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Energetic electrons in the magnetosphere of Saturn

B. A. Randall

Department of Physics and Astronomy, University of Iowa, Iowa City

Abstract. The energy spectra and angular distributions of electrons observed by

Pioneer 11 as a function of radial distance in the inner magnetosphere of Saturn are

reanalyzed and phase space densities are then calculated. The radial dependence of

phase space density requires a distributed loss process. The loss is greatest in the

region of the E ring (5.5 < L < 8.5) and is attributed to collisions with the ring

particles in agreement with earlier work by Van Allen et al. (1980b). Quantitative
analysis yields the following properties of the E ring: the particle radii are in the

range of 4 x 10 -5 to 3.2 x 10 -4 cm and the thickness of the ring is approximately
3 Rs. Between the inner edge of the E ring (5.5 Rs) and the outer edge of the

A ring (2.3 R,) there are more energetic electrons than can be supplied by radial
diffusion from an external source. Detailed calculations show that a cosmic ray

albedo neutron decay (CRAND) source in the A and B rings is a plausible source for
this excess. The radial diffusion coefficient required to explain the E ring absorption

and CRAND source for electrons is 1 x 10 -12 > Do > 3 x 10 -12 R2/s, assuming that

DLL = DoL 3. As part of the reanalysis program, a method for the deconvolution

of pitch angle distributions observed by simple detectors on a rotating spacecraft is

developed. This process removes the instrumental response and rotational smear
due to finite sampling periods and yields true angular distributions.
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Introduction

The discovery and survey of the magnetosphere of

Saturn by Pioneer 11 in 1979 showed that it is interme-
diate in size and particle population between those of

the Earth and Jupiter. The interaction of the trapped

particle population with the satellites and rings of Sat-

urn provides a valuable basis for discussing the dynam-
ics of a relatively quiescent magnetosphere. In one of

the early papers on the Saturnian magnetosphere [Van

Allen el al., 1980b], the angular distributions, energy

spectra, and radial distribution of the intensity of ener-
getic electrons were shown to have distinctive features,
and it was apparent that more definitive information
could be obtained from this data set.

As part of the reanalysis of the data, raw angular
distributions have been deconvolved to remove instru-

mental response and rotational smear. Twenty-eight
samples at approximately every 0.5 Rs inside 9.5 Rs

(1 R_ = 60,000km) on both the inbound and outbound
legs of the encounter trajectory were deconvolved. The
deconvolved pitch angle distributions together with ap-

proximate energy spectra are used to calculate a family

of improved phase space densities as a function of ra-
dial distance. The phase space densities are then used
to study the radial diffusion of the energetic electrons
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and to determine something about their sources and
losses.

Preliminary phase space densities based on omnidi-
rectional averages of these data were constructed [Van

Allen el al., 1980b; Van Allen, 1984], but these as:
sumed that the second adiabatic invariant was zero.

Armstrong el al. [1983] calculated electron phase space
densities from the Voyager data at Saturn, but their

observational data did not extend to the outer edge of
the A ring and were limited to high latitudes.

Deconvolution of Observed Angular

Distributions

The University of Iowa Geiger Tube Telescope (GTT)

on Pioneer 11 [Van Allen el al., 1980b] has three direc-
tional detectors, designated A, B, and G. The axes of
their conical collimators are parallel to each other and

orthogonal to the rotational axis of the spacecraft. The

detectors are sampled at a rate that is not synchronous
with the rotational rate: Also, it is noted that the ro-

tational axis of the spacecraft is approximately orthog-
onal to the magnetic vector during Pioneer ll's near-

equatorial encounter trajectory. Hence fairly complete

angular distributions of intensities can be assembled in
231-s blocks of data. The direction of the local mag-
netic vector is determined by the onboard magnetome-

ter [Smith el al., 1980]. The pitch angle of the axis of
the detector at the midtime of each sample can be calcu-

lated, and raw angular distributions of particle intensi-
ties can be assembled. These observed distributions are
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distortions of the true ones because of the finite opening

angle of the detector's collimator and the smear in ro-
tational angle due to the finite sampling intervals. Van

Allen and Grosskreulz [1989] adopted a convolutional
approach to this problem by assuming a variety of true
angular distributions of simple form and choosing the

best one by trial and error. An improved approach is
taken in this paper. As in previous work, it is assumed

that the particle distributions are rotationally symmet-
ric about the magnetic vector and that they have mirror

symmetry with respect to a plane perpendicular to the
magnetic vector, that is, there is no streaming of parti-
cles. This is the case for observations inside L = 10 R_.

In the outer magnetosphere (L > 10/g_), asymmetric

angular distributions were seen by Pioneer 11 and both
Voyagers. The true pitch angle distribution of the unidi-
rectional integral intensities J is represented by a finite
series of the form

m

Y(a) = J0 + _ J2_ cos2_(a). (1)

The pitch angle c_ of a particular line within the coni-

cal field of the collimator is related to the pitch angle of

the axis of the collimator fl and the 0 and ¢ coordinates
of the chosen line by

cos o_= cos fl cos 0 + sin/_ sin 0 cos ¢ . (2)

This relationship is shown in Figure la. The response

(counting rate) of the detector is given by

f21r f0o

R(c_) = (detector area)[_ de [_ sinOdOF(O)J(_),
_u

(a)
where F(O) is the measured response of the detector and

00 is the angle at which F(0) = o. Relations (1) and (2)
are substituted into equation (3), and the integrals are

evaluated term by term. The result is R(c_) in terms of
a power series in cos 2/_.

The rotational smear due to the finite sampling time

must next be taken into account. The general rela-
tionship between the detector, magnetic field, and the

spacecraft spin axis necessary for this calculation is
shown in Figure lb. The details of this procedure and
the final explicit formulae of the deconvolution process

are given in the appendix.
Figure 2 shows an example of the data at 4.5R_ on the

inbound pass for detector A. This example is typical of
most of the pitch angle distributions that have been an-

alyzed between 3.5 and 10R,. The background counting
rate of detector C is only a few counts per second; hence
no correction of the rate of detector A is necessary. The

solid curve is the least squares fit to the raw data using

three terms (i.e., So+B2 cos 2 _-t-B4 cos 4 fl). The dashed
curve represents the deconvolved or "true" pitch angle

distribution. This example shows the general effect of
deconvolution, that is, the intensity is increased at large

pitch angles and decreased at small pitch angles.
A second example is shown in Figure 3. This distri-

bution is for detector A at 2.8/_ on the inbound pass.

The background counting rate of detector C is shown
by the solid curve at the bottom of the figure. The

average rate of C is 1075 counts/s and there is a roll
modulation amplitude of 167 counts/s for this nearly

isotropic background detector. For this case the aver-
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Figure 1. (a) The instantaneous angular relationship
of the axis of the conical collimator and a particular line
within the field of view, where/_ is the angle between
the magnetic field vector and the axis of the detector,
is the angle between the magnetic field vector and the
chosen line, 0 is the angle between the line and the .axis
of the detector, and ¢ is the azimuth of the line. The
Cartesian coordinates are chosen such that the Z' axis is

coincident with the detector axis and the magnetic field
vector is in the X'-Z' plane. (b) The instantaneous
angular relationship between the axis of the detector,
the vector magnetic field direction, and the spin axis
of the spacecraft. The spin axis is taken to be along
the Z axis, r is the colatitude of the magnetic field
vector with respect to the spin axis, X is its longitude
as measured from an inertially fixed X axis, A is the
colatitude of the axis of the detector with respect to
the spin axis, and _ is its longitude as measured from
the X axis.

