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Abstract

The increasing complexity of engineering systems

has sparked increasing interest in multdisciplinary

optimization (MDO). This paper presents a survey of
recent publications in the field of aerospace where

interest in MDO has been particularly intense. The two

main challenges of MDO are computational expense
and organizational complexity. Accordingly the survey

is focused on various ways different researchers use to
deal with these challenges. The survey is organized by

a -breakdown of MDO into its conceptual components.

Accordingly, the survey includes sections on
Mathematical Modeling, Design-oriented Analysis,

Approximation Concepts, Optimization Procedures,
System Sensitivity, and Human Interface. With the

authors' main expertise being in the structures area, the
bulk of the references focus on the interaction of the

structures discipline with other disciplines. In

particular, two sections at the end focus on two such
interactions that have recently been pursued with a

particular vigor: Simultaneous Optimization of
Structures and Aerodynamics, and Simultaneous

Optimization of Structures Combined With Active
Control.

1. Introduction

The term "methodology" is defined by Webster's

dictionary as "a body of methods, procedures, working
concepts, and postulates, etc." Consistent with this

*Multidisciplinary Research Coordinator, Fellow, AIAA

tProfessor, Associate Fellow, AIAA

Copyright © by the American Institute of Aeronautics and Astronautics, Inc. No

copyright is asserted in the United States under Title 17, U. S. Code. The U. S.
Government has a royalty-free license to exercise all rights under the copyright
claimed herein for Government Purposes. All other rights are reserved by the

copyright owner.

definition, multidisciplinary optimization (MDO) can
be described as a methodology for the design of

systems where the interaction between several

disciplines must be considered, and where the designer
is free to significantly affect the system performance in

more than one discipline. Using this definition,

structural optimization of an aircraft wing to prevent
flutter will not be considered multidisciplinary

optimization. For this case, the interaction of

aerodynamics and structures is present only at the

analysis level, and the designer does not attempt to
change the aerodynamic shape of the wing.

The interdisciplinary coupling inherent in MDO

tends to present additional challenges beyond those

encountered in a single-discipline optimization. It

increases computational burden, and it also increases
complexity and creates organizational challenges for

implementing the necessary coupling in software

systems.

The increased computational burden may simply

reflect the increased size of the MDO problem, with the

number of analysis variables and of design variables

adding up with each additional discipline. A case of
tens of thousands of analysis variables and several

thousands of design variables, reported in Berkes (90)

for just the structural part of an airframe design,
illustrates the dimensionality of the MDO task one has

to prepare for. Since solution times for most analysis

and optimization algorithms increase at a superlinear.
rate, the computational cost of MDO is usually much

higher than the sum of the costs of the single-discipline

optimizations for the disciplines represented in the
MDO. Additionally, even if each discipline employs

linear analysis methods, the combined system may

require costly nonlinear analysis. For example, linear

aerodynamics may be used to predict pressure
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distributionsonawing,andlinearstructuralanalysis
maybethenusedtopredictdisplacements.However,
thedependenceof thepressuresonthedisplacements
maynotbe linear. Finally,for eachdisciplinary
optimizationwemaybeabletouseasingle-objective
function,butfor theMDOproblemwemayneedto
havemultipleobjectiveswithanattendantincreasein
optimizationcost.

In MDO of complexsystemswe alsoface
formidableorganizationalchallenges.Theanalysis
codesforeachdisciplinehavetobemadetointeract
withoneanotherforthepurposeofsystemanalysisand
systemoptimization. Thekind andbreadthof
interactionis affectedby theMDO formulation.
Decisionson thechoiceof designvariablesandon
whethertousesingle-leveloptimizationormultilevel
optimizationhaveprofoundeffectsonthecoordination
anddatatransferbetweenanalysiscodesandthe
optimizationcodeandon thedegreeof human
interactionsrequired. Theinteractionbetweenthe
modulesin thesoftwaresystemononesideandthe
multitudeof usersorganizedindisciplinarygroupson
theothersidemaybecomplicatedbydepartmental
divisionsintheorganizationthatperformstheMDO.

Onemaydiscernthreecategoriesofapproachesto
MDO problems,dependingon the way the
organizationalchallengehasbeenaddressed.Twoof
thesecategoriesrepresentapproachesthatconcentrated
on problemformulationsthat circumventthe
organizationalchallenge,whilethethirddealswith
attemptstoaddressthischallengedirectly.

1. Thefirstcategoryincludesproblemswithtwo
or threeinteractingdisciplineswhereasingleanalyst
canacquirealltherequiredexpertise.At theanalysis
level,thismayleadtothecreationofanewdiscipline
that focuseson the interactionof the involved
disciplines,suchasaeroelasticityor thermoelasticity.
Thismayleadto MDOwheredesignvariablesin
severaldisciplineshavetobeobtainedsimultaneously
toensureefficientdesign.Thepasttwodecadeshave
createdthedisciplineofstructuralcontrol,withanalysts
whoarewell versedin bothstructuresandcontrol
systemanalysisanddesign.Therehasalsobeenmuch
workonsimultaneousoptimizationof structuresand
controlsystems(e.g.,Haftka,90).Mostofthepapers
inthiscategoryrepresentasinglegroupof researchers
or practitionersworkingwith a singlecomputer
program,so that organizationalchallengeswere
minimized.Becauseofthis,it iseasierforresearchers
workingonproblemsinthiscategorytodealwithsome
oftheissuesof complexityof MDOproblems,suchas

theneedformultiobjectiveoptimization(e.g.,Gupta
andJoshi,90,RaoandVenkayya,92,Grandhietal.,
92,andDoviandWrenn,90).

2. Thesecondcategoryincludesworkswherethe
MDO of an entiresystemis carriedout at the
conceptuallevelbyemployingsimpleanalysistools.
Foraircraftdesign,theACSYNT(Vanderplaats,76,
Jayaramet al., 92) andFLOPS(McCullers,84)
programsrepresentthis levelof MDOapplication.
Becauseof thesimplicityof theanalysistools,it is
possibletointegratethevariousdisciplinaryanalysesin
asingle,usuallymodular,computerprogramandavoid
largecomputationalburdens.Gallmanetal.(94),Gates
andLewis(92),LavelleandPlencner(92),Morrisand
Kroo(90),Doddetal. (90),Harry(92),Reddyetal.
(92),andBartholomewandWellen(90)provide
instancesof thisapproach.As thedesignprocess
moveson,thelevelofanalysiscomplexityemployedat
the conceptualdesignlevel increasesuniformly
throughoutorselectively(Adelmanetal.,92,presents
anexampleof thelatter).Therefore,someof these
codesarebeginningtofacesomeof theorganizational
challengesencounteredwhenMDOispracticedata
moreadvancedstageofdesignprocess.

3. Thethirdcategoryof MDOresearchincludes
works that focus on the organizationaland
computationalchallengesanddeveloptechniquesthat
help addressthesechallenges.Theseinclude
decompositionmethodsand global sensitivity
techniquesthatpermitoverallsystemoptimizationto
proceedwithminimumchangestodisciplinarycodes.
Thesealsoincludethedevelopmentof toolsthat
facilitateefficientorganizationofmodulesorthathelp
with organizationof data transfer. Finally,
approximationtechniquesareextensivelyusedto
addressthecomputationalburdenchallenge,butthey
oftenalsohelpwiththeorganizationalchallenge.

Thepresentreviewemphasizespapersthatbelong
tothethirdcategory.Thesurveyisorganizedbythe
MDObreakdowninto its conceptualcomponents
suggestedin Sobieszczanski-Sobieski(95).
Accordingly,the survey includessectionson
MathematicalModelingandDesign-orientedAnalysis,
ApproximationConcepts,OptimizationProcedures,
SystemSensitivity,Decompositio,and Human
Interface(andanAppendixontheDesignSpaceSearch
algorithms).Withtheauthorsmainexpertisebeingin
thestructuresarea,thebulkofthereferencesfocuson
theinteractionofthestructuresdisciplinewithanother
disciplinesuchas structuresandelectromagnetic
performance(Padulaetal., 89). In particular,two
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sectionsattheendfocuson two such interactions that

have recently been pursued with a particular vigor:

Simultaneous Optimization of Structures and

Aerodynamics and Structures Combined With Active

Control. This emphasis on structures reflects also the

roots of aerospace MDO in structural optimization and
the central role of structures technology in design of

aerospace vehicles.

2. MDO Components

This section comprises references grouped by the

MDO conceptual components defined as proposed in
Sobieszczanski-Sobieski (95).

2.1 Mathematical Modeling of a System

For obvious pragmatic reasons, software
implementation of mathematical models of engineering

systems usually takes the form of assemblages of codes
(modules), each module representing a physical

phenomenon, a physical part, or some other aspect of

the system. Data transfers among the modules

correspond to the internal couplings of the system.
These data transfers may require data processing that

may become a costly overhead. For example, if the

system is a flexible wing, the aerodynamic pressure

reduced to concentrated forces at the aerodynamic

model grid points on the wing surface has to be
converted to the corresponding concentrated loads

acting on the structure finite-element model nodal

points. Conversely, the finite-element nodal structural
displacements have to be entered into aerodynamic

model grid as shape corrections.

