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The primary objective of this investigation is to develop a method to solve for 

spacecraft attitude in the presence of potential incomplete antenna deployment. Most 

research on the use of the Global Positioning System (GPS) in attitude determination has 

assumed that the antenna baselines are known to less than 5 centimeters, or one quarter of 

the GPS signal wavelength. However, if the GPS antennas are mounted on a deployable 

fixture such as a solar panel, the actual antenna positions will not necessarily be within 5 

cm of nominal. Incomplete antenna deployment could cause the baselines to be grossly in 

error, perhaps by as much as a meter. Overcoming this large uncertainty in order to 

accurately determine attitude is the focus of this study. To this end, a two-step solution 

method is proposed. The first step uses a least-squares estimate of the baselines to 

geometrically calculate the deployment angle errors of the solar panels. For the spacecraft 

under investigation, the first step determines the baselines to 3-4 cm with 4-8 minutes of 

data. A Kalman filter is then used to complete the attitude determination process, 

resulting in typical attitude errors of 0.5". 
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1 Introduction 
Attitude determination by means of GPS measurements is a continually evolving 

field. Early studies indicated that GPS is a feasible alternative to more expensive inertial 

guidance instruments aboard low orbiting spacecraft'. Aircraft test flights soon validated 

this by showing that real-time attitude information could be obtained from GPS 

measurements2. 

Attitude determination utilizing GPS amounts to calculating the baseline vector 

from one GPS antenna to another. Errors in this vector directly affect the accuracy to 

which attitude can be found. One of the early simulations suggested that attitude 

accuracies of 0.3" would be possible using antenna baselines of 1 meter'. Ground-based 

experiments later showed that a 1.78 m baseline vector can be determined within 1-3 cm4. 

This uncertainty in the baseline translates into an attitude error closer to lo. 

In the previously mentioned studies, the baselines vectors were assumed to be 

known in a body reference frame. As the study of GPS-based attitude determination 

became more involved, the problem of correctly locating the baselines in the body frame of 

a spacecraft came under scrutiny. Errors in the position of the GPS antennas in the body 

frame add to the total attitude error. One investigation into this problem involved the 

RADCAL satellite and concentrated on the effects of 5-10 cm errors in the positions of 

the antennas'. In that study, a succession of estimates was used to decrease f i i t  attitude 

and then baseline uncertainties beginning with some baseline assumptions. In this 

investigation, the baselines are not known well enough for an initial attitude determination. 

Consequently, another approach must be taken. 



The Transition-Region and Coronal Explorer, or TRACE, spacecraft presents a 

unique problem in the study of GPS attitude determination. TRACE is slated to join the 

growing number of earth-orbiting observatories developed by NASA in recent years. The 

science mission of TRACE involves extended study of the sun, including time-elapsed 

filming of solar activity. In addition to the standard compliment of magnetometers and 

gyroscopes for the attitude control system, the spacecraft will also be equipped with a 

GPS receiver to study the usefulness of space-borne GPS attitude determination. The 

unique property of TRACE is that the GPS antennas are to be mounted on three 

deployable solar panels. The possibility exists that the panels may fail to fully deploy, 

causing the positions of the antennas to deviate from their intended nominal values. Thus 

the baselines are not known well enough to obtain accurate attitude knowledge in the 

body frame. To solve this problem, the nominal attitude of the spacecraft is used to solve 

for the baselines in inertial space, and the deployment angle errors of the solar panels are 

estimated geometrically. A Kalman filter is then used to determine the TRACE attitude 

continuously. 

To familiarize the reader with GPS-based attitude determination, the governing 

equations will first be presented. This is succeeded by a discussion of a noise model, 

which was developed from ground-test data to add realism to the simulations. The 

TRACE spacecraft is then examined, and a method to determine its attitude is proposed. 

This is followed by the results of this method for TRACE and some concluding remarks. 
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2. Governing Equations 
The basic equations governing the use of GPS for attitude determination are 

introduced in this section. The first to be presented are the geometric equations for 

attitude determination. This is followed by a discussion of Kalman filters, which will be 

used to sequentially process GPS measurements for attitude information. 

2. I Aititude Defemination Using DMer;enfial Phase 
Determining attitude by any method is equivalent to finding the orientation of one 

coordinate system with respect to another. The relationship between two coordinate 

systems, which define two frames of reference, may be expressed by a transformation 

matrix. The use of the transformation matrix allows one to convert the components of a 

vector in one frame to the appropriate components in the other frame. The goal of 

attitude determination, then, is to determine the transformation matrix between the 

spacecraft body frame and some inertial frame. 

2.1.1 Body Fram?e Definition 
A coordinate system is fully described by the position of the origin, the 

fundamental plane, the principal direction within the plane, and the sense of the normal to 

the plane6. In attitude determination, however, only the orientation of one frame with 

respect to another is of importance: the origin of the system may be disregarded. One 

unit vector is chosen to point in the fundamental direction of the coordinate system and 

another is chosen to point in the direction of the outward normal to the plane; the third 

vector is chosen to complete a right-handed orthonormal triad. 
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In GPS-based attitude determination, the vector from one GPS antenna to another 

defines a baseline in the Earth-Centered Inertial, or ECI, reference frame. Now, since any 

two nonparallel vectors form a plane, the attitude of a spacecraft can be fully determined 

by two such vectors. As a result, a set of three GPS antennas forming two nonparallel 

baselines is sufficient to determine attitude. What is sought is the transformation matrix 

between the inertial reference frame in which the baselines are found from GPS 

measurements and a body reference frame in which these vectors are fixed. The following 

provides a method for finding this matrix. 

Two baselines bl and may be used to define a body reference frame by using the 

set of equations 

The plane of the two baselines forms the fundamental plane, and the first baseline vector 

bl is normalized to form the fundamental direction Y E  of the body frame. The normal to 

the plane is formed by normalizing the cross product of the two baselines. The third 

unit vector completes the triad, which is then used to form the transformation matrix from 

the inertial frame to the body frame: 

An Euler angle representation of the attitude can be extracted from this matrix for a more 

intuitive understanding of the orientation of the spacecraft in inertial space. 
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2.1.2 Diffemmtiai Phase Equations 
The signals broadcast by the GPS space vehicles, or SV’s, are carried on 

electromagnetic waves of two frequencies: L1 (1575.42 MHz) and L2 (1227.6 MHz)~.  

Although the contents of the signals allow one to determine the position of a GPS antenna 

and the SV’s, the carrier waves themselves are employed in GPS attitude determination. 

The primary observable in GPS attitude determination is differential phase. This 

quantity will be described with the aid of Figure 1. In this figure, a vector from Antenna 1 

to Antenna 2 defines a baseline b in the inertial frame. A GPS SV is located in the 

direction of the unit vector iSj . The satellite position in ECI coordinates, q, is calculated 

from the ephemerides which are broadcast as part of the GPS signal’. The signal can also 

provide the positions of the two antennas to about 30 meters by using the methods for 

GPS position determination discussed in many texts’. Assuming the baseline is only a few 

meters or less in length, the two antenna positions will be nearly the same in ECI 

coordinates and may both be represented by r. The unit vector to thejrh SV can then be 

found from 

The wave sent to the antennas from the SV propagates in the direction indicated in 

the figure. Antenna 2 is the first to receive the signal because it is closer to the SV than 

Antenna 1 by an amount AR. This range difference is the projection of the baseline onto 

the unit vector to the SV. Thus AR is computed by taking the dot product of b and Z and 
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GPS Signal r 

\ 

Propagation 
Antenna 1 b Antenna 2 

Figure I: DiSferential Phase Geometry 

may be expressed in cycles by dividing the result by h, the wavelength of the L1 GPS 

carrier signal" : 

bi - E j  
h 

m, =- (4) 

In this example, after the wave crosses Antenna 2, three and a half cycles are 

completed before the wavefront reaches Antenna 1. The range difference may therefore 

be decomposed into integer and fractional parts: 

The first term ku is known as the integer ambiguity. The second term Aqii is the fractional 

difference in phase cycles and is referred to as the differential phase. Solving for this 

differential phase using Equations 4 and 5 gives the result 
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In a working environment, noise will corrupt differential phase measurements, 

rendering Equation 6 incomplete. A portion of this noise is due to line bias and is treated 

as a separate term. Adding, then, a line bias pi for each baseline and a noise term pu to 

Equation 6 gives 

The line bias results from the finite time delay as measurement signals travel from the 

antenna to the GPS receiver. Therefore, the line bias is independent of the SV’s. 