/



RANDALL: ENERGETIC ELECTRONS IN SATURN'S MAGNETOSPHERE 8773

Z

25OO

2OOO

1500

IO00

5OO

DETECTOR A 4.5 R$

I
/

/
I

/
/

I
/

/

3O 6O 9O
a,_8

Figure 2. Pitch angle distribution of electrons. The

plotted points are the observed data as a function of ft.

The solid curve is a three-term polynomial fit in cos 2 fi
to the data. The dashed curve shows the deconvolved

pitch angle distribution as a function of c_.

ments inbound and outbound slowly became negligible

with increasing radial distance. This matter has been

discussed by Van Allen and Grosskreutz [1989].

Scheme of Analysis

In order to get an understanding of the dynamics of

the magnetosphere of Saturn, the phase space densi-

ties as a function of radial distance, or magnetic shell

parameter L, must be calculated. For Pioneer ll's near-

equatorial encounter trajectory in Saturn's centered

nontilted magnetic field, the value of L in the inner mag-

netosphere is approximately equal to the radial distance

in units of the planet's radius (1 Rs = 60,000km). The

phase space density f is defined as f -- j/(pc) 2, where

j is the differential intensity and pc is the momentum.

The values of j are calculated at constant # and J, the

first two adiabatic invariants:

p2c2 sin 2 a0

It-- 2m_c2B ° , (4)

- fpccosaods = 2pcLR, I(sinao), (5)
J

where B0 and a0 are the equatorial magnetic field

strength and pitch angle, respectively, me is the electron

age computed loss cone is 9.4 o . The combination of the

finite opening angle of the detector, the smear due to

the finite sampling period over this large loss cone, and

the depletion at 900 makes the fitting of the data to a

three-term series impossible. In this case, the data were

least squares fit for pitch angles only greater than 25 °

to avoid the effects of the loss cone. The data of princi-

pal interest for the purposes of this paper are for pitch

angles greater than 600 . More careful fitting in the loss

cone region should be done if this is the region of inter-

est. The solid curve is the result of a four-term fit to

the raw data; it shows a peak at 71.5 o and a decrease

in intensity near 90 °. A three-term fit to the same data

shows no decrease near 90 °. The deconvolved curve is

shown as a dashed line. All of the pitch angle distribu-

tions inside 3.5 R_ that were studied showed depletion

of intensities near 90 ° and required the more detailed

analysis to complete the deconvolution process. This

depletion is indicative of losses in a ring of particulate

material at the equator in this region [Thomsen and

Van Allen, 1979]. The counting rates of detectors A

and B, after exiting from under the A ring on the out-

bound leg of the trajectory, were substantially less than

at the same radial distances on the inbound leg. De-

convolution showed that the pitch angle distributions

were similar in shape but not in intensity. In contrast,

detector C, which was responding predominately to pro-

tons with energy greater than 80 MeV, measured nearly

the same intensities on both legs. This effect on the

electrons is evident in the data from the other ener-

getic particle experiments on Pioneer 11 [Fillius et al.,

1980]. The difference between the electron measure-
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Figure 3. Similar to Figure 2. The solid curve, labeled

detector A, is a four-term fit to the data for pitch angles

greater than 25 °. The lower solid curve is a two-term

fit to the omnidirectional detector C. The dashed curve,

labeled A-C deconvolved, is the inferred true angular

distribution (see text).
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mass, s is the curvilinear path length along the mag-
netic fieldl y = sina0, I(y) _ 2U(1 -y) + 2Y(ylny +

2(y - v/-_)), and U = 1 + ln(2 + v_)/x/_, and Y =

U/2 - 7r/V"-_ [Schulz, 1971].
The momentum pc can be eliminated from the adia-

batic invariants [Schulz and Lanzerotti, 1974] by taking
the ratio

/(sin s0) _ g. (6)J - _/8m_c2Bo LRs sins0¢Z
Three values of K were chosen such that the range

of pitch angles sampled would be around 800 , 700 , and
60 °. These values in units of G 1/2 Rs are

K1 =5.180 x 10-3

K2 = 1.951 x 10 -2

K3=5.166 x 10 -2 .

The McIlwain L parameter was calculated at the mid-

point position where each pitch angle distribution was
assembled, from the Pl184 model of Davis and Smith

[1986]. The magnetic equator for each L was deter-
mined using the model, and the corresponding mini-

mum field strength was scaled from the measured field
strength using the model. The corresponding pitch an-

gles were calculated for each distribution, and the inte-
gral electron intensities were calculated for the decon-

volved pitch angle distributions for both detectors A
and B. The integral spectra of electrons with kinetic

energy T > 40 keV (detector A) and T > 0.56 MeV
(detector B) correspond to a given value of K. To cal-

culate the phase space density, the differential energy
spectrum must be estimated for each radial distance.

In the region for L > 7.5, the spectrum can be rep-

resented by j(T) = kT-7 [McDonald et al., 1980; Van
Allen et al., 1980b]. At smaller radial distances, the
intensity from detector B continues to increase with de-

creasing distance as if it were responding to a similar
spectrum that was adiabatically transformed to smaller
distances. The intensity from detector A, on the other

hand, decreases in intensity between L = 7.5 and 5.5

and then starts to increase with an intensity slightly
greater than that of detector B. This can be seen in
Figure 4. A two point determination of the spectrum

can still be made in the region between L = 7.5 and 5.5,

but the value of 7 must change drastically to account for
the decrease of intensity in detector A relative to detec-

tor B. Nonrelativistically, the value of 7 does not change
for a power law spectrum undergoing radial diffusion
with constant # and J. But the electrons detected by

detectors A and B are mildly relativistic, so 7 is not a
constant. To see how much 7 varies for relativistic elec-

trons, the correct relativistic expressions must be used.
The momentum is given by pc = (T(T + 2m_c2))112.
Five values of 7 were determined for each Ki at L val-

ues of 7.5, 8.0, 8.5, 9.0, and 9.5 for the inbound data.
Six differential spectral intensities were calculated be-

tween 40 keV and 2 MeV, and these were converted to

phase space densities. It was assumed that the phase
space densities could be translated to L = 9 by a loss-
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Figure 4. The integral electron energy intensity deter-
mined from the deconvolved pitch angle distributions
of detectors A and B on Pioneer 11. These detec-

tors have thresholds of 40 and 560 keV, respectively.
The integral intensities are at a constant j/#l/2 =

5.180 × 10 -3 G 1/2 Rs and are plotted versus L. Note
that the lower energy integral intensity decreases in the
region denoted as the E ring. The solid line with the
solid circles represents the response of a detector with a
threshold energy corresponding to a constant first adi-
abatic invariant #,.

free diffusion process and would differ only by a factor
that is a function of distance and is assumed to be in-

dependent of energy. The five differential spectra were
recalculated using the values of B0 and a0 to determine

T from the value of #. These five spectra were each
least squares fit to find the transformed value of 7 at
L = 9. The average value of 7 was determined from
these five values for each Ki. This is equivalent in a

sense to a 10-point energy spectrum. These values of
7 are 2.1932, 2.1722, and 2.1634 for Kx, K2, and K3,

respectively. Using the same procedure in reverse, the
value of 7 was determined at each of the radial dis-

tances at which the pitch angle distributions had been

determined. The change in 7 with decreasing distance
is gradual, and 3' increases by only 0.8 in going from
L = 9.5 to 2.67.

