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A new numerical framework for solving conservation laws is be-

ing developed. This new framework differs substantially in both

concept and methodology from the well-established methods, i.e.,

finite difference, finite volume, finite element, and spectral methods.

It is conceptually simple and designed to overcome several key

limitations of the above traditional methods. A two-level scheme

for solving the convection-diffusion equation

diffusive scheme. The a-r, scheme, which also uses a mesh stag-

gering in time, demonstrates that it can also be a scheme with no

numerical dissipation. The Euler extension of the a-e scheme has

stability conditions similar to those of the a-_; scheme itself. It has

the unusual property that numerical dissipation at all mesh points

can be controlled by a set of local parameters. Moreover, it is capable

of generating accurate shock tube solutions with the CFL number

ranging from close to 1 to 0.022 ,_ 1995 Academic Press. Inc.

;_u/i_t + a au/ax tz iFu/ox z = 0 (ix >- O)

is constructed and used to illuminate major differences between the

present method and those mentioned above. This explicit scheme,

referred to as the a-# scheme, has two independent marching vari-

ables u_ and (u_)_' which are the numerical analogues of u and

hu/ax at (j, n), respectively. The a-# scheme has the unusual prop-

erty that its stability is limited only by the CFL condition, i.e., it is

independent of #. Also it can be shown that the am plification factors

of the a-# scheme are identical to those of the Leapfrog scheme if

# = 0, and to those of the DuFort-Frankel scheme if a = 0. These

coincidences are unexpected because the a-/_ scheme and the above

classical schemes are derived from completely different perspec-

tives, and the a-# scheme does not reduce to the above classical

schemes in the limiting cases. The a-# scheme is extended to solve

the 1D time-dependent Navier-Stokes equations of a perfect gas.

Stability of this explicit solver also is limited only by the CFL condi-

tion. In spite of the fact that it does not use (i) any techniques

related to the high-resolution upwind methods, and (ii) any ad hoc

parameter, the current Navier-Stokes solver is capable of generat-

ing highly accurate shock tube solutions, Particularly, for high-Reyn-

olds-number flows, shock discontinuities can be resolved within

one mesh interval. The inviscid (# = 0) a-# scheme is reversible in

time. It also is neutrally stable, i.e., free from numerical dissipation.

Such a scheme generally cannot be extended to solve the Euler

equations. Thus, the inviscid version is modified. Stability of this

modified scheme, referred to as the a-_: scheme, is limited by the

CFL condition and 0 <- e <- 1, where _, is a special parameter that

controls numerical dissipation. Moreover, if _: = 0, the amplification

factors of the a-e scheme are identical to those of the Leapfrog

scheme, which has no numerical dissipation. On the other hand, if

_, = 1, the two amplification factors of the a-s scheme become

the same function of the Courant number and the phase angle.

Unexpectedly, this function also is the amplification factor of the

highly diffusive Lax scheme, Note that, because the Lax scheme is

very diffusive and it uses a mesh that is staggered in time, a two-

level scheme using such a mesh is often associated with a highly
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i. INTRODUCTION

The method of space-time conservation element and solution
element [l-I 1] is a new numerical framework for solving

conservation laws. This new approach differs substantially in

both concept and methodology from the well-established meth-
ods, i.e., finite difference, finite volume, finite element, and

spectral methods [12-16]. It is conceived and designed to over-

come several key limitations of the above traditional methods.

Thus, we shall begin this paper with a discussion of several

considerations that motivate the current development:

(a) A set of physical conservation laws is a collection of
statements of.flux conservation in space-time. Mathematically,

these laws are represented by a set of integral equations. The

differential form of these laws is obtained from the integral

form with the assumption that the physical solution is smooth,

For a physical solution in a region of rapid change (e.g., a

boundary layer), this smoothness assumption is difficult to real-

ize by a numerical approximation that can use only a limited

number of discrete variables. This difficulty becomes even

worse in the presence of discontinuities (e.g., shocks). Thus, a

method designed to obtain numerical solutions to the differen-

tial form without enforcing flux conservation is at a fundamental

disadvantage in modeling physical phenomena with high-gradi-

ent regions. Particularly, it may not be used to solve flow

problems involving shocks. Contrarily, a numerical solution
obtained from a method that also enforces flux-conservation

locally (i.e., down to a computational cell) and globally (i.e.,

over the entire computational domain) will always retain the
basic physical reality of flux conservation even in a region
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involving discontinuities, For this reason, the enforcement of

both local and global fiux conseruati<m in space and time is a

tenet in the current development. To meet this requirement,
first we deiine a set of sohttion elements which are subdomains

in the space-time computation domain. Within each solution

element, any physical flux vector is then approximated in terms

of some simple smooth functions. In the last step, we divide
the computational domain into ('ottseruatiott dements and de-

mand that any flux be conserved over any space-time region
that is the union of any combination of these elements. Note

that a solution element generally is not a conservation element
and vice versa.

Among the traditional methods, linite difference, finite ele-

ment, and spectral methods are designed to solve the differential

fornl of the conservation laws. Note that the set of integral

equations usually solved in a finite-element scheme is equiva-

lent to the differential l%rm of the conservation laws assuming

certain smoothness conditions. However, these integral equa-

tions generally are different from the integral equations repre-

senting the conservation laws. Even if they are cast into a

conservative lkwm, the resulting llux-conservation conditions

generally do not represent the physical conservation laws.

The linite volume method is the only traditional method
designed to entorce tlux conservation. A finite-volume scheme

may enforce tlux conservation in space only, or in both space

and time. As a preliminary to this enlbrcement, a flux must be

assigned at any interface separating two neighboring conserva-
tion cells. In a typical finite-volume scheme, it is evaluated by

extrapolating or interpolating the mesh values at the neigh-

boring cells. This evaluation generally requires an ad hoc choice

of a special flux model among many models available [ 17-191.

Generally numerical results obtained are dependent on which

model one chooses. Also this process of interpolation and ex-

trapolation generally is time consuming and has some undesir-

able side effects which will be discussed shortly.

Contrarily, by defining conservation elements wisely and
considering the the spatial derivatives of dynamic variables as

independent variables, current flux evaluation at an interface

is carried out without interpolation or extrapolation. It is an

integral part of the solution procedure.

(b) Space and time traditionally are treated separately in

the time marching schemes. Generally one obtains a system of
ordinary differential equations with time being the independent

variable after a spatial discretization. As an example, elements

in the finite element method usually are used lk_rspatial discreti-
zation. These elements are domains in space only.

Because flux conservation is fundamentally a property in

space-time, space and time are unified and treated on the same
looting in the present method. Thus, conservation elements and

solution elements used in the time-dependent version of the

present method are domains in space-time. The significance of
this unified approach cannot be overemphasized. As will be

shown, it makes it easier for a numerical analogue to share the

same space-time symmetry of the physical laws.

(el In a tinite-difference scheme, derivatives at mesh points

are expressed in terms of mesh values of dependent variables by

using finite-difference approximations. The accuracy of these

approximations, especially those of higher-order accuracy, gen-

erally is excellent as long as dependent variables vary slowly

across a mesh interval. However, it may not be adequate if

these variables vary too rapidly. Thus, in a high-gradient region,

e.g., a boundary layer, accuracy may demand the use of an

extremely fine mesh, In turn, a prohibitively high computing

cost may result.

The present method avoids the above pitfall by (i) expressing

the numerical solution within a solution clement as an expansion

in terms of certain base functions, and (it) considering the

expansion coefficients as the independent numerical variabh's _
to he solved for simultaneous&. For simplicity, Taylor's expan-

sions will be used in the present paper. For this special case,

the expansion coefficients are interpreted as the numerical ana-
logues of the derivatives. Note that (i) van Leer [20] also has

attempted to improve accuracy by introducing two independent

numerical variables for each independent physical variable, and
(it) the current solution procedure has no resemblance with

those used in compact difference schemes.

(d) The numerical variables used in a spectral method, i.e.,

the expansion coefficients, are global parameters pertaining to

the entire computational domain. As a result, a spectral method

generally (i) lacks local flexibility and thus may be applied

only to problems with simple geometry, and (ii) is hindered by
the fact that it must deal with a full matrix that is difficult

to invert.

By design, only local parameters will be used in the present
method. Moreover, solution elements and conservation ele-

ments are defined such that the set of discrete variables in

any one of the numerical equations to be solved generally is

associated with only two neighboring solution elements. The

exception to this general rule occurs only in the situation in

which numerical dissipation is introduced deliberately. Even

in this special case, only the discrete variables associated with

a few immediately neighboring solution elements will enter any
equation to be solved. Thus, a scheme developed using the -.-?

present method generally has the simplest stencil and one needs

only to deal with a very sparse matrix if the scheme is implicit.
Moreover, the maximum number of solution elements involved

in a nmnerical equation of the current discretization framework
is independent of the order of accuracy of a particular scheme.

The order of accuracy can be raised by using a Taylor's expan-

sion of higher order as the approximated solution within a
solution element. Contrarily, the order of accuracy of atclassical

finite-difference scheme generally can be increased only by

using variables of more mesh points in each of its equations.
Usually, a side effect of this practice is an increase in numerical

dissipation, a subject to be discussed shortly. Also it may be

difficult to implement a high-order finite-difference scheme
near a boundary because there are no real mesh points outside

the boundary. The above discussions also point to another ira-
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portant advantage of the presenl method, i.e., the ,v)ec_fication

q[ initkd/boumhlpy conditions generally is simple_; more flexi-
ble, alld more accttrale thttll Ilia! associated with a traditimml

method. It is simpler because a smaller stencil is used [6l.

Furthermore, it is more flexible and accurate because the spatial

derivatives of dynamical variables, which are considered as

independent numerical variables in the present method, can

now be specified directly. Note that the current emphasis in

reducing the size of the stencil is also consistent with a funda-

mental physical reality, i.e., in the absence of body' lorce, direct

physical interaction occurs only among the immediate

neighbors

(e) With a few exceptions, numerical dissipation generally

appears in a numerical solution of a time-marching problem.

In other words, the numerical solution dissipates faster than lhe

corresponding physical solution. For a nearly inviscid problem,

e.g., flow with a high Reynolds number, this could be very

serious because numerical dissipation may overwhelm physical

dissipation and cause a complete distortion of solutions. One

may argue that numerical dissipation can be reduced by increas-

ing the order of accuracy of the scheme used. However, because

the order of accuracy of a scheme is generally determined with

the aid of Taylor's expansion, and the latter is valid only for

a smooth solution, it has meaning only for a smooth solution.

Thus the use of a scheme of higher-order accuracy may not

reduce numerical dissipation associated with high-frequency

Fourier components of a numerical solution. This is the reason

that the Leapfrog scheme, which is free from numerical dissipa-

tion, can outperform schemes with higher-order accuracy in

solving some wave equations [211.

In a study of finite-difference analogues of a simple convec-

tion equation J2], it was shown that a numerical analogue will

be free from numerical dissipation if it does not violate certain

space-time invariant properties of the convection equation. In

other words, numerical dissipation may' be considered as a

result of symmeto:-breaking by the numerical scheme. Because

of its intrinsic nature of space-time unity, the current framework

is an excellent vehicle l\)r constructing a numerical analogue
that shares the same space-time invariant properties with the

physical equation.

It is recognized that a certain amount of numerical dissipation

may be needed to prevent large dispersive errors [22] that are

often caused by the presence of high-frequency disturbances

(such as round-off errors). Therefore, in the present paper we
shall construct a model scheme for a simple convection equation

in which its numerical dissipation is controlled by a single

adjustable parameter. The numerical dissipation is shut off

when this parameter is set to zero. Furthermore, an Euler solver

will be constructed such that its mmTerical dissipation at all

mesh points can be controlled by a set of local parameters.

(f) High-resolution upwind methods 116] form a special
class of the finite volume method. In these methods, the flux

at an interface separating two neighboring conservation cells

is also evaluated using a process of interpolation and extrapola-

tion. This process generally is heavily dependent on characteris-

tics-based techniques, For the 1D time-dependent case, the

characteristics are curves in space-time, and the coefficient
matrix associated with the Euler equations J23] also can be

diagonalized easily. As a result, these techniques are easy to

apply. However, for multidimensional cases, the characteristics

are 2D or 3D surfaces in space-time 1241. Moreover, the coeffi-

cient matrices cannot be diagonalized simultaneously by the

same matrix [23]. Because of the above complexites, applica-

tion of these techniques to multidimensional problems is much

more diffucult. Furthermore, high-resolution methods generally

require the use of ad hoc parameters, e.g., flux-limiters and/

or slope-limiters, and other ad hoc techniques. These ad hoc

techniques may lead to numerical dissipation which varies from

one place to another and from one Fourier component to an-

other. In other words, numerical solutions may suffer annihila-

tion of sharply different degrees at different locations and differ-

ent frequencies [5, 251. Also, these techniques generally are

also difficult to apply in a space of higher dimension.

Although only the I D time-marching schemes are con-

structed in the present paper, the current framework is devel-

oped to solve multidimensional problems. In order that I D
schemes can be extended to become multidimensional schemes

in a straightforward manner, simplicity and generality weigh

heavily in the development of the present method. Thus, we

do not use characteristics-based techniques, and also try to avoid

using ad hoc techniques. Note that, except the Navier-Stokes

solver, other I D schemes described in the present paper have

been extended to become their 2D counterparts [7, 8] (the
extension of the Navier-Stokes soh, er will be dealt with in a

separate paper). Also, because of the similarity in their design,
each of the 2D schemes described in [7, 8J shares with its lD

version virtually the same fundamental characteristics. Further-

more, it is shown in [7[ that a 2D Euler time-marching solver,

which uses a uniform stationary mesh, is capable of generating
highly accurate solutions for a 2D shock reflection problem

used by Helen Yee and others 126l. Specifically, both the inci-

dent and the reflected shocks cat1 be resolved by a single

data point without tke p,wsence ofinumerical oscillations near
the discontinuity.

In addition to being difficult to apply in a space of higher

dimension, the concept of characteristics generally is also not
applicable to the Navier-Stokes equations, which is non-hyper-
bolic in nature. Therefore, the decision not to use characteris-

tics-based techniques also makes it easier for the present frame-

work to solve the Navier-Stokes equations.

This completes the discussion of the motivation for the cur-

rent development. In summary, the development is guided by

the following requirements: (i) to enforce both local and global

flux consevation in space and time with flux evaluation at an

interface being an integral part of the solution procedure and
requiring no interpolation or extrapolation; (it) space and time
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are unified and treated on the same footing: (iii) mesh values

of dependent variables and their derivatives are considered as

independent variables to be solved for simultaneously; (iv) to

use only local discrete variables; (v) solution elements and

conservation elements be defined such that the simplest stencil

will result: (vi) to minimize numerical dissipation, a numerical
analogue should be constructed, as much as possible, to be

compatible with the space-time invariant properties of the corre-

sponding physical equations; and (vii) to exclude the use of

the characteristics-based techniques, and to avoid the use of ad

hoc techniques as much as possible. It is the purpose of" this

paper and its follow-ups [6-8] to show that the above require-
ments can be met with a simple unified numerical framework.

For any reader who is interested in getting an advance idea

on how simple the present method can be, he is referred to the

computer program listed at the end of the present paper. It

is a shock-tube-problem solver constructed using the present

method. The simplicity of the solver is easily appreciated by

a comparison of the listed program and a typical program

associated with high-resolution upwind methods Not only is

the listed program much smaller in size (it is self-contained

and the main loop contains only 33 lines), but it contains no

Fortran statements such as "(fi .... amax. " and " amin" which

are used so often in the programs hnph,menting high-resolution
methods. The absence of the above Fortran statements in the

listed program results from the efflm in avoiding the use of

the ad hoc techniques in the development of the present method.

In spite of its simplicity, it will be shown in Section 7 that the

present solver is capable of generating highly accurate shock
tube solutions.

