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Abstract

Three-dimensional transient flow profiles of spin-up in a fully liquid filled
cylinder from rest with gravity acceleration at various directions are numerically
simulated and studied. Particular interests are concentrated on the development

of temporary reverse flow zones and Ekman layer right after the impulsive
start of spin-up from rest, and decay before the flow reaching to the solid

rotation. Relationship of these flow developments and differences in the
Reynolds numbers of the flow and its size selection of grid points concerning

the numerical instabilities of flow computations are also discussed. In addition
to the gravitational acceleration along the axial direction of cylindrical
container, a series of complicated flow profiles accompanied by three-

dimensional transient flows with oblique gravitational acceleration has been
studied.

1. Introduction

Time-dependent, three-dimensional numerical procedures for solving Navier-Stokes

equations with moving boundaries which are capable to study sloshing dynamics
dominated by capillary effect have been developed. 1- 1o_One of the objectives of this

work is to test the applicability of these numerical codes for the case of transient spin-up

flow occurring in a cylindrical container when it is suddenly rotated about its

longitudinal axis. Knowledge of this internal flow is needed to design spacecraft dewar

containers which carry cryogenic propellant and are required to spin-up to certain

speeds for instrument calibration when the spacecrafts are placed to the orbit, and then

spin-down to another speed for the spacecraft normal operation.It) It is also required

by other flying objects such as gun-launched projectiles which carry smoke/incendiary

agents or chemical payloads. Liquid payloads enhance spin decay of projectiles, 12'13)

and their presence can produce flight dynamic instabilities as a result of reasonance

between the projectiles mutational motion and inertial oscillations in the rotating

liquid._4-_s_ From a computational view point, this problem is instructive because it

is an example of a class of internal flow problems for which computational experiments

can uncover details of the flow that can not be easily visualized or measured experi-

mentally.

In this study, we are particularly interested in the study of dynamical flow zone
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development right after the impulsive start of container spin-up from rest. In otherwords,

the development and decay of temporary reverse flow regions and Ekman layer at the

beginning of container spin-up before the flow reaching to the solid flow conditions

will be studied• It is also interesting to investigate (a) the relationship between these

flow zone (including reverse flow and Ekman layer) developments and the Reynolds

number of flow profiles, and also (b) the relationship between the size selection of grid

points with respect to the Reynolds number and the development of numerical

instabilities in computing flow fields.

2. Governing Equations and Boundary Conditions

Consider a closed circular cylindrical container of radius R, with height, H, which

is fully filled with liquid water of constant density p and viscosity #. Let us use cylindrical

coordinates (r, 0, z), with corresponding velocity components (u, v, w), and corresponding

gravitational acceleration components (g,, ge, g_). The time-dependent and three

dimensional mathematical formulation is adopted. The governing equations are shown
as follows :

(A) Continuity Equation

(B) Momentum Equations

1 O ! Ov aw
- (ru)+- -+ - =0 .... (1)
r Or r c30 0z

_ep 2 .(
a; u- ;2-r O0 r* c_0/

P _t +u0r + r 00+ r- +W0z,] r _30+Pg°+# 17 -r _+r g}-O-

(aw aw _aw _.,) opP _i +u Or + r O0 +_*.... z Oz +Pg_+lxlThv

where

• .(2)

• •(3)

• .(4)

u=H.'=0_ at r=R and t>0 .... (7)
v= Rco J

u=w=O_ at z=O and t>_O .... (8)
v -_ ro3 )

V2= ! ?,(a) I O 2 _2r + r2 -O0-z + 0z 2- ....(5)r Or _r

The initial conditions for the flow parameters before rotation are

u=v=w=O at t<0 .... (6)

At time t =0, cylindrical container is suddenly rotated about its longitudinal axis to

rotation speed co. The boundary conditions become



138 Trans.JapanSoc.Aero.SpaceSci. Vol.38,No.120

u=w=O [) at z=H and t>0 (9)
)

In this study, a cylindrical container with a radius of 3 cm and a height of 2cm
has been used in the numerical simulation. Following data was used at temperature of

20°C: liquid water density =997.3 kg/m _, fluid pressure = 1.013 x 105 N/m 2, liquid water

viscosity coefficient=l.006x 10-6m2/s, and under 1go (=9.81m/s 2) gravitational
acceleration.

The computer algorithms employed in this study have been developed and illustrated

in our earlier studies, 19-2_) and will not be repeated in this paper. The time step is

determined automatically based on the size of grid points and the velocity of flow fields.