The value of k at each radial distance can be deter-

mined from the integral spectrum using the threshold

energy of each detector and the predicted value of 7.
Inside L = 7.5, the value of k determined from detec-
tor A started to decrease relative to that determined

from detector B. Every k determined from detector B

(T > 560 keV) continues to rise in a steady fashion
with decreasing distance. If each k determined from

detector B is assumed to give the correct spectrum,
then the values of k and 7 can be used to determine
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an effective lower energy cutoff for detector A. The cut-

off energy for detector A increases with decreasing dis-
tance inside L -- 8. These results can be interpreted
as some process causing a preferential loss of the lower-

energy electrons. The cutoff energy does not correspond
to a fixed value of #, but increases more rapidly with

decreasing distance. Inside about L -- 5.5, the cut-
off energy increases less rapidly and corresponds to a

decreasing value of #. This is not possible for radial
diffusion from an external source; the # corresponding

to the cutoff energy must remain constant or increase.

From a plot of k values determined from detector B
for distances greater than L -- 5 versus sin 2 c_o/Bo,
it was found that there is a power law dependence of

the form k = D(sin 2 C_o/Bo) -C. Inside this distance,
the values of k determined in this fashion increase less

rapidly, when compared with this power law depen-
dence. To approximate the differential energy spectrum

inside L = 5.5 that is produced by radial diffusion from
an external source, it was assumed that the values of k

predicted by the power law dependence outside L -- 5.5
could be extended to smaller distances. This extrapo-
lation inside L = 5.5 assumes that the effective thresh-

old has become larger than the threshold of detector B

(560 keV). An effective cutoff energy corresponding to

a constant #. was assumed for the data inside L -- 5.5.

For the example in Figure 4, the value of #. must be
greater than or equal to 470 MeV/G, which corresponds
to the maximum value of # calculated from the cutoff

threshold for detector A. A value of #. = 520 MeV/G
was found to give the best overall representation of the

data from both detectors for this example. This value is

very similar to that found by Van Allen et al. [1980b].
The integral intensity as calculated for the cutoff energy
corresponding to this value of constant #., the values

of k predicted by the power law extrapolation, and the
calculated values of 7 are shown as a solid line in Fig-

ure 4. The solid line, inside 5.5 Rs, represents the upper
limit of the integral intensity of electrons diffusing in-

ward from an external source. The integral intensity
determined from the measurements of detectors A and

B rises markedly above the solid curve for L < 5.

The energy spectrum describing all of the electrons
inside 5.5 Rs cannot be determined from these data,
since only the spectrum of the inward diffusing electrons

can be estimated. The principal conclusion that can be
drawn from Figure 4 is that there is an excess of ener-

getic electrons that cannot be explained by radial dif-
fusion from an external source. These excess electrons

must be assumed to be from another source. Similar

results and conclusions were reached by Krimigis and

Armstrong [1982] using the Voyager 2 data. Specifically,
they found that inside L = 5, "there exist a substan-

tial flux of energetic electrons at energies > 1.5 MeV
and up to _ 20 MeV" [Krimigis and Armstrong, 1982,

p. 1146] and these particles are locally produced. The
other source might be locally produced electrons from

cosmic ray interactions with the moons, local ring ma-
terial, or the A and B rings. This is not unexpected,

since there is a large number of energetic protons that

have been produced by the decay of neutrons [Blake et

al., 1983; Cooper, 1983; Van Allen, 1983]. The source
function of electrons must be equal to that of the pro-

tons, but their residence times are probably longer if the
diffusion processes are the same by virtue of the smaller

absorption effect of the satellites [Fillius el al., 1980].
The assumption of a sharp energy cutoff to the en-

ergy spectrum is not realistic. Most physical processes
such as dE/dx energy loss produce a low-energy tail

and a smoothing of the spectrum at low energies. The
typical energy loss process produces a low-energy tail
proportional to T b where b is of the order of 1.5 + 0.2.

The assumed form of the differential energy spectrum
of those electrons that have an external source is taken
to be

j(T) = AT 1"5 T < T1

= kT -_ T> T1 •

The values of A and T1 are determined such that the

integral intensity > 40 keV gives the same result as the
sharp cutoff energy.

ELECTRON PHASE SPACE DENSITIES

J/v_- = 5.180 x I0-3 GI/2 Rs

5OO

I000

2 3 4 5 6 7 8 9,

L

Figure 5. The points are the calculated phase space
densities for a pitch angle near 80 °. The open circles,
squares, triangles, and solid circles are for constant first
adiabatic invariants of 125,250,500, and 1000 MeV/G,
respectively. The dashed curves represent fits of the
phase space densities, assuming lossy radial diffusion
from an external source. The two lower solid curves

represent loss-free diffusion with an absorbing boundary
at the outer edge of the A ring. The upper curve is
for loss-free diffusion inward from 9.5/_s and the lower
curve is for loss-free diffusion inward from 5.5 Rs. Both
of these curves assume that DLL = DoL 3.
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Phase Space Densities

Using the energy spectra from the preceding section,

the phase space densities of the inward diffusing elec-

trons have been calculated for the three different values

of K cited above at four values of #. The chosen values

of # were 125, 250, 500, and 1000 MeV/G. The dis-

crete points in Figures 5 through 7 show the results for

the three values of Ki. Figure 5 represents the smallest

K that gave a complete sampling of the phase space

densities inside 10 R, to the A ring cutoff. The solid

curve near the top of the figure represents loss-free dif-

fusion, assuming DLL -_- DoL 3 inward from 9.5 R, for

# = 125 MeV/G, and the higher of the two lower solid

curves, that is, the one ending near L -- 5.5 represents

the loss-free diffusion for the same particles, assuming

their source is at this point. Both curves assume that

the phase space density is zero at the outer edge of the

A ring. A higher power L dependence of the diffusion

coefficient would give higher loss-free diffusion curves.

Figures 5, 6, and 7 all have the same general charac-

ter. All four phase space density curves show a mono-

tonic decrease with decreasing values of L, the relative

effect being greater for lesser values of #. The rapid

decrease stops at about L = 5.5 for the lower three val-

ues of #, because of the assumed form of the spectra

of inward diffusing electrons. The 1000-MeV/G parti-

cles seem to be only slightly affected by the lossy re-

gion, whereas the densities with lower # show strong

decreases in this region.

ELECTRON PHASE SPACE DENSITIES
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Figure 7. Similar to Figure 5, except for pitch angles
near 600 .
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Figure 6. Similar to Figure 5, except for pitch angles
near 700 .

It is emphasized that the phase space densities inside

L = 5.5 are for those electrons that have diffused inward

from an external source. The observed integral intensi-

ties inside L = 5.5 correspond to substantially greater

phase space densities than those inferred in Figures 5-7

for lossy diffusion from an external source. The phase

space densities of the excess electrons cannot be eas-

ily modeled from the observational data, because the

source spectrum is modified by the diffusion process.

Armstrong et al. [1983] constructed phase space den-

sities for electrons with K = 0.27G i/2 Rs from the Voy-

ager data. These phase space densities showed similar

decreases between 5 and 8 Rs for # = 80 MeV/G and an

increase inside L ---- 4. Electrons with higher values of p

inside L = 5 tended to decrease less rapidly than out-

side or showed a slight increase. Absolute comparisons

with our results are not possible, since they used arbi-

trary units for the phase space densities and Voyager 2

was at much higher latitudes than Pioneer.