The volume of data transferred in such couplings

affects efficiency directly in terms of I/0 cost.

Additionally, many solution procedures (e.g., Global

Sensitivity Equation, Sobieszczanski-Sobieski, 90)
require the derivatives of this data with respect to

design variables, so that a large volume of data also

increases computational cost. To decrease these costs,
the volume of data may be reduced by various

condensation (reduced basis) techniques. For instance,

in the above wing example one may represent the
pressure distribution and the displacement fields by a

small number of base functions defined over the wing

planform and transfer only the coefficients of these

functions instead of the large volumes of the discrete
load and displacement data. An example of such

condensation for supersonic transport design was

reported in Barthelemy et al. (92) and Unger et al.
(92).

In some applications, one may identify a cluster of

modules in a system model that exchange very large
volumes of data that are not amenable to condensation.

In such cases, the computational cost may be
substantially reduced by unifying the two modules, e.g.,

August et al. (92) or merging them at the equation

level. A heat-ransfer-structural-nalysis code is an
example of such merger as described in Thornton (92).

In this code, the analyses of the temperature field
throughout a structure and of the associated stress-strain
field share a common finite-element model. This line

of development was extended to include fluid

mechanics in Sutjahjo and Chamis (94).

Because of the increased importance of
computational cost, MDO emphasizes the tradeoff of

accuracy and cost associated with alternative models

with different levels of complexity for the same
phenomena. In single-discipline optimization it is
common to have an "analysis model" which is more

accurate and more costly than an "optimization model".
In MDO, this tradeoff between accuracy and cost is

exercised in various ways. First, optimization models

can use the same theory, but with a lower level of
detail. For example, the finite-ment models used for

combined aeroelastic analysis of the high-speed civil

transport (e.g., Scotti, 95) are much more detailed than

the models typically used for combined aerodynamic-
structural optimization (e.g., Dudley et al., 94).

Second, models used for MDO are often less

complex and less accurate than models used for a single
disciplinary optimization. For example, structural

models used for airframe optimization of the HSCT

(e.g., Scotti, 95) are substantially more refined than

those used tor MDO. Aircraft MDO programs, such as
FLOPS (McCullers, 84) and ACSYNT (Vanderplaats,

76), Jayaram et al., 92) use simple aerodynamic
analysis models and weight equations to estimate

structural weight. Similarly Livne et al, (92) use an

equivalent plate model instead of a finite-element
models for structures-control optimization of flexible

wings.

Third, occasionally, models of different

complexity are used simultaneously in the same

discipline. One of them may be a complex model for,

calculating the discipline response, and a simpler model

for characterizing interaction with other disciplines.
For example, in many aircraft companies, the structural

loads are calculated by a simpler aerodynamic model

than the one used for calculating aerodynamic drag

3
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(e.g., Baker and Giesing, 95). Finally, models of
various levels of complexity may be used for the same

response calculation in an approximation procedure or
fast reanalysis described in the next two sections.

Recent aerospace industry emphasis on economics
will, undoubtedly, spawn generation of a new category
of mathematical models to simulate man-made

phenomena of manufacturing and aerospace vehicle

operation with requisite support and maintenance.
These models will share at least some of their input

variables with those used in the product design to
account for the vehicle physics. This will enable one to

build a system mathematical model encompassing all

the principal phases of the product life cycle:
formulation of desirements, product design,

manufacturing, and operation. Based on such an

extended model of a system, it will be possible to

optimize the entire life cycle for a variety of economic

objectives, e.g., minimum cost or a maximum return on
investment, as forecasted in Tulinius (92). There are

several references that bring the life cycle issues into

the MDO domain; examples are Korngold and Gabriele

(94), Fenyes (92), Bearden et al. (94), Brockman et al.
(92), Current et al. (90), Shupe and Srinivasan (92),

Briggs (92), Claus (92), Godse et al. (92), Dolvin (92),

Eppinger et al. (94), Lokanathan et al. (95), Marx et al.

(94), Niu and Brockman (95), Kirk (92), and Yeh and
Fulton (92). Schrage (93) discussed the role of MDO in

the Integrated Product and Process Development

(IPPD), also known as Concurrent Engineering (CE),

and surveyed references on the subject.

Mathematical modeling of an aerospace vehicle

critically depends on an efficient and flexible

description of geometry. This subject is addressed in
Smith and Kerr (92).

2.2 Design-Oriented Analysis

The engineering design process moves forward by

asking and answering "what it' questions. To get

answers to these questions expeditiously, designers

need analysis tools that have a number of special
attributes. These attributes are: selection of the various

levels of analysis ranging from inexpensive and

approximate to accurate and more costly, "smart"
reanalysis which repeats only parts of the original

analysis affected by the design changes, computation of

sensitivity derivatives of output with respect to input,
and a data management and visualization infrastructure

necessary to handle large volumes of data typically

generated in a design process. The term "Design-
oriented Analysis" introduced in Storaasli and

Sobieszczanski (73) refers to analysis procedures

possessing the above attributes.

The data management and visualization

infrastructure, e.g., (Herendeen et al., 92) is a vast field

beyond the scope of this survey. Sensitivity analysis is
discussed in section 2.4, and the issue of the selection

of analysis level was discussed in the previous section,
and will be returned to in the next section on

approximations.

An example of a design-oriented analysis code is

the program LS-CLASS developed by Livne and
Schmit (90), Livne et al. (92, 93) for the structures-

control-aerodynamic optimization of flexible wings

with active controls. The program permits the
calculation of aeroservoelastic response at different

levels of accuracy ranging from a full model to a
reduced one based on vibration modes. Additionally,

various approximations are available depending on the

response quantity to be calculated.

A typical implementation of the idea of smart

reanalysis has been reported in Kroo and Takai (88a, b)
and Gage and Kroo (92). The code (called PASS) is a

collection of modules coupled by the output-to-input

dependencies. These dependencies are determined and
stored on a data base together with the archival

input/output data from recent executions of the code.

When a user changes an input variable and asks for new

values of the output variables, the code logic uses the
data dependency information to determine which

modules and archival data are affected by the change

and executes only the modules that are affected, using
the archival data as much as possible. One may add

that such smart reanalysis is now an industry standard

in the spreadsheets whosc use is popular on personal

computers. It contributes materially to the fast

response of these spreadsheets.

2.3 Approximation Concepts

4

Direct coupling of a thc dcsign space search code
(DSS) to a multidisciplinary analysis may be

impractical for several reasons. First, for any moderate

to large number of design variables, the number of
evaluations of objectivc function and constraints

required by DSS is high. Oftcn we cannot afford to

execute such a large number of exact MDO analyses in

order to provide the evaluation of the objective function
and constraints. Second, often the different disciplinary

analyses are executed on different machines, possibly at
different sites, and communication with a central DSS

program may become unwieldy. Third, some
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disciplinesmayproducenoisyorjaggedresponseasa
functionofthedesignvariables(e.g.,Giuntaetal.,94).
If wedo not usea smoothapproximationto the
responsein thisdisciplinewewillhavetodegradethe
DSStolessefficientnongradientmethods.

Foralloftheabovereasons,mostoptimizationsof
complexengineeringsystemscouplea DSSto
easy-to-calculateapproximationsof the objective
functionand/orconstraints.Theoptimumof the
approximateproblem is found and then the
approximationisupdatedbythefull analysisexecuted
atthatoptimumandtheprocessrepeated.Thisprocess
ofsequentialapproximateoptimizationispopularalso
in single-disciplineoptimization,butitsuseismore
criticalinMDOastheprincipalcostcontrolmeasure

Mostoftentheapproximationsusedinengineering
systemoptimizationarelocalapproximationsbasedon
thederivatives.Linearandquadraticapproximations
arefrequentlyused,andoccasionallyintermediate
variablesor intermediateresponsequantities(e.g.,
KodiyalamandVanderplaats,89)areusedtoimprove
theaccuracyof theapproximation.For example,
insteadof aTaylorseriesin thevariables,structural
responsehasbeenapproximatedbyaTaylorseriesin
thereciprocalsof all thevariablesorsomeof them
(StarnesandHaftka,79). Similarly,insteadof
approximatingeigenvaluesdirectly, we can
approximatethenumeratoranddenominatorof the
Rayleighquotientthatdefinesthem(e.g.,Murthyand
Haftka,88,Canfield,90,Livneandcoworkers,e.g.,
Livneet al.,93,and95). Li andLivne(95) have
exploredextensivelyvariousapproximationsfor
structural,controlandaertxtynamicresponsequantities.
Aprocedureforupdatingthesensitivityderivativesina
sequenceof approximationsusingthepastdatawas
formulatedforageneralcaseinScotti(931.

