
NASA-CR-200349 (_ I.:_.!_; •

Model Reduction of Nonsquare Linear

MIMO Systems Using Multipoint

Matrix Continued-fraction Expansions'r

.h)' TONG-YI GUO

Department q/'Chemical Engineering, National Kaohsiunq Institute o1"

Technology, Kaohsiung, Taiwan 807, Republic of China

('HYI HVCANG_

Department of Chemical Engineering, National Chung Cheng University,
Chia- Yi, Taiwan 621, Republic q/'China

and LEANG-SAN SHIEH

Department o/" Electrical Engineering, Unirersity of Houston, Houston,

TX 772(14-4793, U.S.A.

ABSI'RACT : _his paper deals" with the multipoint Cauer matrkv continuedrfi'action expansion

(MCFE) [or mo&'l rethwtion qllinear multi-input multi-output ( MIMO ) systems with rarious

numbers of inputs and outputs. A salient fi, ature o[ the proposed MCFE approach to model

reth,'tion o[ MIMO systems with square tran,_lor matrices is its equirah'nce to the matrix

Pad_" approximation approach. The ('aucr second fi,'m o[ the ordinary M('FE.[or a square

tran,ffO" [Unction matrix is yenerali.zed in thL_ paper to a multipoint atut nonsquare-matrix

rersion. An interesthtg connection of the multipoint Cauer MCFE method lo the multipoint

matrix Pa&; approximation method is established. Also, algorithms fi_r obtaining the reduced-

th,qrec matrix-/?action descriptions and reduced-dimensional state-space models fi'om a

tran,fft'r fimction matrix via the multipoint Catwr MCFE al, qorithm are presented. Practical

a&'antayes o[ usiny the multipoint Cauer MCFE are discussed and a mmwrical e.vamph" is

protidcd to illustrate the algorithms.

L Introduction

The accurate mathematical modeling or accurate identification of linear time-

invariant multi-input multi-output (MIMO) systems usually leads to high-degree
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transfer-function matrices or high-dimensional state-space models. The analysis

and design of such high-degree transfer-function matrices in the frequency domain,

or such high-dimensional state-space models in the time domain, is not an easy task
because of computational difficulties and implementation considerations. There is
thus a real incentive to reduce the complexity of linear time-invariant MIMO

models to equivalent simple ones.

Several methods are available in the literature (1_) for approximating a linear

time-invariant MIMO system by a reduced-order model. Among them, the method

of matrix continued fraction expansion (2 12) has the distinct advantages of

computational simplicity and applicability to obtain both frequency-domain as
well as time-domain reduced-order models. Chen (2) used a matrix Cauer second

form of continued fractions to obtain a reduced-order model by retaining the first

several significant matrix partial quotients and discarding the others. Owing to its

equivalence to the matrix Pad6 approximation about s = 0, the method of using

the Cauer second form of MCFE provides satisfactory results in the steady-state
response only.

To remove this drawback, Shieh and Gaudiano (9, 10) have proposed an MCFE

involving expansion points at s = 0 and s = _, which is equivalent to the matrix

Pad+ approximation about s = 0 and s = _._. More recently, Chen and Hwang (7)
have presented a multipoint MCFE method to produce better reduced-order

models for linear time-invariant MIMO systems.

It is worth noting that the mentioned MCFE methods are derived for the M IMO

systems having an equal number of inputs and outputs while being described by

their matrix-fraction description (M FD). For broadening the application scope of

the MCFE method to include the nonsquare MIMO systems, Shieh et al. (11, 13)
have proposed the use of a matrix pseudo-inverse for the Cauer second form of

the MCFE. Their method is only applicable to an MIMO system described by its
M FD and the connection of the MCFE method to the matrix Pad6 approximation
method has not been explored yet.

The main purpose of this paper is two-fold. Firstly we wish to generalize the

CFE algorithm ofmultipoint Pad_ fitting (14) to the matrix version for obtaining
the reduced-degree MFDs and reduced-dimensional state-space models of a non-

square linear MIMO system characterized by its transfer-function matrix or its

MFD. Secondly we want to reveal the connection of the multipoint Cauer MCFE
method to the multipoint matrix Pad6 approximation method.

The paper is organized as follows. In Section II, computational algorithms

involving a matrix pseudo-inverse are derived for determining the multipoint Cauer
MCFE of a nonsquare linear time-invariant MIMO system from its transfer-

function matrix and MFD, respectively. In Section Ill, an efficient recursive algo-
rithm is presented for obtaining a set of MFDs with different reduced degrees from

the multipoint Cauer MCFE algorithm. Also, the connection of the multipoint

Cauer MCFE method involving the matrix pseudo-inverse to the multipoint matrix
Pad6 approximation method is established. In Section IV, a canonical block state-

realization of an MFD based on its multipoint Cauer MCFE representation is

presented for obtaining reduced-dimensional state-space models. An explicit
matrix-relationship between the multipoint Cauer MCFE canonical form and the
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block companion form is also derived. Such a matrix-relationship is useful in
connection with the construction of an aggregation matrix which relates the state

vectors of the system and its reduced-dimensional models.

Throughout this paper, the following notations are used :

A s : left pseudo-inverse of the matrix A, defined as (ArA) _AI;

A- : right pseudo-inverse of the matrix A, defined as A _(AA 1) _"

I,, : identity matrix of order n ;

O,, : null matrix of order n ;

O;,.,: p by q null matrix:
R ;'_ ';: set ofp x q real matrices.

