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Abstract

The increasing complexity of engineering systems
has sparked increasing interest in multdisciplinary
optimization (MDO). This paper presents a survey of
recent publications in the field of aerospace where
interest in MDO has been particularly intense. The two
main challenges of MDO are computational expense
and organizational complexity. Accordingly the survey
is focused on various ways different researchers use to
deal with these challenges. The survey is organized by
a -breakdown of MDO into its conceptual components.
Accordingly, the survey includes sections on
Mathematical Modeling, Design-oriented Analysis,
Approximation Concepts, Optimization Procedures,
System Sensitivity, and Human Interface. With the
authors’ main expertise being in the structures area, the
bulk of the references focus on the interaction of the
structures discipline with other disciplines. In
particular, two sections at the end focus on two such
interactions that have recently been pursued with a
particular vigor: Simultaneous Optimization of
Structures and Aerodynamics, and Simultaneous
Optimization of Structures Combined With Active
Control.

1. Introduction

The term “methodology” is defined by Webster's
dictionary as "a body of methods, procedures, working
concepts, and postulates, etc." Consistent with this
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definition, multidisciplinary optimization (MDO) can
be described as a methodology for the design of
systems where the interaction between several
disciplines must be considered, and where the designer
is free to significantly affect the system performance in
more than one discipline.  Using this definition,
structural optimization of an aircraft wing to prevent
flutter will not be considered multidisciplinary
optimization. For this case, the interaction of
aerodynamics and structures is present only at the
analysis level, and the designer does not attempt to
change the aerodynamic shape of the wing.

The interdisciplinary coupling -inherent in MDO
tends to present additional challenges beyond those
encountered in a single-discipline optimization. It
increases computational burden, and it also increases
complexity and creates organizational challenges for
implementing the necessary coupling in software
systems.

The increased computational burden may simply
reflect the increased size of the MDO problem, with the
number of analysis variables and of design variables
adding up with each additional discipline. A case of
tens of thousands of analysis variables and several
thousands of design variables, reported in Berkes (90)
for just the structural part of an airframe design,
illustrates the dimensionality of the MDO task one has
to prepare for. Since solution times for most analysis
and optimization algorithms increase at a superlinear.
rate, the computational cost of MDO is usually much
higher than the sum of the costs of the single-discipline
optimizations for the disciplines represented in the
MDO. Additionally, even if each discipline employs
linear analysis methods, the combined system may
require costly nonlinear analysis. For example, linear
aerodynamics may be used to predict pressure
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distributions on a wing, and linear structural analysis
may be then used to predict displacements. However,
the dependence of the pressures on the displacements
may not be linear. Finally, for each disciplinary
optimization we may be able to use a single-objective
function, but for the MDO problem we may need to
have multiple objectives with an attendant increase in
optimization cost.

In MDO of complex systems we also face
formidable organizational challenges. The analysis
codes for each discipline have to be made to interact
with one another for the purpose of system analysis and
system optimization. The kind and breadth of
interaction is affected by the MDO formulation.
Decisions on the choice of design variables and on
whether to use single-level optimization or multilevel
optimization have profound effects on the coordination
and data transfer between analysis codes and the
optimization code and on the degree of human
interactions required. The interaction between the
modules in the software system on one side and the
multitude of users organized in disciplinary groups on
the other side may be complicated by departmental
divisions in the organization that performs the MDO.

One may discern three categories of approaches to
MDO problems, depending on the way the
organizational challenge has been addressed. Two of
these categories represent approaches that concentrated
on problem formulations that circumvent the
organizational challenge, while the third deals with
attempts to address this challenge directly.

1. The first category includes problems with two
or three interacting disciplines where a single analyst
can acquire all the required expertise. At the analysis
level, this may lead to the creation of a new discipline
that focuses on the interaction of the involved
disciplines, such as aeroelasticity or thermoelasticity.
This may lead to MDO where design variables in
several disciplines have to be obtained simultaneously
to ensure efficient design. The past two decades have
created the discipline of structural control, with analysts
who are well versed in both structures and control
system analysis and design. There has also been much
work on simultaneous optimization of structures and
control systems (e.g., Haftka, 90). Most of the papers
in this category represent a single group of researchers
or practitioners working with a single computer
program, so that organizational challenges were
minimized. Because of this, it is easier for researchers
working on problems in this category to deal with some
of the issues of complexity of MDO problems, such as
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the need for multiobjective optimization (e.g., Gupta
and Joshi, 90, Rao and Venkayya, 92, Grandhi et al.,
92, and Dovi and Wrenn, 90).

2. The second category includes works where the
MDO of an entire system is carried out at the
conceptual level by employing simple analysis tools.
For aircraft design, the ACSYNT (Vanderplaats, 76,
Jayaram et al.,, 92) and FLOPS (McCullers, 84)
programs represent this level of MDO application.
Because of the simplicity of the analysis tools, it is
possible to integrate the various disciplinary analyses in
a single, usually modular, computer program and avoid
large computational burdens. Gallman et al. (94), Gates
and Lewis (92), Lavelle and Plencner (92), Morris and
Kroo (90), Dodd et al. (90), Harry (92), Reddy et al.
(92), and Bartholomew and Wellen (90) provide
instances of this approach. As the design process
moves on, the level of analysis complexity employed at
the conceptual design level increases uniformly
throughout or selectively (Adelman et al., 92, presents
an example of the latter). Therefore, some of these
codes are beginning to face some of the organizational
challenges encountered when MDO is practiced at a
more advanced stage of design process.

3. The third category of MDO research includes
works that focus on the organizational and
computational challenges and develop techniques that
help address these challenges. These include
decomposition methods and global sensitivity
techniques that permit overall system optimization to
proceed with minimum changes to disciplinary codes.
These also include the development of tools that
facilitate efficient organization of modules or that help
with organization of data transfer.  Finally,
approximation techniques are extensively used to
address the computational burden challenge, but they
often also help with the organizational challenge.

The present review emphasizes papers that belong
to the third category. The survey is organized by the
MDO breakdown into its conceptual components
suggested in Sobieszczanski-Sobieski (95).
Accordingly, the survey inciudes sections on
Mathematical Modeling and Design-oriented Analysis,
Approximation Concepts, Optimization Procedures,
System Sensitivity, Decompositio, and Human
Interface (and an Appendix on the Design Space Search
algorithms). With the authors main expertise being in
the structures area, the bulk of the references focus on
the interaction of the structures discipline with another
discipline such as structures and electromagnetic
performance (Padula et al., 89). In particular, two
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sections at the end focus on two such interactions that
have recently been pursued with a particular vigor:
Simultaneous Optimization of Structures and
Aerodynamics and Structures Combined With Active
Control. This emphasis on structures reflects also the
roots of acrospace MDO in structural optimization and
the central role of structures technology in design of
aerospace vehicles.

2. MDO Components

This section comprises references grouped by the
MDO conceptual components defined as proposed in
Sobieszczanski-Sobieski (95).

2.1 Mathematical Modeling of a System

For obvious pragmatic reasons, software
implementation of mathematical models of engineering
systems usually takes the form of assemblages of codes
(modules), each module representing a physical
phenomenon, a physical part, or some other aspect of
the system. Data transfers among the modules
correspond to the internal couplings of the system.
These data transfers may require data processing that
may become a costly overhead. For example, if the
system is a flexible wing, the aerodynamic pressure
reduced to concentrated forces at the aerodynamic
model grid points on the wing surface has to be
converted to the corresponding concentrated loads
acting on the structure finite-element model nodal
points. Conversely, the finite-element nodal structural
displacements have to be entered into aerodynamic
model grid as shape corrections.

The volume of data transferred in such couplings
affects efficiency directly in terms of 1/O cost.
Additionally, many solution procedures (e.g.. Global
Sensitivity Equation, Sobieszczanski-Sobieski. 90)
require the derivatives of this data with respect to
design variables, so that a large volume of data also
increases computational cost. To decrease these costs.
the volume of data may be reduced by various
condensation (reduced basis) techniques. For instance,
in the above wing example one may represent the
pressure distribution and the displacement fields by a
small number of base functions defined over the wing
planform and transfer only the coefficients of these
functions instead of the large volumes of the discrete
load and displacement data. An example of such
condensation for supersonic transport design was
reported in Barthelemy et al. (92) and Unger et al.
(92).

In some applications, one may identify a cluster of
modules in a system model that exchange very large
volumes of data that are not amenable to condensation.
In such cases, the computational cost may be
substantially reduced by unifying the two modules, e.g.,
August et al. (92) or merging them at the equation
level. A heat-ransfer-structural-nalysis code is an
example of such merger as described in Thornton (92).
In this code, the analyses of the temperature field
throughout a structure and of the associated stress-strain
field share a common finite-element model. This line
of development was extended to include fluid
mechanics in Sutjahjo and Chamis (94).

Because of the increased importance of
computational cost, MDO emphasizes the tradeoff of
accuracy and cost associated with alternative models
with different levels of complexity for the same
phenomena. In single-discipline optimization it is
common to have an “analysis model” which is more
accurate and more costly than an “optimization model”.
In MDO, this tradeoff between accuracy and cost is
exercised in various ways. First, optimization models
can use the same theory, but with a lower level of
detail. For example, the finite-ment models used for
combined aeroelastic analysis of the high-speed civil
transport (e.g., Scotti, 95) are much more detailed than
the models typically used for combined aerodynamic-
structural optimization (e.g., Dudley et al., 94) .

Second, models used for MDO are often less
complex and less accurate than models used for a single
disciplinary optimization. For example, structural
models used for airframe optimization of the HSCT
(e.g.. Scotti, 95) are substantially more refined than
those used for MDO. Aircraft MDO programs, such as
FLOPS (McCullers, 84) and ACSYNT (Vanderplaats,
76), Jayaram ct al.. 92) use simple aerodynamic
analysis models and weight equations to estimate
structural weight. Similarly Livne et al. (92) use an
equivalent plate model instead of a finite-element
models for structures-control optimization of flexible
wings.

Third, occasionally, models of different
complexity are used simultaneously in the same
discipline. One of them may be a complex model for-
calculating the discipline response, and a simpler model
for characterizing interaction with other disciplines.
For example, in many atrcraft companies, the structural
loads are calculated by a simpler aerodynamic model
than the one used for calculating aerodynamic drag
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(e.g., Baker and Giesing, 95). Finally, models of
various levels of complexity may be used for the same
response calculation in an approximation procedure or
fast reanalysis described in the next two sections.

Recent aerospace industry emphasis on economics
will, undoubtedly, spawn generation of a new category
of mathematical models to simulate man-made
phenomena of manufacturing and aerospace vehicle
operation with requisite support and maintenance.
These models will share at least some of their input
variables with those used in the product design to
account for the vehicle physics. This will enable one to
build a system mathematical model encompassing all
the principal phases of the product life cycle:
formulation of desirements, product design,
manufacturing, and operation. Based on such an
extended model of a system, it will be possible to
optimize the entire life cycle for a variety of economic
objectives, e.g., minimum cost or a maximum return on
investment, as forecasted in Tulinius (92) . There are
several references that bring the life cycle issues into
the MDO domain; examples are Korngold and Gabriele
(94), Fenyes (92), Bearden et al. (94), Brockman et al.
(92), Current et al. (90), Shupe and Srinivasan (92),
Briggs (92), Claus (92), Godse et al. (92), Dolvin (92),
Eppinger et al. (94), Lokanathan et al. (95), Marx et al.
(94), Niu and Brockman (95), Kirk (92), and Yeh and
Fulton (92). Schrage (93) discussed the role of MDO in
the Integrated Product and Process Development
(IPPD), also known as Concurrent Engineering (CE),
and surveyed references on the subject.

Mathematical modeling of an aerospace vehicle
critically depends on an efficient and flexible
description of geometry. This subject is addressed in
Smith and Kerr (92).

2.2 Design-Oriented Analysis

The engineering design process moves forward by
asking and answering "what if" questions. To get
answers to these questions expeditiously, designers
need analysis tools that have a number of special
attributes. These attributes are: selection of the various
levels of analysis ranging from inexpensive and
approximate to accurate and more costly, "smart”
reanalysis which repeats only- parts of the original
analysis affected by the design changes, computation of
sensitivity derivatives of output with respect to input,
and a data management and visualization infrastructure
necessary to handle large volumes of data typically
generated in a design process. The term "Design-
oriented Analysis" introduced in Storaasli and
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Sobieszczanski (73) refers to analysis procedures
possessing the above attributes.

The data management and visualization
infrastructure, e.g., (Herendeen et al., 92) is a vast field
beyond the scope of this survey. Sensitivity analysis is
discussed in section 2.4, and the issue of the selection
of analysis level was discussed in the previous section,
and will be returned to in the next section on
approximations.

An example of a design-oriented analysis code is
the program LS-CLASS developed by Livne and
Schmit (90), Livne et al. (92, 93) for the structures-
control-aerodynamic optimization of flexible wings
with active controls. The program permits the
calculation of aeroservoelastic response at different
levels of accuracy ranging from a full model to a
reduced one based on vibration modes. Additionally,
various approximations are available depending on the
response quantity to be calculated.

A typical implementation of the idea of smart
reanalysis has been reported in Kroo and Takai (88a, b)
and Gage and Kroo (92). The code (called PASS) is a
collection of modules coupled by the output-to-input
dependencies. These dependencies are determined and
stored on a data base together with the archival
input/output data from recent executions of the code.
When a user changes an input variable and asks for new
values of the output variables. the code logic uses the
data dependency information to determine which
modules and archival data are affected by the change
and executes only the modules that are affected, using
the archival data as much as possible. One may add
that such smart reanalysis is now an industry standard
in the spreadsheets whose use is popular on personal
computers. It contributes materially to the fast
response of these spreadsheets.

2.3 Approximation Concepts

Direct coupling of a the design space search code
(DSS) to a multidisciplinary analysis may be
impractical for several reasons. First, for any moderate
to large number of design variables, the number of
evaluations of objective function and constraints
required by DSS is high. Often we cannot afford to
execute such a large number of exact MDO analyses in
order to provide the evaluation of the objective function
and constraints. Second, often the different disciplinary
analyses are executed on different machines, possibly at
different sites, and communication with a central DSS
program may become unwieldy. Third, some
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disciplines may produce noisy or jagged response as a
function of the design variables (e.g., Giunta et al., 94).
If we do not use a smooth approximation to the
response in this discipline we will have to degrade the
DSS to less efficient nongradient methods.

For all of the above reasons, most optimizations of
complex engineering systems couple a DSS to
easy-to-calculate approximations of the objective
function and/or constraints. The optimum of the
approximate problem is found and then the
approximation is updated by the full analysis executed
at that optimum and the process repeated. This process
of sequential approximate optimization is popular also
in single-discipline optimization, but its use is more
critical in MDO as the principal cost control measure

Most often the approximations used in engineering
system optimization are local approximations based on
the derivatives. Linear and quadratic approximations
are frequently used, and occasionally intermediate
variables or intermediate response quantities (e.g.,
Kodiyalam and Vanderplaats, 89) are used to improve
the accuracy of the approximation. For example,
instead of a Taylor series in the variables, structural
response has been approximated by a Taylor series in
the reciprocals of all the variables or some of them
(Starnes and Haftka, 79). Similarly, instead of
approximating eigehvalues directly, we can
approximate the numerator and denominator of the
Rayleigh quotient that defines them (e.g., Murthy and
Haftka, 88. Canfield, 90, Livne and coworkers, e.g.,
Livne et al,, 93, and 95). Li and Livne (95) have
explored extensively various approximations for
structural, control and aecrodynamic response quantities.
A procedure for updating the sensitivity derivatives in a
sequence of approximations using the past data was
formulated for a general case in Scotti (93).

Global approximations have also been extensively
used in MDO. Simpier analysis procedures can be
viewed as global approximations when they are used
temporarily during the optimization process, with more
accurate procedures employed periodically during the
process. For example, Unger et al. (.92) developed a
procedure where both the simpler and more
sophisticated models are used simultaneously during
the optimization procedure. The sophisticated model
provides a scale factor for correcting the simpler model.
The scale factor is updated periodicaliy during the
design process. Because this approach employs models
of variable complexity it was dubbed "variable
complexity modeling (VCM). For example, Unger et
al. ( 92) applied the procedure to aerodynamic drag

calculation for a subsonic transport, while Hutchison et
al. (94) applied the procedure to predict the drag of a
high-speed civil transport (HSCT) during the
optimization process. Similarly, Huang et al. ( 94)
employed structural optimization together with a simple
weight equation for predicting wing structural weight in
combined aerodynamic and structural optimization of
the HSCT. Traditional derivative-based approximation
can be combined with such global VCM
approximations by using a derivative-based linear
approximation for the scale factor (Chang et al., 93).

Another global approximation approach that is
particularly suitable for MDO is the response-surface
technique. This technique replaces the objective and/or
constraints functions with simple functions, often
polynomials, which are fitted to data at a set of
carefully selected design points. Neural networks are
sometimes used to function in the same role. The
values of the objective function and constraints at the
selected set of points are used to “train” the network.
Like the polynomial fit, the neural network provides an
estimate of objective function and constraints for the
optimizer that is very inexpensive after the initial
investment in the net training has been made.