Globalapproximationshavealsobeenextensively
usedin MDO. Simpleranalysisprocedurescanbe
viewedasglobalapproximationswhentheyareused
temporarilyduringtheoptimizationprocess,withmore
accurateproceduresemployedperiodicallyduringthe
process.Forexample,Ungeretal. (92)developeda
procedurewhereboth the simplerand more
sophisticatedmodelsareusedsimultaneouslyduring
theoptimizationprocedure.Thesophisticatedmodel
providesascalefactorforcorrectingthesimplermodel.
Thescalefactor is updatedperiodicallyduringthe
designprocess.Becausethisapproachemploysmodels
of variablecomplexityit wasdubbed"variable
complexitymodeling(VCM).Forexample,Ungeret
al. (92) appliedtheproceduretoaerodynamicdrag

calculationforasubsonictransport,whileHutchisonet
al. (94)appliedtheproceduretopredictthedragof a
high-speedcivil transport(HSCT)during the
optimizationprocess.Similarly,Huangetal. (94)
employedstructuraloptimizationtogetherwithasimple
weightequationforpredictingwingstructuralweightin
combinedaerodynamicandstructuraloptimizationof
theHSCT.Traditionalderivative-basedapproximation
can be combinedwith such global VCM
approximationsby usinga derivative-basedlinear
approximationforthescalefactor(Changetal., 93).

Anotherglobalapproximationapproachthatis
particularlysuitableforMDOistheresponse-surface
technique.Thistechniquereplacestheobjectiveand/or
constraintsfunctionswith simplefunctions,often
polynomials,whicharefitted to dataat a setof
carefullyselecteddesignpoints.Neuralnetworksare
sometimesusedto functionin thesamerole. The
valuesof theobjectivefunctionandconstraintsatthe
selectedsetof pointsareusedto"train"thenetwork.
Likethepolynomialfit, theneuralnetworkprovidesan
estimateof objectivefunctionandconstraintsforthe
optimizerthatis very inexpensiveafterthe initial
investmentinthenettraininghasbeenmade.

Responsesurfacetechniquesarenotcommonly
usedinsingle-disciplineoptimizationbecausetheydo
notscalewelltolargenumberofvariables.ForMDO,
responsesurfacetechniquesalsoprovideaconvenient
representationof datafromonedisciplineto other
disciplinesandtothesystem.Sincedesignpointsare
preselectedratherthanchosenby anoptimization
algorithm,it maybepossibletoplanandcoordinatethe
solutionprocessbydifferentmoduleswithlesstight
integrationthan requiredwith derivative-based
methods.In fact,thisfeaturehasmotivatedtheuseof
responsesurfaceseven for single-discipline
optimizationwhentheanalysisprogramisnoteasyto
connecttoanoptimizer(e.g.,Masonatal.,94).

Indeed,responsesurfacetechniqueshaverecently
gainedpopularityasasimplewayto connectcodes
fromvariousdisciplines,ormoregenerally,tofacilitate
communicationbetweenspecialistsonthedesignteam.
Inthissense,thesetechniquesarebecomingoneofthe
meansto meettheorganizationalchallengeof MDO..
Forexample,Taietal.(95)haveusedresponsesurface
techniqueto couplea largenumberof disciplinary
analysisprogramsfor thedesignof a convertible
rotor/wingconcept.Giuntaet al. (95)haveused
responsesurfacesto combineaerodynamicand
structuraloptimization. Theyhavealso taken
advantageof the inherentparallelismof response
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surfacegenerationto employextensivelyparallel
computation.

Additionally,thediscretemodelsemployedin
various disciplinescan occasionallygenerate
discontinuitiesin responseduetotheeffectof shape
changesongrids(e.g.,Giuntaetal., 94). Multilevel
designschemescanproducesimilarphenomenadueto
changesin setsof criticalconstraintsatlower-level
optimizations.MDOprocedures,whichusemany
modulesandoftenresortto multileveltechniquesare
particularlyvulnerableto theoccurrenceof such
discontinuities. Traditional derivative-based
approximationtechniquescanbecomeuselessinsuch
circumstances,while responsesurfacetechniques
smooththedesignspaceandproceedwithoutdifficulty.
Forsmoothresponsequantitieswherederivativescan
becalculatedcheaply,wecanemployresponsesurfaces
basedonthesederivatives.

Finally,theglobalnatureof responsesurface
approximationmeansthattheycanberepeatedlyused
fordesignstudieswithmultipleobjectivefunctionsand
differentoptimizationparametersforgradualbuilding
of theproblemdatabase(e.g.,Wujeket al., 95).
Furthermore,theypermitvisualizationsof theentire
designspace. Thesefeatureshavebeenused
extensivelybyMistreeandhiscoworkers(e.g.,Mistree
etal.,94).

2.4System Sensitivity Analysis

In principle, sensitivity analysis of a system might

be conducted using the same techniques that became

well-established in the disciplinary sensitivity analyses

(see surveys, Haftka and Adelman, 89, Adelman and
Haftka, 93, Barthelemy et al., 95, for automatic
differentiation, and Bischof and Knauff, 94, and Altus

et al., 96 for application examples). However, in most

practical cases the sheer dimensionality of the system

analysis makes a simple extension of the disciplinary
sensitivity analysis techniques impractical in

applications to sensitivity analysis of systems.

Also, the utility of the system sensitivity data is
broader than that in a single analysis. In design of a

system that typically engages a team of disciplinary
specialists these data have a potential of constituting a

common vocabulary to overcome interdisciplinary
communication barriers in conveying information about

the influence of the disciplines on one another and on

the system. Utility of the sensitivity data for tracing

interdisciplinary influences was illustrated by an

application to an aircraft performance analysis in
Sobieszczanski-Sobieski (86).

An algorithm that capitalizes on disciplinary

sensitivity analysis techniques to organize the solution
of the system sensitivity problem and its extension to

higher order derivatives was introduced in

Sobieszczanski-Sobieski (90a) and (90d). There are

two variants of the algorithm: one is based on the
derivatives of the residuals of the governing equations

in each discipline represented by a module in a system
mathematical model, the other uses derivatives of

output with respect to input from each module.

So far operational experience has accumulated only

for the second variant. That variant begins with

computations of the derivatives of output with respect
to input for each module in the system mathematical

model, using any sensitivity analysis technique

appropriate to the module (discipline). The module-
level sensitivity analyses are independent of each other,

hence, they may be executed concurrently so that the

system sensitivity task gets decomposed into smaller

tasks. The resulting derivatives are entered as
coefficients into a set of simultaneous, linear, algebraic

equation, called the Global Sensitivity Equations
(GSE), whose solution vector comprises the system

total derivatives of behavior with respect to a design

variable. Solvability of GSE and singularity conditions
have been examined in Sobieszczanski-Sobieski (90a).

It was reported in Olds (94) that, in some applications,
errors of the system derivatives from the GSE solution

may exceed significantly the errors in the derivatives of

output with respect to input computed for the modules.

The system sensitivity derivatives, also referred to

as design derivatives, are useful to guide judgmental

design decisions, e.g., Olds (94), or they may be input
into an optimizer (e.g., Padula et al. (91). Application
of these derivatives extended to the second order in an

application to an aerodynamic-control integrated

optimization was reported in Ide et al. (88).

A completely different approach to sensitivity

analysis has been introduced in Szewczyk and Hajela

(94) and Lee and Hajela (95) It is based on a neural net
trained to simulate a particular analysis (the analysis

may be disciplinary or of a multidisciplinary system).
Neural net training, in general, requires adjustments of

the weighting coefficients in the net internal algorithm

until a correlation of output to input is obtained that is a

satisfactory approximation of the output to input
dependency in the simulated analysis over a range of
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interest:Theabovereferencesshowthattheweighting
coefficientsmaybeinterpretedasa measureof the
sensitivityoftheoutputwithrespecttoinput.Inother
words,theymayberegardedasthederivativesof
outputwithrespecttoinputaveragedovertherangeof
interest

In Sobieszczanski-Sobieskiet al. (82) and
BarthelemyandSobieszczanski-Sobieski(83) the
conceptofthesensitivityanalysiswasextendedtothe
analysisof an optimum,which comprisesthe
constrainedminimumoftheobjectivefunctionandthe
optimalvaluesofthedesignvariables,forsensitivityto
theoptimizationconstantparameters.Thederivatives
resultingfromsuchanalysisareusefulin various
decompositionschemes(next section),and in
assessmentof theoptimizationresultsasshownin
Braunetal. (93).

2.5Optimization Procedures with Approximations

and Decompositions

Optimization procedures assemble the numerical

operations corresponding to the MDO elements
(Sobieszczanski-Sobieski, 95) into executable

sequences. Typically, they include analyses, sensitivity
analyses, approximations, design space search

algorithms, decompositions, etc. Among these
elements the approximations (Section 2.3) and

decompositions most often determine the procedure

organization, therefore, this section focuses on these
two elements as distinguishing features of the

optimization procedures.