If the low-energy tail approximation was not used for

the differential energy spectra, then the phase space

densities would consist of only the outer segments. The

phase space density for # = 125 MeV/G would become

zero between L ---- 7.5 and 8; and between L - 7.5 and

5.5, the phase space densities for both # -- 250 and

500 MeV/G would also drop to zero. Only the highest

# -- 1000 MeV/G phase space densities would continue

to smaller L values.

The phase space densities decrease too strongly in

the outer region to be described by loss-free diffusion
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(see Figure 5). From the phase space density plots,
it is seen that there is a region of high loss between

L -- 5.5 and approximately 8. But the whole of the

inner magnetosphere of Saturn seems to be lossy. If
these processes can be characterized by a simple loss

term of the form -f/r, then the reduced radial diffusion
equation is

_i+ S. (7)ot \ %-z - T

The equation normally used in the literature has n = 2
and applies where J = 0. These data were not at the

magnetic equator where J = 0, which is also the case for
all of the outer planetary encounters; thus another value
should be used. The most appropriate form according

to Schulz and Lanzerotti [1974] is n = 5/2. The diffusion
Coefficient is assumed to be of the form DLL = DoL m

and Of/Ot = 0 for the steady state. The value of m can
be determined by several empirical techniques described

by Schulz and Lanzerotti. Several models of radial dif-
fusion processes have been developed and these predict
values of m = 3, 6, and 10 [Brice and McDonongh,

1973; Fiilthammar, 1968; Nakada and Mead, 1965]. One
of these empirical techniques has been applied to these

data, and the corresponding values of m that give the
better representation of the phase space densities are in

the range of 2 to 4 for n = 5/2.
The adopted technique involves rewriting equa-

tion (7), using the above assumptions, in the following
form:

f (8)
D°L'_7" = O2f m- 5/2 Of

+ L OL

Then the first and second derivatives of f are numer-

ically calculated as a function of radial distance. This
was done by first fitting In f to a parabola in L using

three points and then evaluating the derivatives at the
midpoint. The right-hand side of equation (8) can then
be evaluated for m = 3, 6, and 10. This calculated
quantity is then plotted on log-log paper versus L. If r
is independent of L, then the slope of this curve should

be m. This process was carried out for all of the phase
space densities, and the slopes were all between 2 and

4, for those data outside L = 7.5 and inside L = 5.5, in-
dependent of the value of m used in the right-hand side

of equation (8). For m = 3, the slopes were very close
to 3. The data in between showed no such systematic
trends, and hence the lifetimes are not constant within

this region nor do they havea simple radial dependence.
This result does not prove that m = 3, because it may

have a radial dependence of 3 - m, but for the purposes
of this paper, m is assumed to be 3.

Radial Diffusion

More information from the phase space densities can

be extracted by using the following form of the steady
state radial diffusion equation:

O=Lh/2_l DLL Of) f\L--_ _ -_ +S" (9)

The source of the particles is taken to be at L -- 9.5,

and the outer edge of the A ring is taken as a perfect ab-
sorber. The magnetosphere is divided into three parts.

The region within which the phase space densities de-
crease strongly is denoted as region II. The interior

region and the exterior region are denoted as I and III,
respectively. The diffusion coefficient is assumed to be
DLL = Do L3 throughout the magnetosphere. And for

simplicity, the characteristic lifetimes _-_are assumed to

be different in each region but constant within a given
region. This is not true for region II, but the assump-

tion of constancy simplifies the problem. In region I the
solution to the diffusion equation is

fI=V_Asinha(v_o &) (i0)

where L0 is the outer edge of the A ring and a =

2�(Dot1) 1/2. The solutions in the other two regions
are easily found. They Contain constants b, c, L1, and

L2, where b = 2�(Dot2) 1/2, c = 2�(Dot3) 1/2, and L1
and L 2 are the inner radial distances of regions II and
III, respectively. These solutions are continuous at each

of the regional boundaries, as are their first derivatives.
The three expressions for f are not linear and hence
are not fittable by any normal least squares techniques.

Instead, a different approach was used, namely, L0 was

set equal to 2.3 and the coefficients A and a were found
by varying a and A until the deviations of ln(f) were

minimized using the data inside L = 5.5. The data
from region II were used to determine L1 and b in a
similar manner. The values of L1 were always close to

5.5, and this value was adopted. The best b was de-
termined for each curve. Similar attempts in region III
were not fruitful. L2 is not a constant but varies with

# and J in what seems to be a systematic variation.
The best determinations of L2 and c were made using

the data from region III and the previously determined

values of A, a, b, L0, and L1 for each data set. These
determinations are somewhat rougher than the others

Table 1. Coefficients

tt (MeV/G) A a b c L2

KI 125 3.914 × 103 13.1 98.7 22.0 7.90
250 3.530 x 103 14.4 100.7 I0.0 6.70
500 3.086 x 103 15.6 110.0 13.6 5.80

1000 1.972 x 103 15.0 85.0 14.0 5.55

K_ 125 4.283 x 103 12.8 101.0 11.9 7.65
250 3.860 x 103 14.1 102.5 15.0 6.50

500 3.375 x 103 15.2 100.0 18.7 5.70

1000 1.586 x 103 14.4 .90.0 16.0 5.54

K3 125 4.351 x 103 13.0 102.6 13.6 7.20
250 3.900 x t03 14.2 110.0 15.4 6.15

500 3.402 x 103 15.2 100.0 16.0 6.15
1000 9.277 x 102 14.1 100.0 17.0 5.53

Here #, in MeV/G; A, constant coefficient; a =
2/(Dovl)l/2; b = 2/(Dov2)l/2; c = 2/(Dor3)l/2; L2,

inner radial distance of region III.
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in regionsI andII. Theconstraintsonthecoefficients
bythe interiorfits allowedonlytheasymptoticfit to
f in the outer region. These results are shown as the
smooth curves in Figures 5 through 7. The departure

of the curves from the data points in the outer region
can be seen and is possibly explained by the form of the

differential energy spectra used to construct the phase
space densities. The various parameters for each "fit"
are listed in Table 1.

The E Ring

Introduction

The strong decrease of the phase space densities be-
tween 8 and 5.5Rs is too smooth to be due to satellite in-

teractions. Satellite sweeping would produce more dis-
continuous changes at the satellite orbits with smooth
transitions in between and this is not seen even in the

highest time resolution data. Earth-based observations

reveal the presence of a faint ring in this region [Feibel-
man, 1967; Baum e¢ al., 1981]. This ring probably ex-

tends inward to near the orbit of Mimas. If the ring
particles are responsible for the losses, then it may be

possible to say something about the ring particle sizes
and their distribution from the dependences of the loss
on # and J, as first suggested by Thomsen and Van

Allen [1979].
The time that an electron spends within this region

can be estimated from the trans-L diffusional speed
[Schultz and Lanzerotti, 1974]:

{OlnfX_
L,=--OLL .