However, environmental conditions such as temperature might affect the electrical 

properties of the transmission line. The line bias is assumed to have a range of (-1,l) 

because an absolute value greater than or equal to one would be indistinguishable from the 

integer count number kw 

For the moment, consider perfect (noise-free) conditions such that Equation 6 

applies. At one instant of time, differential phase measurements from three SV’s are 

necessary to determine the baseline vector in the inertial frame assuming the integer 

ambiguities for each satellite are known. For example, the measurement equations for one 

baseline may be written as 
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where the rows of the 3x3 matrix are the unit vectors to SV numbers 1,2, and 3, 

respectively. Equation 7 may also be expressed as 

which emphasizes that this is a system with three equations and three unknowns: the x ,  y, 

and z components of the baseline b. 

The fact that the integers are known is a fair assumption in two cases: the baseline 

vector is either known to within a wavelength or is known to be less than one wavelength 

in length, for which case the integers are all zero. Regardless, only a small vector 

correction is sought. The former case will be examined in Section 3.2, Residual 

Formation. If the baselines are completely unknown, however, the integers must be 

determined with the baseline components. One approach is to take measurements at two 

time indices for the same three SV’s. This gives six equations and three unknowns since 

the fixed attitude causes the integers to be constant over short periods of time. Over 

longer periods, the integer ambiguities simply increase or decrease by one each time the 

differential phase completes a cycle. For the most general situation, baseline motion must 

also be taken into account. Allowing for motion between the first and second 

measurement epochs introduces three more position vector components to the list of 
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unknowns. This can be overcome by taking measurements from Six  SV’s at two 

measurement epochs. The complete system of twelve equations involves the following 

twelve unknowns: three baseline components at the first epoch, three baseline 

components at the second epoch, and six integer ambiguities. Any standard approach to 

solving a system of linear equations may then be employed. Noisy data will, however, 

require that more measurements be taken. Any number of filters can be used to extract 

the necessary baseline data from noisy measurements. A batch least-squares filter will be 

discussed in Section 3.2, Residual Formation. In Chapter 5, a sequential K h a n  filter is 

used for continuous attitude determination on-board the TRACE spacecraft. 

After solving two sets of equations such as in Equation 8 for two different 

baselines in the inertial frame, Equations 1 and 2 may be used to form the transformation 

matrix ”e. This gives, finally, the attitude of the spacecraft with respect to the inertial 

frame. 

2.2 Kalmn Filter Equafions 
The Kalman filter is a sequential filter with the advantages of weighting factors on 

measurements and filter solution propagation. In other words, by correctly “tuning” the 

filter, proper balance can be achieved between data measurements and state noise. This 

allows one to selectively determine the degree to which the filter’s solution will track the 

incoming measurements or the degree of data smoothing which will occurll . 

The quantity to be determined in Kalman filtering is the estimated state 2 of the 

system, the true state of which is given by x. Associated with this estimate is an error 

covariance matrix P. To begin the Kalman filter process, an apriori estimate of the state 
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and its covariance matrix must be made. During each iteration of the fdter, a weighting 

factor known as the Kalman gain K is formed. This gain is used to update the estimate of 

the state and covariance, forming the best estimate of these quantities from the available 

observations. With knowledge of the dynamics of the system, the estimated state and 

covariance are propagated forward to serve as the a priori estimate for the next iteration, 

and the process begins again. The flow chart of Figure 2 illustrates the iterative nature of 

the solution. 

The state equations upon which the Kalman filter method is based are the 

dynamics model and the measurement model equations. The dynamics of the system are 

embodied in the state transition matrix Qi, which enables us to write 

x(n) = +n,n - l)x(n - 1) + w(n - 1) (10) 

This simply relates the state of the system at the nrh time step to the previous state plus a 

noise term w. This noise term is assumed to have the characteristics of white noise. 

Therefore, the mean of the noise is zero: 

and there is no correlation between its elements at different times. However, there may be 

some correlation among the measurement elements at any one time. Thus the state noise 

covariance matrix Q satisfies the relation 

10 



where $" is the Kronecker delta function. 

The measurement model equation for use in the Kalman filter relates the 

measurements to the state of the system. The observation matrix H is used to express the 

relationship: 

Here, z is the measurement vector and v is the associated noise, assumed to be white. The 

observation matrix is formed by taking the derivatives of the observations with respect to 

the variables in the state estimate. The covariance matrix associated with the 

Initialize state i and 
covariance P 

Figure 2: Kalman Filter Iterative Solution 
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measurement noise satisfies the relation: 

E [ ~ ( m ) v ( n ) ~ ]  = R(n)6,". (14) 

The proper formation of this quantity is quite important in the filtering process. Studying 

actual measurement data will enable the formation of an accurate measurement model for 

use in the filter. 

Now that all the terms have been defined, the equations used in the Kalman filter 

may be presented. After the measurements have been made and the observation matrix 

determined, the Kalman gain is computed using the following equation12 : 

K, = P,-H:(H,P,-H; +R,)-'. (15) 

Here, the subscript n signifies the nrh time step and the superscript (-) indicates an apriori 

estimate propagated from the last time step and made before the current measurement. 

Once the Kalman gain has been found, the state is updated for the current 

observation using 

?: = 2, + E;, ( Z, - Ha%,), 

and the state covariance P is updated with the equation 

T 
P; =(I-K~H~)P;(I-K,H,) +K,R,K,~. (1 7) 

The superscript (+) in these equations indicates a quantity after being updated with 

measurement information. The pre- and post-multiplication by the quantity in parentheses 

is performed to preserve the symmetry of the covariance matrix. 
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To propagate the state and the covariance to the next time step, the state transition 

matrix CP is used 

Xn+l A- =@n+l,n)ii,, 

P,;, = @n + 1, n)P,,@n + I, n)' + Q, . 

These two equations produce the apriori estimates which will be used to start the next 

iteration of the Kalman filter. 
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3. Noise Model Development 
In order to perform more realistic simulations for GPS attitude determination, it is 

necessary to have a noise model for the differential phase measurements. After extensive 

analysis of data provided by NASA Johnson Space Flight Center (JSC), the development 

of a such a noise model for the differential phase was possible. The differences between 

observed and calculated differential phase measurements provided measurement errors 

upon which the noise model was built. 

Data from two separate experiments conducted at JSC are examined in this 

chapter. GPS measurements are known to be susceptible to multipath, a phenomenon 

which occurs when the direct GPS signal is corrupted by indirect signals reflected off 

surrounding ~urfaces'~. One of the experiments was designed to limit the effects of 

multipath by placing the antennas in an open field. The other experiment took place on a 

rooftop, where numerous metal surfaces provided sources for multipath reflection. Both 

experiments, however, used the same GPS receiver and mounting table for the antennas. 

The methods used to determine the differential phase noise model will be demonstrated 

with the rooftop data. A comparison of the rooftop and field data results will then be 

made. 