The implementation of MDO procedures is often

limited by computational cost and by the difficulty to

integrate software packages coming from different
organizations. The computational burden challenge is

typically addressed by employing approximations

whereby the optimizer is applied to a sequence of

approximate problems.

The use of approximations often allows us to deal

better with organizational boundaries. The

approximation used for each discipline can be

generated by specialists in this discipline, who can

tailor the approximation to special features of that

discipline and to the particulars of the application.
When response surface techniques are used, the
creation of the various disciplinary approximations can

be performed ahead of time, minimizing the interaction
of the optimization procedure with the various

disciplinary software.

In addition to approximations, it is desirable to

have flexibility in selection of different search

techniques for different disciplines and different phases
of optimization. By the same token, one should be able

to choose among various types of sensitivity analysis
because in some disciplines derivatives are readily

available, while in others they may not be available or

may not even exist. Examples of references that
illustrate evolution of the use of approximations in

optimization procedures are Schmit and Farshi (74),

Fleury and Schmit (80), Vanderplaats (85),
Sobieszczanski-Sobieski (82), and Stanley et al. (92),

whose focus was on response surface approximation

based on the Taguchi arrays. A procedure to

accommodate a variable complexity modeling in

application to a transport aircraft wing was described in
Unger et al. (92). An application of approximations in

rotorcraft optimization was reported in Adelman et al.

(91).

Decomposition schemes and the associated

optimization procedures have evolved into a key

element of MDO (Gage, 95, Logan, 90). One important
motivation for development of optimization procedures

with decomposition is the obvious need to partition the

large task of the engineering system synthesis into
smaller tasks. The aggregate of the computational

effort of these smaller tasks is not necessarily smaller

than that of the original undivided task. However, the

decomposition advantages are in these smaller tasks
tending to be aligned with existing engineering

specialties, in their forming a broad workfront in which

opportunities for concurrent operations (calendar time

compression) are intrinsic, and in making MDO very
compatible with the trend of computer technology

toward multiprocessing hardware and software.

Much of the theory for decomposition has

originated in the field of the Operations Research, e.g,
Lasdon (70) and more recently Cramer and Dennis

(94). In parallel, several approaches have emerged

from applied research and engineering practice of

optimization applied to large problems both within

disciplines and in system optimization. This survey

focuses primarily on the latter.

Many decomposition schemes (Bloebaum et al.,.

93) are possible, but they all have in common the
following major operations that together constitute a

system synthesis: system analysis including disciplinary

analyses, disciplinary and system sensitivity analyses,

optimizations at the disciplinary level, and optimization
at the system level (the coordination problem). Even

7

American Institute of Aeronautics and Astronautics



thoughthecoordinationproblemisnowregardedasthe
keyelementindecomposition,it wasabsentinsomeof
theearlyoptimizationprocedures,e.g.,Sobieszczanski
andLoendorf(72), andGilesandMcCullers(75).
However,trueMDOpresupposestakingadvantageof
interdisciplinaryinteractions,hencea needfor
coordinationinoptimizationproceduresthatimplement
decomposition.

Threebasic optimizationprocedureshave
crystallizedforapplicationsinnonhierarchicaerospace
systems.The simplestprocedureis piece-wise
approximatewith the GSEusedto obtainthe
derivativesneededto constructthesystembehavior
approximationsintheneighborhoodofthedesignpoint.
Inthisprocedureonlythesensitivityanalysispartofthe
entireoptimizationtaskissubjecttodecompositionand
theoptimizationisasingle-leveloneencompassingall
thedesignvariablesandconstraintsof theentire
system.Hence,thereis noneedfora coordination
problemtobesolved.ThisGSE-basedprocedurehas
beenused in a numberof applications,e.g.,
Sobieszczanski-Sobieskietal. (88),Barthelemyetal.
(92) Coen et al. (92), Consoli and
Sobieszczanski-Sobieski(92),Hajelaetal.(90),Abdiet
al. (88),Dovi et al. (92),Padulaet al. (91),and
Schneideret al. (92). Thecostof theprocedure
criticallydependson thenumberof thecoupling
variablesfor which the partialderivativesare
computed.

Disciplinaryspecialistsinvolvedin a design
processgenerallyprefertocontroloptimizationintheir
domainsof expertiseasopposedto actingonlyas
analysts.Thispreferencehasmotivateddevelopment
of proceduresthatextendthetaskpartitioningto
optimizationitselfandenableoneto organizethe
numericalprocessto mirror the existinghuman
organization.A procedurecalledtheConcurrent
SubspaceOptimization(CSSO)introducedin
Sobieszczanski-Sobieski(89)allocatesthedesign
variablesto subspacescorrespondingto engineering
disciplinesorsubsystems.Eachsubspaceperformsa
separateoptimization,operatingonits ownunique
subsetof designvariables.In thisoptimization,the
objectivefunctionis thesubspacecontributiontothe
systemobjective,subjectto the local subspace
constraintsandtoconstraintsfromallothersubspaces.
The localconstraintsareevaluatedby a locally
availableanalysis, the other constraintsare
approximatedusingthetotalderivativesfromGSE.
Responsibilityforsatisfyinganyparticularconstraintis
distributedoverthesubspacesusing"responsibility"
coefficientswhichareconstantparametersin each

subspaceoptimization.Postoptimalsensitivityanalysis
generatesderivativesof eachsubspaceoptimumtothe
subspaceoptimizationparameters.Followingaround
of subspaceoptimizations,thesederivativesguidea
system-leveloptimizationproblemin adjustingthe
"responsibility"coefficientsThis preservesthe
couplingsbetweenthesubspaces.Thesystemanalysis
andthesystem-andsubsystemleveloptimizations
alternateuntilconvergence.

InBloebaum(91)and(92),theabovesystem-level
optimizationwasreformulatedby usinganexpert
systemcomprisingheuristicrulesto adjustthe
responsibilitycoefficients,to allocatethe design
variables,andtoadjustthemovelimits.InKorngoldet
al. (92),thealgorithmwasextendedtoproblemswith
discretevariables.A variantof the algorithm
introducedin Wujeket al. (95)allowsthevariable
sharingbetweenthesubspaces,andit basesthesystem-
leveloptimizationonaresponsesurfacefunctionsfor
theobjectiveandeachof theconstraints.These
functionsarefittedto all thedesignpointsthathave
been generatedin all the previoussubspace
optimizations(includingtheintermediateones).The
"responsibility"coefficientsarenot used,andthe
system-leveloptimizationisbeingsolvedin thespace
of all thedesignvariables.A trainedNeuralNet
algorithmwasusedinsteadof theresponsesurface
fittingin thesystem-leveloptimizationinSellaretal.
(96).A numberofapplicationexamplesfortheCSSO
variantshavebeenreportedinWujeketal. (96)and
Lokanathanetal.(96).Theprocedurehasalsobeen
implementedin a commercialsoftwaredescribedin
Easonetal.(94a,b)andNystrometal.(94).

ThedegreetowhichCSSOisexpectedtoreduce
thesystem-optimizationcoststronglydependson
problemsparsity.To seethat,considerthatin the
extremecase,wheneverydesignvariableaffectsevery
constraintdirectly,eachsubspaceoptimizationproblem
maygrowto includeallthesystemconstraintsin the
Sobieszczanski-Sobieski(88)versionandallthesystem
variablesandallthesystemconstraintsin theWujeket
al.(95)version.

AnotherprocedureproposedinKrooetal.(94)and
Kroo(95)isknownastheCollaborativeOptimization
(CO).Itsapplicationexamplesforspacevehiclesarein
BraunandKroo(95)andBraunetal. (95a,b)andfor
aircraftconfiguration,inSobieskiandKroo(96).This
proceduredecomposestheproblemevenfurtherby
eliminatingtheneedforaseparatesystemandsystem
sensitivityanalyses.It achievesthisbyblendingthe
designvariablesandthosestatevariablesthatcouple
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thesubspaces(subsystemsordisciplines)inonevector
of thesystem-leveldesignvariables.Thesevariables
aresetbythesystemleveloptimizationandposedto
thesubspaceoptimizationsastargetstobematched.
Eachsubspaceoptimizationoperatesonitsowndesign
variables,someof whichcorrespondto thetargets
treatedasthesubspaceoptimizationparameters,and
usesaspecializedanalysistosatisfyitsownconstraints.
Theobjectivefunctiontobeminimizedisacumulative
measureof thediscrepanciesbetweenthedesign
variablesandtheirtargets.Optimizationinsubspaces
mayproceedconcurrently;eachofthemisfollowedby
a postoptimumsensitivityanalysisto computethe
optimumsensitivityderivatives(Sobieszczanski-
Sobieskietal.,82andBarthelemyandSobieszczanski-
Sobieski,(83)withrespecttotheparameters(targets).
Theensuingsystem-leveloptimizationsatisfiesallthe
constraintsandadjuststhetargetssoastominimizethe
systemobjectiveandto enforcethematching.This
optimizationis guidedby the aboveoptimum
sensitivityderivatives.