As the thickness of boundary layer is inversely proportional to the square root of

Reynolds number, size of grid points shall be adjusted according to the flow fields of

Reynolds number. In other words, the size of grid points shall be smaller as the flow

fields of Reynolds number becomes greater. Fail of adjusting the size of grid points

based on the increasing of Reynolds number will result in the numerical instability to

the extreme severity of the local oscillations. TM Special care shall be attempted to

eliminate these numerical instabilities by properly adjusting the size of grid points which

eventually contribute to the adjustment of time steps. It is needless to say that the

development of a real physical instability will certainly occur at the higher Reynolds

number because of less viscosity effect contributing to the damping of flow disturbances.

It is utterly important for us to distinguish the differences between numerical and real

physical instabilities, particularly for the flows with high Reynolds number.

In this study, two rotating speeds with 09= 102 and 10.2 rpm are chosen. Reynolds

numbers for a_= 102 and 10.2 rpm are 9.7 x 103 and 9.7 x 102, respectively. For the case

of higher and lower Reynolds numbers, grids of 21 x34tx28 and 16×34x 14,

respectively, along (r, 0, z) coordinates were used. By using grids of 16 x 34 x 14 in the

computation of flows with higher Reynolds number, an extremely severe numerical
instabilities of flow fields is resulted.

Components of background gravity shall be given by

gi = (g,, g0, g,) = g(sin _, cos 0, - sin _bsin 0, - cos _b) .... (! 0)

where g is the magnitude of background gravity, and _b is the angle of background

gravity between the direction of the container rotating axis and the direction of

background gravity. In this study _k=0 ° and 60 ° along the r-z plane with 0=0 ° are
chosen.

The average time step determined from the size of the grid points and velocity of

flow fields for 102 and 10.2rpm container rotating speed are 0.00108 and 0.01369s,

respectively, while the CPU time required by the supercomputer CRAY II to execute

one time step is 1.32 and 0.392 s, respectively.

3. Transient Phenomena During Spin-Up from Rest

A series of numerical simulations of transient flow phenomena during container

spin-up from rest with rotating speeds of 102 and 10.2rpm is carried out.

(A) Spin-up With Normal Direction Gravitational Acceleration
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In this case, a finer grids is chosen to avoid numerical instabilities because of higher

Reynolds number flow fields with thinner boundary layer thickness. With gravity field

along the rotating axis of container, all the flow fields are axis symmetric. Figure 1 (A)

shows the transient velocity vectors along the circumferential direction in r-O plane at

height z = 1 cm and ending with the status of solid rotation. Length of arrow illustrates

the magnitude of circumferential velocity of fluid particles at the corresponding locations.

With center of rotating axis as an origin, horizontal axes toward right hand and left

hand sides are 0 = 0 ° and 180 °, respectively, whereas vertical axes toward uphand and

downhand are 0=90 ° and 270 °, respectively. Notation of these illustrations cover

throughout this paper. It shows an animation of a picking up of circumferential velocity

profiles which propagate from the container wall during a sudden rotation from rest,

gradually transmit the momentum inward and toward the center of the rotating axis

through the viscosity effect. Finally, a near solid rotation is accomplished at the end

of the time at t = 12.0 s. Figure I (B) shows the similar animation of the circumferential

velocity profiles with respect to time and the values along radial coordinate (in term of

u/V where V= R_) at height z= 1 cm and ending with solid rotation status. It shows

clearly how flow momentum transmits from the side wall during sudden spin-up of

container from rest, and gradually propagates the flow momentum inward and toward

the container rotating axis. Finally, it reaches a near solid rotation at the end of t = 12.0 s.

The velocity profile becomes a straight line and it can be represented by the equation

v=cor as that shown at the end of simulation in Fig. 1 (B).

(a) t:O,Z76s
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u- ,,1_

_L,, ,TT
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! (A). Transient velocity vectors along the circumferential direction

in r-O plane at height z= 1 cm, co= 102 rpm, and _k=0 °.
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1 (B). Transient circumferential velocity profiles with respect to time

and radial coordinate at height z = I cm, _o= 102 rpm and _, = 0 °.
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Fig. 2. (A) Animation of the formation of four temporary reverse flow

zones at upper left, upper right, lower left, and lower right near the

side walls with vectors of flow velocities in r-z plane at r = 2.40 cm,

co=102rpm and ¢=0 °. (B) Animation of the formation of four

temporary reverse flow zones at upper left, upper right, lower left and

lower right near the side walls with vector of flow velocities in r-z

plane at the beginning of container spin-up from rest, to= 10.2rpm,

and _ =0 °.

