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Absu's¢/s In this paper, we present a quantitatlvc analysis of the ro0_._me_s of a reduced-oral=

pole-s._gnment sta_-spaco s,_-mn_g co_trol]_ for a multlvariab/c adaptive conU'ol s_em whose or-

der of the real process is h/ghcr than that ¢g the model used In the oontroler design. The result of sta-

billy analysis show_ that, under a spec/flc boundcdmodelling error, the adaptively oon_'oIed clo_-

loop real system via the reduced-ord_ state-spaceself-tuner is BIBO _blc in the pre_enc_of unmed-

el]ed dyrmml_.
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1 [n_'oduction

The problem of robusmess of an adaptive control system has recently been studied by" many

autho_ D~s3. This is because the development of adaptive controllers for adaptive control systems

is based on the assumption that the model used in the controller design is an accurate representa-

tion of the real process! however, the degree of most real processes is often h/gher than that of

the model used in practice. As a result, a stability problem may occur due to a mismatch of the

orders of the modeled processes and the real processes [_]. Hence, a study of robust stability of the

utilized algorithms for the controller design is necc,ssary.

Durin8 the last decade, vast amount of research was devoted to quantitative analysis of the

robusmess of self-adaptive algorithms such as the development of con/c sector theory and normal-

lzed system scheme [z's3. In reference [4], the normalized parameter estimation approach com-

bined with a dead-zone method in which the modelling errors are treated as a bounded dismrba_nce

and utilized as a parameter adaptation stopping criterion to guarantee global stability was devel-

oped. In contrast, in reference [5], the robust stability of a multivariable adaptive controller

based on a factorization approach was established, which is useful for the robust stability analysis

of adaptive algorithms.

In this paper, we are concerned with the robust stability of the multivariabie adaptive con-

trol system v/a the reduced-order state-space self-tun/rig controUer developed in reference _6].

Our approach to quantitative analysis of the robust stability of the adaptive control system _s3 can

t,',anusa_ ra_ved _ _, 1992, _-veed M_. n, _99_.
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be described as follow=. First, we utilize the normalized parameter es_tw.at/on schemeCO to carry

out the parameter estimat/on with the presence of unmodeged dynamics. Then, we use the tu_-

lyt/cal method developed in referenco [5] to resolve the robust stability of the adapt/ve control

system via the reduced-order state-space self-tuner['3. Flnagy, we determine the bound of the

modellin 8 error with which the self-tuner can be tolerated.

2 System Description

In this paper, both of the plant and the reduced-order model are assumed controUable and

observable.

Consider the following m-input-output block otr_erver-type discrete-time stochastic I/near

plant=

z.'(t) ---- A.'z, (t -- 1) -t- B'u(t -- 1) t- K'e'(t -- 1), (la)

y(t) = C'Tz: (k) -t- e" (t) (lb)

where

.4.'= : i "'. , a" = , =:(t)= ,

0. 0.... tz_(t)J

C: r = I'/. 0. 0.... 0.].x.,,

u(t) E R = and y(Z)E 11" are input and output vectors, respectively) block elements A=, B,_E

R "x. (i= 1,2, ... ,r) are constant matrices, z2 (t) E R'(i-- 1,2, .-. ,z) e" (k) E R = is the inno-

vation process which is a white noise proce_ with zero mean and covariance R: E R =x" and

sup II (O II 6. (2)
_O<:m

with 6o_0, K: ER "x= is the Kalman fain matrix.

A" (z -I) == I= -I" A.lz-= 4" A,,=z-' + ... -I- A.z-', (3a)

a'(z -!) = a.=z -I + B.=z -= + --- + B.,z-'. (3b)

D" (z -t) _- I= -{- D.lz -I -_- D.=z -= -{- ... -t- D..z', . (3c)

and D., = A,_-F K.,, i = 1,2,--- ,z. (3<!)