3. I Rooffop E w ~ m e n t  Description 
The rooftop experiment consists of four GPS antennas arranged in a pyramid 

configuration and placed upon an optical bench on a rooftop (see Figure 3). Because the 

configuration is static and earth-bound, the attitude is described in an Earth-Centered 

Earth-Fixed (ECEF) reference frame rather than Earth-Centered Inertial. The baselines 
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Slave Antenna 2 
(-0.90, -0.41,0.20) (-0.90,0.41,0.20) 

Slave Antenna 1 

Figure 3: Rooftop GPS Antenna Confgurarion Showing Body Frame Coordinates 

are known within 2-3 centimeters in the body reference frame and are shown in the figure 

(private communication, Penny Saunders, NASA JSC). The transformation matrix EC" 

corresponding to the known attitude is used to write the baselines in the ECEF system: 
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The GPS receiver used is the Trimble TANSQuad, a single receiver designed to 

provide differential phase measurements from four separate antennas. With this receiver, 

one antenna is designated as the master and the remaining three serve as slave antennas. 

L1 carrier phase measurements are made for each of the antennas. To form these carrier 

phase measurements, the receiver starts a count at some large negative number and 

increases the count for every wavelength received. The differential phase is then formed 

by differencing these carrier phase counts between the master and each of the slaves. 

Because the difference is formed from only one receiver, no errors associated with the 

clock of the receiver are present14. 

The master antenna is located at the apex of the arrangement, and the three slave 

antennas form the base. The baselines extend from master to slave, as depicted in Figure 

3. The body coordinate system places the master at the origin. The coordinates of the 

slaves are thus the baseline vector coordinates and are expressed in the figure in meters. 

Twelve GPS satellites were in view over the four and a half hour data collection 

period. Figure 4 shows the SV coverage as a function of azimuth and elevation angles. 

The center of the graph is at an elevation angle of 90" and the horizon is at the outer edge. 

There is good coverage except for low elevations near 0" azimuth. 

3.2 Residual Fonnation 
The furst step in forming the noise model was to reduce the GPS differential phase 

measurements reported by the receiver to a set of error residuals, represented by the noise 

term pi, in Equation 7. Using unit vectors to the SV's expressed in the same ECEF 

reference frame as the known attitude, the differential phase as given by Equation 7 is 

16 



270 

Figure 4: SV Coverage Showing Azimuth and Elevation 

where b, is given by Equation 20. As before, the subscript i refers the irh baseline and the 

subscriptj refers to thejzh SV. Since the baselines are known to within 2-3 cm, less than 

the 19 cm wavelength of the L1 carrier signal, the integer ambiguities are known. 

However, small corrections to the baselines may be necessary and must be determined. In 

addition, the unknown line biases must be computed. 

The first estimate of the differential phases assumes that the baselines are correct 

and that there are no line biases or noise. Thus Equation 6 is used to write 
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where the hat over the baseline vector indicates that it is an estimated value. Figure 5 and 

Figure 6 show the differential phase measurements Aqii reported by the JSC receiver for 

representative SV’s using all three baselines. Also included in the graphs are the estimates 

of the differential phases calculated from Equation 22. Each observation and calculation 

pair is distinguished by a different line type in the figures. The calculated signal, since it 

has no noise, is the smoother of each pair. 

I I I I I 

14.5 15 15.5 16 16.5 17 
time (hrs) 

Figure 5: SV15 Differential Phase Observations and Calculations 

18 



3 

Figure 6: SV22 Diflerential Phase Observations and Calculations 

The differential phase residuals, designated by 6A(p, are computed by taking the 

observed minus the calculated differential phase measurements, or Equation 21 minus 

Equation 22: 
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The differential phase residuals for the previously used SV's are plotted in Figure 7 

and Figure 8. The lines biases appear in these graphs as constant offsets: roughly 0.25, 

0.2, and 0 cycles for 1,2, and 3, respectively in both figures. Approximately the 

same offsets are seen across all SV's. This supports the contention that the line biases are 

inherent in the receiver and can therefore be represented in the differential phase equation 

by the constant line bias term pi. Noise is corrupting the signal and can be seen in the 

figures as well. The effect of the baseline errors is most easily seen in Figure 8, in which a 

clear trend is seen in the data that is the similar for all three antennas. 
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Figure 7: SVI5 Differential Phase Residuals 
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Figure 8: SV22 Diflerential Phase Residuals 

To obtain the best estimate of the baselines in the ECEF frame and also to solve 

for the line biases, the differential phase residuals 6AqV are used in a least-squares batch 

filter. The changes in the baseline vectors and the line biases associated with each baseline 

comprise the state vector x to be determined. Since the differential phase measurements 

from each antenna are independent, the baselines corrections and line biases may be 

determined separately for each baseline. For one baseline, the state vector is assumed to 

be constant in time and is given by 
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The observation matrix is formed by taking the derivative of Equation 23 with respect to 

each of the state elements. Since the GPS constellation is changing with time, the 

observation matrix at one measurement epoch t k  is given by 

This observation matrix is the same for all three baselines. Putting the state and 

observation matrices in Equation 23 gives the matrix form of the system at one 

measurement epoch tk for the svj: 

To perform the least-squares fit, measurements from all twelve observable SV's 

for each measurement epoch are concatenated into one measurement vector. Thus for one 

baseline, the full matrix form of the system is 
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which will be defmed as 

AY (cm) 

z=HX (28) 

Using the pseudo-inverse of H, the least-squares solution of the system is given by 

I 

- 1.70 -1.85 -1.65 

The system given in Equation 27 is solved for each of the three measurement 

vectors z corresponding to the three baselines. The resulting baseline corrections and line 

biases are shown in Table 1. The total length of the adjustments made to each baseline are 

about 2 cm, which is consistent with independent results obtained by JSC researchers. 

Az (cm) 

The differential phase estimate in Equation 22 may now be improved by including 

1.01 0.88 1.14 

-0.25 -0.08 -0.14 

Table 1: Baseline Corrections and Line Biases Resulting from Least-Squares Fit 
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the baseline corrections and line biases: 

(ii +6bj) * Zj  

h 
- k , + p i .  

When these newly calculated differential phases are plotted against the observations, the 

agreement is seen to be quite good (See Figure 9). If this improved estimate of the 

differential phase is subtracted from Equation 21, the result is a residual set which contains 

only the noise term pij: 

Figure 10 shows the improved residual set which results from the least-squares fit for one 

of the two SV’s. The curves lie atop one another, demonstrating the quality of the fit. 

The errors which remain are likely the result of multipath interference due to reflections 

off the metallic roof approximately 2 meters below the master. 
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Figure 9: SV22 Differential Phase Observations and Calculations after Least-Squares 
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Figure 10: SV22 Differential Phase Residuals after Least-Squares 
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3.3 Noi- Model Idenfificafion 
The goal of this section is to develop a model of the differential phase errors. One 

method for doing this is system identification, an analysis tool that uses the observed input 

and output of a system to estimate a model for the system. Using this method, the 

differential phase residuals resulting from the previous section are analyzed statistically. 

The model that results is used to produce statistically equivalent pseudodata for use in 

attitude determination simulations. 

3.3.1 Data hpamtion 
Because the method is based on the statistics of the data, several steps were 

necessary to prepare the data for time-series analysis. The first step was to resample the 

data at a uniform rate. A non-uniform sampling rate was used by the GPS receiver at JSC: 

data for each satellite was reported at sampling intervals that varied by multiples of half a 

second. However, an analysis of the sampling rate distribution showed that 2.5 seconds 

was the most common sampling interval: fully 80% of the sampling was done with this 

interval. This rate was used as the fured sampling interval in a linear interpolation of the 

data, resulting in a time series of uniform sampling rate f equal to 0.4 Hz for each of the 

satellites. Hence, for each satellite j the differential phase residuals are of length 

nj = Ti f 

where Tj is the total period of time over which the satellite is in view. 