II. Multipoint Cauer MCFE of a Nonsquare Transfer-function Matrix

A linear time-invariant q-input p-output system may be described by the p x q

transfer-function matrix

G(s) =[g,.,(s)], i= 1,2 ..... p; /= 1,2 ..... q (I)

or by the matrix-fraction description (MFD) (15) •

G(s) = ¢ Al.,si & A2(s)AI(s) I p>/q (2)

where A _.,e R '_'_ and A__,_ RP_'L Let the Taylor series expansions of G(s) about

the m distinct real points a_, a__..... ci,,,, be
x

G(s) = _T,,(s-a)q i= 1,2 ..... m (3a)
j: o

where

I d _

Ti,/=.j! ds / G(_)I, _ • RI'_ q. (3b)

In the following, we deal with the MCFE for the nonsquare transfer-function

matrix G(s). Before proceeding, let F__,I_- ..... _,,, be the multiplicities corresponding

to the distinct real points _r_,cr2 ..... G,,, such that It_ +P2+ "'" +F,,, = 2N. These

numbers o-, will be used as expansion points taking into account multiplicities. Let

(s,,s_ ..... s_,) = (o-,..... _,, __ ..... __ ..... c_........ _,,,)

It _ ii : 16.

denote the ordered point system. Also, let

v, = p i + It__+ ' " ' + ,u, 1- (4)

2.1. Muhipoint Cauer MCFE qf an MFD
From the definition of a matrix pseudo-inverse and the MFD (2), we can write

G(s) as
'(s)]#] - = [A,(s)A_ (s)]- (5)G(s) = [G_(s)] - = [[A2(s) A,
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Assume that Af(sl) exists and let

HI = Ai(sl)A_(st) ERq×p. (6)

Then, we can expand A_(s)A_(s) as

A_ (s)A3_(s) = H_ + (s-s_)A3(s)A_(s) (7)

where the matrix polynomial

N I

A3(s) = 2 A3,JSi, A3.j ERq×q (8)
2=0

is to be determined. Postmultiplying both sides of (7) by A2(S ) and then using the
identity A_(s)A2(s) = l,j yields the relation"

A, (s) = H lA 2(s) + (s-sl )A s(s). (9)

Substituting the matrix polynomials of A_(s), A2(s) and A3(s) into (9), and then
equating the coefficients of like powers, we obtain

A3,j= A_j+l--HiA2.1+l+slA3,i+l, j= N-I,N-2 ..... 0 (10)

where A2,N = Op× u and A3,3",= O u.

With the substitution of (7) into (5), G(s) can be further written as

G(s)= [H,+(s-s,)A3(s)A_(s)]- = [H, +(s-s,)[Az(s)A, '(s)]#] -. (li)

Similarly, assume that A3 _(.s'2) exists, and let

H_ = A2(s2)A3 I(s2)_ R p×u (12)

then the term in the inner brackets of (11) can be expanded as

A2(s)A:_ I(S) = H2 _- (s--sz)A4(s)A:_ I(s) (13)

where the matrix polynomial

3,' 2

A4(s)= _ A4,,s', A4./s R p_ (14)
[ = 0

satisfies the relation :

A2(s) = H2A3(s) + (s--s2)A4(s). (15)

From this we have

A4,/=A'-,J+_-H2A_,/+I+s2A4,j+I, j=N-2, N-I ..... 0 (16)

where A4,j = Op_q for j/> N- I. With the substitution of (13) into (I l), G(s) is
now expanded as

G(s) = [H, + (s-s, ) [He + (s- s2)A4 (s)A3 '(s)] '] ". (17)

By repeating the expansion procedure of (5) (17) in the MFD, A4(s)A3 _(s), we
can finally expand G(s) into the following multipoint Cauer matrix continued
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fractions"

GO,'/= [H, +(.,.-.,,)[He+C,-._',)[H_+(.,-.,'_)[... In>. ,

+(._._,:,. ,)nM-...]q-]_] . (lSa)

The matrix partial quotients H_ can be obtained via the recurrence relations:

'Ai(.s.,)A_ t(s,), i = I, 3 ..... 2N-- I

H,= [A,(s_)A,+t(s,). i=2,4 ..... 2N (18b)

N t_ I

Ai+2(s) = _ A,_ 2,s'
i 0

1
(A_(s) - H_A,+, (s)) (18c)

_- A" -- '_'i

Ai+ e./ = Ai,,, ,-HiAi+ I,t*, +siA,. 2._, ,,

j = N-i2- l,N-i,-2 ..... 0 (18d)

where i, denotes the integer part of i/2 and the required matrix inverse and matrix

pseudo-inverse are assumed to exist. For convenience, we can construct an expan-

sion array as shown in Table I for evaluating A,,,. In this array, the first two matrix

rows are taken from the matrix polynomials A,(s) and A2(s), respectively. The

subsequent matrix rows are evaluated using (18a 4c).

2.2. Muhipoint Cauer MCFE hased on Taylor-series expansions

In this subsection, we derive an alternative tabular algorithm for obtaining the

matrix partial quotients H, of the multipoint Cauer MCFE (18) of the matrix

transfer function G(s) from its Taylor-series coefficients T,,, in (3) for

.j = O, I ..... lti- I and i = I ..... m.

To begin with. we detine

G,.,(s) = G,j.,, + G,.,. i (.$'-- 0",) "dr-G,,. : (s-- or,)-' + ""

= G,.i. k s -- o,
k=O

TABLE I

Expansion array Jor evaluating &,i

AI.. A,.I AI.2...AI..v IA,._'

HI < A,,, A>I Ae.e-..Az.v I

A>_ i,(jt]k 2N I,I

H>v I( A2xf

H,_. ( A>v. ,.I,
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with

G,. i(s) = !,/ + O,(s- at) + O,(s - a,) : + ...

_= _ Gi.l._(s--ai) _, i= 1,2 ..... m
k = 0

(2O)

and

Gi.z(s) = T,o +T, I (s-ai) +Ti.2(s-a,): + ...

A= _ G,.2.k(s_ai)k i= 1,2 ..... m. (21)
k= [)

Then, from (3a), (20) and (21), we can represent G(s) by one of the following
infinite-term M FDs"

G(s) = G,, 2(s)Gi, i I (._,.)

= [G,._(s)G,*,2(s)]', i= 1,2 ..... m. (22)

According to the form of the multipoint Cauer MCFE (18) and the expansion

ordered point system (4), we know that matrix partial quotients H,.,+ _, H,,+ 2.....
H_.+u, are evaluated from the infinite-term MFD G_.2(s)Gi_l(s). Since the multi-

point Cauer MCFE involves rn distinct expansion points a_, i = I, 2 ..... m, it is

therefore required to manipulate the m infinite-term MFDs in (22), which represent
the same transfer-function matrix G(s), to obtain the partial quotients H, of the
multipoint Cauer MCFE (18).