It is interesting to note the existence of temporary reverse flow regions near the

sidewalls at the beginning of container spin-up from rest. Figure 2 (A) shows the

animation of the formation of four temporary reverse flow zones at upper left, upper

right, lower left, and lower right near the sidewalls of cylindrical container with vectors

of flow velocities shown in r-z plane at the beginning of spin-up from rest. These reverse

flow zones were initiated and developed after the impulsive start and became a full

reverse flow at the beginning of spin-up and disappear quickly before the flow reaching

to the status of solid rotation.
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The reverse flow zones do not develop in the calculations for flow fields with low

Reynolds number.t2) This is due to the facts of the flows with low Reynolds number

characterized by a thicker boundary layer and a greater amount of viscous dissipation.

For the flows with high Reynolds number, there are thinner boundary layer and less

viscous dissipation present and initial effects become more pronounced. Fluid particles

near the endwalls are accelerated radially outward in a spiral motion as the Ekman

layer and boundary layer develop. These particles overshoot their "equilibrium radial

position" before they turn upward (downward) from the edge of lower (upper) Ekman

layer in r-z plane, or outside the boundary layer near the corner. The reverse flow

zones, that develop along the sidewall, are apparently linked to the inertial oscillations

developed as swirling fluid particles travel upward (downward) outside the boundary

layer along the lower (upper) sidewall and begin to migrate radially inward [see Fig.

2 (A) for detail].

Development and decay of Ekman layer have been studied. Ekman layer is a layer

in which there is a three-way balance between the Coriolis force, the pressure gradient

force, and the viscous stress. 22) It is known that the Ekman layer solution is the fact

that the flow velocity in the boundary layer has a component directed toward lower

pressure. A sharp pressure gradient _p/Or is developed right after the impulsive start of

container spin-up from rest. This pressure gradient immediately induced a component

01

(A) r=2.4Ocm, c,J=lO2rpm, 4/O=O°,V=Rco)
(a) t=0,6885
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Fig. 3. (A) Animation of the development and decay of Ekman layer at

lower right near the end wall of container in r-z plane at r= 2.40cm,

_o = 102 rpm and ¢, = 0% (B) Animation of the development and decay

of Ekman layer at lower right near the side wall of container in r-z

plane at r=2.40cm, (_= 10.2rpm, and _=0 °.

1

O}
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of flow velocity along radial direction toward lower pressure side. Similar to four reverse

flow zones shown in Fig. 2 (A), four flow zones of Ekman layers in r-z plane are also

developed. Figure 3 (A) shows the animation of the development and decay of Ekman

layer at lower right near the sidewall of container in r-z plane at r=2.40cm and

09= 102 rpm. It shows that a pronounced Ekman layer is developed during the time

period of 0.25 to 3.50 s with maximum peaks located at z/H= 0.03 near the lower wall

and at z/H=0.97 near the upperwall, and decays rapidly afterwards.

As indicate earlier, size of grid points shall be adjusted properly when Reynolds

number of flow fields changes. In otherwords, grids of 16 x 34 x 14, which are less finer

than the previous case because of lower Reynolds number with thicker boundary layer

thickness of flow profiles, are adopted. Figure 4 (A) shows the transient velocity vectors

along the circumferential direction in r-O plane at height z = 1 cm for co = 10.2 rpm, and

ending with solid rotation status. Figure 4 (B) shows the similar animation of the

circumferential velocity profiles with respect to time and the magnitude along radial

coordinate (in term of u� V where V = Roe) at height z = 1cm for co = 10.2 rpm and ending

with solid rotation status. Comparison of Figs. 1, and 2 for flows with spin-up speeds

of 102 and 10.2rpm, respectively, show that it takes longer time for lower spin-up

speeds to reach a solid rotation status.

Existence of temporary reverse flow zones near the sidewalls at the beginning of

container spin-up from rest for _o= 10.2 rpm is also examined. Figure 2 (B) shows the

animation of four reverse flow zones from the initiation and the development after the

(a)t=2,73s (b) t:9,31s (c)t:40,Os

Fig. 4(A). Transient velocity vectors along the circumferential direction
in r-O plane at height z= 1cm, co= 10.2 rpm and @=0°C.
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Fig. 4 (B). Transient circumferential velocity profiles with respect to time
and radial coordinates at height z= I cm, co= 10.2 rpm and _,=0 °.
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impulsive start to a full reverse flow at the beginning of impulsive spin-up from rest.