Response surface techniques are not commonly
used in single-discipline optimization because they do
not scale well to large number of variables. For MDO,
response surface techniques also provide a convenient
representation of data from one discipline to other
disciplines and to the system. Since design points are
preselected rather than chosen by an optimization
algorithm, it may be possible to plan and coordinate the
solution process by different modules with less tight
integration than required with derivative-based
methods. In fact, this fcature has motivated the use of
response surfaces even for single-discipline
optimization when the analysis program is not easy to
connect to an optimizer (e.g.. Mason at al., 94).

Indeed, response surface techniques have recently
gained popularity as a simple way to connect codes
from various disciplines, or more generally, to facilitate
communication between specialists on the design team.
In this sense, these techniques are becoming one of the
means to meet the organizational challenge of MDO.
For example, Tai et al. (95) have used response surface
technique to couple a large number of disciplinary
analysis programs for the design of a convertible
rotor/wing concept. Giunta et al. (95) have used
response surfaces to combine aerodynamic and
structural optimization. They have also taken
advantage of the inherent parallelism of response
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surface generation to employ extensively parallel
computation.

Additionally, the discrete models employed in
various disciplines can occasionally generate
discontinuities in response due to the effect of shape
changes on grids (e.g., Giunta et al.,, 94). Multilevel
design schemes can produce similar phenomena due to
changes in sets of critical constraints at lower-level
optimizations. MDO procedures, which use many
modules and often resort to multilevel techniques are
particularly vulnerable to the occurrence of such
discontinuities. Traditional derivative-based
approximation techniques can become useless in such
circumstances, while response surface techniques
smooth the design space and proceed without difficulty.
For smooth response quantities where derivatives can
be calculated cheaply, we can employ response surfaces
based on these derivatives.

Finally, the global nature of response surface
approximation means that they can be repeatedly used
for design studies with multiple objective functions and
different optimization parameters for gradual building
of the problem database (e.g., Wujek et al., 95).
Furthermore, they permit visualizations of the entire
design space. These features have been used
extensively by Mistree and his coworkers (e.g., Mistree
etal., 94).

2.4 System Sensitivity Analysis

In principle, sensitivity analysis of a system might
be conducted using the same techniques that became
well-established in the disciplinary sensitivity analyses
(see surveys, Haftka and Adelman, 89, Adelman and
Haftka, 93, Barthelemy et al., 95, for automatic
differentiation, and Bischof and Knauff, 94, and Altus
et al., 96 for application examples). However, in most
practical cases the sheer dimensionality of the system
analysis makes a simple extension of the disciplinary
sensitivity analysis techniques impractical in
applications to sensitivity analysis of systems.

Also, the utility of the system sensitivity data is
broader than that in a single analysis. In design of a
system that typically engages a team of disciplinary
specialists these data have a potential of constituting a
common vocabulary to overcome interdisciplinary
communication barriers in conveying information about
the influence of the disciplines on one another and on
the system. Utility of the sensitivity data for tracing
interdisciplinary influences was illustrated by an
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application to an aircraft performance analysis in
Sobieszczanski-Sobieski (86).

An algorithm that capitalizes on disciplinary
sensitivity analysis techniques to organize the solution
of the system sensitivity problem and its extension to
higher order derivatives was introduced in
Sobieszczanski-Sobieski (90a) and (90d). There are
two variants of the algorithm: one is based on the
derivatives of the residuals of the governing equations
in each discipline represented by a module in a system
mathematical model, the other uses derivatives of
output with respect to input from each module.

So far operational experience has accumulated only
for the second variant. That variant begins with
computations of the derivatives of output with respect
to input for each module in the system mathematical
model, using any sensitivity analysis technique
appropriate to the module (discipline). The module-
level sensitivity analyses are independent of each other,
hence, they may be executed concurrently so that the
system sensitivity task gets decomposed into smaller
tasks. The resulting derivatives are entered as
coefficients into a set of simultaneous, linear, algebraic
equation, called the Global Sensitivity Equations
(GSE), whose solution vector comprises the system
total derivatives of behavior with respect to a design
variable. Solvability of GSE and singularity conditions
have been examined in Sobieszczanski-Sobieski (90a).
It was reported in Olds (94) that, in some applications,
errors of the system derivatives from the GSE solution
may exceed significantly the errors in the derivatives of
output with respect to input computed for the modules.

The system sensitivity derivatives, also referred to
as design derivatives, are useful to guide judgmental
design decisions, e.g., Olds (94), or they may be input
into an optimizer (e.g., Padula et al. (91). Application
of these derivatives extended to the second order in an
application to an aerodynamic-control integrated
optimization was reported in Ide et al. (88).

A completely different approach to sensitivity
analysis has been introduced in Szewczyk and Hajela
(94) and Lee and Hajela (95) It is based on a neural net
trained to simulate a particular analysis (the analysis
may be disciplinary or of a multidisciplinary system).
Neural net training, in general, requires adjustments of
the weighting coefficients in the net internal algorithm
until a correlation of output to input is obtained that is a
satisfactory approximation of the output to input
dependency in the simulated analysis over a range of
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interest. The above references show that the weighting
coefficients may be interpreted as a measure of the
sensitivity of the output with respect to input. In other
words, they may be regarded as the derivatives of
output with respect to input averaged over the range of
interest

In Sobieszczanski-Sobieski et al. (82) and
Barthelemy and Sobieszczanski-Sobieski (83) the
concept of the sensitivity analysis was extended to the
analysis of an optimum, which comprises the
constrained minimum of the objective function and the
optimal values of the design variables, for sensitivity to
the optimization constant parameters. The derivatives
resulting from such analysis are useful in various
decomposition schemes (next section), and in
assessment of the optimization results as shown in
Braun et al. (93).

2.5 Optimization Procedures with Approximations
and Decompositions

Optimization procedures assemble the numerical
operations corresponding to the MDO elements
(Sobieszczanski-Sobieski, 95) into executable
sequences. Typically, they include analyses, sensitivity
analyses, approximations, design space search
algorithms, decompositions, etc. Among these
elements the approximations (Section 2.3) and
decompositions most often determine the procedure
organization, therefore, this section focuses on these
two elements as distinguishing features of the
optimization procedures. )

The implementation of MDO procedures is often
limited by computational cost and by the difficulty to
integrate software packages coming from different
organizations. The computational burden challenge is
typically addressed by employing approximations
whereby the optimizer is applied to a sequence of
approximate problems.

The use of approximations often allows us to deal
better with organizational boundaries. The
approximation used for each discipline can be
generated by specialists in this discipline, who can
tailor the approximation to special features of that
discipline and to the particulars of the application.
When response surface techniques are used, the
creation of the various disciplinary approximations can
be performed ahead of time, minimizing the interaction
of the optimization procedure with the various
disciplinary software.
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In addition to approximations, it is desirable to
have flexibility in selection of different search
techniques for different disciplines and different phases
of optimization. By the same token, one should be able
to choose among various types of sensitivity analysis
because in some disciplines derivatives are readily
available, while in others they may not be available or
may not even exist. Examples of references that
illustrate evolution of the use of approximations in
optimization procedures are Schmit and Farshi (74),
Fleury and Schmit (80), Vanderplaats (85),
Sobieszczanski-Sobieski (82), and Stanley et al. (92),
whose focus was on response surface approximation
based on the Taguchi arrays. A procedure to
accommodate a variable complexity modeling in
application to a transport aircraft wing was described in
Unger et al. (92). An application of approximations in
rotorcraft optimization was reported in Adelman et al.
91).

Decomposition schemes and the associated
optimization procedures have evolved into a key
element of MDO (Gage, 95, Logan, 90). One important
motivation for development of optimization procedures
with decomposition is the obvious need to partition the
large task of the engineering system synthesis into
smaller tasks. The aggregate of the computational
effort of these smaller tasks is not necessarily smaller
than that of the original undivided task. However, the
decomposition advantages are in these smaller tasks
tending to be aligned with existing engineering
specialties, in their forming a broad workfront in which
opportunities for concurrent operations (calendar time
compression) are intrinsic, and in making MDO very
compatible with the trend of computer technology
toward multiprocessing hardware and software.

Much of the theory for decomposition has
originated in the field of the Operations Research, e.g,
Lasdon (70) and more recently Cramer and Dennis
(94). In parallel, several approaches have emerged
from applied research and engineering practice of
optimization applied to large problems both within
disciplines and in system optimization. This survey
focuses primarily on the latter.

Many decomposition schemes (Bloebaum et al.,
93) are possible, but they all have in common the
following major operations that together constitute a
system synthesis: system analysis including disciplinary
analyses, disciplinary and system sensitivity analyses,
optimizations at the disciplinary level, and optimization
at the system level (the coordination problem). Even
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though the coordination problem is now regarded as the
key element in decomposition, it was absent in some of
the early optimization procedures, e.g., Sobieszczanski
and Loendorf (72), and Giles and McCullers (75).
However, true MDO presupposes taking advantage of
interdisciplinary interactions, hence a need for
coordination in optimization procedures that implement
decomposition.

Three basic optimization procedures have
crystallized for applications in nonhierarchic aerospace
systems. The simplest procedure is piece-wise
approximate with the GSE used to obtain the
derivatives needed to construct the system behavior
approximations in the neighborhood of the design point.
In this procedure only the sensitivity analysis part of the
entire optimization task is subject to decomposition and
the optimization is a single-level one encompassing all
the design variables and constraints of the entire
system. Hence, there is no need for a coordination
problem to be solved. This GSE-based procedure has
been used in a number of applications, e.g.,
Sobieszczanski-Sobieski et al. (88), Barthelemy et al.
(92) Coen et al. (92), Consoli and
Sobieszczanski-Sobieski (92), Hajela et al. (90), Abdi et
al. (88), Dovi et al. (92), Padula et al. (91), and
Schneider et al. (92). The cost of the procedure
critically depends on the number of the coupling
variables for which the partial derivatives are
computed.

Disciplinary specialists involved in a design
process generally prefer to control optimization in their
domains of expertise as opposed to acting only as
analysts. This preference has motivated development
of procedures that extend the task partitioning to
optimization itself and enable one to organize the
numerical process to mirror the existing human
organization. A procedure called the Concurrent
Subspace Optimization (CSSO) introduced in
Sobieszczanski-Sobieski (89) allocates the design
variables to subspaces corresponding to engineering
disciplines or subsystems. Each subspace performs a
separate optimization, operating on its own unique
subset of design variables. In this optimization, the
objective function is the subspace contribution to the
system objective, subject to the local subspace
constraints and to constraints from all other subspaces.
The local constraints are evaluated by a locally
available analysis, the other constraints are
approximated using the total derivatives from GSE.
Responsibility for satisfying any particular constraint is
distributed over the subspaces using "responsibility”
coefficients which are constant parameters in each
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subspace optimization. Postoptimal sensitivity analysis
generates derivatives of each subspace optimum to the
subspace optimization parameters. Following a round
of subspace optimizations, these derivatives guide a
system-level optimization problem in adjusting the
"responsibility” coefficients This preserves the
couplings between the subspaces. The system analysis
and the system— and subsystem level optimizations
alternate until convergence.

In Bloebaum (91) and (92), the above system-level
optimization was reformulated by using an expert
system comprising heuristic rules to adjust the
responsibility coefficients, to allocate the design
variables, and to adjust the move limits. In Korngold et
al. (92), the algorithm was extended to problems with
discrete variables. A variant of the algorithm
introduced in Wujek et al. (95) allows the variable
sharing between the subspaces, and it bases the system-
level optimization on a response surface functions for
the objective and each of the constraints. These
functions are fitted to all the design points that have
been generated in all the previous subspace
optimizations (including the intermediate ones). The
"responsibility” coefficients are not used, and the
system-level optimization is being solved in the space
of all the design variables. A trained Neural Net
algorithm was used instead of the response surface
fitting in the system-level optimization in Sellar et al.
(96). A number of application examples for the CSSO
variants have been reported in Wujek et al. (96) and
Lokanathan et al. (96). The procedure has also been
implemented in a commercial software described in
Eason et al. (94 a,b) and Nystrom et al. (94).

The degree to which CSSO is expected to reduce
the system-optimization cost strongly depends on
problem sparsity. To see that, consider that in the
extreme case, when every design variable affects every
constraint directly, each subspace optimization problem
may grow to include all the system constraints in the
Sobieszczanski-Sobieski (88) version and all the system
variables and all the system constraints in the Wujek et
al. (95) version.

Another procedure proposed in Kroo et al. (94) and
Kroo (95) is known as the Collaborative Optimization
(CO). Its application examples for space vehicles are in
Braun and Kroo (95) and Braun et al. (95 a,b) and for
aircraft configuration, in Sobieski and Kroo (96). This
procedure decomposes the problem even further by
eliminating the need for a separate system and system
sensitivity analyses. It achieves this by blending the
design variables and those state variables that couple
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the subspaces (subsystems or disciplines) in one vector
of the system-level design variables. These variables
are set by the system level optimization and posed to
the subspace optimizations as targets to be matched.
Each subspace optimization operates on its own design
variables, some of which correspond to the targets
treated as the subspace optimization parameters, and
uses a specialized analysis to satisfy its own constraints.
The objective function to be minimized is a cumulative
measure of the discrepancies between the design
variables and their targets. Optimization in subspaces
may proceed concurrently; each of them is followed by
a postoptimum sensitivity analysis to compute the
optimum sensitivity derivatives (Sobieszczanski-
Sobieski et al., 82 and Barthelemy and Sobieszczanski-
Sobieski, (83) with respect to the parameters (targets).
The ensuing system-level optimization satisfies all the
constraints and adjusts the targets so as to minimize the
system objective and to enforce the matching. This
optimization is guided by the above optimum
sensitivity derivatives.

As in the other procedures, the subspace
optimizations, their postoptimum sensitivity analyses,
and the system-level optimization alternate until
convergence. Similar to CSSO, the system
optimization sparsity is critical for the CO to be able to
reduce the system optimization cost because, reasoning
by the extremes again, in case of everything influencing
everything else directly, each subspace problem would
have to include all the design variables (but still only
the local constraints). The CO procedure is in the
category of simultaneous analysis and design (SAND)
because the system analysis solution and the system
design optimum are arrived at simultaneously at the end
of an iterative process. A different implementation of
the SAND concept is described in Hutchison et al. (94).

Each of the above procedures applies also to
hierarchic systems. A hierarchic system is defined as
one in which a subsystem exchanges data directly with
the system only but not with any other subsystem.
Such data exchange occurs in analysis of structures by
substructuring. A concept to exploit this in structural
optimization was formulated in Schmit and
Ramanathan (78) and generalized in Sobieszczanski-
Sobieski (82) and (93). (It was shown in the latter how
the hierarchic decomposition derives from the
Bellman’s optimality criterion of the Dynamic
Programming.) The concept was also contributed to by
Kirsch, (e.g., Kirsch, 81) It was demonstrated in
several applications, including multidisciplinary ones,
e.g., Wrenn and Dovi (88) and Beltracchi (91). One
iteration of the procedure comprises the system analysis

9

from the assembled system level down to the individual
system components level and optimization that
proceeds in the opposite direction. The analysis data
passed from above become constant parameters in the
lower level optimization. The optimization results that
are being passed from the bottom up include sensitivity
of the optimum to these parameters. The coordination
problem solution depends on these sensitivity data. As
shown in Thareja and Haftka (90), one may encounter
numerical difficulties in that solution when
discontinuities occur in the optimum sensitivity
derivatives. Recently, a variant of this procedure was
developed (Balling and Sobieszczanski-Sobieski, 95)
which differs in the way the local and system
constraints are treated.

It was shown in Balling and Sobieszczanski-
Sobieski (94) that the above procedures may be
identified as variants of the six fundamental .approaches
to the problem of a system optimization. This reference
offers also a compact notation for describing a complex
procedure without using a flowchart, and it assesses the
computational cost of the fundamental approaches as a
function of the problem dimensionality.

The current practice relies on the engineer's insight
to recognize whether the system is hierarchic, non-
hierarchic, or hybrid and to choose an appropriate
decomposition scheme, Logan (90). For a large
unprecedented system this decision may be difficult.
Motivated by this, a formal description of the inter-
module data flow in the system model has been
developed. This led to techniques, e.g., Rogers (89)
and Steward (91), for visualization of that flow in the
so-called n-square matrix format and for identification
of the arrangements of the modules in computational
sequences that maximize user-defined measures of
efficiency. Examples of such maximization using
heuristics and/or formal means, such as genetic
algorithms. were reported in Rogers et al. (96), Altus et
al. (95). Johnson and Brockman (95), Jones (92),
Bloebaum (96). and McCulley and Bloebaum (94).
Identification of such sequences results also in a clear
determination of the system as hierarchic, non-
hierarchic, or a hybrid of the two. A code described in
Rogers (89) is a tool uscful in the above; Grose (94)
and Brewer ct al. (94) are application examples. An
alternative to the above approach to decomposition is-
mentioned in the Appendix on Design Space Search. Tt
is a transformation of the design space coordinate
system that identifies orthogonal subspaces described in
Rowan (90).

Independently of its use for optimization,
decomposition has also been used as a means, based
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predominantly on the directed graph approach, to
develop a broad workfront in a human organization or
in a production plant and in design to allocate functions
among components in complex systems.
Representative to this category of decomposition are
Eppinger et al. (94), Pimmler and Eppinger (94), and
Kusiak et al. (94) An extension of this approach to the
use of hypergraphs and a model-based partitioning was
introduced in Papalambros and Michelena (95) and
Michelena and Papalambros (95). It was shown in
Cramer and Huffmall (93) that computational burden in
MDO applications may be alleviated without
decomposition by a judicious exploitation of sparsity of
the matrices involved.

