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ABSTRACT

The method of phase diversity has been used in the context of incoherent imaging to estimate jointly

an object that is being imaged and phase aberrations induced by atmospheric turbulence. The

method requires a parametric model for the phase-aberration function. Typically, the parameters

are coefficients to a finite set of basis functions. Care must be taken in selecting a parameterization

that properly balances accuracy in the representation of the phase-aberration function with stability

in the estimates. It is well known that over parameterization can result in unstable estimates. Thus

a certain amount of model mismatch is often desirable. We derive expressions that quantify the

bias and variance in object and aberration estimates as a function of parameter dimension.

1. INTRODUCTION

The method of phase diversity, first proposed by Gonsalves [1], requires the simultaneous col-

lection of two images, as depicted in Figure 1. The first is the conventional incoherent focal-plane

image that is degraded by system aberrations. System aberrations can arise from atmospheric

turbulence, aberrated optical elements, or misalignments among optical elements. A simple beam

splitter and a second detector array, translated along the optical axis, constitute a diversity channel

that affords the collection of the second image, which is further degraded due to defocus. The

defocus introduces a quadratic phase diversity. More general phase diversities can be introduced

by reimaging the pupil and inserting a prescribed phase screen in the diversity channel conjugate

to the pupil. The goal is to identify an object and phase aberrations that are consistent with both

collected images, given the known phase diversity.

The method of phase diversity offers several advantages over other aberration-sensing methods.

The optical hardware is modest. A simple beam splitter and a second detector array affords the

simultaneous collection of the two images, as illustrated in Figure 1. In addition, the method relies

on an external reference (the object being imaged) and is therefore less susceptible to systematic

errors introduced by optical hardware. The technique also works well for extended objects or even

scenes. The method of phase diversity should not be confused with curvature-sensing methods,

which have been developed for point objects.
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Figure 1: Optical layout for phase-diversity imaging.

Several authors have investigated the use of phase diversity in a variety of applications, including

wavefront sensing, imaging with phased-array telescopes, and solar astronomy [1-9]. Researchers

have also developed variations on the basic phase-diversity concept. One such variation, referred to

as phase-diverse speckle imagirzg, requires the collection of a pair of short-exposure diversity images

for each of several atmospheric realizations [10-13]. This novel imaging modality appears to be

quite promising for use in ground-based astronomy, particularly solar astronomy. Another variation

is the use of phase diversity to correct for space-variant blur [14-16].

Paxman, et al., [6] developed the theory of phase diversity within an estimation-theoretic frame-

work. In this context, the method of phase diversity is accomplished by jointly estimating the object

and the system phase-aberration function. The method requires a parametric model for the phase-

aberration function. Typically, the parameters are coefficients to a set of basis functions. Obviously,

the number of aberration parameters to be estimated must be finite. It is natural to ask how many

aberration parameters are appropriate. Care must be taken in selecting a parameterization that

properly balances accuracy in the representation of the phase-aberration function with stability in

the estimates. It is well known that over parameterization can result in unstable estimates (cf. [17],

pg 88). Thus a certain amount of model mismatch is often desirable. In this paper we introduce an

approach for assessing the effects of phase-aberration model mismatch on the joint estimation (of

object and aberrations) in phase diversity. Specifically we give expressions for the expected value

and covariance of the maximum-likelihood estimates as a function of the mismatch in the phase

aberrations, and in turn, these expressions can be used to quantify the mean-squared error (MSE)

of the object estimate, as a function of the mismatch in the phase-aberrations. We believe that such

a quantification will provide valuable insight into phase-aberration model selection for the phase

diversity estimation problem.



The organization of this paper is asfollows. In the next section, wepresent a brief overview
of the generalmodelmismatchproblem The generalproblem is that of parameterestimation from
noisy data for which there is a model mismatch. Specifically,in this generalproblem, wesuppose
we have two models,I and II, which potentially describethe generationof the data, and we are
using model I as the basisfor the parameter estimation. Howeverwe areconcernedthat model II
is actually more accurateand that there will beadverseeffectson our estimation due to the model"
mismatch. As a concreteexample within phasediversity, model II might correspondto a fully
parameterizedphaseaberration model, while model I correspondsto a reducedparameterization
of the phaseaberrations. Assuming a maximum-likelihoodestimation (MLE) framework,we then
present an analytic characterizationof the estimates(MLE) in the generalmismatchedproblem.
In two subsequentsubsections,this is followed up with applicationsof the theory to two special
caseswhich areof interest in phasediversity. In section3, weapply the theory specificallyto phase
diversity to derive expressionsfor the expectedvalueand covariancefor the object estimate in the
caseof a mismatchedphaseaberration model and Gaussiannoise. In the Gaussiannoisecase,these
expressionscan be numerically computedfor moderatesizedimages. Covariancecomputations in
the Poisson-noisecasearemore challenging.The final sectionsummarizesthe results of the paper
and discussesareasfor future research.