As in the other procedures,the subspace
optimizations,theirpostoptimumsensitivityanalyses,
andthe system-leveloptimizationalternateuntil
convergence. Similar to CSSO,the system
optimizationsparsityiscriticalfortheCOtobeableto
reducethesystemoptimizationcostbecause,reasoning
bytheextremesagain,incaseofeverythinginfluencing
everythingelsedirectly,eachsubspaceproblemwould
havetoincludeall thedesignvariables(butstillonly
thelocalconstraints).TheCOprocedureis in the
categoryof simultaneousanalysisanddesign(SAND)
becausethesystemanalysissolutionandthesystem
designoptimumarearrivedatsimultaneouslyattheend
ofaniterativeprocess.A different implementation of

the SAND concept is described in Hutchison et al. (94).

Each of the above procedures applies also to

hierarchic systems. A hierarchic system is defined as
one in which a subsystem exchanges data directly with

the system only but not with any other subsystem.
Such data exchange occurs in analysis of structures by

substructuring. A concept to exploit this in structural

optimization was formulated in Schmit and
Ramanathan (78) and generalized in Sobieszczanski-

Sobieski (82) and (93). (It was shown in the latter how

the hierarchic decomposition derives from the
Bellman's optimality criterion of the Dynamic

Programming.) The concept was also contributed to by

Kirsch, (e.g., Kirsch, 81) It was demonstrated in

several applications, including multidisciplinary ones,
e.g., Wrenn and Dovi (88) and Beltracchi (91). One

iteration of the procedure comprises the system analysis

from the assembled system level down to the individual

system components level and optimization that
proceeds in the opposite direction. The analysis data

passed from above become constant parameters in the

lower level optimization. The optimization results that

are being passed from the bottom up include sensitivity
of the optimum to these parameters. The coordination

problem solution depends on these sensitivity data. As

shown in Thareja and Haftka (90), one may encounter
numerical difficulties in that solution when

discontinuities occur in the optimum sensitivity

derivatives. Recently, a variant of this procedure was

developed (Bailing and Sobieszczanski-Sobieski, 95)
which differs in the way the local and system
constraints are treated.

It was shown in Balling and Sobieszczanski-

Sobieski (94) that the above procedures may be

identified as variants of the six fundamental approaches

to the problem of a system optimization. This reference
offers also a compact notation for describing a complex

procedure without using a flowchart, and it assesses the

computational cost of the fundamental approaches as a

function of the problem dimensionality.
The current practice relies on the engineer's insight

to recognize whether the system is hierarchic, non-
hierarchic, or hybrid and to choose an appropriate

decomposition scheme, Logan (90). For a large

unprecedented system this decision may be difficult.

Motivated by this, a formal description of the inter-
module data flow in the system model has been

developed. This led to techniques, e.g., Rogers (89)
and Steward (91), for visualization of that flow in the

so-called n-square matrix lormat and lor identification

of the arrangements of the modules in computational

sequences that maximize user-defined measures of
efficiency. Examples of such maximization using

heuristics and/or formal mcans, such as genetic

algorithms, were reported in Rogers et al. (96), Altus et
al. (95), Johnson and Brockman (95), Jones (92),

Bloebaum (96). and McCulley and Bloebaum (94).

Identification of such sequences results also in a clear

determination of the s.vstcm as hierarchic, non-

hierarchic, or a hybrid of the two. A code described in
Rogers (89) is a tool useful in the above; Grose (94)

and Brewer et al. (941 are application examples. An

alternative to the above approach to decomposition is,
mentioned in the Appendix on Design Space Search. It

is a transformation of the design space coordinate

system that identifies orthogonal subspaces described in
Rowan (90).

Independently of its use for optimization,

decomposition has also been used as a means, based
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predominantlyon thedirectedgraphapproach,to
developabroadworkfrontinahumanorganizationor
inaproductionplantandindesigntoallocatefunctions
among components in complex systems.
Representativeto thiscategoryof decompositionare
Eppingeretal. (94),PimmlerandEppinger(94),and
Kusiaketal. (94)Anextensionofthisapproachtothe
useofhypergraphsandamodel-basedpartitioningwas
introducedin PapalambrosandMichelena(95)and
MichelenaandPapalambros(95). It wasshownin
CramerandHuffmall(93)thatcomputationalburdenin
MDO applicationsmay be alleviatedwithout
decompositionbyajudiciousexploitationofsparsityof
thematricesinvolved.

2.6Human Interface

MDO is, emphatically, not a push-button design.
Hence, the human interface is crucially important to

enable engineers to control the design process and to

inject their judgment and creativity into it. Therefore,
various levels of that interface capability is prominent

in the software systems that incorporate MDO

technology and are operated by industrial companies.
Because these software systems are nearly exclusively

proprietary no published information is available for
reference and to discern whether there are any unifying

principles to the interface technology as currently

implemented.

However, from personal knowledge of some of

these systems we may point to features common to

many of them. These are flexibility in selecting

dependent and independent variables in generation of

graphic displays, use of color, contour and surface
plotting, and orthographic projections to capture large

volumes of information at a glance, and the animation.
The latter is used not only to show dynamic behaviors

like vibration but also to illustrate the changes in design

introduced by optimization process over a sequence of

iterations. Development has already started in the next

level of display technology based on the virtual reality
concepts. In addition to the engineering data display,

there are displays that show the data flow through the

project tasks, the project status vs. plans, etc. One
common denominator is the desire to support the

engineer's train of thought continuity because it is well
known that such continuity fosters insight that

stimulates creativity. The other common denominator

is the support the systems give to the communication

among the members of the design team.

One optimization code, usable for MDO purposes

and available to general public, is described in

Parkinson et al. (92). This code informs the user on the

optimization progress by displaying the values of

design variables, constraints, and objective function

continually from iteration to iteration.

The above features support the computer-to-user
communication. In the opposite direction, users control

the process by a menu of choices and, at a higher level,
by meta-programming in languages that manipulate
modules and their execution on concurrently operating

computers connected in a network, e.g., code FIDO in
Weston et al. (94). One should mention at this point,

again, the nonprocedural programming introduced in
Kroo and Takai (88). This type of programming may

be regarded as a fundamental concept on which to base

development of the means for human control of

software systems that support design. This is so
because it liberates the user from the constraints of a

prepared menu of preconceived choices, and it

efficiently sets the computational sequence needed to

generate data asked for by the user with a minimum of

computational effort.

A code representative of the state of the art was

developed by General Electric, Engineous, (94), and
Lee et al. (93), for support of design of aircraft jet

engines. The distinguishing feature of the code called

Engineous is interlacing of the numerical and AI

techniques combined with an intrinsically interactive
operation that actively engages the user in the process.

Similar emphasis on the user interaction is found in
Bohnhoff et al. (92). Examples of other codes that

provide MDO features to support design process are in

Kisielewicz (89), Volk (92), Woyak, Malone, et al.

(95), and Brama and Rosengren (90).

3. Simultaneous Aerodynamic and Structural

Optimization

10

One of the most common applications of

multidisciplinary optimization techniques is in the field

of simultaneous aerodynamic and structural

optimization, in particular for the design of aircraft
wings or complete aircraft configurations. The reason

for this prominence is that the tradeoff between

aerodynamic and structural efficiency has always been

the major consideration in aircraft design: slender
shapes have lower drag but are heavier than the stubby,

more draggy shapes. The bi-plane wings that

dominated early aircraft configurations were the
concession of the aerodynamicists to the need for

structural rigidity. Only after advances in structural

design and structural materials permitted building

monoplanes with enough wing rigidity, were we able to
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takeadvantageof thesuperioraerodynamicefficiency
ofmonoplanes.

The interactionbetweenaerodynamicsand
structuresintheformofaeroelasticeffects,suchasload
redistribution,divergence,flutter,andlossof control
surfaceeffectiveness,hasgivenrisetothedisciplineof
aeroelasticity.Structuraloptimizationwasoften
coupledwithaeroelasticconstraints.Occasionally,
structuraloptimizationwasevenusedto improve
aerodynamicefficiency(e.g.,Haftka, 77) and
Friedmann,92).However,herewefocusourattention
only on studieswhereboththeaerodynamicand
structuraldesignwereoptimizedsimultaneously.The
readerinterestedinworkonaeroelasticoptimizationis
referredtoShirketal.(86),Haftka(86),andFriedmann
(91).