2. THE a-/a, SCHEME

In this section, we consider a dimensionless form of the 1D

convection-diffusion equation, i.e.,

i_u ,'0+ O:u
-- + a-- - ,a-- = 0, (2.1)
i)t 3x &_c2

where the convection velocity a, and the viscosity coefficient

p, (>-0) are constants. Let +rj = x, and x, = t be considered as
the coordinates of a two-dimensional Euclidean space E,. By

using Gauss' divergence theorem in the space-time E:, it can
be shown that Eq. (2.1) is the differential R)rm of the integral
conservation law

h. ds = 0. (2.2)
M I I

As depicted in Fig. 1, here (i) S(V) is the boundary of an
arbitrary space-time region V in E:, (it) h = (au - bLau/ax, u)

is a current density vector in E:, and (iii) ds - d¢r n with &r

and n, respectively, being the area and the outward unit normal

of a surface element on S(V). Note that (i) h • ds is the space-

= (x, t)

= (dx, dt)+

., X

FIG. I. A surface element ds and a line segment dr on the boundary S( V )

of a w)lume V in a space-time E:.

time flux of h leaving the region V through the surface element

ds, and (it) all mathematical operations can be carried out

as though E, were an ordinary two-dimensional Euclidean

space.
At this juncture, note that the conservation law given in Eq.

(2.2) is lormulated in a form in which space and time are unified

and treated on the same footing. This unity of space and time

is also a tenet in the following numerical development, l/is a

key characteristic that distinguishes the present method./)+ore

most of the traditional methods.

Let 1_ denote the set of mesh points (j, n) in E: (dots in Fig.
2(a)), where n = 0, -+½, -+ 1, +a, +2, +_ ..... and, for each n,

j = n _+ ½,n -+ }, n + _..... There is a solution element (SE)

associated with each (j, n) (E D. Let the solution element SE(j,
n) be the interior of the space-time region bounded by a dashed

curve depicted in Fig. 2(b). It includes a horizontal line segment,

a vertical line segment, and their immediate neighborhood. For

the following discussions, the exact size of this neighborhood
does not matter.

For any (x, t) _ SE(j, n), u(x, t), and h(x, t), respectively,

are approximated by u*(x, t: .j, n) and h*(x, t;j, n) which we

shall define shortly. Let

u*(x, t; j, n) = u7 + (u,)i'(x - x;) + (u,)_'(t - t"), (2.3)

where (i) u}', (u,)_, and (u,)] are constants in SE(j, n), and (it)

(x,, t") are the coordinates of the mesh point (j, n). Note that

im*(x, t; j, n)
u*(:r,, t"; j, n) = u+,_, ii.r - (u,)',',

8u*(x, t: j, n)
- (u,)'/,

/)t

(2.4)

Moreover, if we identity u;', (u,)?, and (u,)?, respectively, with
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J- 3/2
I

At/2

&t/2 L,

--_- X

-1

Ax/2 _x12

j+l

j + 3/2

-- n+l

:-- n+1/2

-- I1

__ n-1/2

__ n-1

b c d

&t/2_!ii ..O.'n! B (j,n)(j,n) D

&t/ :" {i2 1._t.._.__i_ I......................... (j - 1,2,1_C C]_D(j + 1,2,

&x/2 Ax/2 n- 1/2) n - 1/2)

e f

(j -1/2, (j + 1/2,
n + 1/2) n + 1/2)

Q 2J
(j,n) (j,n)

FIG. 2. The SEs and CEs of lype I: la) The relative p{)sitionsof SEs and
CEs; (b) SE(j, n): It) CE (j, n): (d) CE+(j, hi; (e) C|:,.(j ½,n + ½):(f)
CE (j + ½,n + ½L

the values of u, &l/&r, and i_u/i_t at (x i, t"), the expression on
the right side of Eq. (2.3) becomes the first-order Taylor's

expansion of u(x, t) at (xj,t"). As a result of these considera-

tions, t4', (u,)}', and (u,)}' will be considered as the numerical
analogues of the values of u, Ou/&r. and Ou/at at (x, t"),

respectively.

We shall require that u = u*(x, t: j, n) satisfy Eq. (2.1)

within SE(j, n). As a result of Eq. (2.4), this implies that

(14t)l/ -- -- _l( II, )}', (2.5)

Because Eq. (2.3) is a first-order Taylor's expansion, the diffu-

sion term in Eq. (2.1) has no counterpart in Eq. (2.5). As a
result, the diffusion term has no impact on how u*(x, t; ,/', ,)

varies with time within SE(j, n). However, as will be shown

shortly, through its role in the numerical analogue of Eq.

(2.2), it does influence time-dependence of numerical solutions.

Note that, for a higher-order scheme, how u*(x, t: j, n) varies

with time within SE(j, n) will be influenced by, the presence

of the diffusion term. Combining Eqs. (2.3) and (2.5),
one has

u*(x, t: j, n) = u}' + (u,)'/l(x - xj ) - a(t t")],

(x, t) E SE(j, n).
(2.6)

Because h = (au - #Ou/&r, u), we define

h*(x, t: j, n) = (au*(x, t; j, n)

-/x&l*(.r, t: j, n)/&r, u*(x, t; j, n)).
(2.7)

Let E: be divided into nonoverlapping rectangular regions

(see Fig. 2(a)) referred to as conservation elements iCEs). As

depicted in Figs. 2(c) and 2(d), the CE with its top-right (top-
left) vertex being the mesh point (j, n) ¢ 1_ is denoted by

CE (.i, n) (CE_(j, n)). Obviously the boundary of CE (j, n)

(CE_(./, n)), excluding two isolated points B and C (C and D),
is formed by the subsets of SE(j, n) and SE(j - ½, n - l)

(SE(.i + ½,n ½)). The current approximation of Eq. (2.2) is

F. (j, n) d_,,_ h* • ds = 0 (2.8)
5r('l` I I,n3_

lbr all (j, n) E _. In other words, the total flux leaving the

boundary of any conservation element is zero. Note that the

flux at any interlace separating two neighboring CEs is calcu-

lated using the information from a single SE. As an example,

the interface AC depicted in Figs. 2(c) and 2(d) is a subset of

SE(j, n). Thus the flux at this interface is calculated using the

information associated with SE(./, n). Also note lhat an SE is

the interior of a space-time region. Thus the vertices B, C, and

D, strictly speaking, do not belong to any SE. As a result, h*

is not defined at these points. However, contributions to the
above integral from these isolated points are zero no matter

what values of h* are assigned to them. For this reason, one

may simply exclude them from the above surface integration.

Because the surface integration across any interl:ace separat-

ing two neighboring CEs is evaluated using the information

from a single SE, obviously the local conservation condition

Eq. (2.8) will lead to a global conservalion relation, i.e., the

total flux leaving the houri&try of any space-time region lhat

is the unhm of any combination of CEs will also vanish.

Because each S(CEJj, n)) is a simple closed curve in E2

(see Fig. 1), the surface integration in Eq. (2.8) can be converted

into a line integration. Let

g, ,l_,=t(_u,, au* -/xiiu*/i_x), dr a_ (dr, dt). (2.9)

Thus, dr is normal to ds and points in the tangential direction

of the line segment joining the two points (x,t) and (x + dx,

t + dt). Because ds =+_(dt, -dx) [l, p.141, we have
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h* • ds = _+g* • dr, (2.10)

where the upper (lower) sign should be chosen if the 90 ° rotation

from ds to dr is in the counterclockwise (clockwise) direction.

By combining Eqs. (2.8) and (2.10), one concludes that

F.(j, n) = g*-dr. (2. I I )
_, '[i .tirol)

Note that the notation c.c. indicates that the line integration
should be carried out in the counterclockwise direction. Substi-

tuting Eq. (2.6) into Eq. (2.1 1), and using the fact that the

boundary of a CE is formed by the subsets of two SEs, one has

4

(Ax): F+(j, n)

(')= _ 2 [(1 - v2 + _)(u,)i' + (1 v2 - _)(u,)771'/]l (2.12)

2(1 7- v)
+ A__(,'/- u" _':)j+ I;2 •

1 - v -(1 uz- _) '_Q d_j\,./(1) I u2 -(l + v)(l u:-_) .J
1- v2+_ 1 v2+_

(2.17)

Because numerical variables at a higher time level can be

evaluated in terms of those at a lower time level by using Eq.
(2.14), it defines a marching scheme. Furthermore, because

this scheme models Eq. (2.1) which is characterized by two
parameters (1 and _, hereafter it will be referred to as the

a-p_ scheme.

As a preliminary for future developments, we apply Eq.
(2.14) successively and obtain

q(j, n + I) = (Q+)2q(j _ 1, n)

+ (Q+Q + Q Q_)q(j,n)

+(Q )2q(j+ l,n) (l - u_+_:0).

(2.18)

A result of Eq. (2.18) is

q(j,n+ l)--_q(j,n) asAt---+0, (2.19)

where

d_taAt .._ 4k_At
v= A.--7" _ _" (2.131)

Note that (i) the parameter v is the Courant number, and (ii) a

more efficient method of flux evaluation will be presented later
in this section.

With the aid of Eqs. (2.8) and (2.12), u;' and (uO_' can be
solved in terms of tt_'_,_,:_and (u,)i'_;_ if 1 u_ + _ ¢ 0; i.e.,
for all SE(j, n),

q(j. n) = Q.q(j - ½,n - ½)

+Q q(j+½, n-½) (1- u2+5#0).
(2.14)

Here

q(j,n)= \ A "(x/4)(u,),l

for all (j, n) _ _, and

l-v:-_ )-(1 - v)(l- v 2-_)

l-v:+_

(2.15)

(2.16)

and

if a, #, and A.r are held constant. The proof follows from the
fact that

(Q+)2----_0, (Q+Q + Q Q_)-_ 1,

(Q)2___0 as Ate0,
(2.20)

if a, ix, and Ax are held constant.

Alternatively, Eq. (2.19) can be proved using the fact that

the total flux of h* leaving the boundary of any space-time

region that is the union of any combination of CEs vanishes.

Consider the union of CE.(j, n + 1) and CE.(j + ½,n + ½)

(see Fig. 2). This union is a rectangle with the vertices (j +
1

_,n + l),(j,n + 1), (j, n) and (j + ½, n).The flux leaving

this rectangle through its two vertical edges approaches zero
as At _ 0. Because the total flux leaving its boundary vanishes,

one concludes that the total flux leaving its two horizontal edges

also approaches zero as At _ 0. In other words, the flux entering
the rectangle through the lower horizontal edge approaches that

leaving through the upper horizontal edge as At --_ 0. Because

these two fluxes are evaluated using q(j, n) and q(./, n + 1),

respectively, the above limiting condition implies a limiting

relation between q(j, n) and q(j, n + I ). Similarly, by consider-

ing the union ofCE (j,n + 1)andCE_(j - ½,n + ½),one

obtains another limiting relation for q(j, n) and q(j, n + 1).

Equation (2.19) is a result of the above two limiting relations.

The a-/z scheme has several nontraditional features. They
are summarized in the following remarks:

(a) Space and time are unified and treated on the same looting
in the construction of the a-/_ scheme.



CONSERVATION-SOLUTIONELEMENT 301

(b)Theexpansioncoefficientsu'/and (u,)7 in Eq. (2.6) are
treated as independent variables; i.e., (u,)'/is not expressed in

terms of ui"s by using a finite-difference approximation.

(c) As a result of Eq. (2.12), each of the conservation condi-

tions F+(j, n) involves only numerical variables associated with

two neighboring SEs. This fact remains true for a scheme

of higher-order accuracy in which Eq. (2.3) is replaced by a

Taylor's expansion of higher-order. The contrast with the finite

difference method and its physical significance were dicussed
in Section 1.

(d) The a-/x scheme has the simplest stencil, i.e., a triangle

with a vertex at the upper time level and the other two vertices

at the lower time level. Equation (2.14), which relates numerical

variables at these vertices, was derived using the flux conserva-

tion conditions F.(j, n) = 0. Because the flux at an interface

separating two neighboring CEs is evaluated using information
of a single SE, no interpolation or extrapolation is required.

Moreover, accuracy of flux evaluation is enhanced by requiring

that u = u*(x, t: j, n) satisfy Eq. (2.1) within SE(j, n). This

makes the use of characteristics-based techniques less nec-

essary.

(e) The a-/,, scheme uses a mesh that is staggered in time.

As will be explained in Appendix A, for a two-level scheme

using such a mesh. e.g., the Lax scheme [12 p.97], generally

the numerical variable at (j, n + 1) does not approach that at

(j, n) as ,Xt ---+0, if a,/x, and Ax are held constant. This is a

key reason why the Lax scheme is very diffusive when the

Courant number v is small. According to Eq. (2.19), the a-p,

scheme is an exception to the above general rule.

if) Equation (2.1) can be solved numerically using the

Leapfrog/DuFort-Frankel scheme [ 12, p. 161 ]. This scheme is

reduced to the Leapfrog scheme [12, p.100] if diffusion is

absent (i.e., # = 0), and to the DuFort-Frankel scheme [12,

p.114] if convection is absent (i.e., a = 0). It is well known

that a solution of any of the above schemes is lbrmed by two

decoupled solutions with each being associated with a mesh

that is also staggered in time. Traditionally the yon Neumann
stability analysis for the above schemes is performed without'

taking into account this decoupled nature [12]. In Appendix A,

it is performed separately for each decoupled solution using

the mesh depicted in Fig. 2(a). It is shown that the amplification
factors of the Leapfrog/DuFort-Frankel scheme are

marching steps. The reason behind this definition is that the

mesh points at the time levels n and n + 1 are not staggered.

Let 1 - u"_:_ 0. Then the amplification factors G<2_ of the

current a-/.t scheme (see Eq. (6.9)) are identical to those given

by Eq. (2.21) except that the parameter (should be replaced
by _d_'t _/(1 - v2). Because (i) (= ,£:= 0 if,a = 0, and

(ii) u = 0 and thus __= __,if a = 0, one concludes that G'9 are

completely identical to those of the Leapfrog scheme if/x =
0, and to those of the DuFort-Frankel scheme if a = 0. These

coincidences are unexpected because the a-/x scheme and the

above classical schemes are derived from completely different

perspectives. Moreover, the a-/,t scheme is a two-level scheme

with two variables u7 and (u,)}+associated with the mesh point

(j, n), while the above classical schemes are three-level schemes

with a single variable u;' associated with the same point.

Because the amplification factors of the inviscid a-/x scheme

(i.e., the a-t* scheme with/.t = 0) are identical to those of the

Leapfrog scheme, the former, as in the case of the latter, is

neutrally stable (i.e., free of numerical dissipation) if v2 < 1.

Note that the case with/x = 0 and t,2 = 1 is ruled out by the

assumption 1 - t ,2 + _ ¢ 0 of Eq. (2.14). Similarly, the pure-

diffusion a-p, scheme (i.e., the a-tx scheme with a = 0), as in

the case of the DuFort-Frankel scheme, is unconditionally

stable. Furthermore, it is proved in Section 6 that the stability

of the general a-/x scheme, as in the case of the Leapfrog/

DuFort-Frankel scheme, is independent of t-t, and restricted

only by the CFL condition, i.e., v'- -< 1. The a-/x scheme is the

only two-leuel explicit scheme known to the author to possesss

the above properties. Also it will be shown later that the same

stability condition is retained by a natural 1D time-dependent

Navier-Stokes extension of the a-/x scheme.

Because stability of the a-/x scheme is restricted only by the

CFL condition, the stability bound for &t is proportional to Ax.

In contrast, the stability condition of a typical classical explicit

scheme generally is more restrictive than the CFL condition.

For a small mesh Reynolds number, the stability bound for At

is approximately proportional to (2x) 2 for the MacCormack

scheme [12, p. 102].
Because a neutrally stable numerical analogue of the pure

convection equation

Ou ilu
-- + a-- = 0 (2.22)
/_t ax

A+={l_[_cos(O/2)-ipsin(O/2)

_ + -- " " "9 _ _ _ "_2.+ V'[Ecos(O/2) lvsm(O/_)]- + I Eel
J

(2.21 )

Here 0, -n" < 0 -< rr [1, p.30], is the phase angle variatton per

Ax. Note that, in the present paper, the amplification factors
are defined to be those between the time levels n and n + 1,

i.e., they are the amplification factors of the solution after two

usually becomes unstable when it is applied to a nonlinear

inviscid generalization of Eq, (2,22), the inviscid a-# scheme
will be modified in Section 3 such that it can be extended

to model the Euler equations. In this new version, numerical

dissipation is introduced in a way that allows its magnitude to
be adjusted by a special parameter.