Rewriting the equation and integrating, the time is
found to be

T=
_0 T _L 5a f dLdt = - (11)

b DoL3 df '
dL

where f can be written as L 1/2 g; then

1 df 1 ldg

f dL- 2L +g dL"

The 1/2L term is much smaller than the second term
and is neglected. The L dependence ofg is an exponen-
tial in -b/L 1/2 or -c/L 1/2, depending upon the region

of interest. A change of variables x = b/L 1/2 gives

4 ln(dg) :: (dg) :]T = Pob2 _xx = r2 In _ . (12)

The number of collisions that occur during the time
period can be calculated and compared to the decrease
in the phase space densities. The phase space density

at the inner edge of the sharp decrease is compared to
that which would occur for loss-free diffusion in order

to determine the decrease. The loss-free phase space
density was taken to be that which would result from

the density at the outer edge diffusing inward and being
lost at the outer edge of the A ring. The loss-free phase

space density is

fLF = I(L,) x_*- x/_o ' (13)

where L, is the outer edge of the E ring. The intensity
decrease is

f(L1) f(L1) _- v/-£7 (14)
ILF(L1) f(L,) X/_-7- x/_o "

Thin Ring

The above ratio must now be related to the diffusion

time. Assuming the ring region is thin, the average

bounce period (rB) can be calculated for each value of
# and J. The number of passes an energetic electron
makes through this region is 2T/{rs). The amount of
material per unit Strgrea in the ring is 4uno{r_)pd/3,
where p is the density, no is the number of ring par-
ticles per unit volume, and d is the thickness of the

ring. Here r0 is the radius of the ring particles and
is a characteristic size of the particle size distribution.

Since the data are at several different pitch angles, the
path must be corrected by a factor of tanc_. The prod-

uct of all of these terms is 8_rn0 (r3)Tpd tan _/(3(rB)),
which has the dimension of mass per unit area. This

quantity can be normalized by dividing by the range of
the average electron in g/cm _ for each case. The un-
known factors are in the expression no(ra)d/Do which

is assumed to be constant; hence it is possible to cal-
culate the other quantities and compare them with the

intensity decreases.
The outer edge of the E ring is not well known, but

the phase space densities indicate that it extends to at

least 8 R,, and the Earth-based observations suggest
that it extends as far out as 9/_,. All quantities were

calculated assuming that the outer boundary, L,, was

at 8 R,, 8.5 R,, and 9 R,, respectively. The intensity
decreases were plotted versus this calculated quantity,
and it was found that the tan a factor disorganized the

data. It was thought that the diffusion coefficient might
contain a tan a factor. A search of the literature showed

that this was not the case, but there is a slight depen-
dence on energy for electrons.

Thick Ring

The other possibility is that the E ring is not thin

and that the electrons having pitch angles s0 > 600
spend all their time diffusing within the ring. The areal

mass density, normalized by the range of the electrons in
this case, is 4?rno(ra)Tpdt3c/3I_, where R is the range

of the electrons. The average value (t3/R) was calcu-
lated using the range energy approximation of Katz and

Penfold [1952] and used above. The correlation of this
quantity with the fractional decreases in phase space

densities using equation (14) was very good, being best
for L = 8.5. For the purposes of the rest of the paper,
the outer boundary of the E ring is taken to be 8.5. No
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effectisactuallyseenin theobservationaldataoutside
L > 7.5 Rs.

These results can be interpreted in terms of the trans-

mission of electrons through a given amount of mate-

rial. The empirical transmission equation of Tabata and

Ito [1974] can be used to determine the unknown con-
stants. Their expression for the electron transmission
coefficient is

1 + exp-So

r/T = 1 + exp [(SO + 2) _ -- SO] ' (15)

where x is the thickness, R is range, and So is a function

of the target material and is weakly dependent upon
the energy of the electron. For water ice, So = 3.89
within 1% over the energy range of the electrons under

consideration. Taking the decrease in phase space den-
sities to be equal to _T and using the above value of So,

x//_ can be solved for in terms of the decreases. Then
x/R can be set equal to W * T{fl/R), and the constant
W is evaluated to be 6.881 + 0.263 for these data. In

terms of the above quantities, W = 4_rno{r_}pc/3Do.

Assuming that the E ring is composed of water ice,
where p = 0.917 g/cm 3 and c = 3 x 101° cm/s, then

no(r3}/Do = 5.97 x 10 -11 ± 2.28 x 10 -12 . If, on the
other hand, the E ring is composed of carbonaceous-
chrondritic material, where we assume p = 2.7 g/cm 3,

then no{r3}/Do = 2.03 x 10 -11 4- 7.77 x 10 -13.

Comparison With Other Observations

Smith [1978] estimated the E ring optical thickness
from the Earth-based observations of Feibelman to be

between 1.0 4- 0.5 x 10 -7 and 1.6 4- 0.8 x 10 -6 us-

ing assumed albedos of 0.8 for icy particles and 0.05
for carbonaceous-chrondrite particles, respectively. The

optical thickness is given by c_ = zrno(r_o}d, where these
quantities have already been defined.

In situ measurements have been made by the Pio-

neer 11 and Voyager 1 and 2 spacecraft. The Pio-

neer 11 micrometeoroid detector passed through this

region very near the equator and did not observe a sin-
gle event. The threshold for the detection was 7.1 x
10 -9 g, or water ice particles with radii greater than
1.23 x 10 -3 cm or carbonaceous-chondrite particles with

radii greater than 8.6 x 10 -4 cm. A single event would
place the particle density at 7.7 x 10-15/cm 3, which

can be taken as an upper bound for particles of this
size. Voyager observations were reported by Gurnett et

al. [1983] and Aubier et al. [1983]. Their main em-
phasis was the detection of particles at the ring plane

crossing near the G ring. For completeness, Gurnett et
al. listed the average impact rates observed in the occa-
sional wideband data for both Voyager 1 and 2. Some

of these data cover the region of interest. The one per-
tinent Voyager 1 observation was at 6.9 Rs and at a

latitude of-15.8 °, where 10.0 impacts/s were observed
during 48 s of data. There were 3 wideband frames of

data from Voyager 2 in this region. Two consecutive
frames at 7.8 Rs and 24.50 latitude during the inbound

passage gave 0.5 and 1.0 impacts/s, respectively. An ad-

ditional frame of wideband data taken on the outbound

passage at a distance of 6.4R_ and -25.8 o latitude gave
2.0 impacts/s for the 48 s of data. The amount of data

is meager but tends to verify the assumption that the

E ring is geometrically thick.
It is assumed that the 10 impacts/s is representative

of the E ring at lower latitudes and that the rate drops

off beyond latitudes of 160 or so, as indicated by the
Voyager 2 data. The impact rate can be interpreted by
I = n.AV, where A is the projected area of the space-

craft (1.66 x 104 cm2), V is the relative speed between
the spacecraft and the particles (15.15-t-1.35km/s), and

n. is the particle density above the threshold of obser-
vation. Using these values, the number density of ring
particles is found to be n. = (4.004-0.36) x 10-1°/cm 3.

A particle size distribution function of the form
n(r)dr = Nr-3"hdr for rl _< r _< r2 has been used to
describe a fragmentation spectrum [Zuyagaina e_ al.,

1974] and is a plausible function for ring particles. As-

suming this distribution for the E ring, n. can be cal-
culated as follows:

f r2 2n [ 5/2,. = n(r)dr = -_ kr. - r; 5/2) • (16)

Gurnett et al. [1983] made a determination of r. at very
high impact rates (i.e., 500/s), and later Gurnett et al.