2.6 Human Interface

MDO is, emphatically, not a push-button design.
Hence, the human interface is crucially important to
enable engineers to control the design process and to
inject their judgment and creativity into it. Therefore,
various levels of that interface capability is prominent
in the software systems that incorporate MDO
technology and are operated by industrial companies.
Because these software systems are nearly exclusively
proprietary no published information is available for
reference and to discern whether there are any unifying
principles to the interface technology as currently
implemented.

However, from personal knowledge of some of
these systems we may point to features common to
many of them. These are flexibility in selecting
dependent and independent variables in generation of
graphic displays, use of color, contour and surface
plotting, and orthographic projections to capture large
volumes of information at a giance, and the animation.
The latter is used not only to show dynamic behaviors
like vibration but also to illustrate the changes in design
introduced by optimization process over a sequence of
iterations. Development has already started in the next
level of display technology based on the virtual reality
concepts. In addition to the engineering data display,
there are displays that show the data flow through the
project tasks, the project status vs. plans, etc. One
common denominator is the desire to support the
engineer's train of thought continuity because it is well
known that such continuity fosters insight that
stimulates creativity. The other common denominator
is the support the systems give to the communication
among the members of the design team.

One optimization code, usable for MDO purposes
and available to general public, is described in
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Parkinson et al. (92). This code informs the user on the
optimization progress by displaying the values of
design variables, constraints, and objective function
continually from iteration to iteration.

The above features support the computer-to-user
communication. In the opposite direction, users control
the process by a menu of choices and, at a higher level,
by meta-programming in languages that manipulate
modules and their execution on concurrently operating
computers connected in a network, e.g., code FIDO in
Weston et al. (94). One should mention at this point,
again, the nonprocedural programming introduced in
Kroo and Takai (88). This type of programming may
be regarded as a fundamental concept on which to base
development of the means for human control of
software systems that support design. This is so
because it liberates the user from the constraints of a
prepared menu of preconceived choices, and it
efficiently sets the computational sequence needed to
generate data asked for by the user with a minimum of
computational effort.

A code representative of the state of the art was
developed by General Electric, Engineous, (94), and
Lee et al. (93), for support of design of aircraft jet
engines. The distinguishing feature of the code called
Engineous is interlacing of the numerical and Al
techniques combined with an intrinsically interactive
operation that actively engages the user in the process.
Similar emphasis on the user interaction is found in
Bohnhoff et al. (92). Examples of other codes that
provide MDO features to support design process are in
Kisielewicz (89), Volk (92), Woyak, Malone, et al.
(95), and Brama and Rosengren (90).

3. Simultaneous Aerodynamic and Structural
Optimization

One of the most common applications of
multidisciplinary optimization techniques is in the field
of simultaneous aerodynamic and structural
optimization, in particular for the design of aircraft
wings or complete aircraft configurations. The reason
for this prominence is that the tradeoff between
aerodynamic and structural efficiency has always been
the major consideration in aircraft design: slender
shapes have lower drag but are heavier than the stubby,
more draggy shapes. The bi-plane wings that
dominated early aircraft configurations were the
concession of the aerodynamicists to the need for
structural rigidity. Only after advances in structural
design and structural materials permitted building
monoplanes with enough wing rigidity, were we able to
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take advantage of the superior aerodynamic efficiency
of monoplanes.

The interaction between aerodynamics and
structures in the form of aeroelastic effects, such as load
redistribution, divergence, flutter, and loss of control
surface effectiveness, has given rise to the discipline of
aeroelasticity.  Structural optimization was often
coupled with aeroelastic constraints. Occasionally,
structural optimization was even used to improve
aerodynamic efficiency (e.g., Haftka, 77) and
Friedmann, 92). However, here we focus our attention
only on studies where both the aerodynamic and
structural design were optimized simultaneously. The
reader interested in work on aeroelastic optimization is
referred to Shirk et al. (86), Haftka (86), and Friedmann
91).

The trade-off between low drag and low structural
weight for aircraft wings is affected by two mechanisms
of interaction between aerodynamic and structural
response. First, structural weight affects the required
lift and hence the drag. Second, structural deformations
change the aerodynamic shape. The second effect is
compensated for by building the structure, so that the
structural deformation will bring it to the desired
shape. This so called jig-shape approach nullifies most
of the second interaction when the deformations of the
aircraft structure are approximately constant through
most of the flight time. This is the case for many
transports. For fighter aircraft, structural deformations
during various maneuvers can adversely affect
aerodynamic performance, and the jig shape can correct
only for the most critical maneuver or cruise conditions.
Similarly, for very long range or high-speed transports,
where the weight and cruise conditions can vary a lot,
the jig-shape correction will only partially compensate
for the adverse effects of structural deformations.

If the effects of structural deformation on
aerodynamic performance are assumed to be corrected
by the jig shape, the interaction between the
acrodynamicist and structural designer becomes
one-sided. The aerodynamic design affects all aspects
of the structural design, while the structural design
affects the aerodynamic design primarily through a
single number—the structural weight. This asymmetry
in the mutual influence of aerodynamic and structural
designs means that the problem can be treated as a two-
level optimization problem, with the aerodynamic
design at the upper level and the structural design at the
lower level. However, this means that for each
aerodynamic analysis one has to do a structural
optimization, which makes sense because the cost of
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structural analysis is usually much lower than the cost
of the aerodynamic analysis. For example,
Chattopadhyay and Pagaldipti (95) employ such an
approach for a high-speed aircraft with a Navier Stokes
model for the aerodynamic and a box beam model of
the structure. Similarly, Baker and Giesing (95)
demonstrated this approach with an Euler aerodynamic
solver and a large finite-element model optimized by
the' ADOP program.

Taking advantage of the asymmetric interaction
between structures and aerodynamics presents an
enormous saving in computational resources because
we do not need to calculate the large number of
derivatives of aerodynamic flow with respect to
structural design variables. Further savings are realized
by taking advantage of this asymmetry to generate
structural optimization results for a large number of
aerodynamic configurations and fit them with an
analytical surface usually called the “weight equation”
(see Torenbeek, 92, for references on the subject). The
structural weight of existing aircraft can also be used
for the same purpose. McCullers developed a transport
weight equation based on both historical data and
structural optimization for the FLOPS program
(McCullers, 84) . This equation was used for
including structural weight considerations in
aerodynamic optimization of a high-speed civil
transport configurations by Hutchison et al. (94).

At the conceptual design level, structural weight
has traditionally been estimated by algebraic weight
equations and similar algebraic expressions for
aerodynamic performance measures such as drag. The
simplicity of these expressions allowed designers to
examine many configurations with a minimum of
computational effort. More recently, such tools have
been combined with modern optimization tools. For
example, Malone and Mason ( 91) optimized transport
wings in terms of global design variables, such as wing
area, aspect ratio, cruise Mach number and cruise
altitude, using simple algebraic equations for structural
and other weights and aerodynamic performance. The
same authors (92) then used such models also to
examine the effect of the choice of objective function
(maximize range, minimize fuel weight, etc.)

At the preliminary design level, numerical models
of both structures and aerodynamics are employed.
Early studies of combined aerodynamic and structural
optimization relied on simple, usually one-dimensional
aerodynamic and structural models and a small number
of design variables (e.g., McGeer, 84, and references
therein), so that computational cost was not an issue.
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Rather, the goal was to demonstrate the advantages of
the optimized design. For example, Grossman et al.
(88) used lifting line aerodynamics and beam structural
models to demonstrate that simultaneous aerodynamic
and structural optimization can produce superior
designs to a sequential approach. Similar models were
used by Wakayama and Kroo (90) and (94) who
showed that optimal designs are strongly affected by
compressibility drag, aeroelasticity, and multiple
structural design conditions. Gallman et al. ( 93) used
beam structural models together with vortex lattice
aerodynamic to explore the advantages of joined-wings
aircraft.

Modern single-disciplinary designs in both
aerodynamics and structures go beyond such simple
models. Aerodynamic optimization for transports is
often performed with three-dimensional nonlinear
models (e.g., Euler equations, Korivi et al., 94) While
structural optimization is performed with large finite-
element models. For example, Tzong et al. (94)
performed a structural optimization with static
aeroelastic effects of a high-speed civil transport using
a finite-element model with 13,700 degrees of freedom
and 122 design variables. The validity of results
obtained with simple models is increasingly questioned,
and there is pressure to perform multidisciplinary
optimization with more complex models. However,
because of the asymmetric interaction between
aerodynamics and structures, discussed above, the
emphasis in multidisciplinary optimization is on
improved aerodynamic models (e.g., Giesing et al., 95).
Thus, modern conceptual design tools such as FLOPS
(McCullers, 84) or ACSYNT (Vanderplaats, 76), and
Mason and Arledge, 93) incorporate aerodynamic panel
methods at the same time that they use algebraic weight
equations to represent structural influences on the
design.

Computational efficiency becomes an issue when
the complexity of the aerodynamic and structural
models and the number of design variables increase.
Borland et al. (94) performed a combined
aerodynamic-structural optimization of a high-speed
civil transport using a large finite-element model and
thin Navier Stokes aerodynamics. However, they were
able to afford only 3 aerodynamic variables along with
20 structural design variables. Chattopadhyay and
Pagaldipti (95) used parabolized Navier Stokes
aerodynamic model and beam structural model, but
with only four aerodynamic variables. Similarly, Baker
and Giesing (95) used Euler code for aerodynamics and
a detailed finite-element analysis, but with only two
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aerodynamic design variables representing the
aerodynamic twist distribution.

One of the major components of the computational
cost is the calculation of cross-sensitivity derivatives
such as the derivatives of aerodynamic performance
with respect to structural sizes and derivatives of
structural response with respect to changes in
aerodynamic shape. Grossman et al. (90) reduced the
interaction front between the aerodynamic and
structural analysis in the Global Sensitivity Equation
approach (Sobieszczanski-Sobieski 90) to substantially
lower the computational cost of calculating such
derivatives. Automated derivative calculations,
obtained by differentiating the computer code used for
the analysis, may also help, as demonstrated by Unger
and Hall ( 94).

Additional savings in computational resources
were achieved by the use of variable complexity
modeling techniques (see Section 2.3). For example,
Dudley et al. (94) used structural optimization to
periodically correct the prediction of algebraic weight
equations. Using this approach they have optimized a
high-speed civil transport using 26 configuration design
variables and 40 structural design variables. However,
because they did not calculate and use derivatives of the
weight obtained by structural optimization with respect
to configuration design variables, the performance of
the procedure was not entirely satisfactory. It is
possible that there is no need to couple structural
optimization tightly with aerodynamic optimization.
Instead, as done by McCullers (84) in FLOPS,
structural optimizations may be performed ahead of
time to obtain improved weight equations for the class
of vehicles under consideration (see also Haftka et al.
95).

Of course, limiting structural influences to weight
equations may not always work, in particular, when
aerodynamic performance is important for multiple
design conditions whose structural deformations are
very different. Then a completely integrated structural
and aerodynamic optimization may be necessary for
obtaining high-performance designs. In such cases we
may want to tailor the structure so that structural
deformation will help aerodynamic performance under
the multiple flight conditions. However, an alternate
approach is to use control surfaces to compensate for
structural deformations for muitiple flight conditions.
In that case, the aerodynamicist can still assume that
aerodynamic performance will not be compromised by
structural deformations. The structural designer will
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have to design the jig shape, the structure, and the
control surface deflections simultaneously to minimize
structural weight while safeguarding aerodynamic
performance. Miller (94) employed this type of an
approach in a study of an active flexible wing. Another
example where such approach may be necessary is a
supersonic transport design for efficient flight in both
the supersonic and subsonic speed regimes (AIAA 91),
the latter required by sonic boom restrictions.

In the past few years there has been also a lot of
progress for combined aerodynamic and structural
optimization of rotor blades, and in the requisite
analytical advances, the latter illustrated by He and
Peters (92), Lim and Chopra (91), and Kolonay et al.
(94). Work in this direction started with structural
optimization subject to aerodynamic constraints (e.g.,
Yuan and Friedmann, 95). However, there is also much
work which includes both aerodynamic and structural
design variables. Callahan and Straub (91) used a code
called CAMRAD/JA to design rotor blades for
improved aerodynamic performance and reduced
structural vibration with up to 17 design variables.
Walsh et al. (92) has integrated the aerodynamic and
dynamic design of rotor blades, and Walsh et al. (95)
have added structural optimization to the former
capability, using a multilevel approach. As in the case
of fixed wing optimization, the multilevel approach was
aided by the relative simplicity of the structural model.
However, unlike fixed wings, rotor blades naturally
lend themselves to inexpensive, beam structural
models. Chattopadhyay and McCarthy, (93a, b) have
explored the use of multiobjective optimization for
similar integration of aerodynamics, dynamics and
structures for the design of rotor blades. Other
examples of applications in rotor blade design were
given in Celi (91) and Chattopadhyay et al. (91).

Additional examples of optimization that accounts
for interaction of aerodynamics and structures in
flexible wing design may be found in Rais-Rohani et al.
(92), Yurkovich (95), Scotti (95), and Rohl et al. (95).
Interaction of aerodynamics and structures occurs also
in the emission, transmission, and absorption of noise
generated by propulsion and by the airframe moving
through the air. This interaction has spawned the
discipline of structural acoustics, e.g., Lamancusa (93)
and Pates (95), whose approach is based on the
boundary finite elements.

4. Simultaneous Structures and Control Optimization

Another common application of multidisciplinary
optimization is in simultaneous design of a structure

13

and a control system. A typical aeronautical
application is active flutter suppression, and typical
space structure application is the suppression of
transient vibration triggered by transition from Earth
shadow to sunlight.

Past practice has been sequential so that the
structural layout and cross-sectional dimensions were
decided first, and a control system was added
subsequently to eliminate or alleviate any undesirable
behavior still remaining. Occasionally, when it was
known in advance how effective the control system
would be in reducing a particular behavior constraint,
violation the structural design was carried out first to
satisfy the above constraint partially, and the design of
the control system followed to achieve the full
satisfaction of the constraint. Iterations ensued if the
control system design was unable to satisfy its share of
the constraint. An example of this approach was
reported in Sobieszczanski-Sobieski et al. (79) in which
structural sizing was used to provide flutter-free
airframe of a supersonic transport up to the diving
velocity (VD), and an active flutter suppression
provided the required 20 % velocity margin beyond
VD.

The sequential practice is deficient because it does
not accommodate general objective function or
functions, nor does it enable one to explicitly trade
structural stiffness, inertia, and weight for the active
control system effort and weight. These deficiencies
are remedied by simultaneous optimization of the
structure and the system for control of its behavior.
Haftka (90) surveys various simultaneous formulations
ranging from ad hoc ones to those in the multiobjective
(pareto-optimal) category. In general, one expects the
simultaneous approach to gencrate designs whose
structural weight and control effort are less than those
achievable under the sequential approach. Even though
there is no doubt as to the superiority of the integrated
approach, still the integrated structures-control
optimizations on record typically use a composite
objective function that is a weighted sum of the
structural mass and the control effort, with the
weighting factors set by subjective judgment. This is so
despite availability of tools that are ready for a less
subjective approach under which the airframe mass-
could be traded off for the mass of the control system,
the latter including the mass of the requisite power
generation equipment.

When all the objectives cannot be converted to a
single one, such as mass, a pareto optimization is called
for. A full pareto-optimal optimization would seek to
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generate a locus of all the pareto-optimal solutions.
Unfortunately, this locus can have discontinuities and
branches, as demonstrated by Rakowska et al. (91) and
(93). Tracing the entire locus may be very expensive,
even though homotopy techniques, Rakowska et al.
(93), may alleviate this burden. However, even less
ambitious simultaneous optimization approaches are
computationally expensive. That has motivated a
number of papers that addressed that problem.
Reducing the mathematical model dimensionality was
proposed in Karpel (92) as a means to save
computational cost in synthesis of aeroservoelastic
systems. To alleviate cost of the particularly expensive
unsteady aerodynamics, Hoadley and Karpel (91) used
approximate surrogate for a full unsteady aerodynamic
analysis in the optimization loop combined with
infrequent repetitions of the full analysis. In the same
vein, Livne (90) reported on the accuracy of
reduced-order mathematical models for calculation of
eigenvalue sensitivities in control-augmented
structures. Chattopadhyay and Seeley ( 95) have
developed an efficient simulated annealing approach for
the solution of the multiobjective optimization problem
for rotorcraft applications.

The dimensionality of the design space of an
actively controlled structure dramatically increases for
composite structures when fiber orientations are
included among the design variables, and even more so
when overall shape variables, e.g., the wing sweep
angle, are added. Livne (89) gave a comprehensive
introduction to optimization of that category applied to
aircraft wings and continued it in Livne (92). The
computational cost issue was addressed in context of
the above applications in Livne and Friedmann (92) and
in Livne (93). Livne and Wei-Lin (95) assert that the
sensitivity analysis and approximation concepts in
aerodynamics and airframe structures, the latter
modeled by equivalent stiffness plate, have progressed
to a point where a realistic wing/control shape
optimization with active controis and aeroservoelastic
constraints begins to appear to be within reach.