An important criteria in time series analysis is that the data be stationary, meaning 

the statistics of the data do not change over time. For the purposes of this study, weak 

stationarity will be sufficient. To satisfy this requirement, only the mean and variance of 
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the data must be nearly constant over timeI5. An examination of Figure 10 reveals large 

oscillations prior to 15 hours for each baseline. Figure 1 l(a) shows the residuals for 

another sample satellite, SV14. For this satellite, the largest oscillations occur before 15.5 

hours. As mentioned previously, these errors are probably the result of multipath. The 

elevation plot shown in (b) of the same figure suggests that the multipath corruption is 

greatest at low elevations. This trend holds true across all twelve of the SV's examined. 

An elevation of 30" is therefore chosen as the cutoff angle below which the data is 

eliminated from the data set. The differential phase error model will concentrate only on 

the effects seen at higher elevations. The vertical dashed lines of Figure 1 l(b) show the 

limits of the data kept from this particular residual set. Between these lines the elevation 

is greater than 30". 

After eliminating the data at low elevations, the residual series are improved but 

not yet weakly stationary. The low frequency components of the differential phase 

residuals apparent in the center of Figure 1 l(a) destroy the stationarity of short time series 

associated with individual SV's. However, as the number of data points increases, the 

data becomes more stationary, for the mean and variance taken over longer periods of 

time tend toward average values. Thus, by concatenating all of the SV differential phase 

time series into one single series, the stationarity requirement is more nearly met. The 

data for each antenna and for each SV are reduced to zero mean before concatenation to 

help reduce discontinuities between data sets. The combination of the individual data sets 

thus produces a single series of length 
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Figure I I :  SV14 Elevation Angles and Differential Phase Residuals 

N = E35 
j 

(33) 

since data for all three baselines is available for each SV. The series so formed will be 

referred to as z(tk). It is exactly analogous to the observation vector z found in the least- 

squares development of Section 3.2, Residual Formation. Here, the process has been 

taken one step further to concatenate the data from all three baselines into one series. 

Furthermore, the improved residual set of Equation 3 1 is used, which contains only the 

noise to be modeled. 
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3.3.2 Sbapjng IFUlter Overview 
The residual series resulting from the data preparation is not white noise. By 

analyzing this data with system identification methods, a model to reproduce the statistical 

characteristics apparent in the signal may be developed. Following the example of 

Braasch16, a filter G was designed to reduce the residual data z(&) of length N to white 

noise. Such a filter is depicted in Figure 12. In this case, e(fk) is white noise of zero mean 

and some variance. 

The output of the linear filter G may be expressed in the frequency domain as 

where E(@ and Z(m) are the discrete Fourier transforms of e(&) and z(tk), respectively. 

The inverse may therefore be written as 

Now, white noise is characterized by having equal power in all frequencies. In a power 

spectral density (PSD) plot, white noise appears as a constant in frequency. The power in 

this frequency is determined by the variance of the noise. Thus, by choosing a different 

white noise sequence e'(tk) with the same variance as e(&), the same frequency function 

Figure 12: Filter for Reducing Residuals to White Noise 
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Figure 13: Shaping Filter 

E(@ will be obtained. Therefore, passing white noise of the same variance through the 

inverse filter G” results in data statistically equivalent to the original differential phase17. 

This process is shown in Figure 13. The output is a series y ( t k )  which has the same 

frequency characteristics as z(fk); i.e., y(fk) and z ( f k )  are both realizations of the same 

random process. Such a filter G“ is called a shaping filter because it shapes white noise 

into the desired random process y(tk) (personal correspondence, An Introductory Course 

on KaZman Filtering, Joseph Garrick, NASA Goddard Space Flight Center). 

The frequency-domain relationship between the random process y(fk)  and some 

white noise signal e(&) has the same form as Equation 36: 

It is now assumed that G” may be represented by an auto-regressive moving-average, or 

ARMA, model structure. Equation 36 may thus be written ad8 
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or, equivalently 

A(m)Y(m) = C(@)E(@) 

where 

A(m) = 1+ a,q-'+.. .+a,q-" 

and 

C(m) = l+clq-' +...+ c,q-". 

Furthermore, q-' is the delay operator defined by 

4-' =e-'* 

(39) 

and where At=2.5 seconds is the sampling interval used in this study. 

3.3.3 Model Selection 
The coefficients of the polynomials A (0) and C(m) in Equations 39 and 40 are 

estimated using the System Identification Toolbox in MATL,ABI9. The polynomials that 

comprise the shaping filter are of order m and n, respectively. Given a combination of 

orders m and n and the signal z(&) to be modeled, the MATLAB ARMAX function is 

used to determine the coefficients of the ARMA model. The function attempts to 

minimize the sum of the squares of the prediction error e(&), which should be white. This 

is done with a Gauss-Newton minimization routine. Thus, for each choice of m and n, a 

different filter model, designated by G-'[m,n], is obtained. Then for each model, simulated 

differential phase error data y(&) is produced by passing white noise of the appropriate 

variance through the shaping filter. This is accomplished with the MATLAl3 IDSLM 

31 



function. The resulting simulations are then compared to the original error signal z(tk). 

The model which produces a simulation most nearly matching z(tk) in a statistical sense 

and which has the “whitest” prediction error e(&) is chosen as the best shaping fdter 

model. 

The first of two selection criteria used is the whiteness of the prediction error. 

Because white noise has equal power in all frequencies, the PSD of the prediction error 

for a given model must be flat. White noise is equivalently characterized by an 

autocorrelation function that is non-zero only at zero lag and has a value there equal to the 

variance of the noise. In other words, there is no correlation between any two data points 

in a white noise signal. 

Because the model must reproduce the frequency characteristics of the differential 

phase residual signal, the PSD’s of the observed signal and the simulated signal must be 

similar. This provides the second criterion for the quality of the fit of a given order 

shaping filter. Figure 14 compares the PSD’s of two different models to that of the 

observed data z(tk). For each of the two models, the power spectra of both the prediction 

error e(tk), or M A  residuals, of the model and the resulting simulation y(tk) are shown. 

As seen in the figure, the PSD of the prediction error corresponding to the G-’[5,4] model 

is much flatter than that of the G-‘[2,2] model. In addition, the G-’[5,4] simulation 

spectrum mAtches the observAtion more closely than that of G-’[2,2]. After mAny such 

comparisons for various orders of rn and n, the G-’[5,4] shaping filter was determined to 

provide the best differential phase noise model. The equation for the chosen G“[5,4] 

ARMA model shaping filter is given as 
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3.3.4 s Diffeiential Phase DAta 
After choosing a suitable noise model for the differential phase residuals, simulated 
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differential phase residual data may be formed by passing normally distributed white noise 

through the shaping filter, as described in the previous sections. Figure 15 compares the 

result of this simulation to the observed differential phase residuals for the satellite 

introduced in Section 3.3.1, Data Preparation. The top three plots are the residuals 
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collected from the three antennas. For clarity, the observations for antennas 1,2, and 3 

have been offset by 0.1,0.2, and 0.3 cycles, respectively. The bottom plot, which is not 

offset, is the simulation that results from the error model. The actual shape of the 

simulation does not precisely match the observations because only statistically equivalent 

data has been produced, not a reproduction of the data itself. As mentioned previously, 

the simulation and observation are two realizations of the same random process. With this 

in mind, the similarities between the observations and simulation are quite apparent. The 

high frequencies are reproduced well, and some of the low frequencies, as seen near 17 

hours in the figure, also appear in the simulation. 