Again, these reverse flows disappear quickly before the flow reaching to the status of

solid rotation. Comparison of Figs. 2 (A) and (B) between flows with spin-up speeds

of 102 and 10.2rpm, respectively, show that it takes a longer time of initiation,

development and decay of reverse flow zones for lower spin-up speed than that of the

higher spin-up speed. Computer experiments of several flow profiles with lower spin-up

speeds than the case presented in this study indicate that there is no appearance of

reverse flow zone during the flow spin-up motion with lower Reynolds number flows

because of thicker boundary layer and a greater amount of viscous dissipation.

Development and decay of Ekman layer for spin-up speed with 10.2rpm are

examined. Figure 3 (B) shows the animation of Ekman layer at lower right near the

sidewall of container at r = 2.40 cm and _o= 10.2 rpm. It shows that a pronounced Ekman

layer is developed during the time period of 0.65 to 11.2 s with maximum peak values

of radial velocity located at z/H=O.05 near the lower wall and at z/H=0.95 near the

upper wall, and decay rapidly afterwards. Comparison of Figs. 3 (A) and (B) between

flows with spin-up speeds of 102 and 10.2 rpm, respectively, show that it takes a longer

time for initiation and development of Ekman layer for lower spin-up speed than that

of the higher spin-up speed. Locations of the maximum values of radial velocity for

lower spin-up speed is with a distance further away from the side wall than that of the

higher spin-up speed because boundary layer thickness of lower spin-up speed is thicker

than that of the higher spin-up speed.

(B) Spin-up with Oblique Direction Gravitational Acceleration
Previous section describes the spin-up flow fields with gravitational acceleration

pointing along the axial direction of rotating cylinder. In this section, gravitational

acceleration acting on the spin-up cylinder with a direction _b=60 ° measured

counterclockwise from the rotating axis in r z plane with 0=0 ° have been studied.

Order of magnitude comparison between centrifugal and gravitational accelerations

show that the centrifugal accelerations for 60= 102 and 10.2 rpm are 342 and 34.2 cm/s z,

respectively, with 3 cm radius of cylinder against 981 cm/s 2 for gravitational acceleration.

Obviously, it can be anticipated that the flow profiles will be greatly modified by the

oblique direction of gravitational acceleration in comparison with normal direction for

the case of 10.2rpm spin-up rotation speed. In this study, computational results of

10.2rpm sudden spin-up rotation speed from rest with 60 ° oblique direction of

gravitational acceleration is presented and discussed.

Figure 5 shows the transient velocity vectors along the circumferential direction in

r-O plane at height z = 1 cm for 60 ° oblique direction gravitational acceleration acting

on the 10.2 rpm sudden spin-up filled cylinder from rest. Oblique direction gravitational

acceleration drives the rotation flow in two sections : one with acceleration (flow direction

coinsides with that of gravitational acceleration) from 0= 180 ° to 360°; and other with

deacceleration (flow direction reverse to that of gravitational acceleration) from 0 = 0°

to 180 °, both of the rotating flow in counter clockwise directions. It shows how the

momentum transmits inward from the solid wall to the fluid propagating toward the

center of rotating axis. Clearly, an asymmetric flow zone with uneven velocity distribu-

tion are created based on the driving forces of acceleration and deceleration activated

by the oblique direction gravitational accelerations. At the end of simulation, it shows

a steady state flow profile with normal direction gravitational acceleration, and there is
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la) t=2,75s (b) t=5.4Zs _{)t=9.31s

{d) t=25,Ts {e) t=33,4s (f) t=40.Os

Fig. 5. Transient velocity vectors along the circumferential direction in

r-0 plane at height z = 1cm and co= 10.2 rpm for oblique gravitational
acceleration ($ = 60°C).

a steady-state, but not solid-rotation flow pattern with oblique direction gravitational
acceleration.