2. GENERAL THEORY

This section describesthe generaltheory for MLE in the caseof modelmismatch. Specifically,
we give analytic expressionsfor the approximate bias and covarianceof the MLE in the caseof
model mismatch. Wethen apply thesegeneralresultsto two specialcases.The first case,discussed
in Subsection2.1, is that of independent and identically distributed (iid) multivariate Gaussian
random vectors with known covariancematrix, which is assumedto be a scalar multiple of the
identity matrix, and a mean vector which is a function of the underlying (unknown) parameter.
The secondcase,discussedin Subsection2.2, is that of iid multivariate Poissonrandom vectors,
where the componentsare independentwith a mean vector which is a function of the underlying
parameter.

For the general theory we assumewe have noisy multivariate data which is modeled as iid
random vectorsX1, X2, ..., X_. The random vectors are assumed to have a continuous distribution

specified by a probability density function (pdf) or a discrete distribution specified by a probability

mass function (pmf). For the sake of concreteness, we present the theory for the case of a continuous

distribution (i.e., pdf's), but the theory carries over easily to the case of discrete distributions. We

assume that we have two models: model I, the basis for MLE, and model II is the "true" model.

Under model I, the pdf for X1 is given by f(x; O) where 0 E O with O being a finite-dimensional

parameter space. Under model II, X1 has the true pdf f(x; 0.) where 0. C O. is fixed, but need

not be finite dimensional. For notational convenience, we use the same functional representation

for all pdf's with the parameter notation dictating which is appropriate. Also, let Eo, Eo. denote

the expectation operators associated with the parameters 0 and 0. respectively.

In the matched model case, i.e., in the case were model I actually is true, the maximum likelihood

estimator t},_, defined by
n

0_ = argmax0 II f(Xj;O), (1)
j=l



has very well-known statistical properties provided that the pdf's are three-times differentiable with

respect to the parameters and the partial derivatives satisfy certain technical conditions (cf. [18] or

[19]). Specifically it is known to be an efficient estimator (smallest variance over the whole parameter

space) which has a distribution well approximated by a multivariate Gaussian distribution with a

mean vector of 0 and a covariance equal to 1 times the inverse of the Fisher information matrix.
n

Here, the Fisher information matrix is given by

• ((_LI(O) OLI(O)_

[J(0)l j E0\ ],

where Ln(O) is the log-likelihood function; i.e.,

(2)

L_(O) = _ log(f(Xj; 0)). (3)
j=l

As discussed in the Introduction, we are interested in the properties of the MLE 0_ in the

mismatched case, i.e., where model II is actually true. For this analysis, we assume that model I

is used to generate the MLE!s of 0 and we assume that the true pdf is f(.; 0.) corresponding to

model II. We also make the assumption that all pdf's have common support, i.e., the set where

they are not equM to 0 is the same for all 0 and 0.. For fixed 0, and making mild assumptions on

statistical model I, similar to those standardly assumed in MLE theory (cf. [19]), one can show

that 0n converges in probability to 0o C ® as n gets large, where 0o satisfies that

0o = argmax0E0. (log(f(21; 0)). (4)

Here we are assuming that the expected :value in the RHS of (4) is well-defined and finite for all

0. For the rest of this paper, this convergence is assumed to hold for the MLE. One can show that

the maximization in the RHS of (4) is equivalent to determining the value of 0 which minimizes

the relative entropy (Kullback-Liebler distance) between the pdf f(.; 0.) and the pdf f(.; 0), i.e.,

the pdf f(.;Oo) is that pdf^in {f(.;0) : :0 C O} which is closest to f(.;0.) in "relative entropy

distance." Assuming that 0n converges in probability to 0o, and assuming that the pdf's f(x; O)

are nice smooth functions of 0 for fixed x; we have a generalization of the usual result for MLE's.