Now, starting from (22), we expand the infinite-term MFD G,. ffs)G,*2(s) as

G,.l(s)Gi*_(s) = Hi +(s-sl)G,.3(s)Gi*2(s), i = 1,2 ..... m (23)

where

HI Gt,l(sL= )Gi.__(sl) for .vl = al

= GI.LoGf.=,,.

In (23), each of the infinite-term series G_,_(s) satisfies

(24)

Gj.l(s) =HiGi.2(s)+(s-s,)G,._(s), i= 1,2 ..... m (25)

which is obtained by postmultiplying both sides of (23) with G,.2(s) and using the

identity G,___(s)Gi,_(s) = l,/. Substituting the series representations of G,.l(s), Gi,:(s)
and Gi.3(s) into (25), we have

t

k = o k 0

i

+[(s-a,)+(a,-s,)] _ G,,,(s-a,) k. (26)

Equating the coefficients of like terms (s- a,)*, we obtain
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I [Gil _HIG,_k_Gi_ _Gr. _,k = O" t -- S I ........

vG,.l.k + i HEG,,k. I,

,], i = 2,3 ..... m" k = 0, 1,2 ....

i= l'k=O,l,2 ....

(27)

where G,.3. I = O,.
• G,._(s)G,.,+ _(s) for / even, canIn general, the MFDs, G,.,(s)G[_ i(s) for ] odd and ' ' .

respectively be expanded as

G,.,(s)G,_',, ,(.s) = H,+(s-s_)G,.,_ :(s)G,_,_ t(s), i = 1,1+ I ..... m (28a)

and

G,._(s)G,.jI+ i(s) = H/+(s-sj)G,.j, ,_(s)Gi.jl_ i(s), i = l,l+l ..... m (28b)

where .s'j= a¢ and

(-GI.j(o,)G[,. t(o-,) = G,.j..G[,+,.o for j odd

Hi = 2"[GI,,(o/)GI.jt+l(al) G/.,,,,G_._ i.c_ for jeven. (29)

In (28), each intinite-term series G,,_. e(s) satisfies

Gi.,(s) = HjGi.i, l(s)+(s si)G,.i+ ,_(s), i= l,l+ l ..... m (30a)

i.e.

z z

Gi.,a(s-o-,) a = Hi Y'. G,, l,k (,'; -- O",) '_

k 0 k o

+[(s-a,)+(o,-s,)] _ G,.i+ 2._(s-a,) a. (30b)
k {I

This last equation allows one to evaluate the coefficients G,._ _2,_for i = l, I+ 1..... m

and k = 0, 1,2 ..... as follows:

f 1 [G,.,._.-H,Gi.,+ i.k -G,.i+__.a 1],

cri s, (31 )
G,,, _e,k = i = l+ 1, l+ 2 ..... m

LG,.j.k_-H,G,,_Ik_I, i=l.

Following the above derivation, we can construct m expansion arrays as shown
in Table II for calculating the matrix partial quotients H_,H_, ..... H__x of the

multipoint Cauer MCFE of G(s) from the matrix coefficients of the Taylor series

expansions in (3).
In the expansion array in Table I!, the first two matrix rows are specified by

1, for k = 0 (32a)G,._._ = O,_ for k= 1,2 ..... p,-I

Gi.z_. = T,,_ for k = 0, 1.... ,u,- 1. (32b)
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TABLE II

Expansion array .[br evaluatin.q Gi,), k

G,.i.o G,.LI G,A.2

G, 2_ G,.2._ G, 22

G,._.o G_ G, 2

H,_ < G + G( G'

H ,,. < G.. 2.(, . +2, . +22

G, +,, _.o G,.+< _._ G t,,, J.'.

H +_ < GI ,_, _'' .,

G,., 2 G,.1.#, I

G.2._ 2 G,2,. ',
G,_., 2 G,_., ,

G, + 2,u, 2 Gi,_,+2._, I

G ,+ ,, 2

The subsequent matrix rows of the expansion array are obtained by the following
recurrence formulas,

G,,I+ 2,a =

I
[Gi,j,_--H,Gi,j+ I.k--Gi.i+2.k ,],

O'i -- Si

k=0,1 ..... Iti-1 and j= 1,2 ..... vi

Gi,/,k + I -- HjGi,/+ I,k _ l,

k =O, 1..... vi+¿l,-.]-I and j= vi+l,vi+2 ..... vi+lai-I

(33)

which are derived from the relation in (30). The matrix partial quotients Hj for
j= v,+l, v_+2 ..... v_+jt_ associated with the expansion array in Table II are
evaluated as

_G,.,.0G,_+ i,,, for j odd
H, = (G_j.oG, jl+''° for j even. (34)

It is noted that in the foregoing derivations, we have assumed that the required
matrix inverse and matrix pseudo-inverse exist. If G _ #ia.o or Gi,j,o for i = 1,2 ..... rn
do not exist, we should readjust the expansion points a, such that the matrix inverse

exists. When all coefficients of any matrix row in the expansion array are null, the
expansion procedure terminates. In this case, we can use the calculated matrix

partial quotients and the inversion procedure in the next section to derive the MFD
for G(s).

IlL Reduced-degree MFDs Derived from rite Multipoint Cauer MCFE

Suppose the transfer-function matrix G(s) of a high-degree q-input p-output

system is expanded into a multipoint Cauer MCFE in (18). An Mth-degree reduced
MFD, C,tf(s), for the system can be obtained by truncating the matrix partial
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quotients H 2_ + _, H 2,4,+ 2.... H :_ in (18). Hence G _(s) is given by

(]M(s) = [H_ +(s-s,)[H2+(s-s2)[H3+(s-s_)[-.. [H2_, ,

# _+ (s-s,, , )n,,,,] ...1 _] "]*] (35)

To convert the truncated Cauer MCFE into its MFD. we define

I [Hl+(s-s,)[H2+(S-Sz)[H3+(s-s3)[...[Hk ,

=._ +(S--Sk 0Hff]'...]*]']#] - forkeven

Pk(S)Qk _(S) L [HI+(s-sl)[H'+(s-s2)[H_+(s-sO['''[Hk

L +(s-s, OH;]'...]']#]-]" forkodd

(36)

where

P,(s) = Pk.o+Pk._s+ "'" +P*.I<* I)'2] Sl<k I)21 p,._aRp_q (37a)