[1987] made some changes in their estimation and pro-
cedure for the determination of r. at Neptune. For this

situation at Saturn, the impact rate is very low and
the 16-channel analyzer outputs are very near back-

ground [Scarf ctal., 1983]. The wideband data are
only a relative measure, since the output has an au-

tomatic gain control which is inversely proportional to
the rms output voltage. Since these data were acquired

during quiet times, the output should be near its low-
est level. The thresholds for the 16-channel analyzer
are between 1 and 2 x 10 .5 V [Scarf et al., 1981]. As-

suming that the wideband data have a similar thresh-

old, 4 times this value should represent the threshold
voltage for detection of a particle (L. Granroth, pri-

vate communication, 1990). The corresponding radii
are 7.3 to 9.2 x 10 -5 cm for water ice particles and
5.1 to 6.4 x 10 -5 cm for carbonaceous-chrondrite par-

ticles. An estimate of n0{r0a} can be made using these
values, the measured number density, the optical thick-

ness, and the assumed particle size distribution func-
tion. It is easy to show from the distribution function

that no(r 3} = no{r2o)(rlr2) 1/2, and assuming the thick-
ness of the ring to be of the order of 3 R,, we take

d = 2x 101°cm. Then no(r_} can be approximated from
the optical thickness to be equal to 1.59+0.79x 10 -is for
icy particles and 2.55 4- 1.27 x 10 -17 for carbonaceous-

chrondritic particles. For the later type of particles,
taking r2 = 8.6 x 10 -4 and the values of r., the value of

N can be determined from equation (16). The range of
values of rl can then be determined from no(r_}. The

distribution of sizes appears to be wide, and the values
of rl are of the order of 10 -6 cm. This gives a range of

values for (rlr2) 1/2 = 2.5 x 10 -5 to 1.37 x 10-4cm. The
values of rl are probably too low for these particles to
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havelong-termstabilitybecauseof electromagnetic and

Poynting-Robertson effects. Another approach is to as-
sume that the distribution is very narrow. In this case

the range of values for (rlr2) 1/2 is 1.6 to 3.2 x 10 -4 cm.

For icy particles, the size distribution has to be nearly
delta function and the value of radii of these particles
is between 4.3 and 8.1 x 10 -5 cm. The lower limit is

below the threshold of detection estimated for the Gur-

nett et al. observations, but it can be taken to give a
lower limit to the value of D0.

The value for the diffusion coefficient Do can now

be estimated from the absorption to be in the range of

1.5 x 10 -11 to 6.3 x 10 -1° R_/s, if the E ring material
is carbonaceous-chrondrite with an albedo of 0.05 and

in the range of 5.6 x 10 -13 to 3.4 x 10 -12 R_/s, if the
material is water ice with an albedo of 0.8.

Cosmic Ray Albedo Neutron Decay

As an early explanation for the high-energy protons
in the inner magnetosphere of Saturn, a number of au-

thors suggested that their source was from the decay
of neutrons produced by cosmic rays hitting the rings

of Saturn [Fillius et al., 1980]. Several order of magni-
tude calculations showed that to be a possibility, if the
value of the diffusion coefficient were lower than then

assumed. Detailed calculations on some aspects of this

problem were given by Blake et al. [1983]. Their paper
contains much valuable information about possible en-

ergy spectra of the neutrons and their yield per incident
cosmic ray.

For every decaying neutron which produces a high-

energy proton, there is an associated energetic electron
which can also be trapped in the magnetic field. Such
electrons may be responsible for the excess of electrons

in the inner magnetosphere, as suggested by the pre-

vious diffusional calculations. To check out this possi-
bility, the source strength of cosmic ray albedo neutron

decay (CRAND) electrons was calculated using the pro-
cedure outlined by Nakada [1963]. This procedure as-

sumes that all electrons with kinetic energy T' are emit-
ted isotopically in the rest frame. Upon being trans-
formed to the laboratory frame of reference, the energy

distribution of electrons with energy T in the rest frame
will be constant between the minimum and maximum

transformed energies. Small elements of the spectrum
from the neutron decay are relativistically transformed

to the laboratory frame to produce the electron source
spectrum. The calculation was made for the total area

of the A and B rings. The neutron spectrum and yield
calculated by Blake el al. [1983] for 20 GeV protons on
200-cm ice spheres were used as the source spectrum
for the electrons. The time derivative of the differen-

tial electron spectrum is equal to the differential neu-

tron spectrum times the injection factor divided by the
product of the Lorentz factor and the lifetime of the

neutron. Time dilation gives approximately a constant
decay rate throughout the magnetosphere. The cosmic
ray production of the neutrons was calculated for both

the A and B rings above the StSrmer cutoff energy. The

differential energy spectrum of the cosmic rays is taken

to be j(T) = 2T -2"65 protons/cm 2 s sr GeV [gayakawa,

1969]
The electron source strength was calculated from 0.01

to 10 MeV in 10-keV increments, using the neutron

spectrum between 10 MeV and 94 GeV. Neutrons be-
low 10 MeV were excluded, since very few would get
into the trapping region before they decayed. Neutrons

with energies greater than 94 GeV will not produce any
electrons with energies less than 10 MeV. The spectra
were normalized such that the number density of elec-

trons was equal to that of the neutrons greater than
10 MeV. The injection coefficient for the electrons was

calculated for every 0.05 R,, from the outer edge of the
A ring to 10R, and for every 50 of pitch angle. The elec-

trons were assumed to be injected isotopica!ly along a
flux tube, and the occultation of the rings by the planet
was taken into account in the calculations. The calcula-

tion of the injection coefficient involved the integration

of the radial dependence of the StSrmer cutoff energy
divided by the square of the distance from the source
point in the rings to the injection site over the area of

both the A and B rings that are visible at the injection
site. The calculation was normalized by dividing by the
area. The results were calculated at a number of lati-

tudes along the field line corresponding to every 50 of

equatorial pitch angle. These values were adjusted for
the change in differential volume at each point along

the flux tube, and the total injected intensity at a given
pitch angle was found by integrating between the mirror
points. From these two separate calculations, the source

strength as a function of L, #, and J was obtained by
interpolation.

With an internal source, which is a function of L, the

steady state diffusion equation (9) has to be treated as a
nonhomogeneous second-order differential equation and
has a specific solution which includes the internal source

term and a homogeneous solution that does not include
the internal source term. The specific solution to the
diffusion equation is

w [exp°/ fL
fs -- Doa [ JLo x2

--exp -a/V/_/L S(x)dxexpalvlx]

dLo X'2 J '

(17)

where a = 2/(Dovl) lp. The general solution for the

phase space density is the sum of the specific and ho-
mogeneous solutions. The homogeneous solution is

fh = A vrLexp a/v'Z +B x/Lexp -a/vr_ . (18)

The boundary conditions for the general solution are

that f = 0 at the outer edge of the A ring and that
f is equal to the observed phase space density at some
distant point.

Dividing the Saturnian magnetosphere into three re-

gions as before, with three different loss rates, places
the same type of conditions on fs as were required be-
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fore.Thefunctionsandtheirfirst derivativesmustbe
continuousacrosseachboundarybetweenthethreere-
gions. Solvingtheseequations,subjectto the above
conditionsat eachboundaryandintegrationbyparts,
allowsfs to be computed for all regions.