Specifically it can be shown that 0n has a distribution well approximated by a multivariate Gaussian

distribution with mean 0o and a covariance matrix given by

1 2 --1 1 2 --1

n(J.(Oo)) J_,(Oo)(J_,(Oo)) (5)

where

and

( OLI(O) OLI(O)

=-Eo. (7)

Note that in the case of a matched model, the j1 and j,2 matrices were actually equal and in fact

were both equal to the Fisher information matrix. In the mismatched case, these matrices are in



generalnot equal, aswewill seein the specialcases.In the caseof a 1-Dparameter spaceO, the
proof of the aboveis very similar to the result stated and provedin [19]. Sofar in this section,we
haveprovided generalexpressionsfor the approximateexpectedvalueand covarianceof the MLE.
In the two subsequentsubsections,wepresentexpressionsfor the expectedvalueand covariancein
two special casesof interest for phasediversity (multivariate Gaussianand multivariate Poisson).

2.1 Application to a Gaussian model

In this subsection,wespecializetheresult to the casewhereX1, X2,..., Xn are lid M-dimensional

multivariate Gaussian under both models I and II with a common covariance matrix of cr2I where

I is M x M identity matrix. In model I, we assume that the mean vector is a function of 0, i.e.,

,(0) =

#1(0)

,2(0)

_M(0)

(8)

and under model II, we assume that the mean vector is a function of 0,, i.e.,

,(0.) =

,1(0.)
,2(0.)

_,(0.)

(9)

Again, though the functions #1,..., _M are actually different for each of the two models, for the

sake of notational convenience we do not introduce extra notation to distinguish between the two.

The log-likelihood function, for model I and one random vector X1, is given by

LI(0) - 1 M2_2 _ (x_ - _(0)) 2. (10)
m:l

By easy computations one can show that 0o is the value of 0 satisfying that it minimizes the

Euclidean norm between the mean vectors #(0) and #(0,), i.e.,

M

0o = argmin0 _ (#m(0,) - #m(0)) 2, (11)
m----1

10and J,J(o) is given by

-
1

o., E2 (#_(0.) - #m(Oo))(#_,(O.) - #_,(0o))
,_,m,

1 _ o_(0o) o_(0o)
+-g7 oo_ ooj '

m-_ l

o,_(Oo)O,m.(oo)
O0_ OOj

(!2)



and .12,(0o)is given by

o2_m(oo)
a< ooj (_m(o,)- _m(Oo))+

O_m(Oo)O_(Oo)
00_ 005

(13)

2.2 Application to a Poisson model

In this subsection, we specialize the result to the case where Xi, )(2,..., X_ are iid M-dimensional

multivariate Poisson with independent components under both models I and II. Under model I, we

assume that the mean vector is a function of O, i.e.,

Al(0)
A2(0)

A(0)= : , (14)

AM(0)

and under model II, we assume the mean vector is a function of 0,, i.e.,

AI(O,)

A_(0.)
A(O,) = : (15)

AM(0.)

Again, though the functions A1,..., AM are actually different for each of the two models, for the

sake of notational convenience we do not introduce extra notation to distinguish between the two.

The log-likelihood for model I and one random vector X1 is given by

M

LI(0) = _ (Xim log(A,_(0))- Am(0)- log(Xlm!)) (16)
m----1

Now one can show that 0o is the value of 0 satisfying that

M

Oo = argmin0 }2 (Am(O,) log(Am(O)) - Am(O)), (17)
m:l

and Jl(Oo) is given by

[al(Oo)]_j=

and J2,(Oo) is given by

OA_(Oo)OAm,(Oo)(An(O.) ) (A_,(O.)}2. o< ooj \A,_(oo) 1 \A,_,(Oo)

M oA=(Oo)oAm(Oo)Am(o,)
+ _ oo_ ooj A,_(oo)

rr__ l

M Ara(O,) OArn(Oo) OAm(Oo)

= }2 A_m(Oo)o< ooj
m=l

1)
(18)

(Am(0,) ) O2A_ (0°) (19)m=l _k_ 1 OOiOOj



3. APPLICATION TO PHASE DIVERSITY

In this section, we apply the general theory to the mismatched estimation problem within

phase diversity. We take as our starting point the general phase diversity imaging model which is

characterized by the following equation:

gk(x)= _/(x')_k(,- x') (20)
x'EX

where f is the object array, sk is the point-spread function (PSF) having diversity k, gk(x) is the

expected k th diversity image, x is a two-dimensional coordinate, and

x = {0,...,N- 1}× {0,...,N- 1}. (21)

We treat the object, the PSF's, and the images as periodic arrays with period cell of size N × N.