= . +n yI*21 (37b)Q,(s) Qk.. +Qk..s+ ' " "z*,{k21. , Qk.i eR'_'

and [r] denotes the integer part of r. Then it can be shown that the matrix poly-
nomials Pk (s) and Qk(s) satisfy the following recurrence relations:

P,(s)=P, l(s)Hk+(s-sk i)P, _4.0, k= 1,2 .... (38a)

Qk(s)=Qk i(s)Hk+(s--s, I)Q, 2(s), k= 1,2 .... (38b)

where P.(s) = Or_, _, Pl(s) = Or,, Q.(s) = lq, and Q,(s) = Hi. Using the relations
in (38). we can construct an inversion array as shown in Table llI to compute the

matrix coefficients P_r and Qk,_ from the matrix partial quotients H r
In the inversion array, the first two matrix rows are given by

P..,, = O/,_, l, PI.I, = Ip. Qo.0 = I,i. QI.I, = Hi (39)

TABLI! III

[nt,ersiotl array

Numerator Denominator

P ,,,= O/, Q ,.,,= O,_,
P ..... = O,,_,, Q ..... = I,,
P,,., Q..
P.,,o Q._., Q2..
P,. P,,, Q_.. Q_.,
P .... P_.. Q._.o Q4,, Q4._,

VoL 331B, No. 2, pp 189 216, 1994 197
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and the remaining matrix entries are evaluated using the following recurrence
relations"

Pk.j=Pk i,jHk--sk iP, 2,/'4-P_ 2,i I, j=0,1 ..... [(k-I)/2] (40a)

Qk,=Q, ,./Hk-& ,Q, 2,j+Q_ 2, ,, j=O,l ..... [k/2] (40b)

where

Op_, u for keven
Pk. i = (Op for k odd

and

IQq for k even
Q_' _ = _O,/_p forkodd

fork = 1,2 ..... M.

Once the inversion array is developed, the Mth-degree reduced MFD, which

corresponds to the truncated MCFE in (35), can be readily written as

(_M(S) = P2:,, (s)Q2.,_ is)

= [P2+"+o+P_-M.,s+'"+P'-M.M , s._' '][Q2M.I,

+Q:M.,S+'"+Q2_u.MS M] ' (41)

It is important here to examine the link between the Mth-degree reduced MFD,

(]M(S) and the original transfer-function matrix G(s). As a specific example, we
consider (_ _(s) which has the following explicit form:

Gj(s)=H2[HIH2+(s-sa)Iu] I (42)

With Hi being represented by (34), we have the following explicit expressions lbr
GI(sl), G;,(s2) and (d/ds)G,(s,)"

G;,(s,) = H2[HIH2] I

I # I

= _'G 1,2.1tG1,3,0[G i,1,0G 1,2.oG 1.2.11G1.3,0]
G_ i # i i( ..2.,,G2._,o[G _.l.oG 1.2.0G2.__,oGz.).,j]

Gl(s2) = H__[HiH:+(s2-s,)l,,] i

= G2.2.,,[H,G__,2.0 - (.v2-s, )G2.3.,,]

= G2.2.0G:.l_o = G2.__,

d ^

ds G, (s i) = - H2[(H, H2) 2]

for "Y2 _ '_1

for s2 # sl (43a)

(43b)

.J'-GI.__.IIG i._.o = GJ.2,,G_'_. oGl.__ i

--Gz.z. G2._,,, [(G_.2.,,G2.:.,,) _-]

for s, = Sl
(43c)

i for s 2 # ,s'l-
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Comparing (43) and (21), we have

(],(s,) = G(sl), (_t(.s'__) = G(s2) for ,s'l g: se and p = q (44a)

d^ d

(],(sl)=G(s,), dsGl(S2) =dSG(s_.) for s, =s: and p=q (44b)

C,,l(sh) ¢ G(sl), G,(s=) = G(s=) for p =_ q. (44c)

By a similar direct deduction, we can obtain the link between the Mth-degree
(M < N) reduced MFD, C._/(s), in (41) and the original transfer-function matrix

G(s) as follows

(i) square system (p = q)

d I ^ d I

ds' G,/(s)l, ,_,= d# G(s)l,.,
for ,j=0.1 ..... ti,-1 and i= 1.2 ..... I

(45a)

where l is the number of distinct points that appear in the ordered point system,

and

(sl,,s'2 ...... _"__t)= (_r_..... cry, _2 ..... a2 ..... nl _..... nl _, o-t..... crt )

_i i Y i fi' = t_ ' fi, = iI, 1i,, 2 '_,/ v,

(45b}

which is obtained by truncating the last 2N- 2M points of the ordered point

system in (4);

(ii) nonsquare system (p _ q)

d; ^ d'

d,s'; G_As)I,., = d.d G(s)l,=o, for fi; > 0. j = 0. 1 ..... fi,- 1 and I _< i <_ /

(46a)

where fij. the multiplicity of the point a,, appears in the ordered point system.

(s:,s4 ...... s'>_f) = (rrl ..... nl,_:..... o2 ..... crl..... oil (46b)

ji i] • fi'

which is obtained from (45) by deleting the odd-indexed elements s:, , for

.i= 1,2 ..... m.

Notice from (46) that for a nonsquare system, the Mth-degree reduced MFD

obtained by the multipoint Cauer MCFE has the same Pad+ properties only around

the even expansion points. However. since the multipoint Cauer MCFE involves

the matrix pseudo-inverse in the calculation of odd matrix partial quotients, the
obtained reduced-degree M FDs approximate the Pad6 properties around the odd
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expansion points, i.e.

d j ^ d /

ds )GM(s)[_:., _ ds j G(s)t,_,, for j = 0, 1..... /J,-fi, and 1 _< i _< / (47a)

where the expansion point or,appears fi,-/i,( > 0) times in the ordered point system,
and

( S I , S 2, • • • , S 2 M

which is obtained from

.]= 1,2 ..... M.