Thetrade-offbetweenlowdragandlowstructural
weightforaircraftwingsisaffectedbytwomechanisms
of interactionbetweenaerodynamicandstructural
response.First,structuralweightaffectstherequired
lift andhencethedrag.Second,structuraldeformations
changetheaerodynamicshape.Thesecondeffectis
compensatedforbybuildingthestructure,sothatthe
structuraldeformationwill bringit to thedesired
shape.Thissocalledjig-shapeapproachnullifiesmost
of thesecondinteractionwhenthedeformationsofthe
aircraftstructureareapproximatelyconstantthrough
mostof theflight time. Thisis thecasefor many
transports.Forfighteraircraft,structuraldeformations
during variousmaneuverscan adverselyaffect
aerodynamicperformance,andthejig shapecancorrect
onlyforthemostcriticalmaneuverorcruiseconditions.
Similarly,forverylongrangeorhigh-speedtransports,
wheretheweightandcruiseconditionscanvaryalot,
thejig-shapecorrectionwillonlypartiallycompensate
fortheadverseeffectsofstructuraldeformations.

If the effectsof structuraldeformationon
aerodynamicperformanceareassumedtobecorrected
by the jig shape,the interactionbetweenthe
aerodynamicistand structuraldesignerbecomes
one-sided.Theaerodynamicdesignaffectsallaspects
of thestructuraldesign,whilethestructuraldesign
affectstheaerodynamicdesignprimarilythrougha
singlenumber--thestructuralweight.Thisasymmetry
in themutualinfluenceof aerodynamicandstructural
designsmeansthattheproblemcanbetreatedasatwo-
leveloptimizationproblem,with theaerodynamic
designattheupperlevelandthestructuraldesignatthe
lowerlevel. However,thismeansthat for each
aerodynamicanalysisonehasto do a structural
optimization,whichmakessensebecausethecostof

structuralanalysisisusuallymuchlowerthanthecost
of the aerodynamicanalysis. For example,
ChattopadhyayandPagaldipti(95)employsuchan
approachforahigh-speedaircraftwithaNavierStokes
modelfortheaerodynamicandaboxbeammodelof
thestructure.Similarly,BakerandGiesing(95)
demonstratedthisapproachwithanEuleraerodynamic
solverandalargefinite-elementmodeloptimizedby
theADOPprogram.

Takingadvantageof theasymmetricinteraction
betweenstructuresandaerodynamicspresentsan
enormoussavingincomputationalresourcesbecause
wedonotneedto calculatethe largenumberof
derivativesof aerodynamicflow with respectto
structuraldesignvariables.Furthersavingsarerealized
bytakingadvantageof thisasymmetryto generate
structuraloptimizationresultsfora largenumberof
aerodynamicconfigurationsandfit themwith an
analyticalsurfaceusuallycalledthe"weightequation"
(seeTorenbeek,92,forreferencesonthesubject).The
structuralweightofexistingaircraftcanalsobeused
forthesamepurpose.McCullersdevelopedatransport
weightequationbasedonbothhistoricaldataand
structuraloptimizationfor the FLOPSprogram
(McCullers, 84) . Thisequationwasusedfor
includingstructuralweight considerationsin
aerodynamicoptimizationof a high-speedcivil
transportconfigurationsbyHutchisonetal. (94).

At theconceptualdesignlevel,structuralweight
hastraditionallybeenestimatedby algebraicweight
equationsand similaralgebraicexpressionsfor
aerodynamicperformancemeasuressuchasdrag.The
simplicityof theseexpressionsalloweddesignersto
examinemanyconfigurationswitha minimumof
computationaleffort.Morerecently,suchtoolshave
beencombinedwithmodernoptimizationtools.For
example,MaloneandMason(91)optimizedtransport
wingsintermsofglobaldesignvariables,suchaswing
area,aspectratio,cruiseMachnumberandcruise
altitude,usingsimplealgebraicequationsforstructural
andotherweightsandaerodynamicperformance.The
sameauthors(92) thenusedsuchmodelsalsoto
examinetheeffectof thechoiceof objectivefunction
(maximizerange,minimizefuelweight,etc.)

11

Atthepreliminarydesignlevel,numericalmodels
of bothstructuresandaerodynamicsareemployed.
Earlystudiesof combinedaerodynamicandstructural
optimizationreliedonsimple,usuallyone-dimensional
aerodynamicandstructuralmodelsandasmallnumber
of designvariables(e.g.,McGeer,84,andreferences
therein),sothatcomputationalcostwasnotanissue.
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Rather, the goal was to demonstrate the advantages of

the optimized design. For example, Grossman et al.
(88) used lifting line aerodynamics and beam structural

models to demonstrate that simultaneous aerodynamic

and structural optimization can produce superior
designs to a sequential approach. Similar models were

used by Wakayama and Kroo (90) and (94) who

showed that optimal designs are strongly affected by

compressibility drag, aeroelasticity, and multiple
structural design conditions. Gallman et al. (93) used

beam structural models together with vortex lattice

aerodynamic to explore the advantages of joined-wings
aircraft.

Modern single-disciplinary designs in both

aerodynamics and structures go beyond such simple

models. Aerodynamic optimization for transports is

often performed with three-dimensional nonlinear
models (e.g., Euler equations, Korivi et al., 94) While

structural optimization is performed with large finite-

element models. For example, Tzong et al. (94)

performed a structural optimization with static
aeroelastic effects of a high-speed civil transport using

a finite-element model with 13,700 degrees of freedom

and 122 design variables. The validity of results
obtained with simple models is increasingly questioned,

and there is pressure to perform multidisciplinary

optimization with more complex models. However,
because of the asymmetric interaction between

aerodynamics and structures, discussed above, the

emphasis in multidisciplinary optimization is on

improved aerodynamic models (e.g., Giesing et al., 95).
Thus, modern conceptual design tools such as FLOPS

(McCullers, 84) or ACSYNT (Vanderplaats, 76), and

Mason and Arledge, 93) incorporate aerodynamic panel

methods at the same time that they use algebraic weight
equations to represent structural influences on the

design.

Computational efficiency becomes an issue when

the complexity of the aerodynamic and structural

models and the number of design variables increase.

Borland et al. (94) performed a combined

aerodynamic-structural optimization of a high-speed
civil transport using a large finite-element model and

thin Navier Stokes aerodynamics. However, they were
able to afford only 3 aerodynamic variables along with

20 structural design variables. Chattopadhyay and

Pagaldipti (95) used parabotized Navier Stokes

aerodynamic model and beam structural model, but
with only four aerodynamic variables. Similarly, Baker

and Giesing (95) used Euler code for aerodynamics and
a detailed finite-element analysis, but with only two

aerodynamic design variables representing the

aerodynamic twist distribution.

One of the major components of the computational

cost is the calculation of cross-sensitivity derivatives

such as the derivatives of aerodynamic performance

with respect to structural sizes and derivatives of
structural response with respect to changes in

aerodynamic shape. Grossman et al. (90) reduced the

interaction front between the aerodynamic and

structural analysis in the Global Sensitivity Equation
approach (Sobieszczanski-Sobieski 90) to substantially

lower the computational cost of calculating such
derivatives. Automated derivative calculations,

obtained by differentiating the computer code used for

the analysis, may also help, as demonstrated by Unger
and Hall (94).

Additional savings in computational resources

were achieved by the use of variable complexity

modeling techniques (see Section 2.3). For example,
Dudley et al. (94) used structural optimization to

periodically correct the prediction of algebraic weight

equations. Using this approach they have optimized a
high-speed civil transport using 26 configuration design

variables and 40 structural design variables. However,

because they did not calculate and use derivatives of the
weight obtained by structural optimization with respect

to configuration design variables, the performance of

the procedure was not entirely satisfactory. It is

possible that there is no need to couple structural
optimization tightly with aerodynamic optimization.

Instead, as done by McCullers (84) in FLOPS,

structural optimizations may be performed ahead of
time to obtain improved weight equations for the class
of vehicles under consideration (see also Haftka et al.

95).

Of course, limiting structural influences to weight

equations may not always work, in particular, when

aerodynamic performance is important for multiple

design conditions whose structural deformations are
very different. Then a completely integrated structural

and aerodynamic optimization may be necessary for

obtaining high-per|ormance designs. In such cases we
may want to tailor the structure so that structural

deformation will help aerodynamic performance under
the multiple flight conditions. However, an alternate

approach is to use control surfaces to compensate for

structural deformations for multiple flight conditions.
In that case, the aerodynamicist can still assume that

aerodynamic performance will not be compromised by

structural deformations. The structural designer will

12
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haveto designthejig shape,thestructure,andthe
controlsurfacedeflectionssimultaneouslytominimize
structuralweightwhilesafeguardingaerodynamic
performance.Miller (94)employedthistypeof an
approachinastudyofanactiveflexiblewing.Another
example where such approach may be necessary is a

supersonic transport design for efficient flight in both

the supersonic and subsonic speed regimes (AIAA 91),

the latter required by sonic boom restrictions.