The real test of the noise model is made by comparing the power spectral density 

of the simulation obtained above to the PSD’s obtained from each of the antenna 

observations. This comparison is shown in Figure 16. As expected, the simulation, 

designated by the solid line, lies mostly within the boundaries formed by the three 

observations. The PSD for antenna 3 for this particular SV happens to have less power 

particularly at about 0.018 Hz, but it matches the simulation well at the remaining 

frequencies. In effect, the simulation PSD is the “average” power spectral density for the 

SV in question. Using another random sequence to form the white noise would result in a 

slightly different simulation, and so the differences between the three antennas can be 

effectively modeled by running three simulations. 
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Figure 16: SV14 Observed and Simulated [5,4] Power Spectral Densities 
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3.3.5 Compadson of Rooftop and Reid DAta 
In the GPS experiment conducted in the field at JSC, all four antennas were placed 

flat on an optical bench, forming a two-foot square. Because the data was collected with 

the same Trimble TANSQuad receiver and antennas used on the rooftop, precisely the 

same analysis is performed as in the previous section to obtain the signal model. 

When the power spectral densities of the field data are compared to those of the 

rooftop data, as demonstrated in Figure 17, it is seen that the shapes are similar but that 

the mAgnitudes of the spectra are lower in the field data. This is because fewer multipath 

reflectors were present in the open field than on the rooftop. In the graph, a 

10" 1 

- SV1 Rooftop Observation 

-.- SV2 Field Observation 

- - SV21 Field Observation 

Figure 17: Comparison of Roofop and Field Power Spectral Densities 
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representative spectrum obtainkd from the rooftop data for Baseline 1 is plotted along 

with the spectra for three different SV’s observed in the field. In each case, the same 

Aster-slave antenna pair is used even though the baseline vectors differ. The large peak 

in SV1 at about 0.02 Hz A y  be caused by a certain rooftop multipath reflector not 

present in the field. 

The similarities between the rooftop and field data are just as apparent when the 

variances of the sample data are tabulated, as in Table 2. The ratio of the variance of each 

of the field data series to the variance of the rooftop data is shown in the second row. The 

ratio of the power in the spectra for the field residuals to that of the rooftop data is nearly 

constant throughout the frequency range. The value of the DC power is shown in the 

third row of the table. From the table we see that these ratios are approximately the same 

as the ratios of the variances. This simple relationship allowed a straight-forward 

adaptation of the noise model obtained for the rooftop data to the field data. The only 

change necessary was to scale the input white noise by the new variance for the field data. 

For the rooftop data, the variance used for the entire data set was 2 . 4 ~ 1 0 ~ ~ .  Using an 

approximation suggested by the ratios in the table, this variance is divided by 5 to get 

approximately 5~10‘~ .  

The result of the noise model adaptation to one field data set is shown in Figure 

19. The simulated differential phase is the lowest of the four data signals. Again, for 

clarity the observations for antennas 1,2, and 3 have been offset by 0.1,0.2, and 0.3 

cycles, respectively. The simulated signal is a compromise between simulating the low 

variance after 21 hours and simulating the higher variance before this time. The apparent 
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DAta 

Table 2: Ratios of Variance and DC Values Between Rooftop and Field DAta 

correlations between antennas 1 and 2 were not modeled because the data was 

concatenated into one series. The corresponding power spectral densities are presented in 

Figure 18. The agreement in the frequency domain is quite good, having only one 

discrepancy at 0.02 Hz. Here the simulation follows the spectrum of antenna 3, which 

contains less power than those of antennas 1 and 2. The results obtained for other SV 

data sets are similar. 

As a result of the slight adaptation of the rooftop noise model to fit the field data, 

two noise models are available for use in GPS differential phase simulations. In multipath- 

rich environments, the rooftop noise model would be recommended. The higher noise 

levels provide a conservative estimate of errors that might be encountered. The lower 

variance of the field model may represent cases where receiver antennas are not as 

susceptible to multipath interference. The TRACE simulation in this investigation will 

make use of the low-variance field model. 

38 



I I I t I I I I 

4 -0.05 19.5 20 20.5 21 21.5 22 22.5 23 23.5 
time (hrs) 
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4. TRACE Measurement Simulation 
In the absence of real TRACE GPS data, a simulation is required to test the effects 

of different antenna configurations and spacecraft attitude changes on the Kalman filter. 

This chapter presents the development of the simulation model. 

4. I Attitude and Position Requirements 
In any GPS simulation, the constellation of the GPS SV’s must be modeled. For 

this study, gravitational disturbing effects such as J2 are ignored, and so the classical six 

orbital elements for each SV are used for the simulation. 

The orbital elements of the TRACE spacecraft are also required. Because TRACE 

must be sun-pointing, the spacecraft will be placed into a 6am-6pm sun-synchronous orbit 

at an altitude of 700 km. The right ascension of the ascending node depends upon the 

time of year--June 21 is chosen as the epoch in this study so that the iight ascension is 

zero. The inclination of the orbit is 9 8 O ,  and the eccentricity is chosen as lx10q3. 

The nominal attitude of the TRACE spacecraft is as shown in Figure 20. The 

positive y axis of TRACE is down the boresight of the telescope and points in the 

direction of the sun. Roll angles are about this axis. The northward normal to the ecliptic 

plane is the nominal direction of the positive z axis. Rotations about this axis are defined 

as yaw. The x axis, which is the pitch axis, completes the orthogonal triad. 
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Figure 20: TRACE Spacecraft Showing GPS Antenna Configuration 

The attitude control system of TRACE will be required to hold sun lock to within 

half a degree. Perturbations about the nominal sun-pointing orientation are thus assumed 

to be within a half degree also. Because the spacecraft is sun-pointing, the nominal 

attitude in inertial space will be nearly constant over the course of a few minutes, the 

duration of the simulations. Only a one degree per day drift will occur in the yaw angle 

due to the revolution of the earth about the sun. 
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4.2 Soums of Emr 
Before creating the simulation for TRACE simulation, the possible sources of error 

are determined so that they may be included in the model. The most obvious source of 

error is the focus of this investigation: incomplete antenna deployment. As shown in 

Figure 20, the antennas are to be mounted on the back of the solar panels. The panels 

have a single hinge at their contact point with the spacecraft body. At launch the panels 

will be flush with the body chassis, but will be deployed once TRACE is injected into its 

proper orbit. Assuming the panels deploy properly, they will form an angle of 90” with 

the body. The panel will be considered rigid enough that no “flapping” will occur. 

In addition to the positioning error caused by the mounting structure, the antennas 

themselves introduce another source of error. The phase centers of the GPS are not fixed. 

Rather, they depend on the incident angle of the signal being collected. The baselines are 

therefore subject to some drift from one SV to another. The nominal position of the 

antenna phase centers is naturally in the physical center of the antenna, but the actual 

position may vary by up to one centimeter for a typical 5 cm diameter GPS antenna2*. 

For the TRACE spacecraft, multipath is not expected to be a large problem. Since 

the antennas are on the back of the solar panels, they face away from the body of the 

spacecraft. This gives an unobstructed view of the GPS constellation with no nearby 

reflecting surfaces. Therefore, the differential phase error model with the corrections 

made for the field data will be used. With the noise model, some of the small unforeseen 

multipath effects in the TRACE experiment may be modeled. 
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Although the spacecraft will nominally be sun-pointing, &e attitude control system 

(ACS) will not be able to maintain perfect pointing accuracy. Therefore, the actual 

attitude of the spacecraft will exhibit some oscillations as the ACS attempts to correct any 

errors. The angular rates will assumed small but generally nonzero. 

4.3 Simulation Development 
The previous analysis of the assumptions and possible sources of error in the 

TRACE mission has presented the parameters necessary for a realistic simulation. The 

error sources for the baselines are used to create a possible antenna configuration aboard 

TRACE. The antenna positions, orbital elements of TRACE and the SV’s, and the 

attitude of TRACE are all then used to determine which SV’s will be observed over some 

time period of interest. Knowing the direction of the SV’s in view then allows one to 

form the differential phase measurements that will serve as the primary observable in the 

attitude determination. The procedure is described more fully below. 