I) = (0"1 ..... OI, or2..... a2 ..... at ..... al ) (47b)

(43) by dropping the even-indexed elements s2_ for

IV. State-space Models Obtained from the Multipoint Cauer MCFE

4.1. State-space/'ormulation t?f the multipoint Cauer MCFE

Let Y(s) and U(s) be, respectively, the Laplace transforms of the output and
input vectors of the system. Then Y(s) is related to U(s) by

Y(s) = G(s)U(s). (48)

Premultiplying both sides of (48) by G#(s) and using (18), we have

U(s) = G_(s)Y(s)

= [H, + (s-s,)[H2 + (s-s2)G3(s)]#]Y(s)

1 (H:+,',G_(sI)+G_(s) Y(s) (49)
--H,Y(s)+ (s-s,)

where

I [ ]+1I (H++ + rsG,+ +_(s))+ G+++(s)c,(.,.)= H++ (.s;S5 '

and r, = s,-s++, for i = 1,3, 5 ..... 2N- 1. Let

[ ]+X,(s)= I (H++r,G3(s))+G_(s) Y(s).
S -- S 1

Then, we have

and

Y(s) = I 1LSI -- 1_' [ (H-_+ r _G_ (s)) + G+ (s)lX t (s)

(50)

(51a)

200 Journal of the Franklin Institute
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X l(s) = U(s) - H 1Y(s). (51 b)

The above two relations allow one to construct the block diagram as shown in Fig.
1 for representing the relationship between Y(s) and U(s).
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FKL I. Block diagram representation of G _(s).

Using a similar procedure to expand G3(s). Gs(s) ..... a realization block diag-

ram (Fig. 2) for G(s) can be achieved. It is readily apparent from Fig. 2 that a

canonical state-space representation of G(s) can be written as follows :

with

= Hz + Gu (52a)

y = Fz (52b)

z [Z,_ z_ z_IT

H = -HoHc+R ® I,_

If'H0 = HI H_
• , . ,

-SI

SI

S I

R=

S 1

Si

G = [lq

N block elements

r3

S 3 r5

S 3 $5

S 3 $5

lq ...

zi= [zi.l zi,2 ... z,.q]x

0

H 2N 1

0

• • r2N 3

•. S 2 N 3

I,,]r

• .. HZN1

, He= H4 :i I n. 2N

H',, _]

g 2 N I

F=[H2 H4 ... H>,_,]

where the superscript T designates the transpose of a matrix or vector, and ®

denotes the Kronecker product (16).

4.2. Link between MCFE and block companion .[brms

Let A_.,_ = I,_, then a controllable block companion form for the realization of

the MFD (2) can be written as follows (17) •
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FIG. 2. Realization block diagram of multipoint Cauer matrix CFE.

Y(s)

where

k = Ax+Bu

y = Cx

(53a)

(53b)

x = [xll

Oq

O_

A=

Oq

--AI, 0

B = [0_ Oq

x'F ] T
"'' NJ ,

lu

Oq

Oq

--Al.l

... l_] r

xi = [xi.i xi.2 ... xi.u] T

|q 0

Oq ... lq

--AI.2 ''' --AI,N I

C = [A2, 0 A2,1 ... A2, N I].

Assume that the system is completely controllable with controllability index equal
to Nq. Then there exists a nonsingular block transformation matrix P which links

the block state vectors z and x by

z = Px (54)

and satisfies the following relations :

PA = HP (55a)

PB = G (55b)

C = FP. (55c)

The desired block similarity transformation matrix P can be derived from the

relation (18a) and (55c). Let the block similarity transformation matrix P be of

202 Journal of the Franklin Institute
Elsevier Science Ltd



the form

Multipoint Matrix Continued-fraction Expansions

Pi,i PI.2 --. PI.N 1

p= ]P2,,. P2,2. ".'". P2.N]. (56)
[PI,1 Pv.2 ... P_',.¥A

where the block elements P_,j are q × q matrices. Define the matrix polynomials
N

P,(s)= _P_.,s j ', i= 1,2 ..... N. (57)
)=1

Then the relation (55c) is equivalent to

A2(s) = H2P_(s)+H4P2(s)+ "'" +H2uP¥(s). (58)

Rewrite the recursion in (18b) as

At(s) = (s-s,)Ai+ 2(s) + H_A,+ 1(s), i = 1,2 ..... 2N. (59)

Then, by applying the above relations recursively for i = 2, 4 ..... 2N and noting

that A2N+2(s) = Opx,_, we have

A2(s) = H2A3(s) + (s-s2)H4As(s) + (s-s2)(s-s4)H6Av(s) + "'"

3I-(S--S2)'''(S--S2N _,)H:NA2_+ 1(,3). (60)

Comparing (58) and (60), we obtain
t I

P,(s)= [I(s-s2j)A2,+'(s)' i= 1,2 ..... N. (61)
i= I

Using (57) and equating the coefficients of the like powers of.¢ in (61), and using

the relations in (57), we have the explicit form for P_j as

J
P,.j= _r_.,A2_+_.j ,+_, i=!,2 ..... n and j=l,2 ..... n (62a)

k=l

where A_,j are the coefficients of the matrix polynomials defined in (18b, c), and r_,_

are given by

{01 for i<k or k=O
ri,k = for i = k (62b)

r_ _,k _-s_ _,r_ l.k for i> k.

4.3. Reduced-dimensional state-space models
Truncation of the last (2N-2M) matrix partial quotients of the multipoint

Cauer MCFE in (18) after the first 2M matrix partial quotients is equivalent to

discarding the N-M inner block loops of Fig. 2. Hence, the multipoint Cauer
MCFE canonical state-space model corresponding to the Mth-degree (]M(s) can
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be readily obtained as

where

(63a)

(63b)

= [_ zT _T]T,

fl = --fi0flo+ti ® L

Hi

1710= HI

Hi

H3 O

H3 ... H2M I

SI

SI

SI r 5

SI

.St

_; = [L

M block elements

_" = [Hz H4 ...

r3 O

$3

$3 $5 " • " F2M 3

$3 $5 • • • S2M 3

Iv ... lq] t

H2M].

TZi = [Zi, I Z,,2 "'" i.q]

,
2 H4 •.. H2M]

H4 ... H2M

• .. i2HM

F2M 1

It is obvious that 17Iis the upper-left M by M block submatrix of H, and G and

are the upper block subvectors of G and F, respectively. Hence, the truncation

procedure in the time domain can be represented by the following mathematical
relations :

I_I= JHJT (64a)

(_ = JG (64b)

_' = rJ t (64c)
where

J = [IM_ i OMq× _N Ulq].