In the past few years there has been also a lot of

progress for combined aerodynamic and structural

optimization of rotor blades, and in the requisite
analytical advances, the latter illustrated by He and

Peters (92), Lim and Chopra (91), and Kolonay et al.

(94). Work in this direction started with structural

optimization subject to aerodynamic constraints (e.g.,
Yuan and Friedmann, 95). However, there is also much
work which includes both aerodynamic and structural

design variables. Callahan and Straub (9t) used a code
called CAMRAD/JA to design rotor blades for

improved aerodynamic performance and reduced

structural vibration with up to 17 design variables.

Walsh et al. (92) has integrated the aerodynamic and
dynamic design of rotor blades, and Walsh et al. (95)

have added structural optimization to the former

capability, using a multilevel approach. As in the case
of fixed wing optimization, the multilevel approach was

aided by the relative simplicity of the structural model.
However, unlike fixed wings, rotor blades naturally

lend themselves to inexpensive, beam structural

models. Chattopadhyay and McCarthy, (93a, b) have

explored the use of multiobjective optimization for
similar integration of aerodynamics, dynamics and

structures for the design of rotor blades. Other

examples of applications in rotor blade design were

given in Celi (91 ) and Chattopadhyay et al. (91 ).

Additional examples of optimization that accounts
for interaction of aerodynamics and structures in

flexible wing design may be found in Rais-Rohani et al.

(92), Yurkovich (95), Scotti (95), and Rohl et al. (95).

Interaction of aerodynamics and structures occurs also
in the emission, transmission, and absorption of noise

generated by propulsion and by the airframe moving
through the air. This interaction has spawned thc

discipline of structural acoustics, e.g., Lamancusa (93)
and Pates (95), whose approach is based on the

boundary finite elements.

4. Simultaneous Structures and Control Optimization

Another common application of multidisciplinary

optimization is in simultaneous design of a structure

and a control system. A typical aeronautical

application is active flutter suppression, and typical

space structure application is the suppression of
transient vibration triggered by transition from Earth

shadow to sunlight.

Past practice has been sequential so that the
structural layout and cross-sectional dimensions were

decided first, and a control system was added

subsequently to eliminate or alleviate any undesirable
behavior still remaining. Occasionally, when it was

known in advance how effective the control system

would be in reducing a particular behavior constraint,
violation the structural design was carried out first to

satisfy the above constraint partially, and the design of

the control system followed to achieve the full
satisfaction of the constraint. Iterations ensued if the

control system design was unable to satisfy its share of

the constraint. An example of this approach was

reported in Sobieszczanski-Sobieski et al. (79) in which

structural sizing was used to provide flutter-free
airframe of a supersonic transport up to the diving

velocity (VD), and an active flutter suppression

provided the required 20 % velocity margin beyond
VD.

The sequential practice is deficient because it does
not accommodate general objective function or

functions, nor does it enable one to explicitly trade
structural stiffness, inertia, and weight for the active

control system effort and weight. These deficiencies

are remedied by simultaneous optimization of the

structure and the system for control of its behavior.
Haftka (90) surveys various simultaneous formulations

ranging from ad hoc ones to those in the multiobjective

(pareto-optimal) category. In general, one expects the
simultaneous approach to generate designs whose

structural weight and control effort are less than those

achievable under the sequential approach. Even though

there is no doubt as to the superiority of the integrated

approach, still thc integrated structures-control
optimizations on record typically use a composite

objective function that is a weighted sum of the
structural mass and the control effort, with the

weighting factors set by subjective judgment. This is so

despite availability of tools that are ready for a less

subjective approach under which the airframe mass.
could be traded off for the mass of the control system,

the latter including the mass of the requisite power

generation equipment.
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When all the objectives cannot be converted to a

single one, such as mass, a pareto optimization is called
for. A full pareto-optimal optimization would seek to
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generatea locusof all thepareto-optimalsolutions.
Unfortunately,thislocuscanhavediscontinuitiesand
branches,asdemonstratedbyRakowskaetal. (91)and
(93).Tracingtheentirelocusmaybeveryexpensive,
eventhoughhomotopytechniques,Rakowskaet al.
(93),mayalleviatethisburden.However,evenless
ambitioussimultaneousoptimizationapproachesare
computationallyexpensive.Thathasmotivateda
numberof papersthat addressedthat problem.
Reducingthemathematicalmodeldimensionalitywas
proposedin Karpel (92) as a meansto save
computationalcostin synthesisof aeroservoelastic
systems.Toalleviatecostoftheparticularlyexpensive
unsteadyaerodynamics,HoadleyandKarpel(91)used
approximatesurrogateforafull unsteadyaerodynamic
analysisin the optimizationloopcombinedwith
infrequentrepetitionsofthefull analysis.In thesame
vein, Livne (90) reportedon the accuracyof
reduced-ordermathematicalmodelsforcalculationof
eigenvaluesensitivities in control-augmented
structures.ChattopadhyayandSeeley(95) have
developedanefficientsimulatedannealingapproachfor
thesolutionofthemultiobjectiveoptimizationproblem
forrotorcraftapplications.

Thedimensionalityof thedesignspaceof an
activelycontrolledstructuredramaticallyincreasesfor
compositestructureswhenfiber orientationsare
includedamongthedesignvariables,andevenmoreso
whenoverallshapevariables,e.g.,thewingsweep
angle,areadded.Livne(89)gavea comprehensive
introductiontooptimizationofthatcategoryappliedto
aircraftwingsandcontinuedit in Livne(92). The
computationalcostissuewasaddressedincontextof
theaboveapplicationsinLivneandFriedmann(92)and
inLivne(93).LivneandWei-Lin(95)assertthatthe
sensitivityanalysisandapproximationconceptsin
aerodynamicsand airframestructures,the latter
modeledbyequivalentstiffnessplate,haveprogressed
to a point wherea realisticwing/controlshape
optimizationwithactivecontrolsandaeroservoelastic
constraintsbeginstoappeartobewithinreach.

In spaceapplications,recentthrustshaveentailed
synthesisof structure-controlsystemsdesignedto
maintainpointingaccuracy,shapecontrolofreflective
dishes(both transmittingand receiving),and
eliminationof vibrationsthatmightbe inducedby
externalinfluences,e.g.,athermalexcitationbysun,or
thespacecraftmaneuvers.Manyof theseapplications
involvelocationsof sensorsandactuatorsthatare
determinedby discretevariables,therefore,search
techniquescapableofhandlingdiscretevariableshave
beenaddedto thetoolbox.Anexampleistheuseof

modifiedsimulatedannealingfor a combinatorial
optimizationmeldedwith a continuousvariable
optimizationof honeycombinfrastructuresfor
spaceborneinstrumentationinKuoandBruno(91).A
multiobjectiveoptimizationwasusedinMilmanand
Salama(91)togenerateafamilyofdesignsoptimized
forcompetingobjectivesofdisturbanceattenuationand
minimumweightin spaceborneinterferometers.
Designfortheglobaloptimumhasbeenachievedby
theuseofahomotopyapproachbySalamaetal.(91)in
developmentoffamiliesoftheactivelycontrolledspace
platformdesignsforconceptualtradestudies.Briggs
(92)reportedonaddingopticsto control-structures
optimization,andin Flowersetal. (92)thattypeof
optimizationwasextendedto a multibodysystem.
FurtherapplicationexamplesmaybefoundinHarnet
al. (93),Hirschetal. (92),Padulaetal. (93),Parkand
Asada(92),SepulvedaandLin (92),Suzukiand
Matsuda(91),Suzuki(93),Weisshaaretal. (86),and
Yamakawa(92).

A systemsensitivityanalysisbasedontheGlobal
SensitivityEquations(GSE)(seesection2.5onSystem
SensitivityAnalysis)wasintroducedin thecontrol-
structureoptimizationbySobieszczanski-Sobieskietal.
(88).Padulaetal. (91)reportedonanoptimizationof
alatticestructurerepresentativeofagenericlargespace
structurein whichtheyuseda GSE-basedsystem
sensitivityanalysis.Theyintegratedafinite-element
modelof thestructure,muttivariablecontrol,and
nonlinearprogrammingtominimizethetotalweightof
thestructureandthecontrolsystemunderconstraintsof
thetransientvibrationdecayrate. Fifteendesign
variablesgovernedthestructuralcross-sectionsandthe
controlsystemgains.James(93)extendedoptimization
dimensionalityintheaboveapplicationto 150design
variables,12for thecontrolsystemgainsandthe
remainderforthestructuralmembercrosssections.