4.3.1 Unit VectoIs to GPS Space Vehicles 
The orbit of the spacecraft is first simulated. A standard algorithm is employed to 

convert the orbital elements of the TRACE spacecraft into inertial coordinates for the time 

period of interest. In the same manner, the orbital elements of all 24 satellites in the GPS 

constellation are used to find the positions of the SV’s throughout the time span. With 

this information and the use of Equation 3, the unit vectors to all of the SV’s are 

determined in the inertial frame. 
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4.3.2 TRACE Attitude 18iStory 
The attitude of TRACE is represented by a 1-2-3 (pitch-roll-yaw) Euler angle set. 

For the purposes of calculating the changes in the attitude over time, however, 

quaternions are used. To model the attitude motion in the simplest possible way, small 

oscillations about the nominal pitch, roll, and yaw angles are chosen as sinusoidal 

functions of time. The angular rates and initial angular offsets are arbitrarily chosen for 

each simulation. 

4.3.3 Independent Antenna Goordinate System 
The positions of the three antennas on TRACE are required in the simulation 

process. Although these positions could be specified directly in the body coordinate 

system (BCS), another system is chosen to accentuate the role of the solar panel flap 

angles in the attitude determination problem. A separate coordinate system is chosen for 

each of the antennas. Thus three sets of 2-3-1 Euler angles are used to describe the 

orientation of each of the three antenna systems with respect to the BCS. The first angle 

w is a rotation about the y axis of the spacecraft designed to align the antenna x' axis with 

the centerline of the solar panel (See Figure 21). The second rotation a is about the 

antenna z' axis and is the flap angle of the solar panel about the hinge. A flap angle of 

zero signifies that the panel is fully deployed to its nominal position at a right angle to the 

y axis of the BCS. A flap angle of 90" would thus indicate that the panel did not deploy at 

all. Negative flap angles are possible and could indicate such an effect as solar pressure. 

The third rotation angle 4 is about the x' axis and could be used to simulate a twisting of 

the solar panel. In Figure 21, the antenna is positioned on the back of the solar panel and 

faces away from the sun at full deployment. 
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Figure 21: Solar Panel Coordinate System 

The flap angle is the only one of the three Euler angles used in the antenna 

coordinate systems that will vary in the simulations. The flap angles for antennas 1,2, and 

3 will be referred to as al, a2, and a3, respectively. The set of 2-3-1 Euler angles used for 

each of the three antenna systems are shown in Table 3. These angles are used to form a 

transformation matrix from the BCS to each of the antenna coordinate systems. The 

transformation matrices are labeled 

respectively. The form of the transformation matrix for a 2-3-1 set of Euler angles is 

A2(?, and A3c" for antennas 1,2, and 3, 

r C O S a  cosy sina -ma siny 1 
-sina cosy cosa sina siny (43) 

siny 0 cosy 

where the fact that the third Euler angle Q equals zero has already been taken into account. 

The reason for choosing these antenna-specific coordinate systems is that the main 

sources of antenna position errors are isolated. The antenna phase centers are not 
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1" Rotation 
w 
2nd Rotation 
a 

31d Rotation 
0 

Table 3: Euler Angles of Antenna Coordinate 
Systems with Respect to Body Frame 

expected to differ by more than a centimeter from the nominal positions on the solar panel. 

However, a flap angle greater than 60" for antenna 1 would change the apparent x 

position of Baseline 1 by 27 cm in the body coordinate system, a change greater than the 

L1 wavelength. In the coordinate system of the antenna, the x' position is still less than a 

centimeter. Only the flap angle deviates from its nominal position. Isolating the sources 

of error generally improved the ability to solve for them independently. 

4.3.4 Use of Antenna Positions to Detemine Baselines 
The next step in the formation of the differential phase data is to determine the 

baselines in the body frame. The transpose of the transformation matrices introduced 

above are used to convert the locations of the antennas in the antenna coordinate systems 

into coordinates in the BCS. The origins of the antenna frames must also be considered to 

properly locate the antennas in the body frame. The vector ro from the BCS origin to the 

antenna frame origin is indicated in Figure 21. The location of antenna 1, for example, in 

the body frame is given by 
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1 x' 1 0.736 I 0.736 I 0.736 I 
Y' 

2' 

0 0 0 

0 0 0 

Table 4: Origins of Antenna 
Coordinate Systems in Body Frame 

Table 5: Nominal Antenna Positions 
in Antenna Reference Frames 

(44) B A1 A1 rl = rol+ C r, 

where rlA' is the position vector of antenna 1 in the antenna 1 reference frame and rol is 

the position vector of the corresponding origin. The locations of the antenna frame 

origins in the BCS are given in Table 4, and the nominal positions of the antennas in the 

individual antenna fiames are given in Table 5. In the nominal positions, the antenna 

phase centers lie along the centerline of the solar panel and directly on the surface. The 

only nonzero component is in the x direction out along the panel and is the same for all 

three antennas. 

With knowledge of the antennas in the body frame, the baselines may be formed by 

differencing the antenna position vectors. The baselines will be defined as: 

b, = r, - r, 
b, = r, - r, 
b, = r2 - rl 

(45) 

47 



Several other combinations of differences may be formed, but only two baselines are 

independent. In the above arrangement, antenna 3 serves as the master for baselines 1 and 

2. Only two of the three baselines are independent, for the remaining baseline is simply 

the difference of the other two: b-,=b-bl. 

4.3.5 Detennination of Observable GPS Space Vehicles 
Another step in the creation of the simulated differential phase data is to determine 

which SV’s are observed by each of the antennas. Based on the position of the TRACE 

spacecraft and the positions of the SV’s, one can determine which SV’s are obscured by 

the Earth2’ . The attitude of TRACE and of the individual solar panels are then used to 

select from the remaining SV’s those that are in view of all three antennas simultaneously. 

The unit vectors to the SV’s are first transformed into each of the antenna frames. 

For example, the unit vector to thejrh SV in the antenna 2 reference frame is 

where ”C! is the inertial to body transformation matrix obtained from the attitude of 

TRACE. Referring again to Figure 21, the boresight of the antenna is in the -y’ direction 

of its coordinate system. Thus the negative normal -n=[O -1 0IT to the plane of the solar 

panel is used as the boresight vector. The elevation angle of thefh SV can then be 

determined from 

n; 
elevation = - - cos-1 (-n - E:’). 

2 (47) 
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If this elevation angle is less than 5”, the GPS satellite is cons 

antenna 2. This process is repeated for each of the antennas and for each satellite not 

obscured by the Earth. 

d out of view by 

It is assumed that the GPS receiver aboard TRACE will only lock onto those SV’s 

observed by all three antennas simultaneously. This further limits the number of SV’s 

which are available for attitude determination. Simulations run with all three solar panels 

in nominal positions indicate that 5-6 SV’s are usually observable. The total number is 

limited to six because the receiver is assumed to have only six channels per antenna for SV 

tracking. Thus, although up to 12 SV’s may be in view at a time, no more than six SV’s 

are tracked. The data is formatted by selecting six differential phase measurements, if 

possible, at a time from the available set. If six SV’s are not in view, some of the channels 

will report no phase data. Furthermore, each channel maintains lock on one particular SV 

until it goes out of view. Data from another SV not currently tracked by the other five 

channels is then immediately put on this channel. (Data drop-outs are not simulated.) 

4.3.6 Fomtion of Differential Wase Data 
The final stage in the formation of the simulated data is to use Equation 7 for the 

differential phase, which was derived in Section 2.1.2, Differential Phase Equations: 

where both vectors are expressed in the body frame. The integer phase count kg is 

determined by 
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k,  = f l o o { ~ ]  bi - Gj 
(49) 

Here, the unit vector is taken when the satellite is fust observed and the functionfloor 

rounds the operand to the nearest integer toward negative infinity. Since the integer is 

only determined when the SV is first sighted, the differential phase will begin in the range 

(-1,l) but may be well outside this range by the time the SV goes out of sight. This is 

done to simplify the calculations. 