Based on the multi-feedback multi-feedforward control theory (2, 10) and the
realization block diagram of Fig. 2, we know that the inner block states have fewer

contributions to the system output. Hence, it is reasonable to consider that for an
appropriate M, the following approximation holds

i _ Jz. (65)

With this approximation and the relation (64), we conclude that the state vector i

of the reduced-dimensional state-space model is approximately related to that of
the original system in (53) by

204 Journal of the Franklin Institute
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= Qx (66a)

where

Q = jp. (66b)

The Q is called an approximate aggregation matrix. The availability of this

approximate aggregation matrix enables the reduced-dimensional state-space
models obtained by the multipoint Cauer MCFE method to be useful in designing
reduced-order controllers.

Is. An Illustrative Example

To illustrate the proposed algorithms, we consider a two-input-three-output

system characterized by its third-degree MFD

[[G(s) = -35.0581 85.4861[+ / -4.5654 21.8066/s
--25.4654 62.0624_1 L -6.4341 8.5709_1

[-6.69841.8038 3'82091] /l[[-1.2972 -2.52161-0"8574_ s2_ -85.9888 -209.6110J+

0.2685 0.02431 J

F -64.1796 --148.91541 [-16.0738+ L_ 167.1634 326.1264J s+ -39.1889

29.8019]

40.4941J s"

The transfer-function matrix is given by"

[gI,L(s)

G(s) = |g2,_(s)
Lg3.t(s)

g,,_(s)_

g2,2(s)]
,q3,2(s)3

where

,ql,I (S) = (3.440200+ 29.863961S+ 34.330077S 2 --90.583719S 3

-- 145.02521 IS 4 -- 6.6984sS)/d(s)

g2,1 (s) = (- 2.283757- 24.693759s- 87.412685s 2 - 96.945897s _

+ 34.877295s 4 + 1.8038sS)/d(s)

93, L(s) = (I .156658+ 16.036971s+ 13.523988s 2 -33.627214s_

+ 5.390856s 4+ 0.2685sS)/d(s)
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gl,2(s) = (4.819364+60.095159s+ 200.157141s2 + 241.O49291s 3

+ 88.349065s 4+ 3.8209sS)/d(s)

92.2 (s) = (22.490064 + 225.973085s + 345.147913s 2+ 23.697755s 3

- 18. ! 6839 Is 4 - 0.8574sS)/d(s)

y3,2(s) = (I 6.293793 + 163.607382s + 248.927928s 2+ 30.343293s 3

+ 0.178497s 4+ O.0243sS)/d(s)

d(s) = 55.078031' + 649.225525s + 1817.984559s 2 + 1578.243399s 3

+ 126.703614s 4+ 24.4203s 5+ s 6.

The controllable block companion form corresponding to this MFD is
-r

I XLI I

1
X'2,2J

• L-_3.2J_

_2 [

:33

[::] I;
I::] [:

,.2972252,61F64,796
85.9888 209.6110A L167.1634

[,6.0_38__9.80,91,._889-40._94,j

I[ - 7.6051-35.0581
L-25.4654

OI

tj

148.91547
/

326.1264/

i Xl,I

LxI,2_

I x2.1

LX2,2

'X3,1

- Lx3.2J

+

rio

I o

I0

I0

II

_LO

-,8.4986][_23.5,64-85.4861[ -4.5654
-62.06243 -6.4341

-49.8596]

21.8066 /
8.5709J

I Xl,_l

LX_,2A

-6.6984 3.8209]] _
1.8038 --0.85741 IX2,11

0.2685 0.0243A [ Lx2'2A

IX3,11

OI

OI

OI lu]Oil Lu

01

The Taylor series expansions of G(s) around expansion points at s = 0, 1,2 are
evaluated as

206 Journal of the Franklin Institute
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0.0624600.0875011[-0.,940330.0 9688lG(s)= -0.041464 0.4083311+/ 0.040411 -o.71o37o|s
0.021000 0295831J [- 0043629 -0.5166073

0.848784 0.042327]

+/-0.694785 1.161968/,32
L-0.961898 0.844367J

_1_ • , .

[-0.041074 0.1406861 [-0.091768 0.046501 l

=/_0.04,070 0.1406851+/ 0.012861 -o.lo53191(,_'-,)
L 0.000647 0.108021J [_--0.009672 -0.0680973

0.005283

+/0.008434
L0.008503

-0.005326]

0.058837/(s- 1): + - • •
0.042513J

-0.126800 0.181971] [-0.078945 0.036070]-0.023260 0.071566/+ / 0.020381 -0.0466361(s-2)
-0.003600 0.065727J L-0.000845 -0.026606J

0.007431 --0.005244-+ 0.000944 0.014180 (s-2)2+'".

[_0.002074 0.009571 _

Choosing the ordered expansion point system as (s,, s,, s2, s2, s3, s3) = (0, 0, 1, I, 2, 2)

and using the recursive algorithms (18) and (33), we construct the expansion arrays
as shown in Tables IV and V for evaluating the multipoint Cauer MCFE from the

MFD and Taylor series expansion of G(s), respectively.
We obtain from (18a) and (34), the same set matrix of partial quotients as

follows:

10.781239 -5.586419HI = 0.550334 1.447022

4'521980q [ 0.029679 0.0953861
/-0.019033 0.224562 /

1.220228J H_=I_ 0.010361 0.196506J

-10.576133 -5.571830H3= 4.017897 -8.535413

-4'0214211 [-6.737767 3.651197]
/ 1.817531-I.093386 /-4.024899J Ha=

I_ 0.235814 -0.1843283

165.364859
H5 = L209.425455

70.422714

49.768519

271'8002391 [0.009688 0.074317]
/0.005302 0.011424/129.772792/ H6 =
[-0.022325 0.012122J
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oo
TABLE IV

Expansion array .for evaluatinq A,.)

o

e_

- 1.2972
-- 2_52_6_

-85.9888 -209.61 lOJ

-- 7.6051 -- 18.4986]