In order to simplify the calculations, the average val-

ues of a, b, and c were used. The outer edge of the A ring
was assumed to be at L = 2.3, and the inner edge of the

absorbing region was assumed to be at L = 5.5. The

outer edge of influence of the E ring was again allowed
to vary with energy. The source strength divided by
L 2 was computed at every 0.05 L for constant # and

J corresponding to the previous analysis. These func-
tions were integrated numerically using Simpson's rule

after multiplying by the exponential factors. The spe-
cific solution was obtained at every tenth of an L. The
function was not divided by Do, since it was unknown

and was only a multiplicative factor.
The total phase space density is the sum of this func-

tion and the previously defined f as given in equa-

tion (10). The arbitrary factor A in equation (10) can
now be determined by the outer boundary condition.

The condition chosen was that the calculated phase
space density be equal to that value of the phase space

density determined from the fits to the data at L = 9.

ELECTRON PHASE SPACE DENSITY

i0 4 { E RING ]

10"_2 3 4 5 6 7 8 9

L

Figure 8. Calculated phase space densities for pitch
angles near 800 and for # = 125 MeV/G. These curves
combine radial diffusion from an external source with

an internal cosmic ray albedo neutron decay (CP_AND)
source. The value of the diffusion coefficient is the only
variable. The curves are normalized to the phase space
density at 9 Rs.
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Figure 9. Similar to Figure 8, but includes the previ-
ously calculated phase space densities and all four val-
ues of #. This is for Do = 2 x 10-13 R_/s.

Thus for a given value of Do, the value of A can be
determined for each set of # and J.

Starting with Do = 6 x 10 -11 R_/s, which was near
the upper limit determined from the absorption data,

the calculated phase space densities were found to be
inadequate to explain the intensities observed by de-

tectors A and B in the inner region. The value of
Do was lowered progressively until there were approxi-
mately enough particles in the inner region to explain

the observed integral intensities of electrons. Figure 8
shows the results of the progressive lowering of the value
of Do for the case of K = 5.180 x 10 -3 G 1/2 l_s and

# = 125 MeV/G. The differential energy spectra were

calculated at L = 3, 3.5, 4, and 4.5 for the various val-

ues of Do from the phase space densities. These were
then integrated numerically to obtain the integral flux
greater than 0.56 MeV. The values compare well with
the observed intensities of detector B at L = 3 and 3.5

for Do = 2x 10 -13 and at L = 4 and 4.5 for Do = 4 and
6 x 10 -13 R_/s. The discrepancy in not finding a con-

stant value of D0 at L = 4 and 4.5 probably is indicative
of the E ring extending inward to at least L = 4. Fig-

ure 9 shows the phase space densities for the same value
of K and for # = 125,250, 500, and 1000 MeV/G using

Do = 2 x 10 -13 R_/s. The phase space densities that
were originally calculated from the data, assuming that
they were only from an external source, are also plotted
for reference.
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Figure 10. (a) The total differential electron spec-

trum at L = 3, calculated from the phase space den-

sities shown in Figure 9. The lower differential energy

spectrum is calculated from the phase space densities,

assuming that there is no CRAND source of electrons.

(b) The integral electron spectrum found by numerical

integration of the differential energy spectra shown in

Figure 10a. Observations of integral electron intensities

by all four energetic particle experiments on Pioneer 11

are shown for comparison.

Figure 10a shows the resulting electron differential

energy spectra calculated from the phase space densi-

ties in Figure 9 at L = 3. The higher curve shows

the sum of the CRAND and inward diffusing electron

spectra. The lower spectrum represents only those elec-

trons that have diffused inward from the outer edge of

the magnetosphere. Figure 10b shows the integrals of

these two spectra. Observed integral electron intensi-

ties from the various Pioneer 11 experiments are shown

as discreet points. The observed data from our experi-

ment (University of Iowa GTT) and from Fillius et al.

[1980] are near 90 ° pitch angle, while the other data

are spin-averaged observations. The lower energy of

all spectra corresponds to # = 125 MeV/G. The phase

space densities shown in Figure 9 are too high in the re-

gion between L = 4 and 5.5 to account for the observed

integral intensities. To have a constant value of Do and

to also account for the observed integral intensities, the

effects of the E ring must be extended inside L = 5.5.

This refinement would necessitate recalculating every-

thing, starting with the inward diffusing electrons, and

is not essential to the principal result. The basic point is

that in order to explain the observed integral intensities

of electrons in terms of the calculated CRAND source

in the rings of Saturn, the value of Do is of the order

of 2 x 10 -13 Rs2/s. If the calculated CRAND source

strength were higher, then the corresponding value of

Do would be higher by the same amount.

Van Allen [1983] found that the energetic protons in

the inner magnetosphere of Saturn could be explained

in terms of Cl_AND-generated protons from the rings.

By simple arguments, he found that S/D = 6.9 x

10-_4cm -_ at 2.67R8. He then used the results of Blake

et al. [1983] to estimate that S -- 3.3 x 10-15/cm 3 s.

A simple calculation gives D = 1.33 x 10 -11 R_/s

at 2.67 R, and, assuming DLL -_ DoL 3, implies that

D0 = 7 x 10 -13 R2/s.

The distribution of ring particle sizes in the A and

B rings has not been determined to any great accuracy,

but several estimates place the range between a few

centimeters and as high as 50 m, with the bulk of the

particles near the low end of this range [Marouf el al.,

1982]. Thus the use of 200-cm ring particles in the above

calculations makes these determinations of the diffusion

coefficient a lower limit. The yield of neutrons produced

by cosmic rays hitting several small particles can be as

much as 10 times greater than the yield from just one

collision with a larger particle [Blake et al., 1983].

Van Allen's estimate of S should be raised by a fac-

tor of 10 to account for the increased yield of neutrons

from smaller ring particles. Blake et al. [1983] assumed

that the production of neutrons takes place everywhere

in the A, B, and C rings. The C ring is probably too

thin to make any significant contribution. Thus the es-

timate of S should also be decreased by 20% to account

for the decreased area. These changes to Van Allen's

estimate then give Do = 5.6 x 10 -12 R_/s for the ener-

getic protons. By the same reasoning, the value of.D0

obtained for the CRAND electrons should be raised by

a factor of 10 to account for the increase of the source

strength from smaller ring particles. This gives a value

of Do -- 2 x 10 -12 R_/s for the CRAND electrons, which

is in the range of the estimates from the absorption by

icy particles in the outer E ring.

The lower limits placed upon the diffusion coefficient

for low-energy ions by Paonessa and Cheng [1986] and

for electrons by Chenette and Stone [1983] would elim-

inate both the CRAND process as the source of the

majority of the electrons in the inner region of Saturn's

magnetosphere and also the absorption analysis and are
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therefore !ncompatible with the present analysis. The
cited authors also dismiss the determinations of the ra-

dial diffusion coefficient by Van Allen et al. [1980a,

b], grimigis et al. [1981], Van Allen [1982, 1983], and

Cooper [1983]. These differences are due to the anal-
ysis of microsignatures and ascribing the fill-in times
to radial diffusion. This is probably wrong, since the

gross radial diffusion theory assumes that the phase
space densities are longitudinally averaged and the mi-

crosignatures are discrete in longitude. The electron

microsignature analysis of Chenette and Stone arrives
at a lower limit to the diffusion coefficient using the

procedure of Van Allen et al. [1980c], which gave an
upper limit to the diffusion coefficient. Their analysis

also disagrees with the original assessment by Vogt et

al. [1982], that these observations were due to pileup
of lower-energy electrons. The fact that their estimate
of the flux of > 2.5-MeV electrons is several orders of

magnitude lower than the expected flux, even assum-

ing an efficiency of 10%, has lead us to reevaluate the

Vogt et al. [1982] assumptions. We find that the obser-
vations are consistent with a twofold pileup of approxi-

mately 1.6-MeV electrons in detector B2 and threefold

or fourfold pileup in the higher-energy detectors. This

accounts for the deeper signature in the coincidence

channel. The real signature after correcting for dead
time is only a 20% depression in the counting rate, and

according to Vogt et al., this signature is of the order
of 30 hours old. Details of this detector system, dead
time corrections and coincidences are discussed in the

paper by Schardt and McDonald [1983].