In order to show the differences in the animation of the circumferential velocity

profiles (in term of u/V where V= Rto) with respect to time and the magnitudes along

radial coordinates at height z = 1cm for these separate flow zones, Figs. 6 and 7 show

these flow profiles along 0=0 ° (acceleration zone), and 0= 180 ° (deceleration zone),

respectively. Comparison of Figs. 4 and 5-7 for spin-up flow profiles in circumferential

component with gravitational acceleration along normal and oblique directions can

draw the following conclusions: (a) solid-rotation flow profiles can be reached for

spin-up flow with normal gravitational acceleration, whereas there is steady-state but

not solid-rotation flow for that with oblique gravitational acceleration. (b) In the

deceleration zone of spin-up from rest with oblique gravitational acceleration during

the status of steady-state flow, there is a velocity hill (0.5 cm/s above solid rotation

speed) near the center of rotating axis at r = 0.6 cm, and velocity ditch (0.8 cm/s below

solid rotation speed) near the end wall of cylinder at r= 2.9 cm over which the flow

velocity in circumferential component sharply increase to the magnitude of cylindrical

wall velocity near the end walls. (c) In the acceleration zone of spin-up from rest with

oblique gravitational acceleration during the status of steady-state flow, there is a

velocity ditch (0.8 cm/s below solid rotation speed) near the center of rotating axis at

r = 0.4 cm, and velocity hill (0.5 cm/s above solid rotation speed, and also 0.3 cm/s above

the magnitude of cylindrical end wall velocity of rotation) near the end wall of cylinder

at r = 2.9 cm over which the flow velocity in circumferential component decrease to the
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magnitude of cylindrical wall velocity near the end walls. (d) The introduction of

acceleration flow driven by oblique gravitational acceleration in the acceleration zone

cause a peculiar outflow in the region of 90c_<0<270 ° and inflow in the region of

90°> 0 > 270 °, particularly pronounced within the locations of r/R < 0.5 in _z plane to

satisfy the mass conservation (see Fig. 5). This peculiar dynamics of the coexistence

of inflow and outflow initiate at the beginning of impulsive spin-up from rest and

continue even after the status of steady-state. Figure 6 shows the appearance of negative

circumferential component of velocity from the radial coordinate near the solid wall

of container, propagating inward toward the center of rotating axis, and ending with

maximum negative circumferential velocity located at r = 0.4 cm after the status of steady

state condition. During the entire course of spin-up from rest, the maximum negative

circumferential component of velocity appear in the time 8.5s>t>4.5 s with a value

of - 1.3 cm/s. (_) D,,ring the entire course of spin-up from rest to the status of steady-

state condition, there is no fluid flow at the center of rotating axis for flow with normal

gravitational acceleration, whereas there is always the flow across the center of rotating

axis for flow with oblique gravitational acceleration 0mit,,v in the region of 90°>0>

270", and outflow in the region of 90 ° < 0 < 270"). (f) For the flow of spin-up from rest,

the flow velocity in circumferential component increases gradually from the endwall

and propagates inward toward the center of rotating axis. The final flow profile of solid

rotation is nothing but a linear relation of v =r_o for flow with normal gravitational
acceleration.

Initiation and development of reverse flow zones and Ekman layer were also

computed. It shows that there is no apparent reverse flow zone shown for spin-up from

rest with oblique gravitational acceleration. Figures 8 and 9 show the animation of

Ekman layer at lower half r z plane along 0=0 U (acceleration zone), and 0= 180"

(deceleration zone), respectively, at r=2.40cm for spin-up from rest with oblique

gravitational acceleration. Comparison of Figs. 3 and 8, 9 for the animation of initiation,

development and decay of Ekamn layer profiles of spin-up from rest with gravitational

accelerations along normal and oblique directions, respectively, can draw the following

conclusions : (a) In r z plane, Ekman layers which develop in the upper half and the

lower half zones are same and are basically the flow profiles with mirror reflection. (b)

For the flow of spin-up from rest with normal gravitational acceleration, animation of

Ekman layer along 0 = 0" and 180 ° in r z plane are same and basically the flow profiles

with mirror reflection. (c) For the flow of spin-up from rest with oblique gravitational

acceleration, animation of Ekman layer along 0 =0 ° (acceleration zone) and 0 = 180 r_

(deceleration zone) in _z plane are entirely different. (d) For the development of

temporary reverse flow zones near the sidewalls at the beginning of container spin-up

from rest which decay quickly before the flow attain to solid-rotational states flow with

normal gravitational acceleration is generated due to the fact of well-organized flow

patterns with momentum transfer from the outer solid wall which propagate inward

toward the center of rotating axis. This well-organized flow pattern has never occurred

for flow with oblique gravitational acceleration which drives the flow with one-side

accelerating, and the other side decelerating. This fairly asymmetric flow pattern with

oblique gravitational acceleration provides no contribution to the generation of reverse

flow zone which appear in the other case with symmetric flow pattern with normal

gravitational acceleration. (e) Initiation and development of Ekman layer at the



Aug. 1995 R.J. HUNG and H. L. PAN: 3-D Transient Flow of Spin-Up in Filled Cylinder 147