The remaining quantity pu in Equation 49 is the noise determined from the model 

of Section 3, Noise Model Development. The model obtained for the JSC field data is 

used because the low multipath environment of the field matches the conditions aboard 

TRACE better than the rooftop environment. Since the noise model was developed for a 

data collected at a sampling rate of once every 2.5 seconds, the same frequency is used for 

the TRACE simulation. The final result of the simulation is a history of differential phase 

measurements for all observable GPS SV’s over the time interval specified. 
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5. TRACE Attitude Determination 
The attitude determination algorithms developed here are based on the preliminary 

TRACE Attitude Control System software provided by NASA Goddard Space Flight 

Center. For the TRACE spacecraft, measurements from sun sensors and magnetometers 

are K h a n  fdtered to provide the attitude information necessary for the science mission. 

The system is fully functional without the use of GPS measurements. However, a GPS 

receiver and antennas are to be included as a test of GPS attitude determination 

capabilities. This chapter describes the methods used to create this set of algorithms, 

which are designed to be consistent with the methodologies presented in the ACS 

software document. The algorithms have the same structure as the magnetometer and sun 

sensor attitude update modules. The GPS code is in fact designed to be merged with the 

existing code and even to replace the magnetometer and sun sensor modules if desired. 

5.7 Baseline-Attitude Ambiguify 
Before utilizing a Kalman filter for attitude determination, the baselines must be 

well-known. For attitude accuracy of 0.5 degrees with a 2 meter baseline, errors in 

antenna position cannot exceed (2  m)sin( 1/2)=2 cm. The problem inherent in the use of 

deployable-mounted antennas for GPS attitude determination aboard TRACE is that 

knowledge of the baselines may not meet this requirement. Undeployed solar panels could 

possibly affect the positions of the antennas in the body frame. Therefore, the baselines 

must either be included in the state to be determined in the Kalman filter or be calculated 

before the filtering process begins. 
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In addition to the positions of the antennas, the line biases and integer ambiguities 

are required for accurate attitude knowledge. Unfortunately, not all of these quantities are 

independent. The flap angles of the solar panels directly affect the apparent attitude of the 

plane formed by the two baselines. An error in the x’ location of the antennas on the solar 

panels may appear as part of the line biases. Likewise, an error in the z’ position may look 

like a roll angle error. Furthermore, an approximate attitude is required to resolve the 

integer ambiguities. As a result, it is not possible to solve for all of these quantities at 

once. Some assumptions are necessary to begin the process of attitude determination. 

5.2 Two-step Solution Process 
In order to overcome the difficulties in determining the baselines and the attitude 

of the spacecraft accurately, a two-step process, which requires some assumptions, will be 

employed. First, the baselines are determined in the inertial frame. This process is begun 

by assuming the spacecraft has a nominal attitude and that the solar panels are all fully 

deployed. Thus, the baselines are assumed to be nominal as well. A batch filter is then 

used to solve for changes in the baselines and the integer ambiguities. These changes are 

then converted to the body frame and added to the nominal baseline, resulting in a set of 

observed baselines in the body frame. The angle between the nominal and observed 

baselines in the nominal x-z plane of the solar panels is assumed to be the roll angle. This 

roll angle is used to rotate the observed baselines into the new estimate of the body frame. 

The flap angles are then determined geometrically from the equations defining the 

baselines. 
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Using a Kalman filter to solve for the attitude is the s step in the attitude 

determination process. This stage uses the baselines and roll angle resulting from the 

batch filter initialization to refine the estimates of the pitch, roll, and yaw sequentially. 

5.2.1 LRaSt-Sqwms Baseline Detemimtion 
The methods described in this section are based largely on the work of Axelrad et 

al" . Here, however, initial attitude assumptions will be used to determine whether the 

actual baselines differ largely from their nominal values. The baseline errors for TRACE 

could be more than the L1 carrier wavelength. In order to begin the process of deter- 

mining the baselines, it is assumed that TRACE is pointing at the sun with a pointing error 

less than 0.5". Thus, the initial errors of the pitch and yaw angles are bounded. Although 

the spacecraft may be at any roll angle, the first estimate is that the roll is nominal. 

Some further assumptions are necessary to begin the batch filter process. A least- 

squares fdter will be used as it was in the development of the noise model. As before, the 

filter is used to solve for corrections to the baseline vectors. (Here, the inertial frame is 

used rather than the ECEF frame.) Thus, an initial estimate of the baselines must be made. 

It is natural to assume the baselines are nominal in the body frame. The body frame 

baselines are then converted to the inertial frame using the initial estimate of the 

transformation matrix to write bi = C b, . What differs from the previous least-squares 

developments is that the lengths of the baseline correction vectors in the inertial frame are 

not limited to less than one L1 wavelength, or 19 cm. Suppose, for example, that the 

antennas are in their correct positions in the body frame but that the roll angle is 180" 

away from nominal. The apparent baseline vector in inertial space will be rotated 180" as 

I 1  B B  
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well. The length of the vector difference is therefore twice the length of the baseline: 4 

meters for a 2 meter baseline. 

The fact that the baselines are free to vary by such a large amount makes it 

necessary to solve for the integer ambiguities in the batch filter, as well. Furthermore, the 

line biases must be taken into account. The differential phase in Equation 7 may be 

written in another form to make this process easier: 

bi - Gj 
‘ij + P i  + ~ i j  

--- 
@ i j -  A 

bi . Gj 

A Kij + Pij --- - 

where 

Kij = k ,  - P i  (51) 

The quantity Kii is a real number and must be determined for each SV-baseline pair. 

Following the development of the least-squares solution in Section 3.2, Residual 

Formation, a state vector x is formed. For one baseline, the line bias term p in Equation 

24 is replaced with six Kj7s corresponding to six different SV’s. 
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The full matrix equation for this state is similar to Equation 27 md is given by 

eIz(tl) -1 o ... 0 1  
(53) 

Slight differences in the format of the data have been made from Equation 27, but the 

forms are similar. More importantly, the least-squares solution is found in exactly the 

same way as before. The pseudo-inverse of the observation matrix given is used to solve 

for the state x as described by Equation 29. 

The method of least-squares has resulted in baseline conection vectors and a set of 

parameters Kj for each baseline. Taking advantage of the fact that the kj’s are integers, 

one may simply round the parameters Ki to find that kj=int(Kj)). Since the line bias is 

constant over short periods of time and is assumed to lie in the range (-l,l), it may be 

found by using Equation 51 to write 
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where the average is taken over the six Kj's. 

The baselines corrections found in the least-squares solution are added to the 

nominal baselines to form the observed baselines in the body frame. The transformation 

matrix from the inertial to body frame "c' , assuming a nominal attitude, is used to make 

the conversion. The best estimate of the baselines is thus given by 

The observed baselines bl and 

spacecraft. 

are then used to estimate the roll angle of the TRACE 

5.2.1.1 Roll Angle 
To estimate the roll angle of TRACE, Baseline 1 in Figure 20 is used. Because 

this baseline passes through the axis of symetry of the spacecraft, the components of this 

baseline in the x-z plane of the body frame are not affected by changes in the flap angles. 

For example, even if flap angle a1 is 90°, the projection of the observed baseline vector 

onto the x-z-plane of the body frame is still parallel to the nominal baseline. The angle 

between this projected vector and the nominal baseline vector is thus assumed to be the 

roll angle. 

The process is begun by expressing the observed baseline 1 in the body frame with 

the assumption that the pitch, roll, and yaw angles are all nominal. If Baseline 1 was also 

nominal, the angle formed by the x-z components of the baseline would be 45". The roll 

angle is just the difference between the angle formed by the observed baseline and 45". 