(g) The conservation relations for CE_(j - I, n + I) and

CE (j + I, n + I) (see Figs. 2(e) and 2(0) are

F+(j-l,n+1)=O, F+(j+½, n+1)=0, (2.23)
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respectively. Combining Eqs. (2.12) and (2.23) and assuming

1 - uz _# O, onehas

q(j, n) = ().q(j + ½,n + ½)

+(_ q(j-½, n+½) (l - l; - E# ()).
(2.24)

Here

1 + v -(1 uz+_) '_0. d_.j\,,(l) 1-u2 -(I-v)(l-u3+ _E),J
l-u -_-.E l-u -_-.E

and

(2.25)

(4)( l-t, 1-,,:+_ )
0

uL.j\../ (l-t,-') -(l +u)(lT_u:+,) . (2.26)
I - _,:- sc I - v2- __

Equation (2.24) defines a backward marching scheme, i.e., the
numerical variables at the time level n are determined in terms

of those at the time level 01 + ½). Recall that both the forward

marching scheme Equation (2.14) and the backward marching

scheme Eq. (2.24) are derived using the same set of conservation

relations. As a matter of fact, Eqs. (2.14) and (2.24) are equiva-
lent if (1 - _,-'): _ (()e is assumed. For the above reason, the

a-/x scheme may be referred to as a two-way marching scheme.

For the case/.t > 0, it will be proved in Section 6 that the a-/x
scheme cannot be stable for both the lorward and the backward

marching directions, except lot the singular case u2 = 1 which

is also on the threshold of instability. Thus, for all practical

purposes the viscous a-_ scheme is irreversible in time. On
the other hand, it is neutrally stable for both the forward and

backward marching directions, and thus is reversible in time,

if/x = 0. and t,_ < 1. Again, the a-/z scheme is the only two-

level explicit two-way marching scheme known to the author.

(h) Several invariant properties of Eq. (2.1) with respect to

space and time are discussed in 121. In the same paper, these

properties are also defined for the numerical analogues of Eq.

(2.1). It is also shown that the neutral stability of several finite-
difference analogues of Eq. (2.22) can be established by using

their invariant properties with respect to space-time inversion.

Because solutions of Eq. (2.22) do not dissipate with time, it

is not surprising that solutions of a numerical analogue also

will not dissipate with time, i.e., the scheme is neutrally stable,

if it shares with Eq. (2.22) some space-time invariant properties.

It will be shown in a future paper that the a-p, scheme sh/_res

with Eq. (2.1) the same space-time invariant properties. Also

note that these invariant properties are closely linked with the

other properties discussed in (a), (e), (f), and (g).

This completes the discussion on nontraditional features of

the a-/z scheme. In the following, it will be shown that this

scheme can also be constructed from a completely different

a
j-1 i j+l

 !n.1n +112

n

n - 112

n-1

Axl2 Ax/2

b c

,_x/2 Ax/2

d
A

c -!!!."i

FIG. 3, The SEs and CEs c.+l+type I1: {a_ The relati,,e positions of SEs and

('Es: [b) SE(j, n): (c) CEfj, hi; (d) Three neighboring CEs.

perspective. As a part of this construction, SEs and CEs of

different types will be used and discussed.

In the new construction, the locations of mesh points (dots in

Fig. 3(a)) are identical to those used in the original construction.

However, SE(j, n) is defined to be the interior of a rhombus

centered at (j, n) (see Fig. 3(b)). CE(j, n) is the union of

SE(j, n) and its boundary. Readers are warned not to confuse

the sides of the rhombus with the characteristics of Eq. (2.22).

Any one of these sides is simply a line segment joining two

points of intersection (not marked by dots) of horizontal and

vertical mesh lines. For any (x, t) _ SE(j, n), u(x, t) and h(x,

t), respectively, again are approximated by u*(x, t; j, n) and

h*(x, t; j, n) which are defined by Eqs. (2.3) and (2.7}, respec-
tively. However, Eq. (2.5) will be derived from a consideration
of flux conservation.

Let Eq. (2.2) be approximated by

h*. (Is = O, (2.27)
J SCV*I

where V* is the union of any combination of CEs. Because an
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SE is the interior of a CE, h* is not defined on S(V*), the

boundary of V*. As a result, the above surface integration is
to be carried out over a surface that is in the interior of V*

and immediately adjacent to S(V*). A necessary condition of

Eq. (2.27) is that, fl)r all (j, n) E {L

Cs,c_,;,,,, h*. ds = O: (2.28)

the numerical solution uniJormly satisfies the differential.form

of the conservation law Eq. (2.2).
With the aid of Gauss' divergence theorem, Eq. (2.30) im-

plies that the surface integration of h* over any closed surface

located within any SE vanishes. As a result,

Cs_:,Anc/h*.ds=0, ¢,s_vH.c h*.ds=0, (2.31)

i.e., the total flux leaving any conservation element is zero.

Note that the center of a current SE no longer sits on an

interface separating two CEs. It coincides with the center of a

CE. Thus h* at one side of an interface is evaluated using
information from one SE, while that at the other side is evalu-

ated using information from another SE. As an example, h* at

BC and B'C' depicted in Fig. 3(d), respectively, are evaluated

using information from SE(j, n) and SE(j - ½,n - ½). Another

necessary condition for Eq. (2.27) is the equality between the

fluxes entering amt leaving any intep?/bce. This can be seen by

applying Eq. (2.27) separately to two neighboring CEs, and then
to their union. Obviously the local flux conservation relations at

all interfacs, and within all CEs (i.e., Eq. (2.28)) are equivalent

to the global conservation relation Eq. (2.27). The equations

representing the above conservation conditions are the numeri-

cal equations to be solved. Note that, in the current construction,

a flux is not preassigned at an interface using an interpolation

or extrapolation of information from both sides of this interface.

The present method of interlace flux evaluation obviously is
different from that used in the finite volume method which was

discussed in Section I.

By using Eqs. (2.3) and (2.7), one concludes that, fi)r any

(x, t) _ SE(j, n), the divergence of h* in E: is

V. h* d<ti#[au*(.r, t; j, n) - #z/Ju*(x, t; j, n)/0x]
f)X

+ Ou*(x, t j, n) (2.29)
at

= a(ud_' + (u,)7.

where the triangles AABC and Z_A'B'C' are those depicted in

Fig. 3(d). Because the net flux of h* entering an interface from

both sides vanishes, the sum of the flux leaving CE(j, n) through

BC and that leaving CE(j - ½,n - ½) through B'C' vanishes.

Thus, Eq. (2.31) implies that F (j, n) - 0, where F (j, n) is

defined in Eq. (2.11). Similarly, it can be shown that

F.(j, n) - O.

Assuming Eqs. (2.3) and (2.7), it has been shown that both

Eqs. (2.5) and (2.81)can be derived using Eq. (2.27). Conversely,

Eq. (2.27) also follows from Eqs. (2.5) and (2.8). Obviously

both the fl)rward marching scheme Eq. (2.14) and the backward

marching scheme Eq. (2.22) can also be obtained by assuming

Eqs. (2.3), (2.7), and (2.27).
Note that the equivalence between Eq. (2.27) and the pair

of equations Eqs. (2.5) and (2.8) hinges on the fact that

V. h* - 0 within an SE of either type I or type II. As will be

shown immediately, this condition can be used to simplify

evaluation of the flux across a simple curve that lies entirely

within an SE of either type.

According to the top expression given in Eq. (2.29),

V.h* = 0 implies that there exists a function qJ*(x, t; j, n)
such that

ads(x, t; j, n) /tu*(x, t; j, n)
- au*(x, t; j, n) - tx

iIt Ox
(2.32)

and

Ot_(x, t; j, n)
_t

- u*(x, t; j, n) (2.33)

Because (u,)'/and (u,)'/are constants within an SE, Eq. (2.29)
implies that V. h* is also a constant. Thus Eq. (2.28) coupled

with Gauss' divergence theorem implies that, within any SE,

V- h* = 0. (2.30)

Equation (2.5) is a direct result of Eqs. (2.29) and (2.30).

Note that Eq. (2.30) tol[ows from Eq. (2.28) because u*(x,

t; j, n) defined in Eq. (2.3) is a first-order Taylor's expansion

For a higher-order expansion, the condition that Eq. (2.30)

being valid uniformly within an SE is stronger than Eq. (2.28)

For the general case, the stronger condition should be imposed.

Because Eq. (2.30) is the numerical analogue of Eq. (2.1), the

imposition of the stronger condition ensures that, within an SE,

for any (x, t) E SE(j, n). Substituting Eq. (2.6) into Eqs. (2.32)

and (2.33), one concludes that, up to an arbitrary constant,

g,(x, t;j, n) - (u')}' {[(x -xi) - a(t - t'gl-'
2

+ 2ix(t - t")} - u'/[(x - x,) - a(t - r')].
(2.34)

Moreover, with the aid of Eq. (2.9), Eqs. (2.32) and (2.33)

imply that

g* .dr = dO. (2.35)

Let (x, t) _ SE(j, n) and (x', t') E SE(j, n). Let F be a simple
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(x', t_

(x, t)

FIG. 4. A simple curve F joining Ix, t) and (.v', t').

curve joining (x, t) and (.r', t'), and lying entirely within

SE(j, n) (see Fig. 4). Then Eqs. (2.10) and (2.35) imply that

f h*. ds to(.r', " " n) - to(x, t: j, n). (2.36)= t,J,
1"

Here we assume that ds points to the right of F if one moves

forward from (x, t) to (x', t') (see Fig. 4). Equation (2.36) states

that the flux of h* across the curve F is given by the difference

in the values of tOat its two end-points. For this reason, to(x,

r, j, t2) will be referred to as the potential function associated

with SE(j, n). Obviously, Eq. (2.12) can be obtained using

Eq. (2.36).
Note that a generalized a-/x scheme with a moving mesh

was constructed in 11 ]. This scheme is reduced to the present

a-,a scheme when the mesh becomes stationary. In [1], the

generalized scheme is subjected to a thorough theoretical and

numerical analysis on stability, dissipation, dispersion, consis-

tency, truncation error, and accuracy. It is shown that it has

many advantages over the MacCormack and the Leapfrog/

Dufort-Frankel schemes. Particularly, by using a new discrete

Fourier error analysis, it is shown that the generalized scheme

is more accurate than the Leapfrog/DuFort-Frankel scheme

by one order (in a sence defined in [I ]) in both initial-value

specification and the main marching scheme. Other key results
of Ill are summarized in the following remarks:

(a) For the generalized scheme, (i) stability and accuracy

can be improved, and (ii) dissipation and dispersion can be

reduced, if the space-time mesh is allowed to evolve with the

physical variables such that the local convective motion of

physical variables relative to the moving mesh is kept to a
nfinimum.

(b) For a numerical analogue of Eq. (2.22) that has both

principal and spurious amplification factors, a numerical solu-

tion with periodic boundary conditions is the sum of a principal

solution and a spurious solution [1, p.32]. Only the principal
solution contributes to the accuracy of the scheme. Note that

(i) the behaviors of the principal and the spurious solutions as
functions of time are determined by the principal and spurious

amplification factors, respectively; (ii) both two amplification
factors of the present inviscid a-/.t scheme are of unit magnitude;

and (iii) given an accurate initial-value specification, the spuri-

ous solution at t = 0 generally is very small compared with the

principal solution. As a result, the spurious solution of the

present a-/_ scheme generally is negligible. Furthermore, for

the inviscid a-# scheme, it is shown that [1, pp. 36-37] (i) the

principal solution has no dispersion if v = 0 or in the limit of

_,:---_ 1; and (ii) each Fourier component of the principal solution

has a convection velocity not more than a and not less than

(2/_')a for all phase angles and v2 < 1. In other words, the

dispersion associated with ttre inviscid a-# scheme is small

compared with that associated with a O'pical finite-difference
scheme.

In conclusion, a model scheme has been constructed from

two different perspectives using SEs and CEs of different types.

Using either perspective, one can say that a mmwrical solution

generated using the current framework satisfies (i) the differen-

tial Jorm o.f the conservation law uni/ormly within an SE, and

(ii) the integral form over any region that is the union of any

combination of CEs. The second perspective that used the SEs

and CEs of type II depicted in Fig. 3 was used in the initial

development of the present method [ 11. In addition, it also was

adopted to develop several new solvers for the 2D steady,

incompressible Navier-Stokes equations 14, 9-111. However,
in these new solvers, the CEs and SEs depicted in Fig. 3 are

replaced by CEs and SEs of rectangular shape in the 2D spatial

computational domain. It was shown that, for a laminar channel

flow with Re_. = 100, an accurate solution can be obtained by

using as few as six SEs across the channel.

Because (i) the first perspective is easier to use in constructing

explicit schemes, and (ii) the schemes to be discussed in the

present paper are exclusively explicit, the first perspective will

be adopted in the present paper hereafter.

3. THE a-e SCHEME

The inviscid a-/x scheme is neutrally stable and reversible

in time. It is well known that a neutrally stable numerical

analogue of Eq. (2.22) generally becomes unstable when it is

extended to model the Euler equations. It is also obvious that

a scheme that is reversible in time cannot model a physical

problem that is irreversible in time, e.g., an inviscid ltow prob-

lem involving shocks. In this section, we assume /x - 0 and

attempt to modify the inviscid a-ix scheme such that it can be

extended to model the Euler equations.

The current path of development is almost identical to that

given in Section 2. We continue to assume Eqs. (2.3)-(2.7),

and use SEs of type I depicted in Fig. 2. In addition to/x = 0,

the only other modification is the replacement of the assumption

F-(j, n) - 0 by

F:(j, n) = _+e(l - 4vz)(::.kx)-'(du,)'/, (3.1)

where e is a parameter independent of numerical variables, and
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(du,)ia_.t1 ,, i,,2 ,, h,2" = (U, b ,,' ] ("7' _'"¢--- U"(:)[(u,)i+,/: + _ ,_ , ,','_7)/_x. (3.2)

In other words, we add two terms of the same magnitude but

with opposite signs, respectively, to the right sides of the origi-

nal conservation conditions F+(.j. ,1) = 0 and F (j, ,1) = 0.

The beauty of this modification will be fully explained later in

this section. For now it suffices to say that this modification

injects a higher-order finite-difference error into the inviscid

a-/x scheme. It breaks the space-time symmetry of the latter.

In turn, numerical dissipation is introduced as a result of this

symmetry breaking. Because the magnitude of the terms added

in this modification is controlled by e, numerical dissipation

is controlled by e in the modified scheme just as physical

dissipation is controlled by,/x in the a-/x scheme. Note that, as

a result of Eq. (3.1) and the assumption /x = O, the modified

scheme is characterized by two parameters a and e. Thus,
hereafter it will be referred to as the a-e scheme. Also note

that, because there is no upwind bias in the a-a scheme, upwind

bias is not the source of numerical dissipation. Additional

remarks on Eqs. (3.1) and (3.2) are:

(a) By definition, F.(j, n) and F (j, n) represent total fluxes

leaving CE+(j, n) and CE ,.j, n), respectively (see Figs. 2(c)
and 2(d)). Because F4j, n) ¢ 0 if e ¢ 0, CE. (j, n) and CE (j,

n) generally are no longer conservation elements in the
a-e scheme.

(by Let CE(j, n) be the union of CE+(j, n) and CE (j, n)

(see Fig. 5(by). Note that this definition of CE(j, n) diffbrsfrom

that given in Section 2 and depicted in Fig. 3(c). Let

F(j, n) de/ f h :#'.ds. (3.3)

Because the net flux entering the interface separating CE_

(j, n) and CE (j, n) is zero. F(j, n) is the sum of F_(j, n)

and F (j, n). With the aid of Eq. (3.1), we have

F(j, n) = F.(j, n) + F (j, n) - 0; (3.4)

i.e., the total flux leaving CE(j, n) vanishes. As a result, CE

(j, n) is a conservation element in the a-e scheme. Note that

Eq. (3.4) leads to a global conservation relation in the form of

Eq. (2.27), where V* is the union of any combination of these
new CEs.

(c) Because s¢: = 0 if/, = 0, Eq. (3.4) coupled with Eq.