It is observed from (3d) that the Kalman gain K.. can be directly computed from the estimated

An alternate representation of the orisinal system in (1) _ be describedparameters D._ and A..

as follows =

_(t) = 0"r_ • (t) + e" (t), (4a)

where

0 °r ---- _A_l,"" ,A..,B.I,"" ,B.,,D.I, "'" ,D..], (4b)

_'(t) = [- _(t-- 1),..._ - y.(t- 1),..., - _.(t-- r),u,(t-- 1),-..,

u.(t -- 1) ,... ,u.(t -- r),e((t -- 1),...,e_ (t -- 1),...,_(t -- r)] r. (4¢)

The 0" in (4) is the parameter matrix of the original system. For a reduce-order controller de-

sign, a reduced-order observable model is required as

=.(t) = A.=,(t -- 1) + B.=(t -- 1) + K,8(t -- 1), (5a)
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where

if(/:) -,, &'_.z.(/_) -J- e(E), (Sb)

- , B,= , K,-- , =,@)= ,
,4. " i "'.

Oo O.... _.(t)J

_. = [Z. O. O. -.. 0.3._.,

where m_r, and e(k) is the innovation process of the model.

The equivalent observable ARMAX model of (5) is

A(z-_);(t) == aCz-_)uCt) + DCz-_)e(k),

The alternate form of the model in (6) can also be rewritten as followst

y(t) = 0T_(k) + e(t),

where

(6)

(Ta)

0r = [A.t, "'",A=, Bot,"" ,B=,D°I,"" ,D,], (7b)

• (t) = r- vs(t- 1),.;., - v.(t- 1),..., - v.(t- s),ut(t- 1),...,

u.(_ - 1),...,=,,(t - _),el.(t - i),...,_(/= - 1) , ... ,e- (t - ,0] r. (7c)

where 0 is the parameter matrix of the reduced-order model. The e(/c) in (6) can be decomposed

into two terms,

e(k) = _(t) + e" (k), (Sa)

where e" (k) is the innovation process of the ori_nal system and

_(t) == 0"r_ . (k) -- 8r_(k), (Sb)

In reference C6"], it was assumed that _(k) in (8) is a zero-mean stochastic sequence and statisti-

cally independent of e' (/c). In th_ paper, the assumption in reference [6] is relaxed so that _(/_)

is not a zero-mean stochastic sequence and can be represented as

D(z-t)_(t) ---- _r_P(k), (ga)

where

30 r = _[A.+I,'" ,A.,B.+I,'"B,,,D.+I, "" ,D.,].x_,C,-,_, r _> _, (gb)
[0, r ---- _,

d_(k) ---- E- yl(t -- • -- 1),..., -- 1,(k-- ,= -- 1),..., -- 1.(k -- ,'),=_(t-- _ -- 1),...,

u.(k -- ,= -- 1) ,... ,=.(t -- r),el" (k -- ,, -- 1),...,e_ (k -- _ -- l),.-.,e_ (t -- ,.)l v.

(9c)

Then, from (9a), it is reasonable to ma.ke the following assumption:

Assumption I Assume that there exists a #:>0, such dmt for k_0, the unmodelled error

satisfies the constraint:

and further, we have

(lO=)

II_(t) II < 1, II¢" @) |, (_0_)

where _° (/c) is related to the phmt Input and output se.quences. _1. (lOb) shows that the rood-
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elling error t(_) is relatJvely bounded! therefore,# can be considered a mea._re of the relative

magnitude of the modelling error. Note our primary Interest l= to find a relat/vebound of' the

modellin$ error with which the adapt/vo controller can be tolerated.

3 Normalized Parameler Estimation

In order to develop an aclapt/ve control law, we shall first introduce the parameter _t/mation

M$orithm for the model in (E).

Defining the parameter estimation error, _(1:)= 61(k)- O, the estimated output j (/0 = 61(k

-- 1)_(k), and the innovation proc_, e(IO----r(;O--_(k).

The reduced-order model equation to be estimated is written as follows:

_O) = _'(_ -- 1)_(_) + e(_), (lla)

61(_ -- I) = C21.t,--.,.;L.,_._,'" ,_,,bot,-." ,/_,]r, (lib)

$(]_) = ['-- yi(k-- 1),"', -- It(I;-- 1),"', -- y,t(]_-- tt),ul(];-- l),...,

_(_ -- 1),...,u_(_- n),etO -- 1),"-,_.(1_ -- 1),"" ,*.(;_- _)]r. (Ilc)

As far as the parameter identification is concerned, in the case of bounded disturbance,, the

dead zone technique is utilized to prevent parameter drift. On the other hand, in the case of un-

modelled dynamics, the identification error may grow without bound: hence, the dead zone tech-

nique of the bounded distrurbenc_ can not be applied directly. This leads to the u._ of the param-

eter normallzat/on technique which allows unmodelled dynamics to be treated as bounded distur-

bances. In this paper, a normalized Imrameter est_.ation scheme r4] is used to estimate the param-

eter A,,, B.,, and D,, in (6).