In space applications, recent thrusts have entailed
synthesis of structure-control systems designed to
maintain pointing accuracy, shape control of reflective
dishes (both transmitting and receiving), and
elimination of vibrations that might be induced by
external influences, e.g., a thermal excitation by sun, or
the spacecraft maneuvers. Many of these applications
involve locations of sensors and actuators that are
determined by discrete variables, therefore, search
techniques capable of handling discrete variables have
been added to the toolbox. An example is the use of
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modified simulated annealing for a combinatorial
optimization melded with a continuous variable
optimization of honeycomb infrastructures for
spaceborne instrumentation in Kuo and Bruno (91). A
multiobjective optimization was used in Milman and
Salama (91) to generate a family of designs optimized
for competing objectives of disturbance attenuation and
minimum weight in spaceborne interferometers.
Design for the global optimum has been achieved by
the use of a homotopy approach by Salama et al. (91) in
development of families of the actively controlled space
platform designs for conceptual trade studies. Briggs
(92) reported on adding optics to control-structures
optimization, and in Flowers et al. (92) that type of
optimization was extended to a multibody system.
Further application examples may be found in Harn et
al. (93), Hirsch et al. (92), Padula et al. (93), Park and
Asada (92), Sepulveda and Lin (92), Suzuki and
Matsuda (91), Suzuki (93), Weisshaar et al. (86), and
Yamakawa (92).

A system sensitivity analysis based on the Global
Sensitivity Equations (GSE) (see section 2.5 on System
Sensitivity Analysis) was introduced in the control-
structure optimization by Sobieszczanski-Sobieski et al.
(88). Padula et al. (91) reported on an optimization of
a lattice structure representative of a generic large space
structure in which they used a GSE-based system
sensitivity analysis. They integrated a finite-element
model of the structure, multivariable control, and
nonlinear programming to minimize the total weight of
the structure and the control system under constraints of
the transient vibration decay rate. Fifteen design
variables governed the structural cross-scctions and the
control system gains. James (93) extended optimization
dimensionality in the above application to 150 design
variables, 12 for the control system gains and the
remainder for the structural member cross scctions.

Actuator placement on a large space structure is a
typical example of an MDO discrete problem. Padula
and Sandridge (92) presented a solution using an
integer programming code and a finite-element
structural model. Alternatives to the above approach
were given by Kincaid and Barger (93) who used a tabu
search and by Furuya and Haftka (93) who applied a
genetic algorithm.  An evaluative discussion and
comparison of several methods applicable to
optimization of structures with controls was given in
Padula and Kincaid (95). The comparison included the
simulated annealing, tabu scarch, integer programming,
and branch and bound algorithms in the context of
applications ranging into 1500+ design variables in
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space structures, as well as in airframes. An acoustic
structural control was the case in the latter.

An unusual case of optimization of a large space
structure to make its dynamic behavior deliberately
difficult to control was reported in Walsh (87) and (88).
The object was a long lattice beam mounted to protrude
out of the Space Shuttle orbiter and having its natural
vibration frequencies spaced very closely in order to
challenge the system identification algorithm and the
control law synthesis in the design of the control
system. Potential of a relatively recent technology of
neural nets to control structural dynamics of elastic
wings was demonstrated in Ku and Hajela (95).

5. Concluding Remarks

The survey revealed that in aerospace, MDO
methodology has transcended its structural optimization
roots and is growing in scope and depth toward
encompassing complete sets of disciplines required by
applications at hand. It has broadened its utility beyond
being an analysis and optimization engine to include
functions of interdisciplinary communication. It has
also formed a symbiosis with the heterogeneous
computing environments for concurrent processing
provided by advanced computer technology.

The two major obstacles to realizing the full
potential of MDO technology appear to be the twin
challenges posed by very high computational demands
and complexities arising from organization of the MDO
task. To deal with these twin challenges the major
emphasis in MDO research has been on approximation
and decomposition strategies. Both hierarchical and
non-hierarchical decomposition techniques have been
proposed to deal with the organizational challenge.
Response surface approximations arc emerging as a
useful tool for addressing both the computational and
organizational challenges.

In general, there arc still very few instances in
which the aerospace vehicle systems are optimized for
their total performance. including cost as one of the
important metrics of such performance. However, a
vigorous beginning in that direction has been evident in
the number of references devoted to mathematical
modeling of manufacturing and operations, and to the
use of these models in optimization. In addition,
despite the very well-known fact that engineering
design is intrinsically multiobjective, there is a dearth
of papers addressing the very formulation of that
multiobjective problem, the structure-control
optimization being a case in point.

15

For the human interface, the MDO developers and
users seem to have arrived at a consensus that the
computer-based MDO methodology is an increasingly
useful aid to the creative power of human mind which
is the primary driving force in design. The once-
popular notions of automated design have been notably
absent in the surveyed literature, nor were there any
expectations expressed that Al techniques will change
that in the foreseeable future.

The survey leaves no doubt that the MDO theory,
tools, and practices originate in the communities of
mathematicians, software developers, and designers
whom these products ultimately serve. Therefore, its is
remarkable that there is little evidence of close
collaboration among these three groups that have been
to a large extent working apart missing on valuable
cross-fertilization of ideas and understanding of needs
and opportunities.  Only recently there were
indications of increasing interest in the three
communities in working more closely together (e.g.,
ATAA 91). In a similar vein, there has been almost no
interaction of the aerospace multidisciplinary
optimization research with other engineering research
communities; it would be beneficial to increase the
awareness of similar research in fields such as chemical
engineering and electrical engineering.

If one were to end on a speculative note, it is likely
that future similar surveys will find a number of papers
devoted to virtual design and manufacturing built on the
foundation laid out by the works included herein.

Acknowledgment

The work of the second author was partially
supported by NASA grant NAG1-1669.

References

Abdi, F. F.; Ide, H.. Shankar, V. M.; and
Sobieszczanski-Sobieski, J.: Optimization for Non-
linear Aeroclastic Tailoring Criteria. [6th Congress
of the International Council for Aeronautical
Science, AIAA, Washington, DC, 1988,
pp. 1083-1091.

Adelman, H. M.; and Haftka, R. T.: Sensitivity Analy-
sis of Discrete Systems, Chapter 14 of Structural
Optimization: Status and Promise (M. P. Kamat,
editor), AIAA, Washington, DC, 1993,

American Institute of Aeronautics and Astronautics



Adelman, H. M.; and Mantay, W. R.: Integrated Multi-
disciplinary Design Optimization of Rotorcraft.
Journal of Aircraft, Vol. 28, No. 1, January 1991,
pp- 22-28.

Adelman, H.; Walsh, J.; and Pritchard, J.: Recent Ad-
vances in Integrated Multidisciplinary Optimization
of Rotorcraft. Proceedings of the 4th AIAA/NASA/
USAF/OAI Symposium on Multidisciplinary Analy-
sis and Optimization, September 21-23, 1992,
Cleveland, Ohio. AIAA Paper No. 92-4777.

AIAA White Paper entitled Current State of the Art of
Multidisciplinary Design Optimization, prepared by
the AIAA Technical Committee for MDO, approved
by AIAA Technical Activities Commit-
tee, Washington, D.C., September 1991.

Altus, S.; Bischof, C.; Hovland, P.; and Kroo, I.: Using
Automatic Differentiation With the Quasi-Proce-
dural Method for Multidisciplinary Design Optimi-
zation. Presented at the 34th AIAA Aerospace
Sciences Conference, Reno, Nevada, January 15-18,
1996.

Altus, S.; Kroo, L; and Gage, P.: A Genetic Algorithm
for Scheduling and Decomposition of Multidiscipli-
nary Design Problems. Proceedings of the 1995
ASME Design Automation Conference, Boston,
Massachusetts, September 17-21, 1995.

Arora, J.; and Lin, T.: A Study of Augmented
Larangian Methods for Simultaneous Optimization
of Controls and Structures. Proceedings of the
4th AIAA/NASA/USAF/OAI Symposium on Mult-
idisciplinary Analysis and Optimization,
September 21-23, 1992, Cleveland, Ohio. AIAA
Paper No. 92-4789.

August, R.; Yamamoto, O.; and Shimko, R.: Integrated
Structural-Aerodynamic Analyzer. Proceedings of
the 4th AIAA/NASA/USAF/OAI Symposium on Mul-
tidisciplinary Analysis and Optimization, September
21-23, 1992, Cleveland, Ohio. AIAA Paper
No. 92-4699.

Azarm, S.; Tits, A.; and Fan, M.: Tradeoff-Driven
Optimization-Based Design of Mechanical Systems.
Proceedings of the 4th AIAA/NASA/USAF/OAI Sym-
posium on Multidisciplinary Analysis and Optimiza-
tion, September 21-23, 1992, Cleveland, Ohio.
AIAA Paper No. 92-4758.

16

Baker M.; and Giesing, J.: A Practical Approach to
MDO and its Application to an HSCT Aircraft,
AIAA Paper 95-3885, Ist AIAA Aircraft Engineer-
ing, Technology, and Operations Congress, Los
Angeles, CA, September 19-21, 1995.

Balling, R. J.; Sobieszczanski-Sobieski, J.: An Algo-
rithm for Solving the System-Level Problem in
Multilevel Optimization: Structural Optimization,
9, Springer Verlag, 1995, pp.168-177.

Balling, R. I.; Sobieszczanski-Sobieski, J.: Optimiza-
tion of Coupled Systems: A Critical Overview.
AIAA-94-4330, AIAA/NASA/USAF/ISSMO 5th
Symposium on Multidisciplinary Analysis and Opti-
mization; Panama City Beach, Florida, Sept. 1994,
publication in AIAA J., 1995, pending.

Barthelemy, J.-F; and Sobieszczanski - Sobieski, J.:
Optimum Sensitivity Derivatives of Objective
Functions in Nonlinear Programming. AJIAA Jour-
nal, Vol. 21, No. 6, June 1983, pp. 913-915.

Barthelemy, J.-F. M.; and Hall, L. E.: Automatic Dif-
ferentiation as a Tool in Engineering Design.
Structural Optimization, Vol. 9, 1995, pp. 76-82.

Barthelemy, J.-F.; Wrenn, G.; Dovi, A.; and Coen, P.:
Integrating Aerodynamics and Structures in the
Minimum Weight Design of a Supersonic Transport
Wing. AIAA-92-2372, Presented at AJTAA/ASME/
ASCE/AHS/ASC 33rd Structures, Structural Dynam-
ics, and Materials Conference, Dallas, TX, Apr.
1992.

Bartholomew, P.; and Wellen, H. K.: Computer-Aided
Optimization of Aircraft Structures. Journal
of Aircraft, Vol. 27, No. 12, December 1990,
pp. 1079-1086.

Bearden, D.; G. Coleman; and T. Streeter: An End-to-
End Simulation to Support Optimization of a Multi-
Function Space-Based Surveillance System.
Proceedings of the 5th AIAA/NASA/USAF/ISSMO
Symposium on Multidisciplinary Analysis and Opti-
mization, Panama City Beach, Florida. ATAA Paper
No. 94-4371, September 7-9, 1994.

Beltracchi, T. J.: A Decomposition Approach to Solv-
ing the Allup Trajectory Optimization Problem,
ATAA Paper 90-0469 presented at the AJAA Aero-
space Sciences Meeting, Reno, NV, 1990, also in
AIAA J. of Guidance Control and Dynamics,
Nov. 1991.

American Institute of Aeronautics and Astronautics



Berkes, U. L.. Efficient Optimization of Aircraft
Structures with a Large Number of Design Vari-
ables. Journal of Aircraft, Vol. 27, No. 12, Decem-
ber 1990, pp. 1073-1078.

Bischof, C.; and Knauff, T., Jr.: Parallel Calculation of
Sensitivity Derivatives for Aircraft Design Using
Automatic Differentiation. AIAA-94-4261, 5th
AIAA/ USAF/NASA/ISSMO Symposium on Multidis-
ciplinary Analysis and Optimization. Panama City
Beach, FL, Sept. 7-9, 1994.

Bloebaum, C. L.: Coupling Strength-Based System
Reduction for Complex Engineering Design. To be
published in Structural Optimization.

Bloebaum, C. L.:. Formal and Heuristic System Decom-
position in Structural Optimization; NASA
CR-4413, December 1991.

Bloebaum, C. L.; Hajela, P.; and Sobieski, J.: Decom-
position Methods for Multidisciplinary Synthesis.
Multidisciplinary Engineering Systems: Design and
Optimization Techniques and Their Application,
Controls and Dynamic Systems, Vol. 57, C. T.
Leondes, ed., Academic Press, 1993, pp. 1-24.

Bloebaum, C.: An Intelligent Decomposition Approach
for Coupled Engineering Systems. Proceedings of
the 4th AIAA/NASA/USAF/OAI Symposium on Mul-
tidisciplinary Analysis and Optimization, September
21-23, 1992, Cleveland, Ohio. AIAA Paper
No. 92-4821.

Bohnhott, A.; Brandt. D.; and Henlling, K.: The Dtlal
Design as a Tool for the Interdisciplinary Design of
Human-Centered Systems. The International Jour-

nal of Human Factors in Manufacturing, Vol. 2,
No. 3, pp. 289-301, 1992.

Borland, C. J.; Benton, J. R.; Frank, P. D.; Kao, T. J;
Mastro, R. A.; and Barthelemy, J.-F. M.: Multidis-
ciplinary Design Optimization of a Commercial Air-
craft Wing—An Exploratory Study. AIAA Paper
94-4305-CP, Vol. 1, Proceedings of the 5th
AIAA/NASA/USAF/ISSMO Symposium on Multidis-
ciplinary Analysis and Optimization, Panama City
Beach, Florida. September 7-9, 1994. pp. 505-519.

Brama, T.: and Rosengren, R.: Applications of Struc-
tural Optimization Software in the Design Process.
Journal of Aircraft, Vol. 27, No. 12, December
1990, pp. 1057-1059.

17

Braun, R. D.; and Kroo, I. M.: Development and
Application of the Collaborative Optimization
Architecture in a Multidisciplinary Design Envi-
ronment. Multidisciplinary Design Optimization:
State of the Art, N. Alexandrov and M. Y. Hussaini,
eds., SIAM J. Optimization, 1995.

Braun, R. D.; Powell, R. W.; Lepsch, R. A.; Stanley, D.
L.; and Kroo, [. M.: Comparison of Two Multidis-
ciplinary Optimization Strategies for Launch Vehi-
cle Design. Journal of Spacecraft and Rockets,
Vol. 32, No. 3, May-June 1995, pp. 404—410.

Brewer, J.; Donofrio, K.; Mavris, D.; and Schrage, D.:
Design Manager’s Aide for Intelligent Decomposi-
tion—A Case Study Involving the High Speed Civil
Transport; ATAA-94-4328; AIAA-94-4253; AIAA/
NASA/USAF/ISSMO 5th Symposium on Multi-
disciplinary Analysis and Optimization, Panama
City Beach, Florida, Sept. 1994.

Briggs, H. C.; Redding, D. C.; and Ih, C-H. C.: Inte-
grated Control/Structures/Optics Dynamic Perform-
ance Modeling of a Segmented Reflector Telescope.
ISA Paper No. 901230, in Modeling and Simulation,
1990, Vol. 21, Part 5, pp. 2077-2086.

Briggs, H.: An Integrated Modeling and Design Tool
for Advanced Optical Spacecraft. Proceedings of
the 4th AIAA/NASA/USAF/OAI Symposium on Mul-
tidisciplinary Analysis and Optimization, September
21-23, 1992, Cleveland, Ohio. AIAA Paper
No. 92-4701. pp.1153-1163.

Brockman, J. B.; Anderson, M.; and Director S. W.:
Efficient Management of Fabrication Process and
Integrated Circuit Optimization Tasks. Proceedings
of the IEEE Asia-Pacific Conference on Circuit and
Systems, Dec. 1992.

Callallan, C. B.; and Straub, F. K.: Design Optimiza-
tion of Rotor Blades for Improved Performance and
Vibration. Proceedings of the 17th Annual Forum
of the American Helicopter Society, May 6-8, 1991,
Vol. 2, pp. 869-882.

Canfield, R. A.: High-Quality Approximation of -
Eigenvalues in Structural Optimization. AIAA Jour-
nal, Vol. 28, No. 6, 1990, pp. 1116-1122.

Celi, R.: Optimum Aeroelastic Design of Helicopter
Rotors for Longitudinal Handling Qualities
Improvement. Journal of Aircraft, Vol. 28, No. 1,
January 1991, pp. 49-57.

American Institute of Aeronautics and Astronautics



Chang, K. J.; Haftka, R. T.; Giles, G. L.; and Kao, P-J.:
Sensitivity-Based Scaling for Approximating
Structural Response. Journal of Aircraft, Vol. 30,
No. 2, 1993, pp. 283-287.

Chattopadhyay, A.; and McCarthy, T. R.: A Multidisci-
plinary Optimization Approach for Vibration Re-
duction in Helicopter Rotor Blades, Journal of

Computers and Mathematics with Applications,
Vol. 25, No. 2, pp. 59-72, 1993.

Chattopadhyay, A.; and McCarthy, T. R.: Multidisci-
plinary Optimization and Design Variable Sensitiv-
ity of Helicopter Blades using a Composite Beam
Model, Composites Engineering, Vol. 3, Nos. 7-8,
pp- 585-599, 1993.

Chattopadhyay, A.; and Pagaldipti, N.: A Multidis-
ciplinary Optimization using Semi-Analytical
Sensitivity Analysis Procedure and Multilevel
Decomposition, Journal of Computers and
Mathematics with Applications, Vol. 29, No. 7,
pp. 55-66, 1995.