(2.12) implies that

(d) Because (u,)}Lll/_ is a numerical analogue of Ou/ax at

(j + ½,n - ½), the simple average

(½)1(.,);', ,_,,"3+ (.,);' ,';:21

is a numerical analogue of iiul&r at (j, n - ½), the midpoint

of a line segment joining (j + ½, n - ½) and (j - ½, n - ½)

(see Fig. 2(a)). Note that (.j, n ½) ¢ [_ if (j, n) ¢ _. Also
note that

(.;'+_7_ .'/,'..'_)/..Xx

is a central-difference analogue of au/ax at (./, n - ½). Thus,

(du,)i' represents the difference of two mlmerical amdogues of
au/&r at the same mesh point (j, n - ½). By using Taylor's

expansion at (.j, n - ±)2. it can be shown that (du, F'=

O[(Ax)2], if (u, )'/+,'/,: are identified with 8u(.ri.,,,,_, t" '":)l&r,

respectively. Hereafter a quantity is denoted by O[(Ax/] if
there exists a constant C > 0 such that the absolute value of

this quantity, -<C IA.x]' for all sufficiently small {&r]. Note

that we have constructed an expression of O[(.-Yr) 2] without

explicitly introducing the factor (Ax) 2.This natural construction

leads to the simple stability conditions to be given in Eq. (3.14).

It is possible only because there are two discrete variables

u'/and (u,)'/ associated with the mesh point (j, n).

(e) Equation (3.1) could have been written as F.(j, n) =

+s.'(du, )'/with e' = e( 1 - p:)(kx)2/4. However, this simplified

expression would lead to much more complicated equations
later.

This completes the discussion of Eqs. (3.1) and (3.2). Now,

let 1 - p_ # 0. Then Eqs. (2.12), (3.1), and (3.2) can be used

to obtain the current counterparts of Eqs. (2.14) and (2.18).

They are

q(j,n) =M,q(j- _,1n -±)2

+M q(j+½, n ½) ( I - p2 _a 0)
(3.6)

and

q(j, n + 1) = (M.)2q(j _ 1, n)

+ (M_M + M M_)q(.j.n)

+(M ):q(j+ I,n) (1 - v 2:_0),

(3.7)

= p)u:+ ,2 ]u" [( 1 + v)uy'511/?+ ( l - ,, ,2

Ax(I u2)
)_ 12 - (u,)i.i,_,].4- 8 [(14i ,, 112 ,, I/2

(3.5)

respectively. Here

<'_' , (i: +pM+ = (_) - 1
I -- U 2

J2_-:- l+p
(3.8)

Thus, u'/is independent of e. and
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= (3.9)
e 2u-- 1

Obviously, M_ - Q_ if e = 0 and c = 0. Furthermore, the

limiting condition given in Eq. (2.19) is still valid if we assume
that e = e(At) and lima,_, e(At) - O. However, unlike the a-

/z scheme, the a-e scheme is not a two-way marching scheme

ife _ O.

Equation (3.6) represents a pair of equations. The first is Eq.

(3.5). With the aid of Eqs. (2.5) and (2.13), the second equation

can be expressed as

(u,)i' = (uj+_,,'" uj',',j2)/Ax + (2e - l)(du,) i." (3.10)

Here

,,, a_.. ,, ./2 (3.11)u,_ I,'._= u,_l_., + (At/2)(u,)i'_ _J-'"1/2 .

i.e., u_".¢2 is a first-order Taylor's approximation of u at (j +
½,n). Thus, the expression on the right side of Eq. (3. I0) is the

sum of a central-difference approximation of Ou/Ox at (j, n)

and the extra term (2,: - l)ldu,)i '. Because (du,)_' = O[(Ax)2l,
the presence o1"this extra term will not lower the order of

accuracy of the entire sum as an approximation of i_u/i_x at

(j, n). Also note that this extra term vanishes when e = ½

while the term associated with (du,)'_' in Eq. (3.1) vanishes
when e - O.

Next we shall study the influence of e on the stability and
numerical dissipation of the a-e scheme. Let G_? and G '2_be

the principal and spurious amplification factors of the a-e

scheme, respectively. Then, it will be shown in Section 6 that

G'?'= [h_(e, u, 0)1:, (3.12)

by comparing Eqs. (2.21), (3.12), and (3.13) with _ 0 and
e = 0.

Also, we have

A,( 1, u, 0) = cos(0/2) - iusin(O/2). (3.15)

Thus, G_ _= G!?_when e = 1. Moreover, it is shown in Appen-

dix A that the coalesced amplification factor is identical to that

of the Lax scheme. Note that, like the Leapfrog scheme, a

solution of the Lax scheme is also composed of two decoupled
solutions with each being associated with a mesh that is stag-

gered in time. However, because the Lax scheme is a two-level

scheme, it does not have a spurious amplification factor.
Thus, at one extreme, i.e., when e = 0, G_3) become the

amplification factors of the Leapfrog scheme, which is free of

numerical dissipation. At another extreme, i.e.. when e = 1,
G'_ _and G _:_coalesce into one and it becomes the amplification

factor of the Lax scheme, which is notorious for its large diffu-
sive errors. From the above observations, one may infer the

conclusion that will be established shortly, i.e., the a-e- scheme

becomes more diffhsive as the value q['_ increases. Note that,

because the l.xlx scheme is ve O, diffusive and uses a mesh that

is staggered in time, a two-level scheme using such a mes'h is

usually associated with a highly d_ffi_sive scheme [271. The
a-e scheme demonstrates that it can also be a scheme with no

diffusive error!

As a result of Eq. (3.14), the expression under the radical

sign in Eq. (3.13) is nonnegative. Thus, it can be shown that

= 0)I -IG'_'I X:(e, v, e{(l 1,,2)sin:(0/2) + 2 cos(0/2)

× [(1 - ,:) cos(0/2) (3.16)

¥ V'(I - e)[(1 - e) cos-_(0/2) + (1 - v 2) sin-_(0/2)l]}.

with

a.(e, v, 0) d_,= c cos(0/2)- iusin(O/2)

+ V(I - e)[(l - e)cos:(O/2) + (1 - u:)sin2(O/2)].
(3.13)

Also it will be proved that

0--<e<- I and v-'<l (3.14)

are necessary and sufficient conditions for the stability of the

a-e scheme. Thus, Eq. (3.14) will be assumed in the remainder
of this section.

It was pointed out in Section 2 that the amplification factors

of the Leapfrog scheme are identical to those of the inviscid

a-/x scheme. Because the latter scheme is a special case of the
a-e scheme with e = 0, G? _become the amplification factors

of the Leapfrog scheme when e = 0. This fact can be reverified

Because solutions to the physical equation Eq. (2.22) do not

dissipate with time, a numerical analogue to Eq. (2.22) is said

to be free of numerical dissipation if its solutions also do not

dissipate with time, i.e., its amplification factors are of unit

magnitude. As a result, numerical dissipation of the a-e scheme

may be measured by 1 - ]G'?_t, i.e., X-(e, v, 0). Obviously the

a-e scheme is free of numerical dissipation if e = 0. Also, by

using Eqs. t3.14) and (3.16), it is shown in Section 6 that, for

all 0with -Tr < 0--<- n-, and all e and t, satisfying Eq. (3.14),
we have

0 <--X+(e, v, 0) + 4e(l - e) cos2(0/2)

-< X (e, u, 0) -< min{ I, 4,:}
(3.17)

and

O<-X,(e, u, 0)-< e(1 - uZ)sin2(O/2). (3.18)
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ThesignificanceofEqs.(3.17)and(3.18)isdiscussedinthe
tollowingremarks:

(a)Notethat(i)thebehaviorsoftheprincipalandthespurious
solutionsofthea-e, scheme are determined by its principal and

spurious amplification factors, respectively; and (ii) because

0 - e(I - _-) if() -< e -< 1, Eq. (3.17) implies that X.(e, v,

0) -< X (e, v, 0). Thus, the spurious solution will not dissipate

more slowly than the principal solution. Let e be not too close

to 0 or 1. Then Eq. t3.17) also implies that the Fourier compo-

nents of the spurious solution with smaller 101i.e., longer wave-

length, will dissipate much faster than those of the principal

solution. In other words, the spurious solution will rapidly

disappear from the long-wavelength components of a numerical

solution. Note that X (½, v, 0) = 1. Thus, the long-wavelength

components of the spurim_s solution are annihilated almost

completely in a single time step i]'e = ½, i.e., if the last term

in Eq. (3.10) is dropped.

(b) The upper bound of X+(e, v, 0) given in Eq. (3.18) is

proportional to sine(0/2). As a result, the long-wavelength Fou-

rier components in the principal solution are nearly free of

numerical dissipation. On the other hand, short-wavelength

components may decay rapidly.

(c) For a fixed e, Eq. (3.18) implies that the principal solution

is more diffusive lbr a smaller Iv{. How to compensate this

effect is a subject to be discussed in Section 7.

(d) Equations (3.17) and (3.18) imply that, for all v with
_r" < 1 and all O with -r; < O --< rr, we have

In nonlinear flow solutions, e.g., shock-tube solutions to be

discussed in Section 7, analogues of v are dependent on local

velocity components. Thus, they may vary from one location

to another. Also, at some neighborhood, the Fourier spectrum

of the local solution may have peaks spread over a wide range

of 0. Thus, lbr a numerical analogue of Eq. (2.22), a large

variation in numerical diffusivity with respect to Oand v gener-

ally means that numerical solutions obtained using its nonlinear

extensions will suffer annihilations of sharply different degrees
at different locations and different 0. Such selective annihila-

tions may cause large distortions of numerical solutions [251.

This completes the discussion of stability and numerical
dissipation. Other key subjects, i.e., consistency and the trunca-

tion error, are discussed in Section 7 of [5].
In conclusion, the a-e scheme has been constructed to solve

Eq. (2.22). It has the unique property that numerical dissipation
can be controlled by a parameter e. Because neither characteris-

tics-based Wchniques nor knowledge about the upwind direc-

tion is used in the construction q[" the a-e scheme, as will be

shown in the next section, it can be easily extended to model

the Euler equations.

4. THE EULER SOLVER

We consider a dimensionless form of the I D unsteady Euler

equations of a perfect gas. Let p, v, p, and y be the mass

density, velocity, static pressure, and constant specific heat

ratio, respectively. Let

O<--X,(e,u,O)<--,', O<--X (a,v,O)_min{I,4e}, (3.19)

which, according to Eq. (3.16), is equivalent to

1-e<-IG_'[<-l, 1-min{I,4e}<-[G':'f<-l. I3.20)

As a result, by choosing e small enough, both IG':_'I and IG_:'I

can be confined within an arbitrarily narrow range. As noted

previously, the spurious part of a numerical solution generally

is insignificantly small assuming a smooth initial condition. It

does not contribute to accuracy and usually dissipates faster

than the principal part. Thus, our primary concerns is how the

principal part dissipates. From Eq.(3.20), one concludes that,
for any e with 0 < e < 1, IG_'I will be bounded untformly

from below by a positive number 1 - e for all r, with v' < 1

and all 0 with -r/ < 0 <- 7r. By choosing an e of proper

magnitude, one can suppress artificial mtmerical oscilhaions

without causing large diffusive errors for any combination _?]"

rand O.This fact contrasts sharply with what one expects from

typical classical schemes which are usually' very diffusive with

respect to certain rand 0, while not at all with respect to other

v and 0. As an example, we consider the Lax-Wendroff scheme

[12, p. 101 I. Its amplification factor is of unit magnitude, fi)r

all 0 at v = 0, or u = I. On the other hand, the amplification
factor=0if ve = ½and 0 = rr.

and

II I = p, u: = pv, m = pl('y- l)+(½)pv 2, (4.1)

.f_ = u_,, (4.2)

.fi = (Y - 1)m + (½)(3 - 'y)(uS-/ul, (4.3)

f_ = yu,_m/ul - (½)(Y - l)(u_)7(ul):. (4.4)

Then the Euler equations can be expressed as

au,,, i!l;,,
--+--=(), m= 1,2,3. (4.5)
,at `ax

The integral form of Eq. (4.5) in space-time Ez is

_._I__ ds = 0, = 1,2, 3,h,,' (4.6)m

where h,,, = (f,, u,,,), m = 1, 2, 3, are the space-time mass,

momentum, and energy current density vectors, respectively.

As a preliminary, let

f,,_ _ i!l;,,/auk, m, k = I, 2, 3, (4.7)
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and let F be the matrix formed byf,,_, m, k = I, 2, 3. Let c

be the sonic speed. Moreover, for any numbers a,, a2 ..... a,,,

let diag(a,, a.,..... a,) denote the diagonal matrix with al,

a: ..... a, being the diagonal elements on the first, second .....

and nth rows, respectively. Then there exists a 3 × 3 matrix
G such that

G _FG = diag(v v - c,v + c), (4.8)

where (; _ is the inverse of G. Note that v, c, F. G, and G-

are functions of u,,,. m = I. 2. 3. These functions are given

explicitly in [51.
Consider SEs of type l depicted in Fig. 2. For any (x, t)

SE(j, n). u,,,(x, t). f,,(x, t), and h,,,(.t, t) are approximated by

u;i;(x, t'. .i, u). f,*(x, t: j, n). and h2_(.r, t; j. n). respectively. They

will be defined shortly. Let

.,*(x. t; j, n)%' (,,,,)',' + (u.,,)_'(x -xi)

+ (u,.,);'(t - t"). m = 1,2.3,
(4.9)

where (,,,,)'/, (u,,,)y. and (u,,,,)'/ are constants in SE(j, n). Obvi-
ously, they can be considered as the numerical analogues of

the values of u,,,, au,./ax, and Ou,,,/i_t at (xj, r'), respectively.

Let (f,)i' and (.1;,,_)7denote the values off,, and f,,.k, respec-

lively, when u,,. m - 1.2, 3. respectively, assume the values

of (u,,,)'/, m = I. 2. 3, Let

(f,,,)i'_L_=t_(f,,.i)'/(U_,)',L m = 1,2.3. (4.10)

and

t dc(f,,,)'¢ =_(f,,x)7(u_,)iL m = 1.2.3. (4.11)

Because

--= t; _-- (4.12)
&r ___ ' ,:Lr

Because h,,, = (];,. u,,), we also assume that

h,*(x, t; j, n) = LL*(x, t: j, n), u*(x. t: j. ,)),

m = I "_ 3.
(4.15)

Note that, by their definitions: (i) (fm)'/and (f,,_)'/, m = 1, 2, 3,

are functions of (Um)_',m = I, 2. 3; (ii) (fnd'}, m = I, 2. 3, are

functions of (u,,,)'/ and (u,_JT, m = 1, 2, 3; and (iii) (f,,,)_' are

functions of (u,,,)'/ and (u,,,)'/, m = I, 2, 3.

Moreover, we assume that, for any (x, t) E SE(j, n), u,,, =

u*(x, t: j, n) andf, = f,*(x, t: j, n) satisfy Eq. (4.5): i.e.,

Ou*(x,t; j,n) " *qf,,, iv, t; j, n)
+ - 0. (4.16)

According to Eqs. (4.9) and (4.14), Eq. (4.16) is equivalent to

(u,,,,).... (f,,,)'/. (4.17)

Because (f,,.,)'/ are functions of (u_)'_'and (u,,,)'/, Eq. (4.17) im-

plies that (u,,,)'] are also functions of (u,,,)j' and (u,,O}L From this
result and the facts stated following Eq. (4.15), one concludes

that the only independent discrete variables needed to be solved

in the current marching scheme are (u,,,)j' and (Um,)y

From Eq. (4.16), one concludes that the generalization of

the potential function q_(x. t; j, n) introduced in Section 2 to

the current solver are 0,,(x, t; j. n). m = 1,2, 3, which satisfy

aLO,,,(x,t; j, n)

_t
- f,*(x, t; j. n) (4.18)

and

0t),,,(x, t; j, n)

_X
- u*(x, t;j, n). (4.19)

Substituting Eqs. (4.9) and t4.14) into Eqs. (4.18) and (4.19),

and using Eq. (4.17), one concludes that, up to an arbitrary con-
stant,

and

;!L, _ auk-- = _' _7;7'Ot t t
(4.13)

q_,,(x, t; j, n) = (f,,l;'(t - r') - (u,,,)'/(x -x,)

+ (1)(f,,,,,)_'(t t")'- ' "-- - (_)(u,,,, ), (.t - .r_):

+ (j;,,)%_ -x,)(t - t").