The normalized variablea el' the proo_ are defined

• (k) = max( max ]O," (_) ] ,r.), (12b)

where r. is a pre-seleeted positive eotmtant, and O: is the i-th element of 0". Using these nor-

realized variable_, the model in (Ta) can be rewritten as follows:

l_(_) = ar_(_) + _'0), (laa)

where

_(_) . (13b)

It can be shown in the following lemma that the sequence {_'(_)} in (l_b) is bounded.

Lemma _ The norm&lized sequence of the perturbed si_j_als {a'(_)) in (13b) is

bounded.

Proof

II,_a_O011 II o"(t> II
• O) + .O) :_ _s(r - t),n]_ + _"II,a*(_) II

r.'

we are able to e_tinmte an upper bound of d'(IO.

Define

(13o)
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a,- C_,,,'",a,.]',
where ,_>0 is an estinutte of an upper bound of JJ_(k)[, i=, l,...,m. Also, define _=,

4 _ , then _ is an estimate of an upper bound of ! d'(t) U.

Based on the identification alsorlthm in [4], we can obtain the convergence propertie_ of

the posterior estimation error and of the parameters. A posterior estimation error is defined as

j(t) A r(t) -- _(t)_(t). 04)

[,emma 2 According to the esimation algorithm in [4], we have:

i) II_(t) II is uniformly bounded, which implies that there exists a constant M_0, and

D(t)Eo= {0, II0 II <M), where D is a closed subset of R_";

e) it=[ II_(t) II'- II@0--1)II"]----00

_) l_[ IIa(t) II- II_(t-h) II]=0, h isa ltmit_positiveinteger,

iv) There exists a positive integer K, such that

II_(t) II < 2_ax II_" (t) II ,r.), _ t > K,.
This proof can be found in reference ['4].

4 Multiv_iable State-Space Self-Tuning Controller

Once the system parameters 63(k) axe obtained, the adaptive control law can be determined

follows r°]:

The estimated ._.(/0 with _(/0 can be written as

_.(t) = ._O)_.(t -- 1) + _.(t).(t -- 1) +/_.(t)_(t -- 1), (15a)

_(k) = C_'._.(k) -t- t(t), (15b)

where .Tl.(k), J_o(k) and /_.(k) axe the kth step estimation of ,4., Bo and Ko, respectively.

A._umptlon 2 Let O(6"F)==[,;l:-t_..,4:-'_.,'",,;l_.,_.]. Assume that there exists a posi-

tive real constant y._0 such that IdetG(_)[_y.. Then: the state-feedback control law is given

by

u(t) = H,r(t) -- g_.T.t.(t), (16a)

where r(t)ER" is a reference input vector with an input gain matrix H, ER "x', ,_.ER "×"

¥, = a,_ -- A_, i == l,..-m, (16b)

where .4. comes from the controllable model of (1.5), and

_o(_)= _,o._'-' = ]_(_.-P,), (1_)

det(Z/. -- _- _)j_'.T=)] = _J_det(_,, -- e(). (16d)

5 Extended Dynamic System Description

In this section, we reformulate the adaptive control system developed in previous sections in-

to a composite dynamic system which is suitable for rob/_st stability analysis using the theory de-

veloped in the next section.

First, let

"O(t) = [_'rCt),_,r(t)], (17)
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where _'r(t) and _(t) are defined in (4c) and (15), respectively. Next,

_'(t),

where

_p'(t + I) = s_p" (t) + _,(i) + _P,O) + _..(t),

r 0 0 0 ...

I.(,-I) 0 0 ..-

S= , 0 l.c,-n) 0 ...

• . ...

0 0 0 ...