Chattopadhyay, A.; and Seeley, C.E.: A Coupled Con-
trols/Structures Optimization Procedure for the
Design of Rotating Composite Beams with
Piezoelectric Actuators, Smart Materials and
Structures, Vol. 4, pp. 170-178, 1995.

Chattopadhyay, A.; Walsh, J. L.; and Riley, M. F.:
Integrated Aerodynamic Load/Dynamic Optimiza-
tion of Helicopter Rotor Blades. Journal of Aircraft.
Vol. 28, No. |, January 1991, pp. 58-65.

Claus, R. E.; Evans, A. L.; and Follen, G. J.: Multidis-
ciplinary Propulsion Simulation Using NPSS. Pro-
ceedings of the 4th AIAA/NASA/USAF/OAI
Symposium on Multidisciplinary Analyvsis and
Optimization, Cleveland, Ohio, September 21-23,
1992, pp. 53-62, AIAA-92-4709-CP, Part 1.

Coen, P. G.:; Sobieszczanski-Sobieski, J.; and
Dolllyhigh, S. M.: Preliminary Reseults from the
High-Speed Airframe Integration Research Project.
AIAA Paper No. 92-1104; Aerospace Design Con-
ference, Irvine, CA, February 1992.

Coen, P.; Barthelemy, J.-F.; and Wrenn, G.: Integration
of Aerodynamics and Performance in the Prelimi-
nary Design of a Supersonic Transport. Proceed-
ings of the 4th AIAA/NASA/USAF/OAI Symposium
on Multidisciplinary Analysis and Optimization,

18

September 21-23, 1992, Cleveland, Ohio. AIAA
Paper No. 92-4718.

Consoli, Robert David; and Sobieszczanski-Sobieski,
Jaroslaw: Application of Advanced Multidiscipli-
nary Analysis and Optimization Methods to Vehicle
Design Synthesis. Journal of Aircraft, Vol. 29,
No. 5, September—October 1992, pp. 811-818.

Cramer, E. J.; Dennis, J. E., Jr.; Frank, P. D.; Lewis, R.
M.; and Shubin, G. R.: Problem Formulation for
Multidisciplinary Optimization. SIAM J. Optimiza-
tion, Vol. 4, No. 4, Nov. 1994, pp. 754-776.

Cramer, E. J.; Huffmall, W. L.; and Mastro, R. A.:
Sparse Optimization for Aircraft Design. AIAA
Paper No. 93-3935, August 11-13, 1993.

Cramer, E.; Frank, P.; Shubin, G.; Dennis, J., Jr.; and
Lewis, R.: On Alternative Problem Formulations
for Multidisciplinary Design Optimization. Pro-
ceedings of the 4th AIAA/NASA/USAF/OAI Sympo-
sium on Multidisciplinary Analysis and Optimiza-
tion, September 21-23, 1992, Cleveland, Ohio.
AIAA Paper No. 92-4752.

Current, J.; Min, H.; and Schilling, D.: Multiobjective
Analysis of Facility Location Decisions. European

Journal of Operational Research, November—
December 1990, pp. 295-307.

Dennis, J. E., Jr.; and Torczon, V.. Direct Search
Methods On Parallel Machines. SIAM J. Optimiza-
tion, Vol. 1, No. 4, Nov. 1991, pp. 448-474.

Design Including Buckling Constraints. AIAA Journal,
Vol. 16, pp. 97-104.

Dodd, A. J.. Kadrinka. K. E.; Loikkanen, M. J.;
Rommel, B. A.; Sikes, G. D.; Strong, R. C.; and
Tzong, T. J.: Acroclastic Design Optimization Pro-
gram. Journal of Aircraft, Vol. 27, No. 12, Decem-
ber 1990, pp. 1028-1036.

Dolvin, D.: Structural Design for Survivability:
Multidisciplinary Optimization Employing Physical
Linking. Proceedings of the 4th
AIAA/NASA/USAF/OAI Symposium on Multi-
disciplinary Analysis and Optimization,
September 21-23, 1992, Cleveland, Ohio. AIAA
Paper No. 92-4729.

American Institute of Aeronautics and Astronautics



Dovi, A. R.; and Wrenn, G. A.: Aircraft Design for
Mission Performance Using Nonlinear Multiobjec-
tive Optimization Methods. Journal of Aircraft,
Vol. 27, No. 12, Dec. 1990, pp. 1043-1049.

Dovi, A.; Wrenn, G.; Barthelemy, J.-F.; and Coen, P.:
Design Integration for a Supersonic Transport Air-
craft.  Proceedings of the 4th AIAA/NASA
/USAF/OAl Symposium on Multidisciplinary
Analysis and Optimization, September 21-23, 1992,
Cleveland, Ohio. AIAA Paper No. 92-4841.

Dudley, J. M.; Huang, X.; Haftka, R. T.; Grossman, B.;
and Mason, W. H.: Variable Complexity Interlacing
of Weight Equations and Structural Optimization for
the Design of the High Speed Civil Transport. Pro-
ceedings of the 5th AIAA Multidisciplinary Analysis
and Optimization Symposium, Panama City, Florida.
AIAA Paper 94-4377-CP, September 7-9, 1994,
pp- 1129-1134.

Eason, E.; and Wright, J.: Implementation of Non-
Hierarchic Decomposition for Multidisciplinary
System Optimization. Proceedings of the 4th
AIAA/NASA/USAF/OAI Symposium on Multidisci-
plinary Analysis and Optimization, September
21-23, 1992, Cleveland, Ohio. AIAA Paper No.
92-4822.

Eason, E.; Nystrom, G.; Burlingham, A.; and Nelson,
E.: Nonhierarchic Multidisiciplinary Optimal
Design of a Commercial Aircraft; AIAA-94-4302;
AIAA/NASA/USAF/ISSMO 5th Symposium on Mul-
tidisciplinary Analysis and Optimization, Panama
City Beach, Florida, Sept. 1994.

Eason, E.; Nystrom, G.; Burlingham, A_; and Nelson,
E.: Robustness Testing of Nonhierarchic Multidisi-
ciplinary System Optimization; ATAA-94-4302;
AIAA/NASA/USAF/ISSMO 5th Symposium on Mul-
tidisciplinary Analysis and Optimization; Panama
City Beach, Florida, Sept. 1994.

Engineous: A Collection of Papers on Engineous, The
Engineous Project, GE Corporate Research and
Development, POB 8, Schenectady, NY 12301.

Eppinger, S. D.; Whitney, D. E.; Smith, R. P.; and
Gebala, D. A.: A Model-Based Method for Organ-
izing Tasks in Product Development. Research in
Engineering Design, Vol. 6, pp.1-13, Springer
Verlag, London, 1994,

19

Fenyes, P.: Structural Optimization with Manufac-
turing Considerations.  Proceedings of the
4th AIAA/NASA/USAF/OAI Symposium on
Multidisciplinary Analysis and Optimization,
September 21-23, 1992, Cleveland, Ohio. AIAA
Paper No. 92-4767.

Fleury, C.; and Schmit, L. A. Jr.: Dual Methods and
Approximation Concepts in Structural Synthesis,
NASA CR-3226, December 1980.

Flowers, G.; and Venkayya, V.: Adaptive Decentral-
ized Control of Flexible Multibody Structures. Pro-
ceedings of the 4th AIAA/NASA/USAF/OAI
Symposium on Multidisciplinary Analysis and Opti-
mization, September 21-23, 1992, Cleveland, Ohio.
AIAA Paper No. 92-4741.

Frank, P.; Booer, A.; Caudell, T.; and Healy, M.: A
Comparison of Optimization and Search Methods
for Multidisciplinary Design. Proceedings of the
4th AIAA/NASA/ USAF/OAI Symposium on Mul-
tidisciplinary Analysis and Optimization, September
21-23, 1992, Cleveland, Ohio. AIAA Paper No.
92-4827.

Friedmann, P. P.: Helicopter Vibration Reduction
Using Structural Optimization with Aeroelas-
tic/Multidisciplinary Constraints—A Survey.
Journal of Aircraft. Vol. 28, No. 1, January 1991,
pp- 8-21.

Friedmann, P.P.: Impact of Structural Optimization
with Acroelastic/Multidisciplinary Constraints on
Helicopter Rotor Design. AIAA Paper 92-1001,
Aerospace Design Conference, Irvine, CA, Feb. 3-6,
1992.

Fulton, R. E.: Sobicszczanski. J.; Storaasli, O.;
Landrum, E. J.: and Loendorf, D.: Application of
Computer-Aided Aircraft Design in a Multidiscipli-
nary Environment. AIAA/JASME/SAE 14th Struc-
tures. Structural Dynamics, and Materials
Conference. Williamsburg, Virginia, March 20-22,
1973. AlAA Paper No. 73-353.

Furuya. H.; and Haftka, R.T.: Genetic Algorithms for .
Placing Actuators on Space Structures, Proceedings
Fifth International Conference on Genetic Algo-
rithms, July 17-22, 1993 Urbana, IL., pp. 536-542.

Gage, P.:  New Approaches to Optimization in Aero-
space Conceptual Design. NASA CR-196695,
March 1995.

American Institute of Aeronautics and Astronautics



Gage, P.; and Kroo, L.: Development of the Quasi-Pro-
cedural Method for Use in Aircraft Configuration
Optimization. Proceedings of the 4th
AIAA/NASA/USAF/OAI Symposium on Multidisci-
plinary Analysis and Optimization, Cleveland, OH,
Sept. 21-23, 1992. AIAA Paper No. 92-4693.

Gage, P.; and Kroo, I.. Representation Issues for
Design Topological Optimization by Genetic
Methods. Proceedings of the 8th International
Conference on Industrial and Engineering Applica-
tions of Artificial Intelligence and Expert Systems,
Melbourne, Australia, June 1995, pp. 383-388.

Gage, P.; Braun, R.; and Kroo, I.: Interplanetary Tra-
jectory Optimization Using a Genetic Algorithm.
Journal of Astronautical Sciences, Vol. 43, No. 1,
January—March 1995, pp. 59-75.

Gage, P.; Sobieski, I.; and Kroo, I.: A Variable-Com-
plexity Genetic Algorithm for Topological Design.
AIAA Journal.

Gallman, J. W.; Kaul, R. W.; Challdrasekharan, R. M.;
and Hinson, M. L.: Optimization of an Advanced
Business Jet. AIAA Paper 94-4303-CP, Proceed-
ings of the 5th AIAA Muliidisciplinary Analysis and
Optimization Symposium, Panama City, Florida,
pp. 482-492.

Gallman, J. W.; Smith, S. C.; and Kroo, 1. M.: Optimi-
zation of Joined-Wing Aircraft. Journal of Aircraft,
30(6), 1993, pp. 897-905.

Gallman, J.; and Kroo, 1.: Structural Optimization
for Joined-Wing Synthesis. Proceedings of
the 4th AIAA/NASA/USAF/OAL Symposium on
Multidisciplinary Analvsis and Optimization,
September 21-23, 1992, Cleveland. Ohio. AIAA
Paper No. 92-4761.

Gates, M.; and Lewis, M.: Optimization of Spacecraft
Orbit and Shielding for Radiation Dosc. Proceed-
ings of the 4th AIAA/NASA/USAF/OAI Symposium
on Multidisciplinary Analvsis and Optimization,
Cleveland, Ohio, September 21-23, 1992. AIAA
Paper No. 92-4771.

Giesing, J. P.; Agrawal, S.; and Bhardvaj, B.K.: The
Role of Computational Fluid Dynamics in Multidis-
ciplinary Design Optimization of Transport Aircraft,
Sixth International Symposium on Computational
Fluid Dynamics, Lake Tahoe, CA, Sept. 4-7, 1995.

20

Giles, G. L.; and McCullers, L. A.: Simultaneous Cal-
culation of Aircraft Design Loads and Structural
Member Sizes, AIAA-75-965, AIAA 1975 Aircraft
Systems and Technology Meeting, Los Angeles, CA,
Aug. 1975.

Giunta, A. A.; Balabanov, V.; Burgee, S.; Grossman,
B.; Haftka, R. T.; Mason, W. H.; and Watson, L. T.:
Variable-Complexity Multidisciplinary Design
Optimization Using Parallel Computers. Proceed-
ings of ICES '95, International Conference
on Computational Engineering Science, July 30—
August 3, 1995.

Giunta, A. A.; Dudley, J. M.,; Narducci, R.; Grossman,
B.; Haftka, R. T.; Mason, W. H.; and Watson, L. T.:
Noisy Aerodynamic Response and Smooth
Approximations in HSCT Design. Proceedings of
the 5th AIAA Multidisciplinary Analysis and
Optimization Symposium, Panama City, Florida.
ATAA Paper No. 94-4376, September 1994,
pp. 1117-1128.

Godse, M.; Haug, E.; and Choi, K.: A Parametric
Design Approach for Concurrent Product Develop-
ment. Proceedings of the 4th AIAA/NASA/
USAF/OAI Symposium on Multidisciplinary
Analysis and Optimization, Cleveland, Ohio,
September 21-23, 1992. AIAA Paper No. 92-4760.

Grandhi, R.; Bharatram; and Venkayya, V.. Efficient
MultiObjective Optimization Scheme for Large
Scale Structures.  Proceedings of the 4th
AIAA/NASA/USAF/OAI Symposium on Multidisci-
plinary Analvsis and Optimization, Cleveland, Ohio,
September 21-23, 1992. AIAA Paper No. 92-4772.

Grose, D.: Reengineering the Aircraft Design Process;
AIAA-94-4323; AIAA/NASA/USAF/ISSMO 5th
Symposium on Multidisciplinary Analysis and Opti-
mization; Panama City Beach, Florida, Sept. 1994

Grossman, B.; Haftka, R. T.; Kao, P-J.; Polen, D;
Rais-Rohani, M.; and Sobieszczanski-Sobieski, J.:
Integrated Aerodynamic-Structural Design of a
Transport Wing. Journal of Aircraft, Vol. 27,
No. 12, 1990, pp. 1050-1056.

Grossman, B.; Strauch, G.; Eppard, W. H.; Giirdal, Z,;
and Haftka, R. T. Integrated Aerody-
namic/Structural Design of a Sailplane Wing. Jour-
nal of Aircraft, Vol. 25, No. 9, 1988, pp. 855-860.

American Institute of Aeronautics and Astronautics



Gupta, - S.; and Joshi, S. M.: An Integrated
Control/Structure Design Method Using Multi-
Objective Optimization. NASA Workshop On
Computational Control of Flexible Aerospace
Systems, July 11-13, 1990, NASA CR-10065,
Part 1, pp. 231-252.

Haftka, R. T.: Optimization of Flexible Wing
Structures Subject to Strength and Induced Drag
Constraints. AIAA Journal, Vol. 14, 1977,
pp. 1101-1106.

Haftka, R. T.: Structural Optirmization with Aeroelas-
tic Constraints—A Survey of U.S. Applications.
International Journal of Vehicle Design, Vol. 7,
1986, pp. 381-392.

Haftka, R. T.: Integrated Structure-Control Optimiza-
tion of Space Structures. AIAA Paper 90-1190,
AIAA/ASME/ASCE/AHS 30th Structures, Structural
Dynamics, and Materials Conference, Long Beach,
CA, April 15-18, 1990.

Haftka, R. T.; and Adelman, H.: Recent Developments
in Structural Sensitivity Analysis. Structural Opti-
mization, Vol. 1, 1989, pp. 137-151.

Haftka, R. T.; Kao, P. J.; Grossman, B.; Polen, D.; and
Sobieszczanski-Sobieski, J.: Integrated Structural-
Aerodynamic Design Optimization. [6th Con-
gress of the International Council for Aeronautical
Science, AIAA, Washington, DC, 1988,
pp. 1820-1825. '

Haftka, R.T.; Balabanov, V.. Burgee, S.; Giunta, A;
Grossman, B.; Kaufman, M.; Mason, W. H.; and
Watson, L.T.: Variable-Complexity Aerodynamic-
Structural Optimization via Response Surface Tech-
niques', To appear in Proceedings of ICASE/LaRC
Workshop on Multidisciplinary Design Optimiza-
tion, Hampton, VA, March 13-16, 1995.

Hajela, P.: Multidisciplinary Structural Design Optimi-
zation. Geometry and Optimization Techniques
for Structural Optimization, S. Kodiyalam and
M. Saxena, eds., Elsevier Applied Science, 1994,
pp. 363-386.

Hajela, P.; and Lee, J.: Genetic Algorithms in Mul-
tidisciplinary Rotor Blade Design. Proceedings of
the 36th AIAA/ASME/ASCE/AHS/ASC SDM Confer-
ence, New Orleans, Louisiana. AIAA Paper
No. 95-1144, April 1995, pp. 2187-2197.

21

Hajela, P.; and Lee, J.: Role of Emergent Computing
Techniques in Multidisciplinary Design, NATO
Advanced Research Workshop on Emergent
Computing Methods in Engineering Design, 4th
AIAA/USAF/NASA/OAI Symposium on Multidisci-
plinary Analysis and Optimization, Cleveland, OH,
Sept. 21-23, 1992.

Hajela, P.; Bloebaum, C. L.: and Sobieszczanski-
Sobieski, J.: Application of Global Sensitivity
Equations in Multidisciplinary Aircraft Synthesis.
Journal of Aircraft, Vol. 27, No. 12, December
1990, pp. 1002-1010.