(4.2O)

(f,,,)7 and (f,,,)_' can be considered as the numerical analogues
of the values of al,,/Ox and ;![;JOt at (.r_, t"), respectively. As a
result, we assume that

•_< . ' n./,,,(._t.t;j, n) = (J,,,)i + (f,,,);'(x -X )

" ""it - t"), = _,+ (J,,,)it m 1.9 3.
(4.14)

By using an argument similar to that leading to Eq. (2.36), one
concludes that

f = ' t,j,h*.ds _O,,,(x, " " n) - tb,,,(x, t; j, n). (4.21)

Here F is a simple curve joining (x, t) and (x', t'), and lying



CONSFR VATION-SOLUTION EI.EMENT 309

entirely within SE(j, n). We also assume that ds points to the

right of F if one moves forward from (x, t) to (.r', t').
As in the a-e scheme, we assume that the flux of h,* is

conserved over CE(j, ii), i.e.,

marching scheme presented in [3] ix formed by Eqs. (4.24) and
(4.28) with e = ½.

To construct a larger class of generalizations to Eq. (3.10),
fc)r all (j', I/) E IL let

h_iY.ds = (1. (4.22) (u,,,)_ d_.__ql W-iF.-'= :,it ,,,,_ i._,+ (u,,,L iI/.,-'], m = 1, ,,"_3. (4.29)

Combining Eqs. (4.211 and (4.22), one has

&,(x i - Ax/2, t': j, n) - &,(x, + Ax/2, t"; j, n)

+ _b,,_(x,,,= + At/2, t" J_::j - 3, n 3)

- t" ": + All2: j - ½,n - _-)4',,,(xi I,-', 2 (4.23)

+ G,(x_.,,:. t" t.., + At�2; j + ½,n - ½)

- &,,(r..l__, A.r/2, t" i_ •- -;.1 + ½,n - ,_) = 0.

Substitution of Eq. (4.20) into Eq. (4.23) yields

(u,,,)'] = ½](u,,,)7 J[/7+ (u,,3;'. j_ + (s,,,)'/ _n,_i_- (s,,,)'/, _,:_1, (4.24)

where, for all (j, n) E [L

dcl _t.r At ,1

(s,,,);'= 74 (.,,,,);'+ _.. LI;,,)/
(4.25)

+ (,at)-' (f,,,);, m = l, 2, 3.
4At

Equation (4.24) forms the first half of the current marching

scheme. The second half which solves (u,,,,)'/ will come from

a generalization of Eq. (3.10).

For all (j, n) _ _. let

Let (g:,,,)_',m = I, 2, 3, be parameters that can be functions of
(/i,,,)'/, m = 1,2.3. There can be many choices of these functions.

Let (,_,,,_)'/be the value of the (m, k)-element of the matrix G
when u .... m = 1, 2, 3. respectivcly, assume the values of

(/i,,,)'/, m = 1. 2, 3. Similarly, let (,_,d)'/ be the wdue of the

(m, k)-element of the matrix G ' when u,,,, m = I, 2, 3, respec-

tively, assume the values of (h,,)'/, m = 1, 2, 3. Let

,g,,,O_t._bt,t_ta _, m, k 1 "_ 3. (4.30)
t 1

Then Eq. (3. I0)can be generalized an

pr i pt t n , .(u,,,)i = [(u,,,)i. t,2 - (u,,,)_ t.,2l/A._

+ [,(e,,,_)_ - 6,,,_](du_,)r,

(4.31)

where m = l, 2, 3, and _,,_ ix the kronecker-delta symbol.

Consider the special case in which, for all (./. n) _ [L

(gq)'/= (__,)','= (&)'/. Let (_,,)','= (k)'/, m = I, 2, 3. Then

(g',,,,)}'= (k)'/,6,,,a, and thus Eq. (4.31) is reduced to

(U,,,,)_ ' "

+ 12(_)'/- l l(du,,,,))', m = 1, 2, 3.
(4.32)

(du,,,)!' " _ )i 1,"-= _[(u,,,,)i,_/: + (u....

- ltu,,,)i'_ ,'_"_- " _ ..... 2-± ._ (lm)_ 1/21! -_

(4.26)

and

,' n Jet / ,_- I/2 9 t_ I/2(u,,,)/_,_ = ,u,,,),:l,z + (Atl,)(u,,,_),+,,, (4.27)

for m = 1, 2, 3. Because Eqs. (4.26) and (4.27) are the general-
izations of Eqs. (3.2) and (3.11 ), respectively, a natural general-

ization of Eq. (3.101 is

Note that Eq. (4.32) reduces to Eq. (4.28) if (g:,)','= e for all
(j, n) _ _.

Recall that both v and (' are /imctions of u,,,, m = 1, 2, 3.

For all SE(j, n), let 0'/and ?"/, respectively, denote the values

of u and c when u,,,, m = 1, 2, 3, respectively, assume the

values of (&,,)y, m = 1,2, 3. It is shown in [51 that the marching

scheme formed by Eqs. (4.24) and (4.31) is stable iL for all

(j, n) _ tL

,(_',,,,,,,v'< 1, 0 <-(e,,,*)_"<- 1, m= 1,9,3._ (4.33)

where

= [(u,,,),,, (u',)'; ,,l/Ax(u,,,,) .....

+ (2e.- l)(du,,,,)'/, m = 1,2,3,
(4.28) At

(i,,,,,,,);,d_.g(>;'1+ I_';'J)_. (4.34)

where e is a parameter independent of numerical variables. We conclude this section by introducing some possible modi-
n

Note that the last term in Eq. (4.28) vanishes if e = 3. The fications to the above solver. Note that (u,,,) i, _,.,,by its definition,
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but not between (.j, n) and (j - 5, n), one would expect that

I(u ...... )i'[ > [(u,,_, )71. Moreover, because (j, n) and (j - 5, ,,)

are on the same side of the discontinuity while (j, n) and

(j + ½, tl) are on the opposite sides, (u,,,,)',' should be a weighted

average of (u ...... )i'and (u .... )') biased toward the one with the

smaller magnitude.

As a result of the above considerations, (u;,,,)i' can be re-

placed by

n lel
(u,;_) i = W,,((u .... )j',(u .... )');o0, m = 1,2,3, (4.38)

Here o< is an adjustable constant and the function W, is defined

by (i) W,(0, (7, at = 0 and (ii)

W,(x , x_; c_) =
lx,]"x + Ix I"X,

(4.39)

FIG. :5. The mesh and CEs of lhe a-e scheme. (a) The relative positions

of CEs and mesh points. (b) CE(j. n).

represents a finite-difference approximation of u,,, at (j _+ ½, n).

As a result,

(u;,,,)'_'d_)l(u,',,)')_:-(u,',,)'j _<,_l/Ax, m= 1,2,3, (4.35)

respectively, are the central-difference approximations for

i_u,,,/&r, m = 1.2, 3, at (j, n). Note that (u',i,,)i' is the first term

on the right side of each of Eqs. (4.28). (4.31), and (4.32). The

above central-difference approximation is valid as long as no

discontinuity of u,, (or its derivatives) occurs between (j 5,

n) and (j + ½, n) (see Fig. 5). In the following discussion,

we develop alternates which are valid even in the presence

of discontinuity.

Let

Ill,,,,+);' dt'l q- (U,Pn);'rI/2 -- (ll,,,)_'
- Ax/2 m = 1,2, 3, (4.36)

where (u,,,)') can be obtained from Eq. (4.24). Because

0g,) I' _<:. (u,,,)'/, and (u,',,)i'_w_, are the numerical analogues of

u,,, at (j - ½. n), (j, n) and (j + ½, n). respectively,

(u .... )i' and (u ..... )i' are two numerical analogues of the value of

au,,,/&r at (j, n) with one being evaluated from the left and

another from the right. Note that

(u;;,,)}' = ½[(u .... )/+ (n ..... )_'l. (4.37)

In case a discontinuity occurs between (j, n) and (j + ½, n)

where x_ and x are any two real variables. Note that W,,(x ,

x+; o<) = (x + x+)/2: i.e., (u,_;il)')= (u',,_,)',', if or = 0 or Ix I =

Ix+l. Also the expression on the right side of Eq. (4.39) repre-

sents a weighted average of x and x. with the weight factors

l-r.["/(l.,+l"+ I-"I")andl-"i"IIl-"+l"+ I., I"). > O,thi.,
average is biased ton'ard the one among x. and x with the

smaller magnitude. For the same value of Ix,land Ix I, the

bias increases as cr increases, Thus, we should always choose

o__>0.

Note that the special weighted averages W,,(x , x_; 1) and

W,,(x , x+; 2) are used in the slope-limiters proposed by van

Leer {28] and van Albada [29], respectively.

The above modification, i.e., (u',,,,)i' replaced by (tCi0_', is [irst

given in [3J. It is shown in [3] and also Section 7 of the current

paper that it is an efficient tool to suppress overshoots and/or

numerical oscillations near a discontinuity. Moreover, because

(r,%,+)'t' are constructed using only tire data associated with the

mesh points (j - ½, n ½7 and (j + ½. n - ½). the eff_,ct of

this modification is highly local; i.e., it generally will not cause

the smearing of shock discontinuities.

However, there may be a price to pay for the above modifica-

tion. Because a fractional power is costly to evaluate, so is

W,,(x , x+; a) if o_ is not an integer. Moreover. because the bias

of this weighted average increases with o<. a situation may arise

such that the use of an o_ with lal < 1 may be desirable. To

obtain a computationally efficient weighted average of arbitrary

small bias. let

W(x , x. ; o<, B) _(I -/3)W.(x , x. : O)

+ flW,,(.r , .v, : o<),

(4.4(I)

where ,8 _> 0 is an adjustable weight factor, and ce generally

is an integer. Because W,,(x , x_; O) is the simple average of
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x and x+, Eq. (4.40) defines a linear weighted average of this
simple average and the nonlinear weighted average defined in

Eq. (4.39). Obviously, W(x , x+: oc/3) = (½)(x_ + x+)ifx =

x+. Furthermore, because

W,,(x ,x+: -o0 =
Ix_l-x+ + Ix I,,x

(4.41)

a.,,, aL, a-)?,,
+ -0, m= 1.2.3, (5.4)

3t 3x /ix-

The integral form of Eq. (5.4) in space-time E_ is Eq. (4.6) with

dcf ( . _h,,, = j,,, af,,Jax u,,,), m = 1.2, 3, (5.5)

As a preliminary, let

alternatively, W(x , x+; o_,/3) can also be expressed as

W(x-,x+;e_,/3)=(l-_)W,,(x ,x.; o0

(4.42)

The application of the more general modification, i.e., (u',,,)',' is
replaced by

(u;_,)'/J_-_W((u .... )i', (u .... )7; o_,/3), m : 1,2, 3. (4.43)

will be demonstrated in Section 7.

Finally, note that W(x , x+: o_,/3) can be further generalized

by a linear weighted average of several W,(x , x,; oe) with
different values of oe.

$. THE NAVIER-STOKES SOLVER

We consider a dimensionless form of the 1D unsteady Na-

vier-Stokes equations of a perfect gas [ 12, pp. 191 - 1931. (Note:

the expressions on the right sides of the last three equations in

Eq. (5-47) of [12] have incorrect signs in the earlier versions.

The conduction heat-flux vector should be proportional to the

negative of the gradient of temperature.) These equations are
extensions of the Euler equations defined in Section 4. Thus,

unless specified otherwise, the symbols, definitions, and equa-

tions given there will be used in this section.

Let ReL and Pr denote the Reynolds number and Prandtl

number, respectively. They are assumed to be nonnegative
constants. Let

f,,.k d_=t_,,/i)U_, m, k = 1,2, 3. (5.6)

and

dcf 4 act _ det

r,- r2- ¢_ = r, - r,. (5.7)
3 Re_' Ret_ Pr'

Let/_ denote the 3 x 3 matrix formed by,_,,._, m, k = 1, 2, 3.

Then Eqs. (5.1)-(5.3) imply that

0 0 (!)

TIH2 7"1

/v = (u,): u, . (5.8)

(u92 u3 _ r_u, ,z

r3 (u0--_ - r2 (u_)-' (u,)---'] u_/

Again we consider SEs of type I depicted in Fig. 2. For any
(x, t) E SE(j, n), u,,(x, t), f,,,(x, t), _,,Ix, t), and h,,,fx, t), respec-

tively, are approximated by u*(x, t; j, n), J,*(x, t; j, n), ,l'*(x,

t; j, n), and h*(x, t; j, n); u,*(x, t; j, n) and f*(x, t: j, n),

respectively, are defined in Eqs. (4.9) and (4.14):.f,*(x, t; j, n)

and h,*(x, t: j, n) will be defined immediately.

Both._,, and._,,._ are functions of u,,, m = 1, 2. 3. Let (,_,,)'/

and (jT,,,D)', respectively, denote the values of£,, and._,,., when

u,,, m = I, 2, 3, respectively, assume the values of (u,,,)'/, m =
I, 2, 3. Let

3

( _ n def ~f,,,)j = '_ (f,,._I','(uk,)'/, m = 1, 2, 3, (5.9)

and

and

,g g' 0, (5. I)

.g,l__r 4 u2 (5.2)
3 Re_. u,'

3 Re, \u,/ Re, Pr [_ 2(u,)2]" (5.3)

(.L), Z - " "" = (f,,,_),(u_,),, m = 1.2, 3. (5.10)
k=l

Using an argument similar to that leading to Eq. (4.14), we
assume that

.1,,*(x, t; j, n) = ~ " ,'; ""'_(f,,,)i + (l,,,_,t-" -x,)

+ (f,,,)'/it - t"), m = 1,2, 3.

(5.11)

Then, the Navier-Stokes euations can be expressed as As a result of Eq. (5.5), we also assume that
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h;l;(.v. t: j. n)

= (.1'* (x. t: j, n)
\

m 1. ,,")3,

i!f*(_v, t: j, n) u*(x, t" j, n) '_,)_').,'c
(5.12)

Also. we assume that, for any (x, t) E SE(j, n). u,,, =
u;li(.v, t: j, n), .I;.... f,_(x, t: j. ,), and .1_,,= f2;(x, t: j, ,)

satisfy Eq. (5.4), i.e..

;)./,i(x. t: j. ,7)

#t

;J ,!/,,, (.x, t..I. n
+ -- /;*(x, t: j, n) - = O.

0t o._,

(5.13)

The above condition again leads to Eq. (4.17). Thus, the diffu-

sion term m Eq. (5.4) has no impact on how u,*(x, t: j, n) varies

with time within SE(.j, n). This same fact was observed in

Section 2. The reason behind it and its significance were also

discussed there. As a result of Eq.(4.17), and other definitions

given earlier in this section, one can conclude that the only
independent discrete variables needed to be solved in the current
solver, as in the Euler solver described in Section 4, are also

(u,,,)'/ and (u,,,,)i'.

A comparison between Eqs. (4.16) and (5.13) reveals that. for

the current solver, Eqs. (4. I 8) and (4.19) should be replaced by

(f,)',' in Eq. (4.20) is replaced by (.j',,,)}'in Eq. (5.16). Obviously,

Eq. (4.21) is still valid for the current solver. Because dJ,,,(x,

t; j, n) is independent of (._,,)'/ and (,[,,,,)'/, Eq. (4.21) implies that

the last two parameters are irrelevant in flux evaluation. More-

over, because the current solver will be constructed using only

flux-balance conditions, these parameters are also irrelevant in

the following construction.

For all (j, n) C [L we assume that

vcE ,,.,,, h* •ds O. (5.18)

With the aid of Eqs.(5.16) and (4.21), Eq. (5.18) implies that,
for all (j, n) E _,

(",.)," - (',,,M,<-.""-' -+ 7-&rI(.,,,,)j :.J"" + (.,,.);'l

+At (?),,,? (,. ,,
- A._: " ,+,,_ - ./,,,)jl (5.19)

+ (At)" ( . ,,- I .t,,,,),,6'_ + (L,,)'/] = O.4Ax

Adding the two equations given in Eq. (5.19) results in

(u,,,L 71(u,,,), b<2+ (u,,),. += " (.s,,,)_ (5.20)_ _,,z (,s,,,)_,

where, for all (,j, n) E[L

i)O,,,(x, t: j, n) /!f,,*,(x, t j, n)
-./;:_ (x. t; j. n) (5.14)

81 8x

and

a_/,,,(x, t: j, n)

,7M-
- u2;(x, t; j, n), (5.15)

respectively. Note that Eqs. (5.15) and (4.19) are identical.