Actuatorplacementonalargespacestructureisa
typicalexampleofanMDOdiscreteproblem.Padula
andSandridgc(92)presented_ solutionusingan
integerprogrammingcodeanda finite-element
structuralmodel.Alternativesto theaboveapproach
weregivenbyKincaidandBarger(93)whousedatabu
searchandbyFuruyaandHaftka(93)whoapplieda
geneticalgorithm.An evaluativediscussionand
comparisonof sevcralmethodsapplicableto
optimizationof structureswithcontrolswasgivenin
PadulaandKincaid(95).Thecomparisonincludedthe
simulatedannealing,tabusearch,integerprogramming,
andbranchandboundalgorithmsin thecontextof
applicationsranginginto1500+designvariablesin
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spacestructures,aswellasin airframes.Anacoustic
structuralcontrolwasthecaseinthelatter.

Anunusualcaseof optimizationof a largespace
structureto makeits dynamicbehaviordeliberately
difficulttocontrolwasreportedinWalsh(87)and(88).
Theobjectwasalonglatticebeammountedtoprotrude
outoftheSpaceShuttleorbiterandhavingitsnatural
vibrationfrequenciesspacedverycloselyinorderto
challengethesystemidentificationalgorithmandthe
controllaw synthesisin thedesignof thecontrol
system.Potentialof arelativelyrecenttechnologyof
neuralnetsto controlstructuraldynamicsof elastic
wingswasdemonstratedinKuandHajela(95).

5. Concluding Remarks

The survey revealed that in aerospace, MDO

methodology has transcended its structural optimization

roots and is growing in scope and depth toward

encompassing complete sets of disciplines required by
applications at hand. It has broadened its utility beyond

being an analysis and optimization engine to include
functions of interdisciplinary communication. It has

also formed a symbiosis with the heterogeneous

computing environments for concurrent processing

provided by advanced computer technology.

The two major obstacles to realizing the full

potential of MDO technology appear to be the twin
challenges posed by very high computational demands

and complexities arising from organization of the MDO
task. To deal with these twin challenges the major

emphasis in MDO research has been on approximation
and decomposition strategies. Both hierarchical and
non-hierarchical decomposition techniques have been

proposed to deal with the organizational Challenge.
Response surface approximations are emerging as a

useful tool for addressing both the computational and

organizational challenges.

In general, there arc still very few instances in

which the aerospace vehicle systems are optimized for
their total perlbrmance, including cost as one of the

important metrics of such performance. However, a

vigorous beginning in that direction has been evident in
the number of references devoted to mathematical

modeling of manufacturing and operations, and to the
use of these models in optimization. In addition,

despite the very well-known fact that engineering
design is intrinsically multiobjective, there is a dearth

of papers addressing the very formulation of that

multiobjective problem, the structure-control

optimization being a case in point.

For the human interface, the MDO developers and
users seem to have arrived at a consensus that the

computer-based MDO methodology is an increasingly

useful aid to the creative power of human mind which

is the primary driving force in design. The once-

popular notions of automated design have been notably
absent in the surveyed literature, nor were there any

expectations expressed that AI techniques will change
that in the foreseeable future.

The survey leaves no doubt that the MDO theory,

tools, and practices originate in the communities of

mathematicians, software developers, and designers
whom these products ultimately serve. Therefore, its is
remarkable that there is little evidence of close

collaboration among these three groups that have been

to a large extent working apart missing on valuable
cross-fertilization of ideas and understanding of needs

and opportunities. Only recently there were

indications of increasing interest in the three

communities in working more closely together (e.g.,
AIAA 91). In a similar vein, there has been almost no

interaction of the aerospace multidisciplinary

optimization research with other engineering research
communities; it would be beneficial to increase the
awareness of similar research in fields such as chemical

engineering and electrical engineering.

If one were to end on a speculative note, it is likely

that future similar surveys will find a number of papers
devoted to virtual design and manufacturing built on the

foundation laid out by the works included herein.
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Appendix: Design Space Search

Theoretical and applied mathematics of the design

space search is a very large area of endeavor beyond the

scope of this survey. (A recent review is in Frank et al.
92.) Nevertheless, a few remarks pertaining directly to

the use of search algorithms in optimization of large

systems are included below.

In large-scale optimization it is now customary to
connect search algorithm to an approximate analysis

(See section on Optimization Procedures.) rather than to

the full-fledged analysis of the problem. This gave rise
to a notion that the efficiency of that algorithm does not

have much impact on the total computational cost of

optimization as long as the algorithm solves the

approximate problem because the bulk of the

computational effort and cost is in the full analysis.
However, this notion is not entirely true for at least two
reasons. When the number of design variables goes up

into the range of thousands, the computational cost of

search itself goes up superlinearly and begins to matter

even relatively to the full analysis cost. Even more
importantly, the algorithm memory requirements driven

primarily by the size of the Jacobian of the constraints

go up as a product of the number of constraints and the
number of design variables, and may quickly exceed

the fast memory capacity forcing the operation into a

time-consuming mass storage communications.

If there are many more constraints than design

variables and the constrained minimum is defined by

only a few active constraints, then a search technique

that clings to the constraint boundary is efficient. The
usable-feasible directions algorithm is an example.
However, if the constrained minimum lies at a full, or

nearly-full, vertex of the feasible space, then such a

search technique may be forced into small steps moving
from one constraint boundary intersection to the next.

In that situation an interior point methods may be

expected to move through the design space over a

longer distance. This advantage of the interior point
methods has been recognized in linear programing, e.g.,

Polyak (92). A broader discussion of the interior point
methods is given in Nesterov (94) and Nasla (94).

Even though the gradient-guided search is more
efficient that the one based on the zero-th order

information only; still the computational cost of

gradients is of concern. Hence, a continued research

has been pursued into the zero-th order methods. It has
resulted in improvements in the pattern search

algorithms, such as those reported in Torczon (93) and

Dennis (91). A related development was described in

Rowan (90) in which the search is assisted by

transformation of the design space coordinates. That
transformation results in a set of subspaces that are

mutually orthogonal, hence each may be searched

independently. This results in a process amenable to

concurrent processing. It may also be regarded as a
form of decomposition based entirely on mathematical

properties of the design space, in contrast to

decomposition based on physical insight used in
previously described optimization by decomposition.

Search efficiency may also be improved by tailoring its

mathematics to the special features of the problem as
shown in Arora (92).

Genetic Algorithms (GA) offer another alternative

to gradient-guided search, e.g., Hajela et al. (92). An

GA algorithm treats a set of design points in the design
space as a population of individuals that produces

another set of points as a generation of parents produces

the next generation of children. A GA algorithm
comprises a mechanism for pairing up the design points

into the pairs of parents for transfer of the parent
characteristics to children and for mutations that

occasionally endow children with features absent in

either parent. The mechanism favors probabilistical

creation of children that are better than parents in terms

of the objective function and satisfaction of constraints.
The mutation mechanism in GA is particularly

important to prevent the process from ending up in a
local minimum. It was also demonstrated in Gage et

al. (95), on an example of an aircraft wing design that
this mechanism may be used to create new designs with

features that were absent not only in the pair parents but

anywhere in the entire parent generation. This amounts
to extending design space by adding new variables and

is entirely beyond the capability of gradient-directed

search. References Gage and Kroo (92 and 95), Gage

et al. (95), Gage (95), and King et al. (91) provide other
examples of applications and discussion of issues that
arise in the use of GA.

The capability of escape from local minima is one
characteristic that Simulated Annealing (SA) class of

search algorithms, e.g., Khalak et al. (94) and Kuo et al.
(91) has in common with GA. In SA the search is

random, and acceptance of a new design worse than the

previous one is occasionally and probabilistically

allowed to provide for such escape.
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Both the GA and SA techniques generate a large
number of calls to analysis, hence, their usability is

limited by the cost of analysis. In this regard they are

inferior to methods that generate and exploit search
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directionsin thedesignspace,forinstanceSnymanet
al. (87).Despitethat,judgingbythenumberof the
reportedapplications,theyaregainingpopularityin
MDOapplicationsprobablybecausetheyarevery
simpletocouplewiththeanalysismodules,andtheydo
not incurthe costof computingthederivatives.
However,theextenttowhichthesealgorithmscanbe
combinedwithapproximationsasthegradient-guided
onescan,isaquestionopentofurtherinvestigation.

Analternativetonumericalsearchofdesignspace
for constrainedminimais an optimalitycriteria
approach.It comprisestwoelements:theoptimality
criteriaappropriatetothecaseathandandanalgorithm
for transformationof thedesignvariablestoachieve
satisfactionof the criteria. This approachwas
successfulmostlyinstructuralengineeringwherethe
criteriaof fully stresseddesignanduniformstrain
energydensityindeedensurethatdesignisat,ornear,a
constrainedoptimum.In multidisciplinarysystems
whosevariouspartsandaspectsaregovernedby
differentphysics,it isdifficulttoidentifyacommon,
physics-basedoptimalitycriterion.However,if the
systemisdominatedbystructures,e.g.,optimizationof
airframeswith aerodynamicloads,theoptimality
criteriamethodmaybesuccessfullyextendedfrom
structurestoencompasstheentiresystem,asshownina
reviewprovidedinVenkayya(89).
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