Harn, Y.-W.; Kabuli, G. M.; and Kosut, R. L.: Optimal
Simultaneous Control and Structure Design. Pro-
ceedings of the American Control Conference,
Vol. 2 (IEEE), pp. 1442-1447.

Harry, D.: Optimization in Solid Rocket Booster
Application. Proceedings of the 4th AIAA/
NASA/USAF/OAI Symposium on Multidisciplinary
Analysis and Optimization, Cleveland, Ohio,
September 21-23, 1992. AIAA Paper No. 92-4688,
p. 33040.

He, C.; and Peters, D.: Analytical Formulation of
Optimum Rotor Interdisciplinary Design with a
Three-Dimensional Wake. Proceedings of the 4th
AIAA/NASA/USAF/OAI Symposium on Multidisci-
plinary Analysis and Optimization, Cleveland,
Ohio, September 21-23, 1992. AIAA Paper
No. 92-4778.

Herendeen, D.; Ludwing, M.; and Marco, J. S.: The
Impact of Database Technology on Multidiscipli-
nary Design Optimization. Proceedings of the 4th
AIAA/NASA/USAF/OAI Symposium on Multidisci-
plinary Analysis and Optimization, Cleveland,
Ohio, September 21-23, 1992. AIAA Paper
No. 92-4831.

Hirsch, U.; Kuntze, H.-B.; Brecht, R.; and Kilthau, A.:
Structure and Parameter Optimization of an Active
Absorber for Decentralized Vibration Control.
Proceedings of the 1992 IEEE International
Conference on Robotics and Automation, Vol. 1, .
1992, pp. 670-675.

Hoadley, S. T.; and Karpel, M.: Application of
Aeroservoelastic Modeling Using Minimum-State
Unsteady Aerodynamic Approximations. Journal of
Guidance, Control and Dynamics, Vol. 14, No. 11,
1991, pp. 1267-1276.

American Institute of Aeronautics and Astronautics



Huang, X.; Haftka, R. T.; Grossman, B.; and Mason,
W. H.: Comparison of Statistical Weight Equations
with Structural Optimization of a High Speed Civil
Transport. AIAA Paper 94-4379-CP, Proceedings
of the 5th AIAA/NASA/USAF/ISSMO Symposium on
Multidisciplinary Analysis and Optimization,
Panama City Beach, Florida. September 7-9, 1994,
pp- 1135-1144.

Hutchison, M. G.; Unger, E. R.; Mason, W. M.;
Grossman, B.; and Haftka, R. T.: Variable Com-
plexity Aerodynamic Optimization of a High-Speed
Civil Transport Wing. Journal of Aircraft, Vol. 31,
No. 1, 1994, pp. 110-110.

Ide, H.; Abdi, F. F.; and Shankar, V. J.: CFD Sensitiv-
ity Study for Aerodynamic/Control Optimization
Problems. AIAA Paper 88-2336, April 1988.

James, B. B.: Multidisciplinary Optimization of a
Controlled Space Structure Using 150 Design Vari-
ables. NASA CR-4502, 1993.

James, B. B.: Maultidisciplinary Optimization of a
Controlled Space Structure Using 150 Design Vari-
ables. Proceedings of the 4th AIAA/NASA/
USAF/OAI Symposium on Multidisciplinary
Analysis and Optimization, Cleveland, Ohio,
September 21-23, 1992. AIAA Paper No. 92-4754.

Jayaram, S.; Myklebust, A.; and Gelhausen, P.:
ACSYNT—A Standards-Based System for Paramet-
ric Computer Aided Conceptual Design of Aircraft,
AIAA Paper 92-1268, Feb. 1992,

Johnson, E. W.; and Brockman, J. B.: Incorporating
Design Schedule Management into a Flow Man-
agement System. Proceedings of the 32nd
IEEE/ACM Design Automation Conference, San
Francisco, CA, June 1995.

Johnson, W.: A Comprehensive Analytical Model of
Rotorcraft Aerodynamics and Dynamics—Hohllsoll
Aeronautics Version. Vol. II: User's Manual.

Jones, K.: Information Management for Large Mul-
tidisciplinary Project. Proceedings of the 4th
AIAA/NASA/USAF/OAI Symposium on Multidisci-
plinary Analysis and Optimization, Cleveland,

Ohio, September 21-23, 1992. AIAA Paper
No. 92-4720.
Karpel, M.: Multidisciplinary Optimization of

Aeroservoelastic Systems Using Reduced-Size

22

Models. Journal of Aircraft, Vol. 29, No. 5, 1992,
pp- 939-946.

Khalak, H.; Miller, R.; Weeks, C.; and Bloebaum, C.
L.: Simulated Annealing Applied to Molecular
Structure Determination. Proceedings of the 5th
AIAA Multidisciplinary Analysis and Optimization
Symposium, Panama City, Florida. AIAA Paper
No. 94-4352, September 1994.

Kincaid, R. K.; and Barger, R. T.: The Damper Place-
ment Problem on Space Truss Structures. Location
Science, Vol. 1,:1993, pp. 219-234.

Kincaid, R.; and Bloebaum, C. L.: Damper Placement
Problem for CSI-Phase I Evolutionary Model. Pro-
ceedings of the 34th AIAA/ASME/ASCE/AHS/ASE
SDM Conference, La Jolla, California. AIAA Paper
No. 93-1655, April 19-21, 1993.

King, E. G.; Freeman, L. M.; Whitaker, K. W.; and
Karr, C. L.: Two-Dimensional Thrust Vectoring
NozzleOptimization Techniques, AIAA-91-0473,
29th Aerospace Sciences Meeting, Reno, NV,
Jan. 1991.

Kirk, J.: The Use of Multivariate Analysis to Optimize
Design Parameters for Extended-Range Combat
Aircraft. Proceedings of the 4th
AIAA/NASA/USAF/OAT Symposium on Multidisci-
plinary Analysis and Optimization, Cleveland, Ohio.
AIAA 92-4707-CP, Part 1, September 21-23, 1992,
pp. 159-167.

Kirsch, U.: Optimum Structural Design, McGraw-Hill,
1981.

Kisielewicz, L. T.: The INGECAD Multidisciplinary
Integrated Computer Aided Engineering System.
Nuclear Engineering and Design, Vol. 111, No. 2,
1989, pp. 233-241.

Kodiyalam, S., and Vanderplaats. G. N.: Shape Optimi-
zation of 3D Continuum Structures via Force
Approximation Technique; AIAA J., Vol. 27, No. 9,
1989, pp. 1256-1263.

Kolonay, R.; Venkayya, V.; and Yang, H.: Sensitivity
Analysis for Transonic Unsteady Aeroelastic Con-
straints. ATAA-94-4263, 5th AIAA/
USAF/NASA/ISSMO Symposium on Multidiscipli-
nary Analysis and Optimization. Panama City
Beach, FL, Sept. 7-9, 1994.

American Institute of Aeronautics and Astronautics



Korivi," V. M.; Newman, P. A.; and Taylor, A. C.:
Aerodynamic Optimization Studies Using a 3-D
Supersonic Euler Code with Efficient Calculation of
Sensitivity Derivatives. AIAA Paper 94-4270-CP,
Proceedings of the 5th AIAA/NASA/USAF/ISSMO
Symposium on Multidisciplinary Analysis and Opti-
mization, Panama City Beach, Florida. September
7-9, 1994. Vol. 1, pp. 170-194.

Korngold, J.; and Gabriele, G.: Integrating Design for
Manufacturing of Electronic Packages in a Multidis-
ciplinary Design Analysis and Optimization Frame-
work. AIAA-94-4254, 5th AIAA/ USAF/NASA/
ISSMO Symposium on Multidisciplinary Analysis
and Optimization. Panama City Beach, FL,
Sept. 7-9, 1994.

Korngold, J.; Gabriele, G.; Renaud, J.; and Kott, G.:
Application of Multidisciplinary Design Optimiza-
tion to Electronics Package Design. Proceedings of
the 4th AIAA/NASA/USAF/OAI Symposium on Mul-
tidisciplinary Analysis and Optimization, Cleveland,
Ohio, September 21-23, 1992. AIAA-92-4704-CP,
Part 1.

Kroo, L.: Decomposition and Collaborative Optimiza-
tion for Large Scale Aerospace Design.
ICASE/LaRC/SIAM Workshop on Multidisciplinary
Optimization, Hampton, VA, March 1995, To be
published in the SIAM J., 1996.

Kroo, I.; Altus, S.; Braun, R.; Gage, P.; and Sobieski, I.:
Multidisciplinary Optimization Methods for Aircraft
Preliminary Design. ATAA-94-4325, S5Sth
AIAA/USAF/NASA/ISSMO Symposium on Multidis-
ciplinary Analysis and Optimization. Panama City
Beach, FL, Sept. 7-9, 1994. Vol. I, pp. 697-707.

Kroo, I.; and Takai, M.: A Quasi-Procedural Knowl-
edge Based System for Aircraft Synthesis. AIAA-
88-6502, AIAA Aircraft Design Conference, August
1988.

Kroo, 1.; and Takai, M.: A Quasi-Procedural Knowl-
edge-Based System for Aircraft Design. AlAA
Paper No. 88-4428, September 1988.

Kroo, 1.; and Takai, M.: Aircraft Design Optimization
Using a Quasi-Procedural Method and Expert
System. Proceedings of the 3rd
AIAA/NASA/USAF/OAI Symposium on Multidisci-
plinary Analysis and Optimization, San Francisco,
California, September 1990.

23

Ku, C.-S.; and Hajela, P.: Dual Structural-Control
Design of an Adaptive Neurocontroller for Airfoil
Vibration Reduction. Proceedings of the Interna-
tional Federation of Operations Research Societies
(IFORS), 4th Specialized Conference on Operations
Research and Engineering Design, St. Louis,
Missouri, October 24-27, 1995.

Kumar, V.; Cakal, H.; Ari, O.; and Acikgoz, M.: Mul-
tilevel Optimization with Multiple Objectives and
Mixed Design Variables. Proceedings of the 4th
AIAA/NASA/USAF/OAI Symposium on Multidisci-
plinary Analysis and Optimization, Cleveland,
Ohio, September 21-23, 1992. AIAA Paper
No. 92-4757.

Kuo, C.-P.; and Bruno, R: Optimal Actuator Placement
on an Active Reflector Using a Modified Simulated
Annealing Technique. Proceedings of Joint
U.S./Japan Conference on Adaptive Structures, 1st,
Maui, HI, Nov. 13-15, 1990, Lancaster, PA, Tech-
nomic Publishing Co., Inc., 1991, pp. 1056-1067.

Kusiak, A; Larson, T. Nick; and Wang, J: Reengi-
neering of Design and Manufacturing Processes.
Computers Industrial Engineering, Vol. 26, No. 3,
1994, pp. 521-536.

Lamancusa, J. S.: Numerical Optimization Techniques
for Structural-Acoustic Design of Rectangular
Panels. Computers and Structures, Vol. 48, No. 4,
1993, pp. 661-675.

Lamancusa, J.; and Eschenauer, H.: Design Optimiza-
tion Methods for Rectangular Panels with Minimal
Sound Radiation.  Proceedings of the 4th
AIAA/NASA/USAF/OAI Symposium on Multidisci-
plinary Analvsis and Optimization, Cleveland,
Ohio, September 21-23, 1992. AIAA Paper
No. 92-4768.

Lasdon, L. S.: Optimization Theory of Large Systems,
Macmillan, New York, 1970.

Lavelle, T.; and Plencner, R.: Concurrent Optimization
of Airframe and Engine Design. Proceedings of the
4th AIAA/NASA/USAF/OAI Symposium on Multidis- -
ciplinary Analysis and Optimization, Cleveland,
Ohio, September 21-23, 1992. AIAA Paper
No. 92-4713.

Lee, H.; Goel, S.; Tong, S. S.; Gregory, B.; and Hunter,
S.: Toward Modeling the Concurrent Design of Air-
craft Engine Turbines. Paper ASME 93-GT-193,

American Institute of Aeronautics and Astronautics



International Gas Turbine and Aeroengine Congress
and Exposition, Cincinnati, Ohio, May, 1993.

Lee, J.; and Hajela, P.: Parallel Genetic Algorithm
Implementation in Multidisciplinary Rotor Blade
Design; Proceedings of AHS Specialists Meeting,
QOct. 30-Nov. 1, 1995, Williamsburg, Va. (To appear
in J. of Aircraft).

Li, W-L.; and Livne, E.: Supersonic/Subsonic Lifting
Surface Unsteady Aerodynamic Sensitivities and
Approximations for Aeroservoelastic Shape Optimi-
zation. Journal of Aircraft (To be published).

Lim, J. W.; and Chopra, L.: Aeroelastic Optimization of
a Helicopter Rotor Using an Efficient Sensitivity
Analysis. Journal of Aircraft, Vol. 28, No. 1,
Jan. 1991, pp. 29-37.

Livne, E.: Accurate Calculation of Control Augmented
Structural Eigenvalue Sensitivities Using Reduced
Order Models. AIAA Journal, Vol. 27, No. 7,
July 1989, pp. 947-954.

Livne, E.: Alternative Approximations for Integrated
Control/Structure Aeroservoelastic Synthesis. AJAA
Journal, Vol. 31, No. 6, June 1993, pp. 1100-1112.

Livne, E.: On the Optimal Size and Location of Con-
trol Surfaces in Integrated Multidisciplinary Wing
Synthesis. Proceedings of the 4th
AIAA/NASA/USAF/OAI Symposium on Multidisci-
plinary Analysis and Optimization, Cleveland,
Ohio, September 21-23, 1992. AIAA Paper
No. 92-4735.

Livne, E.; and Li, W.-L.: Aeroservoelastic Aspects of
Wing/Control Surface Planform Shape Opti-
mization. AIAA Journal, Vol. 33, No. 2, 1995,
pp- 302-311.

Livne, E.; Friedmann, P. P.; and Schmit, L. A.: Inte-
grated Aeroservoelastic Wing Synthesis by Nonlin-
ear Programming/Approximation Concepts. Journal
of Guidance, Control, and Dynamics, Vol. 15,
No. 4, July-August 1992, pp. 985-997.

Livne, E.; Schmit, L. A.; and Friedmann, P. P.: Inte-
grated Structure/Control/Aerodynamic Synthesis of
Actively Controlled Composite Wings. Journal of
Aircraft, Vol. 30, No. 3, 1993, pp. 387-394.

Livne, E.; Schmit, L. A.; and Friedmann, P. P.:
Exploratory Design Studies of Actively Con-

24

trolled Wings Using Integrated Multidisciplinary
Synthesis. AIAA Journal, Vol. 30, No. 5, May 1992,
pp- 1171-1183.

Livne, E.; Schmit, L. A.; and Friedmann, P. P.:
Towards Integrated Multidisciplinary Synthesis of
Actively Controlled Fiber Composite Wings. AIAA
Journal of Aircraft, Vol. 27, No. 12, Dec. 1990,
pp. 979-992.

Logan, T. R.: Strategy for Multilevel Optimization of
Aircraft. Journal of Aircraft, Vol. 27, No. 12, Dec.
1990, pp. 1068-1072.

Lokanathan, A.; Brockman, J.B.; and Renaud, J.E.:
1995, A Multidisciplinary Optimization Approach to
Integrated Circuit Design, Proceedings of Concur-
rent Engineering: A Global Perspective, CE95
Conference, pp. 121-129, August 23-25, McLean,
Virginia.

Lokanathan, Arun N.; and Brockman, Jay B.: A Mul-
tidisciplinary Optimization Approach to Integrated
Circuit Design. Proceedings of the Second Interna-
tional Conference on Concurrent Engineering:
Research and Applications, Washington, D.C.,
Aug. 23-25, 1995.

Malone, B.; and Mason, W. H.: Aircraft Concept
Optimization Using the Global Sensitivity Approach
and Parametric Multiobjective Figures of Merit.
Proceedings of the 4th AIAA/NASA/USAF/OAI
Symposium on Muliidisciplinary Analysis and Opti-
mization, Cleveland, Ohio. September 21-23, 1992,
AIAA Paper 92-4221, 1992,

Malone, B.; and Mason, W. H.: Multidisciplinary
Optimization in Aircraft Design Using Analytic
Technology Models. AIAA Paper 91-3187, 1991.

Marx, W; Mavris, D.; and Schrage, D.: Integrated
Product development for the Wing Structural design
of the High-Speed Civil Transport. AIAA-94-4253,
AIAA/NASA/USAF/ISSMO 5th Symposium on Mul-
tidisciplinary Analvsis and Optimization, Panama
City Beach, Florida, Scpt. 1994.

Mason, B. H.; Haftka, R. T.; and Johnson, E. R.:
Analysis and Design of Composite Channel Frames.
AIAA Paper 94-4364-CP, Proceedings of the 5th
AIAA/NASA/USAF/ISSMO Symposium on Multidis-
ciplinary Analysis and Optimization, Panama City
Beach, Florida. September 7-9, 1994, Vol. 2,
pp- 1023-1040.

American Institute of Aeronautics and Astronautics



Mason, W. H.; and Arledge, T. K.: ACSYNT Aerody-
namic Estimation, Examination and Validation for
Use in Conceptual Design. AIAA Paper 93-0973,
1993,

McCullers, L. A.: Aircraft Configuration Optimization
Including Optimized Flight Profiles. Proceedings of
Symposium on Recent Experiences in Multidiscipli-
nary Analysis and Optimization, (J. Sobieski, com-
piler), NASA CP-2327, April 1984, pp. 395-412.