According to Eq. (5.11 ), the second term on the right side of
Eq. (5.14) is simply the constant (._,_)i'. Thus, for the current

solver. Eq. (4.20) should be replaced by

_k,,(x.t;j.n) = (.l;,,)i'(t t") - (u)'(x -x,)

" - _ru v'rv-.r,) e (5.16)+ (:)(�,,,..)'lit t"): ,_,....... _,.

_(_ " t) . I"(.I,,,)_(-_ -v,)(t - ).

. , de) ,._.r At ,

(s,,,); = T (.,,,,)'/+ _x (f,,,);'

(At)" (r v,
+_ .,,,,,,I, m= 1,2,3.

(5.21)

Equations (5.20) and (5.21 ) are the current counterparts of Eqs.

(4.24) and (4.25), respectively. By using Eq. (5.20), (u,,,)_' can
be solved explicitly in terms of discrete variables at the next
lower time level.

By substraction of the two equations given in Eq. (5.19) and

using Eq. (5.17), one has

kx (At) 2
T (.,,.)'/+ _{.t;,,)"

At (?)" = (b,,,);', m = 1,2, 3,

(5.22)

where where, for all (j, n) _ _L and m 1. 2, 3,

,, d_.( .. ), , ,,{j;,,)j = .1,, ; - q,,,)j. (5.17)

The only difference between Eqs. (4.20) and (5.16) is that

,, d_)At
{1,,,,)/=_ (.1;,);+ ½l(.,,,)'/;,'J?'

1:2 i-n ' (:)m)j + I/2 - (,_,,,)s
(5.23)
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Notethat (f,,)i _, m = 1, 2, 3, are functions of (Um)'/, m = 1, 2,

3, and the latter can be evaluated by using Eq. (5.21). Thus,

(b,,,)'/, m = 1,2, 3, can also be evaluated in terms of the variables
at the (n - 1)th time level.

To proceed, note that Eqs. (4.10), (4.11 ) and (4.17) imply that

1; (J,,.t)t(jt_)rIuk,)i. (5.24)
,_=J /=l

where q*(n, 0) is a 2 × l column matrix. Substituting Eq.

(6.1) into Eq. (2.18), one obtains

q*(n + 1, 0) = [Q( u, _, 0)}2q*(n, 0), (6.2)

where

= ,0/2 e,#i2Q .Q(p, _, O)d"'e Q+ + (6.3)

Moreover, tbr all (j, n) E Q, let

tit = 1,2, 3, (5.25)

m,k = l, 2,3, (5.26)

m, k = l, 2, 3, (5.27)

and

n = _- n(a,,,_); d<,3,,,_+ (/,,,,_),

3

-- E ,c ¢'_ )nt 4'# ',_tJm[ j t,lLl, l/ '
tl

re, k= 1,2,3.

(5.28)

With the aid of Eqs. (5.9) and (5.24)-(5.27), Eq. (5.22) can be

reexpressed as

According to Eq. (6.2), the amplification matrix is the square

of the matrix Q(u, _, 0). Substituting Eqs. (2.16) and (2.17)

into Eq. (6.3), one has

Q(u,_,o)= ( q_ q_:)
\q21 q22

where

Let

q_ = cos(0/2) ivsin(O/2)

q_z = -i(1 v 2 - _) sin(0/2)

i(1 - u2) sin(0/2)

q21 = I 1,2 +

l--p2--_

[cos(O/2) + ivsin(O/2)].
q:: - 1 - v: + #

(6.4)

T](V, _ (_) dcl_'COS(0/2) - iv(l v 2) sin(0/2). (6.5)

" * " = cb _"(a,,,Oi(u_,) s ...... _, m = 1,2, 3. (5.29)

Because (.f,7,.,)j'and (f,_,.a);, m, k = I, 2, 3, are all functions of

(u,,,)j', m = l, 2, 3, so are (a,,_)'/m, k = I. 2, 3. Thus, (a,,_)'/
can also be evaluated in terms of the variables at the (n - ½)th

time level. It follows that, tbr each (j, n) _ .Q, Eq. (5.29)

represents a system of three linear equations for three unknowns

(u,7,_)'/, m = 1, 2, 3. These unknowns (and thus (u,,_,)j', m = l,
2, 3, through Eq. (5.25)) can be solved easily by a matrix

inversion. Equations (5.20) and (5.29) form the current

marching scheme.

Then the eigenvalues of Q(u, sc, O) are

(r:(v, f. o)

<,_jT/(v, _z,0) _ V]_(v, _, 0)]: + (1 - _)z - _-'

1 - u2+_

(6.6)

Thus the amplification factors G?' and G'J ' of the a-/x scheme

are given by

G':2>= Icr+(v, _.,0)12. (6.7)

Note that

6. STABILITY ANALYSIS

The stability of the a-/z and a-e schemes will be studied

using the yon Neumann analysis. For all (j, n) E _L let

q(j.n) = q*(n, 0)e'" (i _ V-/Ti -, -,'7< 0-< n), (6.1)

as 0 --_ 0 (6.8)
_,_ +

if 1 - u: --> O. Because the amplification factor of a plane-

wave solution to Eq. (2.1) approaches I as 0 --, O, G'J band
G'! :_are referred to as the principal and the spurious amplifica-

tion factors, respectively. Moreover, Eqs. (6.5)-(6.7) imply that
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Gl?l = { l_[_cos(O/2) - iusin(O/2)

+ V'[_cos(0/2) - ivsin(O/2)] 2 + 1 - _21}2.

(6.9)

M(e, v, O)

{cos(O�2) - it, sin(0/2)
/

\ i(1 - e)sin(0/2)

-i(I - _) sin(0/2) '_
/

(2e - 1) cos(0/2) - ivsin(O/2)]"

(6.15)

if 1 - t; # 0, and _:det _6/(1 -- _). Similarity between Eqs.

(6.9) and (2.21) was noted in Section 2.

In [I ], the stability of the a-/z scheme is studied using a

rigorous discrete Fourier analysis. The von Neumann stability

analysis can be considered as a limiting case of the discreate

Fourier analysis. By using Eqs. (4.29) and (4.30) in [1], one

can infer that the a-g scheme is stable if and only if, for all 0
with -_ < 0 -< rr,

max{lG'!' I. IG"t} _ 1 ifQ(v, _, 0) is nondefective (6.1l))

and

[G'J_I < 1 ifQ(v,_, 0) is defective. (6.11)

Note that G_) '- G '_' if Q(u, _, O) is defective 130, p. 3531.

Assuming sc -> (1 and 1 v -_+ sc :_ 0 (the latter is a basic

assumption of Eq. (2.14)), it is proved in [1] that the current

scheme is stable if and only if v 2 <- 1.

Let (I - _)-_ ¢: (2 such that both Eqs. (2.14) and (2.24) are

valid. Combining Eqs. (6.5)-(6.7), one has

G_G,t, = ( 1 v2-_) _" 1 t, 2+ '
(6.12)

The eigenvalues A=(e, v, 0) of M(e., u, 0) were given in Eq.

(3.13). The principal amplification factor G'? _and the spurious

amplification factor G _2_of the a-e scheme were given in Eq.
(3.12). Note that

G_---_ I, G2---* 2e - 1 as0---_0 (6.16)

ifEq. (3.14)is assumed. Moreover, from Eqs. (6.10) and (6.11),

one infers that the a-e scheme is stable if and only if, for all
0 with -Tr < 0 -< rr,

max{lG_'l. IG'÷'I}< 1 ifM(e, v, 0)is nondefective (6.17)

and

[G_?'[ < 1 ifM(e, _,, 0) is defective. (6.18)

Equation (3.13) implies that

 ,o)lla 0)1= - (6.19)

By using Eqs. (3.12) and (6.17)-(6.19), one concludes that

stability requires that 12e - 11 -< 1, i.e., 0 -< e -< I. Thus the

first part of Eq. (3.14) is necessary for stability. Equation (3.13)

also implies that

Because the amplification factors of the backward-marching

scheme are (G_+u) _and(G '_) r, stability of both Eqs. (2.14)

and (2.24) requires that ]G_'[ = ]G"'[ = 1. According to Eq.

(6.12), the last condition cannot be met if/x > 0 and _,2_ I.

This result was used in a discussion given in Section 2.

Next we study the stability of the a-e scheme. By substituting

Eq. (6. I) into Eq. (3.7), one has

q*(n + I, O) = [M(e, v, O)[:q(n 0), (6.13)

where

M(& u, O) d_'_e '°/2M_ + ei<M . (6.14)

h_(e, v, 7r) = -iv +_ ",/(1 - e)(l - v2). (6.20)

Thus,

max{IA.(& t', rr)l, IA (& t,, _)1} > I if v-_> l:e- < 1. (6.21)

The first part of Eq. (3.14) coupled with Eqs. (6.17), (6.18),

and (6.21 ) implies that _ -< 1 is necessary for stability. Because

the case v 2 = I is ruled out by the basic assumption 1 -

ve # 0 of Eq. (3.6), the second part of Eq. (3.14) is also

necessary for stability. The proof that Eq. (3.14) is also suffi-

cient for stability will be given later in this section.

To prove Eqs. (3.17) and (3.18), note that Eq. (3.16) im-
plies that

According to Eq. (6.13), the amplification matrix of the a-e

scheme is the square of the matrix M(& v, 0). Substituting Eqs.

(3.8) and (3.9) into Eq. (6.14), one has where

_+(e, v, 0) = _:(X' 7 X"), (6.22)
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X' a_d(1 - ue) sin2(0/2) + 2(1 - e) cos:(0/2) (6.23)

and

X" uL'2 cos(0/2)

× _/(1 - e)[(I - e) cos:(0/2) + (1 - p2)sin:(O/2)l.

(6.24)

With the aid of Eq. (3.14) and -a- < 0 --< 7r,, Eqs. (6.23) and
(6.24) imply that

X' =X"=O if e= 1;0=0, (6.25)

{=01 ife,= 10=0;X' >0 ife,¢ l'orO#0, (6.26)

X"--> 2(1 - g) COS:(0/2) _> 0, (6.27)

X' - X" _< (1 - t,e) sine(O/2), (6.28)

(X' - )¢")(X' + X") = (X') z - (_')-'

= (1 - _,2)2sinq0/2). (6.29)

For the case c - 1 and 0 = 0, Eqs. (3.17) and (3.18) lollow

immediately from Eqs. (6.22) and (6.25). Thus, in the following

proof of Eqs. (3.17) and (3.18), we assume thal

e,¢: 1 or 0#0. (6.30)

Combining Eqs. (6.26), (6.27), and (6.30), one concludes that

X' + X" > O. (6.31 )

X (e,, u, O) = e(X' + X") = e,I2x' - (X' - X")] -< 2e'X'

= 2e,[(l - v-') sin:(0/2)

+ 2(1 - e,)cos-'(0/2)]
(6.34)

-< max{2e,(I - v:),4e(l - e)}-< 4c,

where Eqs. (6.22), (6.32), (6.23), and (3.14) have been used
Moreover, because IG! :_] -> 0, Eq. (3.16) implies that

X (e,, ta 0) -< 1. (6.35)

The validity of the last inequality sign in Eq. (3.17) now follows

from Eqs. (6.34) and (6.35). Q.E.D

Next we shall prove that Eq. (3.14) is also sufficient for

stability. Note that, as a result of Eqs. (3.17) and (3.18), 0 -<

X*(e,, u, 0), and thus [G?_I <- 1, for all e,, t,, and 0 satisfying

Eq. (3.14) and -n" < 0 -< _. As a result, Eq. (6.17) is always

satisfied. To comple|e the proof, we need only show that

Eq.(6.18) is also satsfied, To proceed, note that G_;_= G '-'' if

M(c, t,, O) is defective. From Eqs. (3.12)-(3.14), one also
concludes thai e = I is necessary if G_?' = G"C Moreover, Eq.

(6.15) implies that M(1, u, 0) is the identity matrix. Thus, one
concludes that _ = I and 0 _ 0 are necessary if M(e,, t,, 0) is

defective. Because (i)

G?' = [cos(0/2) - iusin(O/2)] e ire, = 1 (6.36)

and (ii)

[[cos(0/2) - iusin(OI2)]'-] < 1 if pe < I; 0-¢ 0, (6.37)

one arrives at the conclusion that Eq. (6.18) is also satisfied.

Q.E.D

Equations (6.29) and (6.31) imply that

X' - X" > 0. (6.321

Equation (3.18) now follows from Eqs. (3.14), (6.22), (6.28),

and (6,32). The validity of the first inequality sign in Eq. (3.17)

follows from Eq. (3.18) and the fact that e,(l - e,) _ 0 if() <-

e, -< 1. The validity of the second inequality sign follows from
the fact that

X (e,, t,, O) - X-(e,, t,, O) = 2e,X"

>- 4e,(l - e,) cos-'(0/2).
(6.33)

Equation (6.33) is a simple result of Eqs. (6.22) and (6.27). To

establish the validity of the last inequality sign in Eq. (3.17),
note that

7. NUMERICAL RESULTS

In [1], numerical solutions of Eq. (2.1) generated by the

MacCormack 112, p.1021, the Leapfrog/DuFort-Frankel, and

the a-> schemes are compared with the corresponding analyti-

cal solutkms for different values of physical coefficients, mesh

parameters and total marching times. These comparisons show

Ihal the a-/, scheme is far superior to the Leapfrog/DuFort-

Frankel scheme in accuracy and has a substantial advantage

over the MacCormack scheme in both accuracy and stability.

In this section, accuracy of both the Euler and the Navier-

Stokes solvers will be evaluated numerically using a shock tube

problem suggested by Sod 131 ]. Because the a-c scheme may

be considered as a special case of the Euler solver, no separate
numerical evaluation for the a-e. scheme will be given.

Let the specific heat ratio y = 1.4. At t = 0, let (i)

(p, v, p) = {I, 0, 1), i.e,, (m, u> m) = (I, 0, 2.5) if x < 0,

and (ii)(p, v, p) = (0.125, 0, 0.1), i.e., (m, u> u0 = (0.125,
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FI(;. 6. The Euler solulion is = 0.5, ot = O, .St = 0.(X]4, CFL =' 0.88).

assumptions imply that the computation domain can be limited

to jj] _< 50.
In the initial evaluation, we consider the Euler marching

scheme defined by Eqs. (4.24) and (4.28). Numerical results

(triangles) obtained assuming At = 0.004 and e = ½ are com-

pared with the exact solutions (solid lines) in Fig. 6. Because

each marching step advances the solution from t to t + At/2,

these results at t = 0.2 are obtained after 100 steps. Also it
can be estimated that CFL - 0.88, where CFL is defined to

be the maximum value of (Iv l + Ic I)kt/Ax. Thus the numerical

calculation is carried out within the stability limits given by

Eq. (4.33). Note that the agreements between the numerical
results and the exact solutions are excellent. Particularly, the

shock discontinuity is resolved almost within one mesh interval,

and the contact discontinuity is resolved in four mesh intervals.

Also, there are only slight numerical overshoots and/or oscilla-
tions near these discontinuties.

According to the discussions given in Sections 3, 4, and 6,

the Euler solver behaves like the Leapfrog scheme, if e = 0,
and like the Lax scheme, if _ = 1. The former is free from

numerical dissipation while the latter is highly diffusive. The
current scheme with e = ½ can be considered as a scheme

midway between the above two celebrated schemes.

Moreover, the last term on the right side of Eq. (4.28) van-
ishes if s = ½.The remaining term is simply a central-difference

approximation for (u,,d'/,

0, 0.25) if x > 0. For all (j, n) _ _, let .rj = jAx, and t" =

nAt. Then (i)

m_,)',', (._)',', ('3)'/)

J'(I,0,2.5) ifj=-½,-._ .... ; (7.1)
/

1(0.125,0,0.25), ifj=½._ .....

and (ii) (u,,,)}' = 0.j = -+½, -_ ..... form = I, 2, 3. Hereafter,
we assume that n -> 0.

The above initial conditions coupled with several equations
given in Sections 4 and 5 imply that, for both the Euler and

the Navier-Stokes solvers, (u,,,);' is a constant and (u,,)'/ = 0
in two separate regions that are defined by j - -(n + ½) and

j -> (n + ½), respectively. Thus, one needs to evaluate the above

variables only if lJ[ < (n + ½).