=

0

0 ,

0

___, ,.___,t__ ,___t_._
• T(_) E'-= Vr(k) 0_T,.. n_r .,r .. n_ n'r . _rl! * tvltvlt* lVmt_lte* tl,,mjt

_$(t) = E07,...,07,ur(t),07,...,0'.v007,".,0"l_,

'T *T T .. T_.r. (k) = Eo1",... ,oz, oT,... ,o. ,, (_),o2 ,. ,o2],

where 0_=C0,'",0]sx,. Then, from (15b) and (16a), Eq. (lSa) becomes

where

we rewrite

(1Be)

(18b)

(18c)

(1Be)

(P" (t -I- 1) = Sd_* (t) + Ot(t)_.(t) + Dl(t)i(t) -I- Ds(t)e* (t) + O4(t)r(t), (19a)

"-4" "--:.I

° ilDi = -- p_/'
0 , Dz ffi * Ds

o o I

o oJ

'o"

_o

_o
|

iO

_y
tim

L.O.

"0"

0

,q.
D_ = . (19b)

0

o

0o

Sub=tituting (IF_) into (1Sa) 8ires

i.(t + D = (,_(_) -- _.(t),_,T,)_(_) + _'.(t)i(t) + _.(t)H_'(t)

= _'_(t)_.(t) + _.(t)_(t) + h.(t)H_(_,

_'_(t) = ._.(t) - _.(t)#T't..

(20a)

(20b)

and combining the resulting equations (19a) and (20a) yields the composite dynamic equation of

the closed-loop system:

Z(t + 1) ---- B_(t)Z(t) -I- Bz(t)_(/O 4- B_(k)e'(t) "4-g,(t)r(t) (21a)

where

Fs _,(t)l _,(t)l F_,(t)l
Lo L oJ'

In the followin$ section, we carry out the robuststability analysis using (21a):

S The Robustness of Self-Tuning Ad_ptive Controller

In this section, we state two lemmas as follows.

Lemnm _ _der the time-varyin8 difference equation

=(_ + I) = A(O=(O +.f(¢,z), x(O = z_ _- R',

r l

(21b)

" (22a)
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° ,

where f(l,s) is bounded as

| .t'(g,s) | _ (4 "1- tit(O) U x(O U "l- r:(O, (22b)

,_0, 0<d:(t) E _, and0<rz(O C-r".
Supple that the zero-input system tn (22) of theform

z(t -t- 1) =, A(Oz(O (23)

is exponentially st;,ble, I.e., there exist some constants at_l and l_az_0 such that

O(t,tl) I] _ al_'-'P (24)

for any gt_0 and t_t, where O_t, lt) is the state transition matrix of the system in 423).

Then, If the following ineqtutl/ty is sa_Lisfieds

0 _ _ < (1 --az_ ), (25)
ul

we can conclude that

i) =(OEt", and in addition, _ z(O _ _v(t) as _--,-oo, where v(t) is the output of the

system with the transfer function (7 (z -t) =az/(z--(10al-i-a2)), driven by rz(O.

if) Whenever rz(t)E_', and pE[l,oo), then z(I)EP which implies I! z(_) II-*0 as

--4POO,

Proof see reference [5].

Lemma 4[r3 Consider the system

z(t + 1) =. A(Oz(t) (26)

which has the followin8 properties s

a) _ A(t) _ is uniformly bounded!

b) There exist 0<_e4<_l, such that

maxl_,_(.A(O)l_l--eo<l forall C_te,

c) sup J]A(t+l)--A(t) ]] is sufficiently small.

where te is a positive constant, and _,j(A(I)) denotes the jth ei$envalue of the matrix A(I).

Then, the system is exponentJaJly stable.

In order to show the system in 421a) to be exponentially stable, we proceed throush the fol-

lowins raelr..

Step 1 Show that gs(E) satisfies part a) of Lemma 4.

From Lenuna 2-1), we know thai: II2.0) g and II_.(t) II ue bo,:_ded.From Assump-

tion 2, we knowthatIIr._ II and _ T, II are_ bounds.Thus, g_,(g) II ts bounded.