--35.0581 --85.4861 /
--25.4654 --62.06243

I 192.946970 471.696242]
-- 139.764214 --340.700047J

-21.779035 -53.153589]5.304092 12.603329]
0.446132 0.9576003

6.043425 16.388694]

5.190035 15.705515J

0.009688 0.074317]

0.005302 0.011424]
_0.022325 0.012122J

I -64.1796 -
148.9154]

-167.1634 -326.1264J

- -23.5164 -49.8596]

-4.5654 21.8066 /
-6.4341 8.5709J

[ 65.005884 -16.291817]
-38.440311 39.602353J

--6.728079 3.725514]

1.822833 - 1.081962]
0.258139 -0.172206J

-16.0738 29.8019]

-39.1889 40.4941J

-6.6984 3.82091

1.8038_08574/
0.2685 0.02433
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0.062460
-0.041464

0.021000

TABLE Va

Expansion array Jor evaluating G_j.k

0"08750i]
0.40833

0.29583

-- 0.194033

0.040411
0.043629

2.120382 -2.275849]

--0.004929 1.625451J

0.059688-

--0.710370

--0.516607_

TABLE Vb

Expansqon array ./or evaluating G2_,k

_004,0 40,40686]
-0.041070 0.140685 /

0.000647 0.1080213

I.210471 --1.219319]

0.081244 0.587192J

_00847490.,20865]
-0.036275 -0.014384 /

-0.027860 0.005267A

-0.091768

0.012861
-0.009672

-0.105514

-0.037548

--0.000306

0.055560

0.026659

0.046501-

-0.105319

-0.068097_

0.437559]

-0.377289J

-0.051362]

0.002118 /
-0.003759A

0.308025 -0.108965]

0.545205 --0.167977J

Vol. 331B, No 2, pp 189 216, 1994 209
Printed in Great Britain All righls rcser'_ed



Tong- Yi Guo et al.

r
I

--0.126800

-0.023260

_-0.003600

I.126698

0.053916

--0.082691

-0.006962

-0.012934

0.161345

0.274680

I 0.001500

0.000121
--0.000350

-0.028680

0.023921

TABLE Vc

Expansion array Jor et,aluatin9 G3.j. k

0.181971]

0.071566]
0.065727d

-0.929643]

0.358048J

0.087704]

-0.013266]
0.002500J

-0.078945 0.036070]

0.020381 -0.046636[
--0.000845 -0.026606J

-0.078950 0.200273]
-0.019465 -0.138975J

0.003973 -0.022161-

0.015105 0.000825]0.008366 --0.001936

-0.065929]

-0.097505J

-0.000500]

-0.000048 /
0.000074A

-0.080466 0.028638]

L-0.147505 0.046821J

-0.001119 0.000338]

-0.000046 0.000017 /
0.000502 -0.o00133J

0.007509]

-0.007708J

Once the matrix partial quotients Hi are evaluated, the canonical block state-

space model corresponding to the multipoint Cauer MCFE can be constructed

according to (52) as follows:

-'(z,.l]] [-0.473153 -0.6624781 [81.728620 -44.639017 l
LzI,2_II L-0.001435 - 0.617223J 0.790269 -0.2023021

II . -1 I

[ziilj = [--0.473153 -0.662478] [-22.544374 -12.856893]
L-0.001435 -0.617223J L44.324429 23.946844J

_ i r

Z3,1[  2JJ _066 4 81L
-0.001435 -0.617223J L44.324429 -24.946844.j

-0.175783 -0.792222]

-0.040246 -0.0722223

0.046004 0.106164]

0.055941 -0.224518J

I-5.997421 -16.282529]
-5.134094 -15.930034J

[ ZI.I

Lz I.2_

I Z2,1

LZ2,2

i .
I -3.1

- Lz3.2

i[,°

Ill 0

LLO IJJ
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I)'1 ]

Y2 _-

Y3

[[ 0.029679

-0.019033
L 0.010361

°° '86q [-0.224562 /
O. 196506_1

6.737767 3.651197]

1.817531 -1.093386[
0.235814 0.1843283

0.009688

0.005302
0.022325

ZI,I

21,2

0.074317_] ?z2,,ql

0.01142411 LZ2,2A,

0.0121223_1 /z3,_]

_LZ3,2j_

Using (62) with A_.j extracted from Table IV, we obtain the block similarity
transformation matrix for relating the block state vectors z and x in (54) as follows :

e

I__ 192.946970 471.696242] [ 65.005884139.764214 - 340.700047J - 38.44031 I

IO0 O0] [6.043425I_5.190035

IOoOo3 I'o

-16.291817q , 01]39.602353J 0

16.3886941 1 O]
15.705515J 0 1/

ol [,o
Based on the model reduction method proposed in this paper, the second-degree

reduced MFD model, G2(s), derived from the matrix partial quotients, H,,

i = 1,2, 3, 4 is formed as

[ -2.396027 1.3216391 [-6.708088 3"74658311G2(s)= /-10.902575 5"9370331+ / 1.798498 -0.868824/s /
L -7.941521 4.336653J L 0.246175 0.012178J J

.[_-0.837195 0.6924167 [--22.071221l_-26.785352 14.610068J+L-44.322994

=L02,1(s) 02.2(s) O2,3(s)J

13.5193717
24.564066J_+I10 011 ] 'J

where

,qL _(s) = (0.394446 + 2.070750s - 1.11417082 - 6.708088s3)/d(s)

(_,2(s) = (0.552578+4.730760s+9"319107s2+3"746583s3)/_'(s)

,02._(s) = ( -0.261851 - 1.660099s- 5.233055s2 + 1.798498s3)/d(s)
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_2,2(s) = (2.578663 + ! 5.840457s+ 0.798490s 2- 0.868824s3)/d(s)

g3, _(s) = (0.132620 + i .060232s- 1.35469582 + 0.246175s3)/_l(s)

3,2(s) = (I .868212 + 11.468484s + O.739738s 2+ 0.0 ! 2 ! 78s 3)/d(s)

d(s) = 6.315131 + 49.784100s + 70.83292682 + 2.492846s 3+ s 4.