Without exception, &x = 0.01 is assumed in this section.
Also, all numerical results will be compared with the exact
weak solution at t = 0.2. Because, at t = 0.2, the effect of the

initial discontinuity at t = 0 is tar from reaching the spatial

regions defined by x > 0.5 and x < -0,5, respectively, numeri-

cal computations, unless specified otherwise, will be simplified

by assuming that, for all n with t" -< 0.2, (i)

[(1,0, 2.5) ifx < -0.5;
((ul);', (u,);', (m);,)

'_[(0.125, 0, 0.25) if x) > 0.5, (7.2)

and (it) (u,,,)_' = 0 if Ixil > 0.5. Because &x = 0,01, the above

i
0. _ | //"

"_ 0.2 t ,,/'
0.0 k --_" ,

-0.4 -0.2 0.0

I

O.2

I
4
]

0.4 0,6

t
,n,,0.8

:_ 0.6

0.4

0.2 i
-0.4

\

I

-0.2 0.0 0.2 0.4 0.6

"0

0.2

\

',%

1
L I L k,_

0.4 0 2 OC L:2 C, 4 t; ,

_C

FIG, 7. The Eulcr solution (_: = 05, _ = l, At = 0,(XI4, CFL -" 0.881.
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FIG. 9. The Euler solution (_: = 0.7, oe = 0, '_r = 0.004, CFL _ 0.88).

Let Eq. (4.28) be modified with (u;;,.,)_'being replaced by

(u);i;)_' (see Eqs. (4.35) and (4.38)). Again assuming that At =
0.004 and e = ½, the numerical results obtained with o_ = 1 are

given in Fig. 7. The results obtained with oz = 2, and oL = 3

are almost identical to those shown in Fig. 7 15]. The effective-

ness of the above modification as a tool to surpress numerical

wiggles near discontinuities is apparent. It was explained in

Section 4 why this modification does not cause the smearing
of shock discontinuities. Furthermore, the modification has no

discernable effect on the smooth part of the solution. Because

(ulZ)7 = (u',;_) I' if oe = 0, in the following discussion, it should
be understood that the above modification is turned off if oe = O.

Note that the results shown in Figs. 6 and 7 can be generated

using the sample program listed at the end of the present paper.

It is coded assuming e = 0.5 and without imposing the condi-

tions given in Eq. (7.2). The parameter a_ is represented by ia
in the code.

Let oe = 0 and At = 0.004, The numerical results obtained

with e = 0.1, and c = 0.7, respectively, are given in Figs. 8

and 9. Note that the case with e = 0.5 are given in Fig. 6.
For e = 0.1, because the scheme has very small numerical

dissipation, pronounced wiggles appear in large regions near

discontinuities. However, because of the same reason, the

smooth part of the solution is highly accurate, The results

shown in Figs. 6, 8, and 9, and other results obtained with

t- = 0.3 and e = 0.9 [5] are consistent with the theoretical

10I
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FIG. 10. The Eulcr solution (e. = 0.5, oe = 0, ,..kt = 0.0(X)4, CFL --' 0.088).
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term (u;,,)_' (see Eq. (4.35)) in Eq. (4.32) will be replaced by

(u;;,,)'/, which is defined in Eq. (4.43). The weight factor/3 will

also be dependent on (j, n) and At/Ax.

To proceed, let

_'(x) ao,=xexp(l -x), 0-<x_ I. (7.3)

1.0 [ -- %\

,,_ 0.8 / "',,,

0.41 ....... ""!
O. 2 t_ t i , t,___,,

0.4 • 0.2 0.0 0.2 0.4 0.6

Because g"is an increasing function within its domain, we have

((x)-<((l) = I, O<-x- < 1. (7.4)

For all (j, n) _E _, let

(_));' -- t,sr((/,,,,_,)',,) (7.5)

• "\g_ e%¢,%Q

:': 4 (ii C;

FIG. It. The Euler ,,olulion (e = (].5, _z = I, &t = ().(14X)4. CFL ± 0.088).

prediction that the Euler solver becomes progressively diffusive
as the value of e. increases from 0 to 1.

The above numerical results are all generated assuming

At = 0.004. The numerical results shown in Figs. 10 and 11

are generated with kt = 0.0004 (i.e., CFL - 0.088). Note that
now it takes 1000 marching steps to advance the solution to

t = 0.2. Other defining conditions for these figures are identical

to those for Figs. 6 and 7, respectively. A glance over Figs. 6,
7, 10, and II reveals that the current Euler solver is more

diffusive at a smaller CFL. Note that, by considering the trunca-
tion error, it was shown in 151 that, for constant _3and .M, the
a-_" scheme becomes more diffusive as At decreases. A similar

conclusion can also be reached by studying the amplification

factors given in Eqs. (3.12) and (3.13). Because the Euler solver
is a straighttbrward extension of the a-e scheme, one would

expect that the former also behaves similarly.
Also, as the value of CFL decreases, the diffusive effect of

replacing _e = 0 with oe - I generally becomes more dis-

cernable. In other words, numerical dissipation introduced by

replacing oe = 0 with oe > 0, is greater when CFL is small.

To modify the above Euler solver such that it can compensate

for the observed effect of increasing numerical dissipation as

,.Xtdecreases, in the following discussions, we shall consider
the more general marching scheme defined by Eqs. (4.24) and

(4.32). The parameter (/:)',' in Eq. (4.32) will be dependent on

the mesh position (j, n) and the ratio _t/Ax. Moreover, the

and

(u',;i,);'= W((u .... )_. (u,,,,+)i. oz.X/(/,,,,=,);'), (7.6)

where ( _,,=,)}'is defined in Eq. (4.34), and b and o_are constants

that do not vary from one mesh point to another. Because

(&,,)'; = (g:)}', m - 1,2, 3, is assumed in Eq. (4.32), Eqs. (4.33),

(7.4) and (7.5) require that (i) (_',,,0_' be in the domain of st(x),
and(ill0-< b-< 1.

Note that (_',,,,0_' is proportional to _t/Ax. Thus. Eqs. (7.3)

and (7.5) imply that (k)'/ is an increasing function of At/Ax,

i.e., it decreases as At decreases if other parameters are held

constant. Because numerical dissipation decreases as (g:)5'de-
creases, with other factors being equal, the replacement of a

constant e with (k)i' has an effect in reducing numerical dissipa-

tion as At decreases. This effect will compensate for the ob-

served opposite effect on numerical dissipation as At decreases
with e, Ax, and the total marching time is being held constant.

Moreover, fi_r a fixed oe, W(x , x,; ce,/3) ---> (x + x.)/2 as

/3 --_ 0. This fact, coupled with Eq. (4.37), implies that the

numerical dissipation introduced as a result of replacing

(u;;,,)j' with (tA',_,)',' will decrease as /3 decreases. Because
(_,,,,,,)'; is proportional to kt/Ax, with other factors being equal,

the replacement of (u;,,)_' by (tA',;,)j'defined in Eq. (7.6), has an

effect in reducing numerical dissipation as At decreases. This

effect will compensate for the observed opposite effect on
numerical dissipation as _t decreases with ce, /3, Ax, and the

total marching time is held constant. Note that W,,(x , x+; c_)

is a special case of W(x , x, ; oe,/3) with/3 = I.

Assuming that oe = 1 and b = 0.5, the numerical results

shown in Figs. 12, 13, and 14 are generated with At - 0.004
(CFL - 0.88), At = 0.0004 (CFL - 0.088), and _t = 0.0001

(CFL - 0.(122), respectively. Note that the results shown in

Fig. 12 are ahnost identical to those shown in Fig. 7 which were

generated assuming the same conditions but using a simpler

marching scheme. However, the results shown in Fig. 13 are

far less diffusive than their counterparts shown in Fig. 11. One

can conclude from this comparison and the results shown in
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Fig. 14 thai the current modified Euler solver is capable of
generating accurate numerical solutions even for the case with

a very small CFL.

In the above modified Euler scheme, (k)_' and/3 are expressed

as two special functions of (#m,,)_', respectively. They are only
two among many possible choices. The investigation of other

choices is a subject to be studied in the future.

The most general marching scheme presented in Section 4

is that defined by Eqs. (4.24) and (4.31). It requires several

matrix multiplications at each mesh points and, therefore, is

much more costly. Thus, its use is difficult to justify unless a
substantial gain in accuracy can be made. How this most general

marching scheme can be applied wisely is left for a future study.
This completes the numerical study of the Euler solver. We

conclude this section with a numerical evaluation of the Navier-

Stokes marching scheme defined by Eqs. (5.20) and (5.29).

Again the initial conditions defined in Eq. (7.1) are assumed,

and the numerical solutions are compared with the exact weak

solution of the Euler equations at t = 0.2. The numerical results

shown in Figs. 15-17 are generated assuming .5t = 0.004, Ax

= 0.01, y = 1.4, and Pr = 0.72. The value of the Prandtl
number used here is that for air at standard conditions. The

values of the Re_. for these figures are 2000, 6000, and
10,000, respectively.

From the results shown in these figures, one concludes that,

lot a high-Reynolds-number flow, the shock can be resolved
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within one mesh interval by the current Navier-Stokes solver.

Also the contact discontinuity can be resolved within a few
mesh intervals. Note that these results are obtained without

using an3,ad hoc parameters or techniques. Because the Reyn-

olds number is inversely proportional to the physical viscosity,
as expected, numerical overshoots and oscillations shown in

these figures increase slightly as the values of the Reynolds
number increase.

Furthermore, through repeated numerical experiments using
different physical and mesh parameters, it is established that

the current Navier-Stokes solver is stable if, tbr all (.j, n) _ _[L

0<Ret., 0<Pr, ^ "< 1.- - (_,,,,,,); (7.7)

However, because a Navier-Stokes problem is fundamentally

an initial-value/boundary-value problem, the current explicit

marching scheme obviously cannot model such a problem un-
less the boundary effect is small, i.e., when the contribution of

the viscous terms to Eqs. (5.20) and (5.29) is small compared

to that of the convection terms. In general, this implies that the
current scheme is applicable only to high-Reynolds-number

flows. Note that the Leapfrog/Dufort-Frankel and the a-/z

schemes [1] also encounter a similar limitation in modelling
Eq. (2.1).

Finally, note that the current Navier-Stokes solver with

Ret = _ (i.e., the physical viscosity vanishes) and Pr - 0 can

be considered as a nonlinear extension of the inviscid a-/,t
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scheme. Because the latter scheme is neutrally stable, generally

one would expect that a nonlinear extension of such a scheme

is unstable. However, it has been shown numerically that the
current Navier-Stokes solver is stable even for the above lim-

iting case as long as (P,,,_,)'/ < 1 for all (,/', n) E _.

8. CONCLUSIONS AND DISCUSSIONS

Several key, limitations of the finite difference, finite volume,

finite element, and spectral methods were discussed in Section

1. The method of space-time conservation element and solution
element was conceived to cv_'ercome these limitations.

Using the a-/x scheme as an example, major differences

between the present method and those mentioned above were

explained in Section 2. This explicit scheme has the unusual

property, that its stability, is limited only by' the CFL condition,

i.e., it is independent of/x. Also, it was shown that its amplifica-
tion factors are identical to those of the Leapfrog scheme, if

# = 0, and to those of the DuFort-Frankel scheme, if a =

0. These coincidences are rather unexpected because the a-

/.t scheme and the above classical schemes are derived from

completely different perspectives, and the current scheme does

not reduce to the above classical schemes in the limiting cases.

The inviscid a-/x scheme is reversible in time. Obviously the

Euler extension of such a scheme cannot model a physical

problem that is irreversible in time, e.g., an inviscid flow prob-

lem involving shocks. Thus, the mviscid version was modified
in Section 3 to form the a-e, scheme. This new scheme has the

unusual property that numerical dissipation is controlled by an

adjustable parameter e. As a matter of fact, for all wavelengths,

numerical dissipation can be m_ilbrmly bounded from above

by an arbitrary small number by choosing a small enough _.

Stability of the a-e scheme is limited by the CFL condition

and 0 -< e --- 1. Moreover, if _: = 0, the amplilication factors

of the a-e scheme are identical to those of the Leapfrog scheme,

which has no numerical dissipation. On the other hand, if e, =

1, they unexpectedly become identical to each other and to the
amplification factor of the highly diffusive Lax scheme. Note

that, because the Lax scheme is very diffusive and uses a mesh

that is staggered in time, a two-level scheme using such a mesh

is often associated with a highly diffusive scheme. The a-v,

scheme, which also uses a mesh staggered in time, demonstrates

that such a scheme could be free tYom numerical dissipation.
In Section 4, the a-_: scheme was extended to become an

Euler solver. This solver has the unusual property that numerical

dissipation at any mesh point (j, n) can be controlled by' a set

of local parameters (k,,A'/, m = I, 2, 3. As in the a-e scheme,

stability of the Euler solver is limited by' the CFL condition

and the requirement that. lk)r all (j, n), 0 -< (k,,,)'/ -< 1, m = 1,

2.3. Note that an Euler solver using a mesh staggered in time

is usually highly diffusive for a small CFL number. It was
shown in Section 7 that the current solver is an exception. It

can generate highly, accurate shock tube solutions with the CFL

number ranging from 0.88 to 0.022.

In Section 5, the a-/x scheme was extended to become a

Navier-Stokes solver. Stability of this explicit soh, er is also

limited only by the CFL condition. Despite the fact that it does

not use ti) any techniques related to the high-resolution upwind

methods, and (ii) any ad hoc parameter, it was shown in Section

7 that the current solver is capable of generating highly, accurate

shock tube solutions. Particularly, shock discontinuites can be
resolved within one mesh interval.

A summary of the key results of the present work has been

given. Behind these results is a continuous effort tO maintain

the simplicity, generality, and accuracy of the present method.
This effort is summarized in the following remarks:

(a) SinqgiciO,. The current numerical framework rests upon

only two basic building blocks, i.e., the space-time conservation

and solution elements. It uses only local discrete variables.
Also, the set of discrete variables in any one of the numerical

equations to be solved is associated with a single SE or a

few immediately neighboring SEs. Thus. local flexibility is

preserved and one needs only to deal with a very sparse matrix.

Moreover, flu× evaluation at an interface separating two CEs

requires no interpolation or extrapolation. Nor does it require

the use of an ad hoc flux model. Finally', partly, because no

characteristics-based techniques are used, a numerical scheme

can be constructed by using only the simplest approximation

techniques.

(b) Generality. A guiding principle in the design of the pres-

ent method is to limit the use of special assumptions or tech-

niques that would restrict its use in more general situations.

Thus we do not use characteristics-based techniques, and we

try to avoid using ad hoc techniques.

(c) Accurao,. Because (i) a physical solution of the conserva-

tion laws may involve shocks or high-gradient regions, and (ill
an accurate numerical simulation of such a solution is difficult to

obtain without enforcing flux conservation, the present method

requires that a numerical solution .sati.sJie.s (i) the diil_'rential

.turin q/'the conservation laws un(/brmly within an SIL and (ii)

the integral form over any space-time region that is the union

q/"any combination of CEs. In addition, accuracy of the present

method is aided by treating both (u,,,)',' and (u,,_,)'/as independent

variables, instead of expressing (u,,,,)'; as a finite-difference

approximation involving (u,,,)'/'s of neighboring mesh points.

The latter approach may result in poor accuracy in a high-

gradient region. Also, accuracy is enhanced by the fact that the
ilux al an interface separating two CEs is evaluated without

interpolation or extrapolation. Moreover, because flux conser-

vation is fundamentally a property in space-time, the current

unified treatment of space and time may also contribute to a
more accurate simulation of the conservation laws.

As a result of its simplicity and generality, the current frame-

work is also very flexible in its ability to generate discretized

equations such that number of equations can match number of

unknowns. In 15 ], this flexibility is demonstrated in a discussion
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on how the current framework can be used to discretize a 2D

steady incompressible Navier-Stokes problem. In the same

discussion, the important issue of boundary-condition imple-
mentation is also addressed.

Finally, the present paper is concluded with remarks on sev-
eral extensions of the current basic solvers:

(a) in 161, the Euler solver discussed in Sections 4 and 7 was

extended and applied to more complex flow problems involving
shock tubes of finite or infinite length. The numerical results

obtained clearly demonstrate the ability of the extended solver

to resolve discontinuities accurately even in the presence of
wave interactions and reflections.