Show that 8s(t) satisfi_ part b) of Lemma 4.Step 2

Since

det(_- gl(t)) =det(_L/- S)det(_ -- El(t))

m

=det(_L/-- 8)Hdet(_,,- P._ 427)
i=.!

the roots of det(_L/--8) are zero. If we choose P,, i==l,...,m such that det(_L/--P,) has no

roo_ lye8. outside the ch'cular disk, i.e., O<_l;.l<l-,.. and 0<_<1, then gt(t) satisfies
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partb) of Lemma 4.

Step 3 Show that gt(k) satisfies prat ¢) of Lemma 4.

The above fact can obviously be verified from Lemma 2-11/) and Assumption 2.

Based on the resuits shown in the above three steps, we co¢lude that Bt(E) is exponentially

stable. This implies thatan associationof the al and at with the expontmtlally stable gi(k) is wi-

den°.

Next, we explore the norm bounded property of the forcing terms, 8_(k), E_" (k), and

E,r(k), in (21a) as follows.

By virtue of Lemma 2-i), Assumption 2, Lcmma 2-iv), and (2), we have

_A', II_O) II + r, IIo"O) II + A', II,(_) I}

_<2r,7_[ II_" (k) II + ,.] + K_. + K, II_(k) II, (28a)

where R'I----- sup H E2(k) ]1 , K2-- sup I] g_(k) ]] . Ka----- sup ]] E_(/t) I]. From (13¢), we

know that pC3(r--n),n3_+t_./r_s an upper bound of II,r(_) II, and X is an estimate of an up-

per bound of II a'(k) II. Thus, if we can choose _l_l_[3.(r--tt)m]_'i._-d°/r. for the estimation

in reference [43, then

IIE_(_) + E_e"{_) + E,,(_) II _<2xl[g[s(, - ,),,,3_ + ,A][ II ¢" O) II + 1'o]

+ r_Zo + r, II,-(_) II (28b)

<_2r1[_,C3(,. - =)m]a + ,A3C IIz(_) II + Tel

+ r,6. + r, II,"(_) II.

Now, comp,_.ring (22b)with (28b)yields

,to ---- 2S'_[,,[a(r -- _},_]S + h],
• po

_o
600 -- 0, ,'20,) ffi 2r,E_,Es(,.- ,,),,,IS ..4-";:,3,'.+ x_z. + K, II ,'0) II.

Then, applying Lemma 3. we have the following main results for the adaptive controller.

Theorem ] With Assumptions 1 and 2, if the/_ in (10a) (a measure of the relative mag-

nitude of the modelling error) is bounded as

0 _</_ < 2Ki[30" -- .)m]_ 01 _" ], (29)

_d :he __ '.a :he estimation algorithm [q satisfies

0< 3, <_ ,Is(, - ,),,]a + £.. (3o)

then the adaptively controlled close-loop system via the reduced-order controller is BIBO stable for

any initial condition in both the plant and the adaptive controller irrespective of the presence of

unmodelled dynamics.

Remerk 1 The BIBO stable system has the following properties t
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i) z(t)Er', thee v(t)Er', and u(t)Er',

U Z(/_) _ _v(k), as t-_oo, where v(t) is the output of the system with the transfer

driven by r_(k).

_)

(I I

@,(z -t) : :_ (old o + aD'

al _)1 (2A'ld.r. -t- K._o) (31)IIz(t) II _< v, (t) + - (a_d0+ a

is the output of the system with the transfer function G_ (=-i), driven by

Remark 2 The value 2Kir3(r--a)m]_ L at _, j in (29) is obviously a measure of

the robusmess of the adaptive controller. It implies that the actaptive controller is allowed to be

perturbed by the modelling error a(t) satisfying the ,u in (29). For the pole-a._ignment aJgori:hm

in this paper once we have selected the desired closed-loop polynomial matrix _().) in (16c), it

is possible to determine at and a= a priori. As a result, we have the knowledge of the degree of

robust stability for the controller to be designed.

7 Conclusions

This paper has demonstrated that the state-feedback pole-assigrm_ent self-tuaLng cona-oller[6._

has a certain stabili_ robustness. As a result, the rech:ced-orcler model _ be used to design a re-

duced-order self-tuner with suitable conditions ar,d the adaptively controi:ed closed-loop original

system via the designed reduced-drder self-tuner is BIBO stable in the presence of unmodelled dy-

nan'd(::;.
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