McCulley, C.; and Bloebaum, C. L.: Optimal Sched-
uling for Complex Engineering Systems Using
Genetic Algorithms. Proceedings of the 5th AIAA
Multidisciplinary Analysis and Optimization Sympo-
sium, Panama City, Florida. Sept. 1994, AIAA
Paper No. 94-4327.

McGeer, T.: Wing Design for Minimum Drag and
Practical Constraints. Ph.D. Thesis, Stanford
University, 1984.

Methods, SIAM Journal of Optimization, Vol. 3, No. 3,
pp. 654-667,

Michelena, N., and Papalambros, P.: Optimal Model-
Based Partitioning of Powertrain System Design.
Technical Report UM-MEAM 95-03, Dept. Of
Mechanical Engineering and Applied Mechanics,
University of Michigan, Ann Arbor, Michigan,
1995.

Miller, G.: An Active Flexible Wing Multidisciplinary
Design Optimization Method. AIAA-94-4412;
AIAA/NASA/USAF/ISSMO 5th Symposium on Mul-
tidisciplinary Analvsis and Optimization; Panama
City Beach, Florida, Sept. 1994

Milman, M.; Salama, M.; and Wette. M.: Integrated
Controls Structure and Optical Design. Proceedings
of the IEEE American Control Conference, Vol. 2,
pp. 1448-1452.

Milman, M.; Salama, M.: Chu, C. C.. and Wette, M.:
Integrated Control-Structure Design of the JPL
Phase B Testbed. AIAA Paper 92-1151,
AIAA Aerospace Design Conference and Exhibit,
Feb. 21-23, 1992, Irvine. CA.

Milman, M.; Salama, M. Scheid, R. E.; Bruno, R.; and
Gibson, J. S.: Combined Control-Structural Optimi-
zation. Computational Mechanics, Vol. 8, 1991,

pp. 1-18.

25

Mistree, F.; Patel, B.; and Vadde, S.: On Modeling
Objectives and Multilevel Decisions in Concurrent
Design. Proceedings ASME Design Automation
Conference, Minneapolis, Minnesota, September
1994.

Morris, S. J1.; and Kroo, I.: Aircraft Design Optimiza-
tion with Dynamic Performance Constraints. Jour-
nal of Aircraft, Vol. 27, No. 12, December 1990,
pp- 1060-1067.

Murthy, D. V.; and Haftka, R. T.: Approximations to
Eigenvalues of Modified General Matrices. Com-
puters and Structures, Vol. 29, No. 5, 1988,
pp- 903-917.

Nash, S.; Polyak, R.; and Sofer, A.: A Numerical
Comparison of Barrier and Modified Barrier
Methods for Large-Scale Bound-Constrained Opti-
mization. Large Scale Optimization. State of the
Art. Ed. by W. Hager, D. Hearn, and P. Pardalos.
Kluwer Academic Publishers, 1994.

Neill, D. J.; Johnson, E. H.; and Canfield, R.:
ASTROS—A Multidisciplinary Automated Struc-
tural Design Tool. Journal of Aircraft, Vol. 27,
No. 12, December 1990, pp. 1021-1027.

Nesterov, Yu, E.; and Nemirovsky, A. S.: Interior Point
Polynomial Methods in Convex Programming:
Theory and Algorithms. SIAM J. Optimization,
Philadelphia, 1994.

Niu, Xinhui; and Brockman, Jay B.: A Bayesian
Approach to Variable Screening for Modeling the IC
Fabrication Process. Proceedings of the IEEE
International Symposium on Circuits and Systems,
Seattle, WA, May 1995.

Nystrom, G.; Eason, E.; Wright, J.; and Burlingham,
A.: A New Three-Step Move limit Strategy for
Non-Hierarchic Multidisciplinary System Optimiza-
tion. ATIAA-94-4331, AIAA-94-4302, AIAA/NASA/
USAF/ISSMO 5th Symposium on Multidisciplinary
Analysis and Optimization; Panama City Beach,
Florida, Sept. 1994.

Ohsaki, M.; and Arora, J.: A Direct Application of
Parametric Programming Techniques to Constrained
Optimization Problems. Proceedings of the 4th
AIAA/NASA/USAF/OAI Symposium on Multidisci-
plinary Analysis and Optimization, Cleveland,
Ohio, September 21-23, 1992. AIAA Paper
No. 92-4828.

American Institute of Aeronautics and Astronautics



Olds, J.: The Suitability of Selected Multidisciplinary
Design and Optimization Techniques to Conceptual
Aerospace Vehicle Design. Proceedings of the 4th
AIAA/NASA/ USAF/OAI Symposium on Multidisci-
plinary Analysis and Optimization, Cleveland,
Ohio, September 21-23, 1992. AIAA Paper
No. 92-4791.

Olds, J.: System Sensitivity Analysis Applied to the
Conceptual Design of a dual-Fuel Rocket SSTO.
AIAA-94-4339, AIAA/NASA/USAF/ISSMO 5th
Symposium on Multidisciplinary Analysis and Opti-
mization, Panama City Beach, Florida, Sept. 1994.

Padula, S. L.; Adelman, H. M.; Bailey, M. C.; and
Haftka, R. T.: Integrated Structural Electromagnetic
Shape Control of Large Space Antenna Reflectors.
AIAA Journal, Vol. 27, No. 6, 1989, pp. 814-819.

Padula, S. L.; and Kincaid, R. K.: Aerospace Applica-
tions of Integer and Combinatorial Optimization.
NASA TM-110210, Oct. 1995.

Padula, S. L.; and Sandridge, C. A.: Passive/Active
Strut Placement by Integer Programming. Topology
Design of Structures, Kluwer Academic Publishers,
1993, pp. 145-156.

Padula, S. L.; James, B. B.; Graves, C. P.; and
Woodard, S. E.: Multidisciplinary Optimization of
Controlled Space Structures Using Global Sensi-
tivity Equations. NASA TP-3130, November 1991.

Padula, S.; and Sandridge, C.: Active Strut Placement
Using Integer Programming for the CSI Evolution-
ary Model. Proceedings of the 4th
AIAA/NASA/USAF/OAI Symposium on Multidisci-
plinary Analysis and Optimization, Cleveland,
Ohio, September 21-23, 1992. AIAA Paper
No. 92-4787.

Papalambros, P.; and Michelena, N.: A Hypergraph
Framework to Optimal Model-Based Partitioning of
Design Problems. Technical Report UM-MEAM
95-02, Dept. Of Mechanical Engineering and
Applied Mechanics, University of Michigan, Ann
Arbor, Michigan, 1995.

Park, J.-H.; and Asada, H.: Integrated Struc-
ture/Control Design of a Two-Link Nonrigid Robot
Arm for High Speed Positioning. Proceedings of
the 1992 IEEE International Conference on Robot-
ics and Automation, Vol. 1, May 1992, pp. 735-741.

26

Parkinson, A. R.; Balling, R. J.; and Free, J. C.:
OPTDESX: An X Window-Based Optimal Design
Software System. ATAA-92-4759, 4th
AIAA/USAF/NASA/OAI Symposium on Multidisci-
plinary Analysis and Optimization, Cleveland, OH,
Sept. 21--23, 1992.

Patel, H.: Multidisciplinary Design Optimization with
Superelements in MSC/NASTRAN. Proceedings of
the 4th AIAA/NASA/USAF/OAI Symposium on Mul-
tidisciplinary Analysis and Optimization, Cleveland,
Ohio, September 21-23, 1992. AIAA Paper
No. 92-4732.

Pates, C.; Anatrol, Roush; Shirahatti, U.; and Mei, C.:
Coupled Boundary/Finite Element Methods for
Random Structural-Acoustic Interaction Problems.
AIAA-95-1346, AIAA/ASME/ASCE/AHS/ ASC 36th
Structures, Structural Dynamics, and Materials
Conference, New Orleans, LA, Apr. 10-12, 1995.

Pimmler, T. U.; and Eppinger, S. D.: Integration
Analysis of Product Decompositions. ASME Design
Theory and Methodology Conference, Minneapolis,
MN, Sept. 1994.

Polyak, R.: Modified Barrier Functions in LP. 1BM
Research Report RC 17790 (#78331), p. 56, York-
town Heights, NY, 1992.

Post-Optimality Analysis in Aircraft Design. Pro-
ceedings of the AIAA Aircraft, Design, Systems, and
Operations Meeting, Monterey, California. AIAA
Paper No. 93-3932, August 11-13, 1993.

Rais-Rohani, M.; Haftka, R.; Grossman, B.; and Unger,
E.: Integrated Aerodynamic-Structural-Control
Wing Design. AIAA Paper No. 92-4694-CP; Pro-
ceedings of the 4th AIAA/NASA/USAF/OAI Sympo-
sium on Multidisciplinary Analysis and
Optimization, September 21-23, 1992, Cleveland,
Ohio. Part 1, pp. 53-62 .

Rakowska, J., Haftka, R.T., and Watson, L. T.: Tracing
the Efficient Curve for Multi-Objective Control-
Structure Optimization, Computing Systems in
Engineering, Vol. 2, No. 5/6, pp. 461-471, 1991.

Rakowska, J., Haftka, R.T., and Watson, L. T.: Multi-
Objective Control-Structure Optimization via
Homotopy Methods, SIAM Journal of Optimization,
Vol. 3, No. 3, pp. 654-667, 1993.

American Institute of Aeronautics and Astronautics



Rao, S.'S.; and Venkayya, V. B.: Mixed-Integer Pro-
gramming and Multi-Objective Optimization Tech-
niques for the Design of Control Augmented
Structures. AIAA-924739-CP, Part 1, September
21-23, 1992, pp. 389-396.

Rao, S.; and Venkayya, V.: Mixed-Integer Program-
ming and Multi-Objective Optimization Techniques
for the Design of Control Augmented Structures.
Proceedings of the 4th AIAA/NASA/USAF/OAI Sym-
posium on Multidisciplinary Analysis and Optimiza-
tion, Cleveland, Ohio, September 21-23, 1992.
ATAA Paper No. 92-4739.

Reddy, E.; Abumeri, G.; Murthy, P.; and Chamis, C.:
Structural Tailoring of Aircraft Engine Blade Sub-
ject to Ice Impact Constraints. Proceedings of the
4th AIAA/NASA/ USAF/OAI Symposium on Mul-
tidisciplinary Analysis and Optimization, Cleveland,
Ohio, September 21-23, 1992. AIAA Paper
No. 92-4710.

Rogers, J. L.; McCulley, C. M.; and Bloebaum, C. L.
Integrating a Genetic Algorithm into a Knowledge-
Based System for Ordering Complex Design Proc-
esses. 4th International Conference on Artificial
Intelligence in Design 96, June 24-27, 1996;
Stanford University, Palo Alto, California.

Rogers, J.L.: A Knowledge-Based Tool for Multilevel
Decomposition of a Complex Design Problem;
NASA TP-2903, 1989.

Rohl, P.; Mavris, D.; and Schrage, D.: Combined
Aerodynamic and Structural Optimization of a
High-Speed Civil Transport Wing. AIAA-95-1222,
AIAA/ASME/ASCE/AHS/ASC 36th Structures,
Structural Dynamics, and Materials Conference,
New Orleans, LA, Apr. 10-12, 1995.

Rowan, T. H.: Functional Stability Analysis of
Numericat Algorithms. The University of Texas at
Austin, Ph.D. Dissertation, May 1990.

Schmit, L. A., Jr.; and Farshi, B.: Some Approximation
Concepts for Structural Synthesis. AIAA J., Vol. 12,
No. 5, pp. 692-699, 1974.

Schmit, L. A.; and Ramanathan, R. K.: Multilevel
Approach to Minimum Weight Design including
Buckling Conctraints. AIAA J.,, Vol. 16, pp. 97-104.

Schneider, G.; Krammer, J.; and Hoernlein, H.R.: First
Approach to an Integrated Fin design. 72nd meeting

27

of the Structures and Materials Panel, Bath., UK.,
April 29-May 3, 1991, Proceedings of Ch.1l in
Integrated Design Analysis and Optimization of Air-
craft Structures; AGARD Report 784, Feb. 1992.

Schrage, D.: Concurrent Design: A Case Study. Ch.21
in Concurrent Engineering, Automation, Tools,
Techniques, Andrew Kusiak (ed.), J. Wiley & Sons,
1993, pp. 535-581

Scotti, S. J.: Structural Design Utilizing Updated
Approximate Sensitivity Derivatives. AIAA Paper
No. 93-1531, April 19-21, 1993.

Scotti, S.J.: Structural Design using Equilibrium Pro-
gramming, Ph.D. Dissertation, George Washington
University, May 1995.

Sellar, R.S.; Batill, S.M.; Renaud, J.E.: Response Sur-
face Based, Concurrent Subspace Optimization for
Multidisciplinary System Design. AIAA 96-0714,
34th AIAA Aerospace Sciences Meeting, Reno, NV,
January 15-18, 1996.

Sepulveda, A.; and Jin, I.: Design of Structure/Control
Systems with Transient Response Constraints
Exhibiting Relative Minima. Proceedings of the 4th
AIAA/NASA/USAF/OAI Symposium on Multidisci-
plinary Analysis and Optimization, Cleveland,
Ohio, September 21-23, 1992. AIAA Paper
No. 92-4736.

Shirk, H. M.; Hertz, T. Z.; and Weisshaal, T. A.: A
Survey of Aeroelastic Tailoring—Theory, Practice
and Promise. Journal of Aircraft, Vol. 23, 1986,
pp. 6-8.

Shupe, J.; and Srinivasan, R.: Decision Based Product
Improvement: The Importance of Multidisciplinary
Decision Making to Product Development. Pro-
ceedings of the 4th AIAA/NASA/USAF/OAI Sympo-
sium on Multidisciplinary Analysis and
Optimization, Cleveland, OH, September 21-23,
1992, pp. 148-58. AIAA Paper No. 92-4706, Part 1.

Smith, R.; and Kerr, P.: Geometric Requirements for
Multidisciplinary Analysis of Aerospace-Vehicle.
Design.  Proceedings of the 4th AIAA/NASA/
USAF/OAlI Symposium on Multidisciplinary
Analysis and Optimization, Cleveland, OH,
September 21-23, 1992. AIAA Paper No. 92-4773.

Snyman, J.A.; and Fatti, L.P.: A Multi-Start Global
Minimization Algorithm with Dynamic Search

American Institute of Aeronautics and Astronautics



Trajectories, J. Optim. Theory Appl., 54, pp. 121~
141, 1987.

Sobieski, I. P.; and Kroo, I.: Collaborative Optimiza-
tion Applied to an Aircraft Design Problem. AJAA
Aerospace Sciences Meeting, Reno, Nevada. AIAA
Paper No. 96-0715, January 15-18, 1996.

Sobieski, J.; Gross, D. W.; Kurtze, W. L.; Newsom,
J. R.: Wrenn, G. A.; and Greene, W. H.: Supersonic
Cruise Research Aircraft Structural Studies,
Methods, and Results. Proceedings of the Super-
sonic Cruise Alrcraft Research Conference,
Hampton, Virginia, November 13-16, 1979.

Sobieszczanski-Sobieski, J.: Sensitivity of Complex,
Internally Coupled Systems. AIAA Journal, Vol. 28,
No. 1, 1990, pp. 153-160.

Sobieszczanski-Sobieski, J.; Barthelemy, J.-F.M.; and
Riley, K. M.: Sensitivity of Optimum Solutions to
Problems Parameters. AIAA Journal, Vol. 20, No.
9, September 1982, pp. 1291-1299.

Sobieszczanski-Sobieski, J.: Higher Order Sensitivity
Analysis of Complex, Coupled Systems. AIAA
Journal, Vol. 28, No. 4, April 1990, p. 736.

Sobieszczanski-Sobieski, Jaroslaw: Optimization by
Decomposition: A Step from Hierarchic to Non-
Hierarchic Systems. Presented at the Second
NASA/Air Force Symposium on Recent Advances in
Multidisciplinary Analysis and Optimization,
Hampton, VA, September 28-30, 1988. NASA
TM-101494. NASA CP-3031, Part 1, 1989

Sobieszczanski, J.; and Loendorf, D.: A Mixed Opti-
mization Method for Automated Design of Fuselage
Structures. J. Aircraft, December 1972.

Sobieszczanski, J.; McCullers, L. Arnold; Ricketts,
Rodney H.; Santoro, Nick J.; Beskenis, Sharon D.;
and Kurtze, William L.: Structural Design Studies
of a Supersonic Cruise Arrow Wing Configuration.
Proceedings of the Supersonic Cruise Aircraft
Research Conference, Hampton, Virginia,
Nov. 9-12, 1976; NASA CP-001, 1976, p. 45.

Sobieszczanski-Sobieski, J.: The Case for Aerody-
namic Sensitivity Analysis, Sensitivity Analysis in
Engineering. NASA CP-2457, September 1986,
pp- 77-96.

28

Sobieszczanski-Sobieski, J.: From a Black Box to a
Programing System. Ch.11 in Foundations of
Structural Optimization: A Unified Approach;
Morris, A. J. (Ed.), J. Wiley & Sons, 1982.

Sobieszczanski-Sobieski, J.: Multidisciplinary Design
Optimization: An Emerging, New Engineering
Discipline. In Advances in Structural Optimiz-
ation, Herskovits, J., (ed.), pp. 483496, Kluwer
Academic.