0,4

o.2]

0,0

(a) taO.Os [b) t=0.54s (c) t=2.73s

i 1
)

0.4
(d) t=3.S3s (e) t=5,47s

]
I
[
J

" i

(f) t=6.57s

I

0.4 (g) t=7.66s (h) t=9.31s

1

_0,2

0.0'-

(i) t=13.1s

t
(j) t=25.7s

0,4] I

= °'21 ,,",/
0,0

-0,i 0.0

u/V

(k) t=33.4s

i

I i

0,I -0.I 0.0

u/V

0.I -0,i

(1) t:40.os

)

I

0,0 0,i

u/V

along 0=0 °Fig. 8. Animation of the development of Ekman layer
(acceleration zone) near the end wall of container in r-z plane at
r=2.40cm and to= 10.2rpm for oblique gravitational acceleration

(qJ= 60°).

beginning of flow spin-up from rest with normal gravitational acceleration are introduced

because mass conservation requires a fill in of mass in positive radial direction due to

the fluid mass spin-up near the sidewall of container at the beginning together with a

sharp pressure gradient dp/t3r which is developed right after the impulsive start from

rest generating radial component of flow toward lower pressure side. Ekman layer flow

pattern decay quickly before flow reach to the equilibrium status of solid rotation. (f)

Initiation and development of Ekman layer for spin-up flow from rest with oblique

gravitational acceleration results in an entirely different story. A constant existence of

velocity hill and velocity ditch along the radial direction, which even continues at the

steady-state, makes the existence of Ekman layer without decay for flow with oblique

gravitational acceleration. (g) At the deceleration side (0 = 180 °) of spin-up flow with

oblique gravitational acceleration, a constant existence of circumferential component
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velocity ditch near the endwall at r= 2.40 cm, even after the flow attaining the status

of steady state, results in a long lasting appearance of Ekman layer. It shows a peak

(maximum peak value with u/V=O.02) positive radial velocity (positive radial velocity

is contributed by the circumferential component of velocity ditch while negative radial

velocity is due to the circumferential component of velocity hill at the corresponding

location) located at z/H= 0.04. (h) At the acceleration side (0 = 0°) of spin-up flow with

oblique gravitational acceleration, flow pattern of Ekman layer is quite complicated.

There is a circumferential component velocity ditch near the end wall at r= 2.40 cm

with spin-up from rest at the beginning of impulsive start to time at t < 5.2 s which

results in Ekman layer with positive radial component velocity with peak value located

at z/H=O.04. After the time of t>5.2s, a circumferential component velocity hill is

gradually developed at r=2.40cm which contributes to the development of negative
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radial component velocity Ekman layer with peak value also located at z/H= 0.04.

4. Discussion and Conclusions

Transient flow profiles of impulsive spin-up from rest in a filled cylinder have been

studied numerically. A symmetric flow profile has been resulted with gravitational

acceleration acting along the rotating axis of cylinder whereas an asymmetric with

complicated flow profiles is obtained with oblique gravitational acceleration activated

on the rotating container with respect to rotating axis. It is suggested that a finer size

of grid points shall be adopted for flow field with higher Reynolds number for the

purpose to avoid the generation of numerical instabilities associated with flow field

computation.

A status of solid rotation can be reached for a symmetric flow field of impulsive

spin-up from rest with gravitational acceleration acting along the rotating axis of

container. There is a steady-state, but not a status of solid rotation with an asymmetric

flow field for impulsive spin-up from rest with oblique gravitational acceleration acting

on the flow fields. A temporary reverse flow zone can be developed at the beginning

of spin-up before reaching the status of solid rotation with a symmetric flow field for

higer Reynolds number flows. This temporary reverse flow zone can be missed for lower

Reynolds number flow and also liquid rotation with asymmetric flow,

Ekman layer is developed during the course of impulsive spin-up from rest. This

flow pattern is induced due to a sharp pressure gradient _p/_r which drives a radial

component flow toward the lower pressure side, and is terminated before the flow

reaches the status of solid rotation with a symmetric flow profile spin-up from rest. The

profiles of Ekman layer become fairly complicated with both positive and negative

radial mass flow rates varying with respect to time coexistence with circumferential

velocity ditch and velocity hill which appear jointly in the asymmetric rotating flow. A

thorough understanding of these flow field can contribute greatly to a better design of

spacecraft flow system, and also payload system of projectiles. 3,_sl
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