Furthermore, the multipoint Cauer MCFE state-space model corresponding to
C,2(s) can be readily obtained as

:'.']
L.Z 1,2/

p2.,]
L-_2,z_I

IF-0.473153 -0.662478] F81.728620 -44.639017]]

= 1L-0001435 -0.617223J L 0.790269 -0.202302J1

/F -0"473153 -0.662478] [22.544374 -12.8568931/
LL-0.001435 -0.617223/ L44.324429 -23.946844_]J

E_:::IIIE;

Iy,]0.0296790.095386 6.7377673.6,,,971 iiz, , 1
[_'ilj=[/-°°'9°33 0"224562/ | 1.817531 -I.093386|| =,.2 ._ o.o,036,0.,_,06__0.2,,,,4_0.,,43_,_[[::::]j

The Taylor series expansions ofG2(S ) around s = 0, I, 2 are, respectively, evaluated
as

00624600.08750,][-0.1644920.05932,]G2(s) = -0.041464 0.408331/+ 0.063997 -0.7106631s
/

0021000 0.295831J 0.002335 -0.5160943

0.419732

-0.868085
-0.468475

0.026594]

1.1488191s2+ ...
0.867507J

+

-0.041074 0.140686] [-0.091599 0.0464597= --0.041070 o.1406851+| 0.012294 -0.1o51791(s-!)
0.000647 0.108021J L-0.007988 -0.068514J

-0.005601]

0.0588421(s- 1) z + ...
0.0427253

0.006230

+/0.008666
L0.007286
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-0.126037

-0.023818

-0.002814

0.181728] [-0.077841

0.071745]+ / 0.019754
0.065532_1 L-0.000689

0.035700-

-0.046413

-0.026610

(s- 2)

0.007584
+ 0.000869

0.001655

-0.005306]

0.014214 / (s-2)2+ ....
0.0097143

Comparing the above series with those of G(s), we can verify that the partial matrix

Pad6 properties of G(s) given in (46a) and (47a) match those of G(s).

For comparison of the time responses between reduced-degree models and G(s),

the second-degree reduced MFD obtained by the single-point Cauer second form

of the MCFE (12) is given below:

[ - 2.446550C,*(s) = /- 11.180131
L - 8.136202

•[F1_- 27.452343

where

1.375684] [-6.893735 3.936407] ]6.2250571+ 1.825865-0.899738/s /
4.5398323 0.213142 0.04531 lJ J

0.584829] I--22.590895 14.079862]

15.304513J+[-45.510647 25.793547J s

['o°,ld F°'"'=L,O*.,(s) 9*.2(,0 9*,(s)J

.O*l(s)

9%_60

.0". ,(.0

.O*2(s)

.q3.,(S)

.O*.2(s)

7t%0

= (0.322474 + 2.061388s-- 1. I 11976s 2 - 6.893375s3)/_t*(s)

= (0.451753 + 4.599323s + 9.5 ! 1552s 2+ 3.936407s3)/c/* (s)

= ( -- 0.214073 -- 1.824823s-- 5.032249s 2+ 1.825865s 3)/d*(s)

= (2.108154+ 16.357619s+O.843013s2--O.899738s3)/_t*(s)

= (0.108422 + 1.255139s-- 0.576348s 2+ 0.213142s3)/c? (s)

= (1.527333+ I 1.840828s+0-515189s2+ 0.04531 ls3)/_l*(s)

= 5.162856+49.041488s+72.677136s2+3.202651s3+ s4.

The values of the impulse response energy (18) for transfer function elements and

outputs of the original system and those of the reduced-degree MFD are listed in
Table VI. The values of the integral squared-error of the impulse and the unit-step

time responses for each output of the reduced models are shown in Table VII. The
above values are usually taken as criteria for choosing proper reduced-degree

models. The unit-step time responses for each output of the original system G(s)

and the reduced-degree models G2(s) are plotted in Fig. 3. It is observed that the

time-responses of the reduced model are close to those of the original system.

Vol. 331 B, No. 2, pp. 189 216, 1994 213
Printed in Great Britain All rights reserved



Tony- Yi Guo et al.

TABLE VI

The values of impulse response energy of the original and reduced-

degree models

C_(s) C2(s) G(s)

91._(s) 9.493938 12.707962 14.771495
#z.l(s) 0.748100 1.037583 1.283513

93.1(s) 0.008769 0.022492 0.042638

Yl.2(s) 3.219912 4.134660 4.683292

92.2(s) 0.298879 0.382659 0.448826

93,2(S) 0.027614 0.032275 0.037869

y_(s) 2.039829 2.888713 3.421429

Y2(s) 0.191937 0.267885 0.331350

y3(s) 0.030720 0.032574 0.038061

TABLE VII

The inteyral squared-errors of the impulse and unit-step responses between the original and

reduced-degree models

Impulse response Unit-step response

y,(s) y2(s) y_(s) y,(s) y2(s) y_(s)

G*(s) 0.467087 0.045071 0.003970 0.006885 0.000700 0.000136

(_2(s) 0.135860 0.014271 0.001245 0.002030 0.000257 0.000098

0.4[ /_ .... /}_t't._ ' '
_ _/ II zY,"2--.'-_-_ /y,._-

°et I t^lX_ A _ ,_.,

o

- o. I I] ..... reduced - order system
IV

-o2r" _ _ j r , h r
0 I 2 ,:3 4 5 6 7 8

Time ( second)

FIG. 3. Unit-step responses of the original and reduced-degree models.
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VI, Conclusions

A matrix continued-fraction methodology has been established for modeling and

model reduction of multivariable systems having an unequal number of inputs and

outputs. The developed methodology is based on the multipoint Cauer matrix

continued-fraction expansion and the matrix pseudo-inverse, and is applicable to

obtain both the frequency-domain reduced-degree MFDs and time-domain re-

duced-dimensional state-space models. The connection of the presented multipoint

Cauer MCFE method involving matrix pseudo-inverse to the multipoint matrix

Pad6 approximation method is also established. Although the algorithms in the

paper are derived for a right MFD, the extension to a left MFD is straightforward.

The use of a multipoint continued fraction expansion gives good reduced-order

models that provide satisfactory approximation of the original system not only in

the transient response but also in the steady-state response. Although the stability

of the reduced models by the multipoint Cauer MCFE is not completely guaranteed,

the flexibility of choosing expansion points provides the highest probability for

finding stable reduced-order models (19).
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