on straight cross section.
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