Sobieszczanski-Sobieski, J.: Optimization by Decom-
position in Structural and Multidisciplinary Optimi-
zation; A Chapter in Optimization of Large
Structural Systems, Vol. 1, pp.193-234; Rozvany
G. I. N. (Ed.); Proceedings of the NATO/DFG
Advanced Study Institute on Optimization of Large
Structural Systems, Berchtesgaden, Germany, Sept.
23-0ct. 4, 1991, NATO ASI Series E: Applied
Sciences, Vol. 231, Kluwer Academic Publishers,
1993.

Sobieszczanski-Sobieski, J.: A Linear decomposition
Method for Large Optimization Problems—Blue-
print for Development, NASA-TM 83248, February
1982.

Sobieszczanski-Sobieski, J.; Bloebaum, C. L.; and
Hajela, P.: Sensitivity of Control Augmented
Structure Obtained by a System Decomposition
Method. AIAA Paper 88-2205, April 1988.

Stanley, D.; Unal, R.; and Joyner. R.: Applicaton of
Taguchi Methods to Dual Mixture Ratio Propusion
Systemn Optimization for SSTO Vehicles. AIAA
Paper 92-0213, AIAA 30th Aerospace Sciences
Meeting and Exhibit, Reno, NV, January 1992.

Starnes, J. H., Jr.; and Haftka, R. T.: Preliminary
Design of Composite Wings for Buckling, Stress
and Displacement Constraints. Journal of Aircraft,
Vol. 16, pp. 564-570. 1979.

Steward, D. V.: Svstems Analysis and Management:
Structure, Strategy, and Design. Petrocelli Books
Inc., 1991.

Storaasli, O. O.; and Sobieszczanski, J.: Design
Oriented Structural Analysis. AIAA/ASME/SAE
14th Structures, Structural Dynamics, and Materials
Conference, Williamsburg, VA, March 20-23, 1973,
AIAA Paper No. 73-338.

American Institute of Aeronautics and Astronautics



Sutjahjo, E.; and Chamis, C.: Multidisciplinary Coupled
Finite Element Procedures for Fluid Mechanics,
Heat Transfer, and Solid Mechanics. AIAA-94-
4256, AIAA/NASA/USAF/ISSMO 5th Symposium on
Multidisciplinary Analysis and Optimization,
Panama City Beach, Florida, Sept. 1994.

Suzuki, S.: Simultaneous Structure/Control Design
Optimization of a Wing Structure with a Gust Load
Alleviation System. Journal of Aircraft, Vol. 30,
No. 2, 1993, pp. 268-274.

Suzuki, S.; and Matsuda, S.: Structure/Control Design
Synthesis of Active Flutter Suppression System by
Goal Programming. AJAA Journal of Guidance,
Control, and Dynamics, Vol. 14, No. 6, 1991,
pp.1260-1266.

Szewczyk, Z. P.; and Hajela, P.: Neurocomputing
Strategies in Structural Design—Decomposition
Based Optimization. Structural Optimization,
Vol. 8, No. 4, December 1994, pp. 242-250.

Tai, J.C.; Mavris, D.N.; and Schrage, D.P.: Application
of a Response Surface Method to the Design of
Tipjet Driven Stopped Rotor/Wing Concepts. AIAA
Paper 95-3965, Ist AIAA Aircraft Engineering,
Technology, and Operations Congress, Los
Angeles, CA, September 19-21, 1995.

Thareja, R.; and Haftka, R. T.: Efficient Single-Level
Solution of Hierarchial Problems in Structural
Optimization. AIAA Journal, Vol. 28, No. 3,
pp- 506-514, 1990.

Thornton, E. A.: Thermal Structures: Four Decades of
Progress. Journal of Aircraft, No. 29, 1992,
pp- 485-498.

Torczon, V.. On the Convergence of Pattern Search
Methods. Technical Report of Rice University,
TR93-10, June 1993.

Torenbeek, E.: Development and Application of a
Comprehensive, Design-Sensitive Weighty Predic-
tion Method for Wing Structures of Transport Cate-
gory Aircraft. Report LR-693, Delft University of
Technology, The Netherlands, September 1992.

Tulinius, J.: Multidisciplinary Optimization is Key to
Integrated Product Development Process. 4th
AIAA/USAF/NASA/OAI Symposium on Multidisci-
plinary Analysis and Optimization, Cleveland, OH,
Sept. 21-23, 1992.

29

Tzong, G.; Baker, M.; D’Vari, R.; and Giesing, J.
Aeroelastic Loads and Structural Optimization of a
High Speed Civil Transport Model. AIAA Paper
94-4378, Proceedings of the 5th
AIAA/NASA/USAF/ISSMO Symposium on Multidis-
ciplinary Analysis and Optimization, Panama City
Beach, Florida. September 7-9, 1994.

Unger, E. R.; and Hall, L. E.: The Use of Automatic
Differentiation in an Aircraft Design Probiem.
AIAA Paper 94-4260-CP, Vol. 1, Proceedings of the
5th AIAA/NASA/USAF/ISSMO Symposium on Mul-
tidisciplinary Analysis and Optimization, Panama
City Beach, Florida. September 7-9, 1994.
pp. 64-72.

Unger, E. R.; Hutchison, M. G.; Rais-Rohani, M.;
Haftka, R. T.; and Grossman, B.: Variable-
Complexity Multidisciplinary Design of a Transport
Wing. International Journal of System Automation:
Research and Applications (SARA), Vol. 2, No. 2,
1992, pp. 87-113.

Unger, E.: The Use of Automatic Differentiation in an
Aircraft Design Problem. AIAA-94-4260, 5th
AIAA/ USAF/NASA/ISSMO Svmposium on Multidis-
ciplinary Analysis and Optimization. Panama City
Beach, FL, Sept. 7-9, 1994.

Unger, E.; Hutchison, M.; Huang, X.; Mason, W.;
Haftka, R.; and Grossman, B.: Variable-Complexity
Aerodynamic-Structural Design of a High-Speed
Civil Transport. Proceedings of the 4th
AIAA/NASA/USAF/OAT Svmposium on Multidisci-
plinarv Analvsis and Optimization, Cleveland,
Ohio, September 21-23. 1992, AIAA Paper
No. 92-4695.

Van der Velden. A.: Multidisciplinary SCT Design
Optimization. ATAA  Paper 93-3931,
August 11-13, 1993,

Vanderplaats, G.: Automated Optimization Techniques
for Aircraft Synthesis. AIAA Paper 76-909, 1976.

Vanderplaats, G.N.: ADS: A FORTRAN Program for
Automated Design Synthesis.  VMA Engineering -
Inc., Goleta. Calitfornia. May 1985.

A Basis for
Computational

Venkayya. V. B.: Optimality Criteria:
Multidisciplinary Optimization.
Mechanics, Vol. 5. 1989, pp. 1-21.

American Institute of Aeronautics and Astronautics



Volk, J. A:: Multidisciplinary Design Environment
Development for Air Vehicle Engineering.
AJAA-92-1113-CP, Proceedings of the 4th
AIAA/NASA/USAF/OAI Symposium on Multidisci-
plinary Analysis and Optimization, Cleveland,
September 21-23, 1992, Ohio, Part 1,
September 21-23, 1992, pp. 141-147.

Wakayma, S.; and Kroo, I.: A Method for Lifting Sur-
face Design using Nonlinear Optimization. AIAA
Paper 92-3292, Proceedings of the 4th
AIAA/NASA/USAF/OAI Symposium on Multidisci-
plinary Analysis and Optimization, Cleveland,
Ohio, September 21-23, 1992.

Wakayma, S.; and Kroo, I.: Subsonic Wing Design
Using Multidisciplinary Optimization. AIAA Paper
94-4409-CP, Proceedings of the 5th
AIAA/NASA/USAF/ISSMO Symposium on Multidis-
ciplinary Analysis and Optimization, Panama City
Beach, Florida. September 7-9, 1994, Vol. 2,
pp- 1358-1368.

Walsh, J. L; Young, K. C.; Pritchard, J. I, Adelman,
H.M.; and Mantay, W.R.: Integrated Aerody-
namic/Dynamic/Structural Optimization of Heli-
copter Rotor Blades Using Multilevel
Decomposition, NASA TP 3465, January 1995.

Walsh, J. L.; LaMarsh, W. J.; and Adelman, H. M.:
Fully Integrated Aerodynamic/Dynamic Optimiza-
tion of Helicopter Blades, NASA TM-|O4226, 1992.

Walsh, J. L.: Experiences in Applying Optimization
Techniques to Configurations for the Control of
Flexible Structures (COFS) Program. NASA TM-
101511, Oct. 1988.

Walsh, J. L.. Optimization Procedure to Control the
Coupling of Vibration Modes in Flexible Space
Structures. NASA TM-89115, Feb. 1987.

Walsh, J. L.; Young, K. C.; Pritchard. J. 1.; Adelman,
H. M.; and Mantay, W. R.: Integrated Aerody-
namic/Dynamic/Structural Optimization of
Helicopter Rotor Blades Using Multilevel Decompo-
sition. NASA TP-3465, ARL Technical Report 518,
January 1995.

Weisshaar, T. A.; Newsom. J. R.; Gilbert, M. G.; and
Zeiler, T. A.: Integrated Structure/Control Design-
Present Methodology and Future Opportunities.
ICAS-86-4.8.1, Sept. 1986.

30

Weston, R. P.; Eidson, T. M.; Townsend, J. C., and
Coates, R. L.: Distributed Computing Environment
for Multidisciplinary Optimal Design. AIAA-94-
4372, AIAA/NASA/USAF/ISSMO 5th Symposium on
Multidisciplinary Analysis and Optimization,
Panama City Beach, Florida, Sept. 1994.

Woyak, S. A.; Malone, B.; and Myklebust, A.: An
Architecture for Creating Engineering Applications:
The Dynamic Integration System. ASME Com-
puters in Engineering, September 1995.

Wrenn, G. A.; and Dovi, A. R.: Multilevel Decompo-
sition Approach to the Preliminary Sizing of a
Transport Aircraft Wing. AIAA Paper 8§7-0714-CP,
April 1987.

Wrenn, G.A.; and Dovi, AR.: Multilevel Decomposi-
tion Approach to the Preliminary Sizing of a Trans-
port Aircraft Wing. AIAA Journal of Aircraft,
Vol. 25, No. 7, July, 1988, pp. 632-638.

Wujek, B.A.; Renaud J.E.;Johnson E.W.; Brockman,
J.B.; and Batill, S.M.: Design Flow Management
and Multidisciplinary Design Optimization
in Application to Aircraft Concept Sizing,
AIAA 96-0713, 34th AIAA Aerospace Sciences
Meeting and Exhibit, Reno, Nevada, January 15-18,
1996.

Wujek, B.A.; Renaud, J.E.; Batill. S.M.; and Brockman,
J.B.: Concurrent Subspace Optimization Using
Design Variable Sharing in a Distributed Computing
Environment. Proceedings of the 1995 Design
Engineering Technical Conferences, Advances
in Design Automation, ASME DE-Vol. 82,
pp- 181 -188, S. Azarm, et al., eds., Boston,
Massachusetts, Sept. 17-21, 1995.

Yamakawa, H.: Simultancous Optimization of Nonlin-
ear Structural and Control Systems. Proceedings of
the 4th AIAA/NASA/USAF/OAI Symposium on Mul-
tidisciplinary Analvsis and Optimization, Cleveland,
Ohio, September 21-23, 1992. AIAA Paper
No. 92-4742.

Yeh, C.-P.; and Fulton, R.: A Multidisciplinary
Approach for PWB Design Process Optimization.
Proceedings of the 4th AIAA/NASA/USAF/OAI Sym-
posium on Multidisciplinary Analysis and Optimiza-
tion, Cleveland, Ohio, September 21-23, 1992,
Part 1, AIAA Paper No. 92-4702, pp. 110-118.

American Institute of Aeronautics and Astronautics



Yuan, K-A; and Friedmann, P.P.: Structural Optimiza-  Yurkovich, R.: Optimum Wing Shape for an Active

tion for Vibration Reduction of Composite Heli- Flexible Wing. AIAA-95-1200, AIAA/ASME/
copter Rotor Blades with Advances Geometry Tips ASCE/AHS/ASC 36th Structures, Structural
Subject to Multidisciplinary Constraints. Proceed- Dynamics, and Materials Conference, New Orleans,
ings American Helicopter Society 51st Annual LA, Apr. 10-12, 1995.
Forum, Fort Worth, TX, May 9-11, 1995,
pp- 937-956.

31

American Institute of Aeronautics and Astronautics



Appendix: Design Space Search

Theoretical and applied mathematics of the design
space search is a very large area of endeavor beyond the
scope of this survey. (A recent review is in Frank et al.
92.) Nevertheless, a few remarks pertaining directly to
the use of search algorithms in optimization of large
systems are included below.

In large-scale optimization it is now customary to
connect search algorithm to an approximate analysis
(See section on Optimization Procedures.) rather than to
the full-fledged analysis of the problem. This gave rise
to a notion that the efficiency of that algorithm does not
have much impact on the total computational cost of
optimization as long as the algorithm solves the
approximate problem because the bulk of the
computational effort and cost is in the full analysis.
However, this notion is not entirely true for at least two
reasons. When the number of design variables goes up
into the range of thousands, the computational cost of
search itself goes up superlinearly and begins to matter
even relatively to the full analysis cost. Even more
importantly, the algorithm memory requirements driven
primarily by the size of the Jacobian of the constraints
go up as a product of the number of constraints and the
number of design variables, and may quickly exceed
the fast memory capacity forcing the operation into a
time-consuming mass storage communications.

If there are many more constraints than design
variables and the constrained minimum is defined by
only a few active constraints, then a search technique
that clings to the constraint boundary is efficient. The
usable-feasible directions algorithm is an example.
However, if the constrained minimum lies at a full, or
nearly-full, vertex of the feasible space, then such a
search technique may be forced into small steps moving
from one constraint boundary intersection to the next.
In that situation an intcrior point methods may be
expected to move through the design space over a
longer distance. This advantage of the interior point
methods has been recognized in linear programing, e.g.,
Polyak (92). A broader discussion of the interior point
methods is given in Nesterov (94) and Nash (94).

Even though the gradient-guided search is more
efficient that the one based on the zero-th order
information only; still the computational cost of
gradients is of concern. Hence, a continued research
has been pursued into the zero-th order methods. It has
resulted in improvements in the pattern search
algorithms, such as those reported in Torczon (93) and
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Dennis (91). A related development was described in
Rowan (90) in which the search is assisted by
transformation of the design space coordinates. That
transformation results in a set of subspaces that are
mutually orthogonal, hence each may be searched
independently. This results in a process amenable to
concurrent processing. It may also be regarded as a
form of decomposition based entirely on mathematical
properties of the design space, in contrast to
decomposition based on physical insight used in
previously described optimization by decomposition.
Search efficiency may also be improved by tailoring its
mathematics to the special features of the problem as
shown in Arora (92).

Genetic Algorithms (GA) offer another alternative
to gradient-guided search, e.g., Hajela et al. (92). An
GA algorithm treats a set of design points in the design
space as a population of individuals that produces
another set of points as a generation of parents produces
the next generation of children. A GA algorithm
comprises a mechanism for pairing up the design points
into the pairs of parents for transfer of the parent
characteristics to children and for mutations that
occasionally endow children with features absent in
either parent. The mechanism favors probabilistical
creation of children that are better than parents in terms
of the objective function and satisfaction of constraints.
The mutation mechanism in GA is particularly
important to prevent the process from ending up in a
local minimum. It was also demonstrated in Gage et
al. (95), on an example of an aircraft wing design that
this mechanism may be used to create new designs with
features that were absent not only in the pair parents but
anywhere in the entire parent generation. This amounts
to extending design space by adding new variables and
is entirely beyond the capability of gradient-directed
search. References Gage and Kroo (92 and 95), Gage
et al. (95), Gage (95), and King et al. (91) provide other
examples of applications and discussion of issues that
arise in the use of GA.

The capability of escape from local minima is one
characteristic that Simulated Annealing (SA) class of
search algorithms, e.g., Khalak et al. (94) and Kuo et al.
(91) has in common with GA. In SA the search is
random, and acceptance of a new design worse than the
previous one is occasionally and probabilistically
allowed to provide for such escape.

Both the GA and SA techniques generate a large
number of calls to analysis, hence, their usability is
limited by the cost of analysis. In this regard they are
inferior to methods that generate and exploit search
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directions in the design space, for instance Snyman et
al. (87).Despite that, judging by the number of the
reported applications, they are gaining popularity in
MDO applications probably because they are very
simple to couple with the analysis modules, and they do
not incur the cost of computing the derivatives.
However, the extent to which these algorithms can be
combined with approximations as the gradient-guided
ones can, is a question open to further investigation.

An alternative to numerical search of design space
for constrained minima is an optimality criteria
approach. It comprises two elements: the optimality
criteria appropriate to the case at hand and an aigorithm
for transformation of the design variables to achieve
satisfaction of the criteria. This approach was
successful mostly in structural engineering where the
criteria of fully stressed design and uniform strain
energy density indeed ensure that design is at, or near, a
constrained optimum. In multidisciplinary systems
whose various parts and aspects are governed by
different physics, it is difficult to identify a common,
physics-based optimality criterion. However, if the
system is dominated by structures, e.g., optimization of
airframes with aerodynamic loads, the optimality
criteria method may be successfully extended from
structures to encompass the entire system, as shown in a
review provided in Venkayya (89).
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