The lower limit of the diffusion coefficient for low-

energy ions found by Paonessa and Cheng [1986] is

based on observations of ions, presumed to be oxygen,
in the energy range of 87 to 434 keV. These particles

are at a nominal equatorial pitch angle of 35 °. Their
lower limit to the diffusion coefficient was found by find-
ing the minimal value of D for the flux to be zero after

crossing the geometrical sweeping region of each satel-

lite using their calculated sweeping lifetimes. This as-
sumes that the sweeping is the greatest loss mechanism
in the inner magnetosphere of Saturn, that pitch angle

scattering of equatorial energy degraded particles does
not contribute to the observed intensities, and that the
observations are of low-energy ions. The latter question
is raised because of the observations of Carbary et al.

[1983]. They see the same microsignature as observed

in the high-energy electrons, but the microsignature oc-
curs in the same ion channels from which the phase
space densities were derived. Carbary et al. present an

argument that only a maximum of 9% of the 20% de-
crease in the ion channels could be attributed to high-

energy electrons. But the coincidence of simultaneous
and almost identical decreases in high-energy electrons
> 1.5 MeV and low-energy ions due to a 30-hour-old
encounter with Mimas is hard to understand.

Armstrong et al. [1983], using the same ion data as
Paonessa and Cheng, concluded that inside L = 5, the

ions were locally produced and had not arrived via ra-
dial diffusion from an external source.

In view of these arguments, the low value of

Do = 2 x 10-12 R_/s is plausible, and CRAND elec-
trons might explain the excess of high-energy electrons

that we and Krimigis et al. [1981] and Armstrong et al.
[1983] report.

Conclusions

The inner magnetosphere (L < 10) of Saturn is sta-

ble but lossy for energetic electrons. The mechanism
for their radial diffusion has the same L dependence

(DLL : D0L 3) as that proposed by Brice and Mc-

Donough [1973] for Jupiter. In the region 5.5 < L < 8.5,
the losses are due to collisions with E ring particles.

Satellite absorption has a negligible effect on the ener-
getic electrons.

The E ring has a latitudinal thickness on the order

of 3 R_, and assuming the particle size distribution is
very narrow, the mean radii of the particles in this
ring are in the range of 4 x 10 -5 to 3.2 x 10 -4 cm.
The value of the diffusion coefficient Do can be es-

timated from the absorption to be in the range of

1.5 x 10 -11 to 6.3 x 10-1° R_/s, if the Ering material is
carbonaceous-chrondrite and in the range of 5.6 x 10 -13

to 3.4 x 10 -12 R_/s, if the ring material is water ice.
The observed intensities of energetic electrons inside

the E ring are too great to be explained by radial diffu-
sion from an external source. CRAND electrons result-

ing from cosmic ray interactions in the A and B rings

are a quantitatively plausible explanation for the ex-
cess. The diffusion coefficient necessary for the CP_AND
electrons to explain the excess intensities in the in-

ner magnetosphere of Saturn is of the order of 1 to
3 x 10 -12 R_/s. This range is consistent with the deter-

mination from the absorption analysis for the E ring to
be composed of water ice particles.

Appendix

Using relations (1), (2), and (3),

R(a) - JoAoo + J2(A2o cos 2/3 + A21)
detector area

+ J4(A40 cos 4/3

+A41 cos 2/3+ A42) +'"

where the coefficients A_,_ are constants.

fo°°Aoo = 27r sin 0 dOF(O) = 2/o •

The directional geometric factor of the detector is the
area of the detector times Aoo. If

fo°°/2N : 71" sin OF(O)dO COS 2N _ ,

then

A00 = 210

A20 = 3/2-I0



8784 RANDALL: ENERGETIC ELECTRONS IN SATURN'S MAGNETOSPHERE

• A21 = Io-I2

A40 = (35/4 - 30/2 + 3/0)/4

A41 = (18/4 - 15/2 - 3/o)/2

A42 = 3(/0 - 2/2 +/4)/4, etc.

In addition, the smear due to the finite sampling time

has to be taken into account. To do this, it is necessary

to integrate all terms over the roll angle from y - A

to y + A, where 2A is the angle at which the detector

moved during the sampling period. For the Pioneer 11

detectors, the look directions are orthogonal to the spin

axis, thus the pitch angle fl is given by

cos/3 = sin F cos(x - _) •

The general relationship between these vectors is shown

in Figure lb and is

cos/3 = cos A cos F q- sin A sin F cos(x - 7) ,

where A is the angle between the detector look direction

and the spin axis, F is the magnetic cone angle, and X is

the magnetic clock angle. For the case where A = 90 °,

the results are straightforward.

°+adr 1 = 2A=Co0
--A

/n +_ COS2 tidy = C20 cos 2/3 + C21 sin 2 F
-A

/n +a COS4/3dy = C40 cos 4/3 + C41 sin 2 F cos 2/3
--A

+ C42 sin 4 F .

The coefficients are

= (JoAooCoo + J2A21Coo + J4A42Coo

+ J2A20C21 sin 2 F + J4A41C21 sin 2 F

+ J4A40C42 sin 4 F +...)

+ cos 2/3[J2A2oC2o + J4A41C2o

+ J4A4oC41 sin 2 F + ...]

+ cos 4/3[J4A40C40 + ""] + "'" .

The deconvolution process is as follows: The observed

data are fit via least squares, with a polynomial of the

form R(/3(_)) = Bo+B2 cos 2/3+B4 cos 4/3"--. Next, the

highest-order term is solved for to yield J4 = B4/(Area*

A40C40). The next term is

J2 -_
B2 J4(A41C20 --[-A40C41 sin 2 F)

D

(Area * A2oC2o) (A20C20)

and the last is

J0 _--
Bo J2(A_lCoo + A2oC_t sin 2 F)

+
(Area • AooCoo) (AooCoo)

J4(A42C00 .qt_A41C21 sin u P + A40C42 sin 4 F)

( AooCoo )
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6'2o = 2 sin A cos A

C21 _ t -- sin A cos A

C40 = (2 cos = A - 1)2 cos A sin A

C41 = 4 sin 3 A cos A

C42 = (3A - (5 - 2 cos 2 A) cos A sin A)/4.

These results can be combined to produce the final

relationship:

detector area
JoAooCoo + J2A21Coo

q- J4A42Coo + J2A_oC20 cos 2/3

+ J2A2oC21 sin 2r

+ J4A41C20 cos 2/3

-}-J4A41C21 sin S F

-_-J4A40C40 cos4/3

+ J4A4oC41 sin 2 F cos2/3

+ J4A4oC42 sin 4 F + "-"
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