(b) Several solvers developed in the present paper have been

extended to solve two-dimensional time-marching problems [7,

8]. The construction of these extensions are simplified greatly

by the use of a nontraditional space-time mesh. Its use results

in the simplest stencil possible, i.e., a tetrahedron in a 3D space-
time with a vertex at the upper time level and the other three
at the lower time level. Other discussions of these 2D schemes

were given in Section I.

(c) Extensions to solve 2D steady, incompressible Navier-
Stokes equations were discussed near the end of Section 2.

Note. To obtain the NASA Technical Memorandums re-

ferred to in the present paper, please contact the author.

where j', n' = 0, - 1, -+2..... The system of equations repre-

sented by Eq. (A.I) can be divided into two sets completely

independent from each other. The first set involves only the
variables associated with those mesh points marked by dots in

Fig. 18, and the second set, by crosses. Thus, the solution to

Eq. (A.1) contains two decoupled solutions. Traditionally the

yon Neumann stability analysis for the Lax scheme is performed
without taking into account this decoupling nature. Consider a

solution to Eq. (A.I) in which u_!' = 1 for all mesh points (j',
n') that are marked by dots, and u_( = - l for all other (j', n').

In reality, this solution represents the union of two completely
decoupled constant solutions. However, at any time level, the

combined solution is represented by a Fourier component of

the shortest wavelength (=2Ax') in the traditional analysis.

Therefore, two decoupled constant solutions may be wrongly
perceived as a rapMly-vao,ing solution. For the above reason,

we shall consider each decoupled solution separately in the

following von Neumann stability analysis.
Let n = n'/2, j = j'/2, Ax = 2Ax', and At = 2At'. Then

the mesh depicted in Fig. 18 is identical to that depicted in

Fig. 2(a) except that those mesh points marked by crosses in
Fig. 18 have no counterparts in Fig. 2(a). As a result, the

decoupling nature of Eq. (A.I) will be removed if the Lax

scheme is expressed using the staggered mesh depicted in Fig.
2(a), i.e., for all (j, n) E D,

iI _I 11' n 1/2
Hj -- (14)+ 1t2 -}- lli I1'_2)/2- llj+ 1/2 -- l'/5' 1/21t2

At/__ + a Ax o. (A.2)

With the aid of Eq. (2.13), Eq. (A.2) can be simplified as

u"=, ½[(1 + u)u;' iI/_-__+ (1 - v)ulL,'/_ . (A.3)

By applying Eq. (A.3) successively, one has

n _ n
u1 +'=¼[(1 + u/:u" +2(I - v'-)uj +(1 - -' "u) u;+,]. (A.4)

,,+t does notIn contrast to Eq. (2.19), Eq. (A.4) implies that uj

approach u_'as At --_ 0. Moreover, by substituting

u_'= [G(v, 0)l"e ':° (ia'_\/-_L_, rr< 0_<it) (A.5)

APPENDIX A: AN ALTERNATIVE STABILITY ANALYSIS

FOR THE LAX AND LEAPFROG/DUFORT-ERANKEL
SCHEMES

With the use of the regular mesh depicted in Fig. 18, the

Lax scheme for solving Eq. (2.22) can be expressed as

u'('' (u;!'+ + u_' i)/2 " '"
I tlir _ I ttj' I

+ a - 0, (A.I)
At' 2Ax'

into Eq. (A.4), one concludes that the amplification factor of

the Lax scheme is given by

G(u, 0) = Icos(0/2) - ivsin(O/2)] z. (A.6)

A comparison among Eqs. (3.12), (3.15), and (A.6) reveals
that G_' = G _-'' = G(J,, O) when e = I.

Because u',"_ does not approach u7 as At --_ 0. It follows

from Eq. (A.5) that G(u, 07 cannot approach 1 as l,--+ 0. As
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a matter of fact, G(u, O) --.+ cos2(0/2) as v _ 0. In turn, this

implies that the Lax scheme is highly diffusive when lu I is
small.

With the use of the regular mesh depicted in Fig. 18, the

Leapfrog/DuFort-Frankel scheme for solving Eq. (2.1) can be

expressed as

+ a
2At' 2A._"

. n' __ l_*l' _ I -- liT,'- I{if. ] + llj' l .f

- 1_ (Ax,)2
- 0.

(A.7)

wherej', n' = 0, ± 1, _+2..... Even though Eq. (A.7) is a three-

level scheme while Eq. (A. 1) is a two-level scheme, they have

the same decoupling nature. The decoupling of Eq. (A.7) can

be removed if the scheme is expressed with respect to the

staggered mesh depicted in Fig. 2(a), i.e., for all (j, n) E {L

uj'--u]' i ,_ t_: ,, u2ltj+ 1[2 -- l'/j 112

+a
At Ax

u'/;,'/_+ "J' ,72- u;'- <'
-/a. 9_(Ax/_)-

=0.

(A.8)

With the aid of Eq. (2,13), Eq. (A.8) can be simplified as

(1 + 6)u's'= (1 - _r)u]' i + (v+ 6)u;'51177

- iv- (),G,'k':
(A.9)

Eq. (A.9) can also be expressed in a two-level form, i.e.

u(j,n)=L.u(j-½, n-½)+L u(j+½, n-½). (A. IO)

Here

u(j, n) =\u" 1i21
,+ 112

(A.I I)

for all (j, n) _ _ with n > 0, and

dei

L+ = +( 1 + , L . (A.12)_"/ i + _ 0

0 0 t 1 0

By applying Eq. (A.10) successively, one has

u(j, n + 1) = (L_)2u(j -- 1, n) + (L+L + L L+ )u(.j, n)

+(L )-_u(j + 1, n).
(A.13)

To perform the von Neumann stability analysis for Eq.
(A.13), let

u(j,n)=u*(n,O)e 'j" (/ de_l _/_'_-, -- _ < 0 _ 7/'), (A.14)

where u*(n, 0) is a 2 × 1 column matrix. Substituting Eq.

(A.14) into Eq. (A.13), one obtains

u*(n + I, 0) = [L(v, _, 0)]2u*(n, 0), (A.15)

where

L( v, ,_,O) _" e i":L, + ei<L . (A. 16)

According to Eq. (A. 15), [L( v, _, 0)[ 2is the amplification matrix.

Substituting Eq. CA. 12)into Eq. (A. 16), one has

L( v, _, 0)

/2[(Cos(O/_u - iusin(0/2)l (1 - ,5)e '':'_

:/ l + e i+7 /. (A.17)
l ]t e i°l: 0

The amplification factors A+ given in Eq. (2.21) are the eigen-

values of the amplification matrix [L(v, ,& 0)] z.

APPENDIX B: A SAMPLE PROGRAM FOR SOLVING Sod's

SHOCK TUBE PROBLEM
implicit realiS(a-h,o-z)

dimension q(3,1000}, qn(3,1000) r qx(3,1000}, qt(3,1000),

* e(3,1000}, vxl(3}, vxr(3}, Xx(lO00)

c

it - i00

dt - 0.4d-2

dx - O.Id-1

ga = 1.4d0
rhol - 1.dO

ul - O.dO

pl = 1.dO
thor - 0.125d0

ur _ O.dO

pr - 0.1dO
ia = 1

c

hdt - dtl2.do

tt - hdt*dfloat(it)

qdt = dt/4.dO

hdx = dxl2.dO

qdx = dx/4.dO

dtx " dt/dx

al - ga - l.dO

a2 = 3.dO - ga

a3 - a2/2.dO
a4 = l.SdO*el

q(1,1) = rhol

q(2,1) - rhoi*ul

q(3,1) - pl/al + 0.sdO*rhoi*u1**2

itp - it + i

do 5 J -- l,itp

q(1,j+1) = thor

q(2,J+l} - rhor*ur

q(3,J+l) - pr/el + O.SdO*rhor*ur**2
do 5 i - 1,3

qx(i,J) - O.dO

5 continue

c

open (unit-8,file-'foro08')
write (8,10} tt,lt,ia

write (8,20) dt,dx,ga

write (8,30) rhol,ul,pl

write (8,40) rhor,ur,pr

c

I - 2

do 400 i = l,lt

do IO0 J - l,m

w2 = q(2,J)lq(l,J)

wa - q(3,j)lq(l,J}
f21 -- -a3*w2**2

f22 = e2*w2

f31 = el*w2**3 - ga*w2*w3

f32 = ga*w3 - a4*W2**2

f33 = ga*w2

qt(l,J) - -qx(2,J)

qt(2,J) - -(f21*qx(1,J) + f22*qx(2,j) + aliqx(3,j))

qt(3,J) - -(f3i*cj[x(l,J) + f32*qx(2,j) + f33*gx(3,J))

s(1,J) - qdx*qx(l,J) + dtx*(q(2,J) + qdt*qt(2,J))
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s(2,Jl - qdx*qx(2,j) + dtx*(f21*(q(l,j) + qdt*qt(l,Jll +
* f22*(q(2,J} + qdt*qt(2,j)) + a1*(q(3,J) + qdt*qt(3,jl)1
s(3,j) - qdx*qx(3,j) + dtx*(f31*(q(1,j) + qdt*qt(l,j)) +
* f32*(q(2,jl + qdt*qt(2,j}} + f33*(q(3,j) + qdt*qt(3,j)))

100 continue
mm _ m - l

do 200 j - l,n
do 200 k =1,3
gn(k,J+l) = O.5dO*(q(k,J) + g(k,j+l) + e(k,J) - s(k,j+l))
vxl(k) = (qn(k,j+l) - q(k,j) - hdttqt(k,J))/hdx
vxr(k) - (q(k,j+l) + hdt*qt(k,j+l) - qn(k,j+l))/hdx

qx(k,J+l) = (vxl{k)*(dabs(vxr(k)))**ia + vxr(k)*(dabe(vxl(k}})
* **ie)/((dabs(vxl(k)))**ia + (dabs(vxr(k)))**ia + l.d-60)

200 continue

do 300 J _ 2,m
do 300 k _ 1,3

q(k,j) - gn(k,J)
300 continue

m = m + 1
400 continue

c
t2 _ dx*dfloat(itp)
xx(l} = -O.5dO*t2
do 500 j _ 1,itp

xx(j+l) = xx(j) + dx
500 continue

do 600 _ - l,m
x = g(2,J)/q(l,J)
z = al*(q(3,J) - 0.5dO*x**2*q(l,j))
write (8,50) xx(j),q(l,j),x,z

600 continue
c

close (unit=8)
i0 format(' t = ',g14.7,' it = ',i4,' ia = t,i4}
20 format(' dt = ',g14.7,' dx = ',g14.7,' gamla = ',g14.7)
30 format(' rhol = ',g14.7,' ul = ',g14.7,' pl = ',g14.7)
40 format(' thor - ',g14.7,' ur = ',g14.7,' pr = ',g14.7)
5D for1_at(' X =',f8.4,' rho =',g14.7,' u =',g14.7,' p =',g14.7)

stop
end

400 continue
c

t2 = dx*dfloat(itp)
xx(l) = -0.5dO*t2
do 500 j = l,itp
xx(j+l) = xx{j} + dx

500 continue
do 600 j = 1,m
x = q(2,j)/q(l,j|
z - al*(q[3,j} - 0.5dO*x**2*q{l,j))
write (8,50) xx(j),q(1,j),x,z

600 continue
c

close (unlt=8)
i0 format(' t - ',q14.7,' it = ',i4,' ic = ',i4)
20 format(' dt = ',g14.7,' dx = ',g14.7,' gamma = ",g14.7)
30 format{' rhol = ',g14.7,' ul = ',g14.7,' pl = ',g14.7)
40 format(' thor = ',g14.7,' ur = ',g14.?,' pr = ',g14.7)
50 format(' x =',f8.4,' rho =',g14.7,' u =',g14.7," p =',g14.7)

stop
end

REFERENCES

I. S. C. (7hang, and W. M. To, NASA TM 1(14495, Augusl 1991 (unpub-

lished I.

2. S. C. Chang, "On An Origin of Numerical Diffusion: Violation of Invari-

ante under Space-Time Inversion," in Proceedings, 23rd ('o;!/_'rence o,t

Modeling and Simulution, April 30-Moy I. 1992, Pittsburgh. PA, edited

by W. G, Vogt and M. 1t. Mickle Part 5, p. 2727, NASA TM 105776.

3. S. C. Cbang and W. M. To. "A Brief Descriplion of a New Numerical

Frame,xork lor Solving Conservation Laws--The Methcul of Space-Time

Conservation Element and Solution Element," in Proceedings ()('the Thir-

teenth htternational Conl_'rem'e on Numeri_'al Methods in Fluid Dynamics,

Rome, Italy. It192, edited bv M. Napolitam_ and F. Sabelta, l,eclure Notes

in Physics, Vol. 414, (Springer-Verlag, New York/BeHin, 19921, p. 396;

NASA TM 105757.

4. J. R. Sc,_)ll and S. C. Chang, Int. ,1, Compul. I"luid l)yuamic,s, Io appear.

5. S. (_7. Chang, NASA TM 106226, Augusl 1993 (unpublished).

6. X. Y. Wang, C. Y. Cho,a, and S. C. Chang. NASA TM 106806, December

1994. J. Compul. Phys.. submitted.

7. S. C. Chang, C. Y. Wang, and C. Y. Chow, NASA TM 106758, December

1994 ( unpublished I.

8. X. Y. Wang. C, Y. Cho'_,'. and S. C. Chang, in preparation

9. J. R. Scott, hzt. ,1. Comput. Fluid I)ynamit,_, submitted.

10. L. H. 1)ill, A. Himansu, and J. R. Scott, in preparation.

II. B. D., Greenspau and J. R. Scoff, in preparation.

12. D. A. Anderson, J. (7. Tannehill, and R. H. Pletcher. Computational Fhdd

Me('hani('s and Heat Tran,_fer (Hemisphere, Washington, DC/New

York. 19841.

13. A.J. Baker, Finite Eh,ment Compulational Fluid Mechanic,_ (Hemisphere,

Washington, DC/New York, 19831.

14, C. Canuto. M. Y. Hussaini, A. Quarleroni, and T. A. Zang, Spectral

Method,_ in Fhdd I)yuamics (Springer-Verlag, New' York. 1988).

15. M. Viuokur, J. Comput. Phrs. 81, t (1989).

16. R. J. LeVeque, Nunwrical Methods./or Conservation I_m's (Birkhfiuser,

Basel, 1990).

17. P. L. Roc, J. Comlmt. I'hvs. 43, 357 (I9811.

18, B. ','an Leer, Lz,cture Note_ in Phyxic,_, Vol, 17(I, (Springer-Verlag, New

York/Berlin, 19821, p. 5111.

19. S. Osher and S. Chakravarthy, .I. Comput. Phys. 50, 447 (1983).

2(I. B, van Leer. J. ComlmL Ptty.s, 23, 276 (19771.

21. M. J. Smilh and R. W. Stoker, AIAA Paper 93-[11511. Rcno. Nevada.

January 1993 {unpublished).

22. P. L. Roe, "'A Survev of Up,xind I)ifferencing Techniques," in Proceed-

ing._', Eleventh hlternaliomd Conf_'rem'e on Numerical Method.s m Fluid

Dvnanticv, 1988, Leclure Notes m Physics, Vol. 323 !Springer-Verlag,

New York/Berlin, 19891, p, 69.

23. R. F. Warming, R M. Beam. and B. J. Hyett. Math. Comput. 29, 14)37

_19751.

24. V. V. Rusar,',v, Zh. Vw'hisl. Mat. i Made. k'iz. 3, 508 It9631.

25. B. P., Leonard. NASA TM 100916, September 1988 (unpubl shed).

26. H, C. Yee, R. F. Wanning, and A. Harlen. A1AA Paper 83-1902 (unpub-

lishedl.

27. H. Nessyahu and E. Tadmor, J. Coml,Ul. Phys. 87, 408 (1990L

28. B. ','an Leer J. Compu. Phys. 23, 276 I t9771.

29. G. D. ,,'an Albada, B. van Leer. and W. W. Roberts. A._lronom. Astrophyx.

11)8, 76 (1982).

30 B. Noble and J. W. Daniel, Lim, ar Algebra and hs Applications, 2nd ed.

(Prenlice-Hall, Euglewood Cliffs, N J, 1977).

31. G. A. Sod, J. Comput. t'hv,_. 27, I {1978).