The model for the lvth PSF is that

sk(x) = Ihk(x)l 2 (22)

where hk is the inverse discrete Fourier transform of the generalized pupil function,

Hk(u) = Ak(u)exp{i(¢(u) + 0k(u))}, (23)

where Ak(u) is the binary aperture function, q5 is the unknown phase-aberration function that we

would like to estimate, and Ok the known phase function associated with the k th diversity image. It

is typical to parameterize the phase-aberration function:

at

¢(u) = _ c_jCj(u ) (24)
j=l

where the Yt coefficients, a,,..., aat, serve as parameters and {¢j}l & is a convenient set of basis

functions, such as discretized Zernike polynomials. With this parameterization of ¢, the PSF

depends on the parameter vector a and similarly the noiseless image values, gk(x) depend on f

and a. Since we will be taking derivatives with respect to object and aberration parameters, we

make this dependence explicit by writing sk(x; a) and gk(x; f, o_). We now consider the case where
the noise at each detector element is modeled as iid zero-mean Gaussian with a variance of a2. As

discussed earlier, for a fixed finite set of basis functions, there is a question of how many to include

in the model, i.e., how many aberration coefficients to estimate. One wants the dimensionality to be

large enough to provide an accurate approximation, but not so many so as to cause instability of the

abem'ation and/or object estimates: We can apply the theory developed in the previous subsection

2.1 to give analytic expressions for the effects of the mismatched phase-aberration model. Our true

model in this setting is that the parameter 0. E O. consists of

0, = ({f,(x) : x c x}, {_,_}f,)c o. = Rf × e* (25)

and the mismatched model corresponds to

0 = ({f(x): x C X},{ctj} J) C @ _ R_ × iRa` (26)



where J <_ Jr, R denotes the real numbers, and R f denotes the space of all possible nonnegative

objects. Notationally let the "true" object be denoted by f. and the "true" aberrations be denoted

by the Jr-dimensional vector c_.. For moderate to high signal-to-noise ratios, the current stochastic

model is statistically equivalent to a model where one observes an iid sequence of n white noisy

images, each which is multivariate Gaussian with the same mean and a variance of nor 2. Hence in

this case, our previous theory can be applied to this problem to assess effects of model mismatch

on MLE.

The first step in this application is to determine the expected value for f and c_(z). Based on

the results from subsection 2.1, it is easy to show that this corresponds to the values of f and

o_(z) --= {c_j} J which minimize the sum of squared differences between the two sets of (noiseless)

diversity images, i.e., the object fo and phase parameters c_!J) satisfying

K

(fo, c_!J)) = argmin],_(j_ _ _ Igk(x; f.,o_.)-gk(x;f,o_(J))12. (27)
k=l xE2d

Note that this is essentially the standard MLE estimation problem for f and aberrations c_(J),

where one assumes that the data are the noiseless diversity images generated by f. and c_. (cf.

[6]). Therefore existing nonlinear optimization methods that are used for phase diversity estimates

can be used here to find the expected values. From these expressions for the MLE expected value

we can compute the bias for the mismatched MLE of the object. Specifically the bias is given by

fo(U) - f.(u), where fo was determined from solving for the MLE.

The second step is to compute the covariance which depends on fo, c_!z). To do this we need

to compute the matrices JJ(fo, o_!JI) and J_(fo,a!Jl)* and apply the formula in (5). For notational

convenience, we replace fo by f and c_!J) by c_ for the rest of this section. The expressions for these

matrices involves the first and second partial derivatives of the mean data vector, which in this case

corresponds to the noiseless diversity images, with respect to the parameters. Using (20), it can be
shown that

[JJ (f, a)] f(_),](_,)

1

- o.4_-_ _ [(g_(u";f.,o_.)--gk(u";f,c@(gk'(u";f.,o_.)--gk'(u"';f, oO)
k,M u" ,u m

• - -
1 K

E - - (28)
k=l u H

[J:(/'

[- _r4EE (gk(u';f.,
]_,k t ul,u II

o_.) - gk(u'; f, o_) )(gk,(u"; f., o_.) - gk,(u"; f, o0 )

•sk(u'- u; o_)Og_:,(u"; f, c_)]
Oc j J

1 I,: Ogk(u'; f, c_)

k=l u' (_OLj

(29)



and

?:/s,:/]o ,o,
1 R-_y_( ( _ ( _C ( _ ( _Ogk(u;/,c OOgk,(u';f,a)

_r4L''L'_gk_u;f*'°_*j-gk_u;f'cgj_gk'_u';f*'a*j-gk'_u';f'ajj Oa_ Oc_j
k_k I u,u I

1 K

+fi E _ Ogk(u; f, a) Ogk(u; f, a) (30)
/_=1 OC_i Oaj

where

c_ai

Similarly the j,2 matrix is given by

- E f(u') Osk(_iu'; °O (31)
•lt !

[J*_(/'_)]s(_),s(_,)
1 K

k=l u H

K

= E E _(_"- (_- _');_)_(_";_),
k=l u H

(32)

[J*2(f, a)]/(_),_

k=l u _

Osk(u' - u; o0 (gk(u'; f,,a,) - gk(u'; f, o0)
Oaj

, ag_(_';_,/)]
+ sk(u' - u; a) --- . ,

Oaj J (33)

and

1 K

- . ZZ
k=l

0_a_j O_(_;f,,-,)-g_(_;/,_))+
Ogk(u; _, f) Ogk(u; a, f) ]

Oai Oaj J '
(34)

where

a_g_(_;f, _) _., ,,o_(_ _ _,; _)

The eomputation of the covariance matrix for the mismatched object MLE involves computing the

upper (f, f) quadrant of the total covariance matrix

2 --1 1 2
E =_ (J.(fo,ao)) Jj(fo, Oo)(J.(fo, Oo)) -_. (36)

Now the matrices ,/.1 and y.2 are square matrices whose dimension is the sum of the object dimension

plus the aberration dimension, which for typical real problems is quite large. This presents a

potential problem in computing the covariance matrix in (36), due to the fact that we have to do



an inversion of the j.2 matrix. However if one carefully inspects the above expressions, especially

(32), after lexicographic ordering the parameter f(u) with respect to the two-dimensional variable

u, the upper lefthand (f, f) quadrant of 3-.2 matrix is block circulant and so one can easily find

the inverse of this quadrant using the FFT. If the dimension of the aberration parameterization

is relatively small, one can use this and the formula for inverses of partitioned matrices (cf. pg

390-391 in [17]) to derive expressions for the inverse of j.2 matrix relatively easily. It only requires

the multiplication of matrices and the inversion of matrices whose dimension is the dimension of the

phase aberration parameterization. Thus in this case, the computation of the bias and covariance

of the object MLE appears reasonable, and we are currently implementing this in software to do

computations on simulated data.

Using the results in subsection 2.2, we have also derived analogous expressions for the (mis-

matched) MLE expected value and covariance in the phase diversity joint estimation problem for

the case that Poisson noise is dominant. Again the expected value is computed by solving the MLE

problem with the noiseless diversity images as data. However the nice block-circulant structure

which was present in the j.2 matrix for the Gaussian noise case is no longer present in the Poisson

noise case, so that the numerical computation of the covariance matrix appears to be considerably

more difficult than was true in the Gaussian case. Alternative computational approaches in the

Poisson case, which exploit other special structures of the matrices is the object of current research.

4. SUMMARY

In this paper, we have presented an approach for assessing the affects of model mismatch on

joint estimation in phase diversity. We have given expressions for the expected value and the co-

variance of the MLE in the case of a mismatched phase aberration model and Gaussian noise. The

expected value can be computed by solving a phase diversity estimation problem using noiseless

diversity images as data. The covariance can be computed by inverting matrices whose dimension

is that of the total dimension of all the parameters (object and aberration) and then doing matrix

multiplication. In the case of moderate size objects, a brute force matrix inversion may be numer-

ically impractical. However in the Gaussian case, invoking some special matrix structures which

are present, we presented a reasonable numerical approach for computing the inverse and hence for

computing the covariance matrix. Currently, we have no analogous simplification which holds in

the Poisson case. This overall approach to assessing model mismatch within phase diversity carries

over directly to the case of phase diverse speckle and we have worked out the details.

Areas for future research include:

(i) Application of the approach to simulated data for the Gaussian noise case. In particular,

apply the methodology to quantify MLE performance as a function of different aberration param-

eterizations for a variety of SNR's, objects, and phase aberrations.

(ii) In the Poisson case, investigating the existence of special matrix structures (within d.2)

which would make the numerical computation of the covariance matrix practical for moderate size

objects.
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