The knowledge of the roll angle is then used to update the transformation matrix from the 
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inertial to body frame. With this correction, the observed baselinks are rotated into the 

new estimate of the body frame. 

5.2.1.2 Deployment Angle Errors 
In order to determine the attitude of TRACE, the baselines must be fully defmed in 

the body frame. This requires that the flap angles, or deployment angle errors, of the solar 

panels be known since the angles directly affect the apparent pitch and yaw of the 

spacecraft. The geometry of the three antennas used to form the two baselines is used to 

solve for a set of possible flap angles. 

The baselines in the body frame are written as function of the flap angles by using 

the definitions of the baselines and the positions of the antennas as given in Equations 45 

and 44, respectively. The equation for baseline 1 is 

b, = r, - r3 
=ro,,+BC A1 rl AI -ro3- B C A3 r3 A3 

= Arol +( AICB)Trtl -( A3CB)Tr:3 

where AEO is the difference in the positions of the origins and b, is the observed baseline 

resulting from the least-square batch process. It is assumed that the antennas are in their 

nominal positions so that only the x’ components of r:’ and rt2 are nonzero. This 

component will be referred to simply as x’ since it is equal for each antenna. Substituting 

the transpose of Equation 43 into Equation 56 results in 
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r cosa, CoSv, -sina, cosy, sinv, 
cosa , 

-cosa1 sina, sinv cosv, 

r cosa, Cosw, -sina, cOSV, si 
I cosa , 

r cosa, cosv, 1 r cosa, CoSv, 1 
I sina, i..-L sina, i.. 

-cosa,  sin^, 

(57) 

The above vector equation may be simplified significantly by applying a rotation to 

the observed baseline vectors. A solar panel coordinate system is chosen such that bl lies 

along the principal direction. No other rotations are made. This single rotation about the 

y-axis of the body frame is equivalent to setting the vi values in Table 3 to vi-45". By 

doing this, the vi angles become O", -goo, and -180" for antennas 1,2, and 3, respectively. 

The resulting equations in scalar form are 

= cosa, - b l y  -Arolx 

X' 
S l x  = + cosa, 

- sina, 

Here, the SI terms are the result of the least-squares solution for the observed baselines. 

The development of the equations for Baseline 2 is analogous to that of Baseline 1 

and provides three additional scalar equations relating a2 and a3 to the observations: 
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= cosa, - 4, -Aro2x s, = 
X' 

= sina, - sin% - b, -A%, 
X' 

s,, = 

Equation 60 gives no information in the form shown but is actually the result of the 

roll angle determination. It is included here to illustrate that the system of Equations 58- 

63 is an underdetermined one. The six unknowns are the sines and cosines of each of the 

three flap angles. The system has only five independent equations, however. The cosines 

of a1 and a3 are obtained directly from Equations 61 and 63, and the former equation is 

used in Equation 58 to write 

cosa, = SI, - cosa, = SI, - s,, 

If no noise were present in the differential phase measurements, the baselines 

would be determined exactly from the least-squares filter. Then assuming the flap angles 

all lie in the range [Oo,9O0], the inverse cosine function could be used to find the correct 

flap angles. However, the presence of noise may cause some of the cosine terms to be 

greater than one, resulting in imaginary flap angles. The sine terms are desired because 

the arctangent function is defined for any real number. Hence, the ratio of the sine to 

cosine terms will always result in real flap angles. 

Two equations, 59 and 62, and three unknowns, the sine of each angle, remain to 

be determined. The flap angle whose cosine term is less than one is found by using arccos. 
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The sines of the remaining two flap angles are then found by Equations 59 and 62 and are 

used together with the corresponding cosine terms to find the real-valued angles. 

5.2.1.3 Results of Roll and Deployment Angle Estimation 
Several test cases are used to measure the robustness of the roll and flap angle 

algorithms. A Monte Carlo study was done for these cases to estimate the root mean 

square (RMS) errors. To reduce the effects of a particular GPS constellation geometry in 

each case, 20 simulation runs were made for each of two orbital regions: the equator and 

the poles. The results from the ascending and descending nodes were combined to 

provide a reasonable estimate of equatorial algorithm performance, and the same was 

done for simulation results at the poles. 

The roll angles and flap angles used in the simulations are shown in Table 6.  Each 

case is examined up to a maximum of 8 minutes of simulation time. The simulations are 

performed by finding the least-squares solution for the baselines with different length data 

sets. The data is collected at 0.4 Hz, and the least-squares filter is applied to data with 

time spans of 0.5, 1,2,4, and 8 minutes. For all cases, the line biases are zero. In Cases 

1-6, the pitch and yaw are set to zero. In Cases 7 and 8, errors are introduced by 

randomly choosing pitch and yaw angular errors in the range [-0.5,0.5]. For all cases, the 

three Euler angles of pitch, roll, and yaw are held constant. 
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Table 6: True Roll and Flap Angles for Monte Carlo Case Studies 

The first case studied is the nominal Case 1, in which the roll angle and all of the 

flap angles are zero. The least-squares fit provides correction vectors to baselines 1 and 2. 

The RMS of the baseline errors for the fiist case are presented in Figure 22. After 8 

minutes, the baselines are known to within 4 cm. The next figure, Figure 23(a), shows the 

maximum integer ambiguity error. It is seen here that the integers are completely 

determined after using 4 minutes of data. Part (b) of the same figure shows the RMS line 

bias errors expressed in cm. The final line bias errors for both baselines are less than 1 cm. 

The roll angle for Case 1 is determined by using the baseline corrections, and the resulting 

RMS errors are shown in Figure 24(a). After 8 minutes, the roll is known to 0.7". 
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Figure 22: Case I RMS Baseline Errors 

The fact that the flap angles are not well-determined independently is demonstrated 

in Figure 24(b), in which the RMS deployment angle errors are plotted. In the geometric 

analysis of the baselines, only the differences of the sines of the deployment angle errors 

were computed independently. Thus the plane formed by the two baselines is well- 

determined, but the distance of this plane from the origin of the spacecraft body frame is 

not. As a result, the differences between the flap angles in Figure 24(b) approach zero as 

they should for this case even though the actual deployment angle errors are large. 
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Figure 24: Case 1 Roll Angle and Deployment Angle Errors 
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The large deployment angle errors seen in Figure 24@) are caused by having to 

calculate one angle with insufficient information, as discussed in the last section. The 

other two angles are calculated from this first estimate, and so any errors will be shared by 

all three. The correlation of these angular errors is shown in Figure 25. As seen in the 

figure, the errors in the angles for each trial are directly related. 

To explore the correlation more fully, the eigenvalues of the covariance matrix for 

the deployment angles errors were calculated for each time span. The standard deviations 

are shown in Figure 26. Here, the large eigenvalue corresponds to 'the one flap angle that 

must be estimated with the least amount of information. The final value for this is about 

20°, and the other two eigenvalues decrease to 0.9" and 0.3". Thus, knowing one angle 

exactly would permit the others to be determined to less than a degree. 

Figure 25: Case 1 Correlation of Deployment Angle Errors Across Trials 
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Figure 26: Case 1 Eigenvalues of Deployment Angle Covariance Matrix 

The results for Case 3 of Table 6 are shown in Figure 27 through Figure 30. In the 

first of these, it is seen that the baselines are determined within 5 cm after 4 minutes and 

within 2.5 cm after 8 minutes. The integers are resolved after 4 minutes (See Figure 

28(a)). Again, the deployment angle errors are not all well-determined (See Figure 29(b)). 

In this case, the deployment angle for antenna 1 is calculated within a degree of 90", but 

the other two are found with only 5" accuracy. This is explained by the fact that angles 

greater than 90" were made exact in the computations. The eigenvalues of the deploy- 

ment angle covariance are shown in Figure 30, which shows that only one of the three 

solar panel flap angles cannot be determined well. 
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The results for the remaining cases are similar to those plotted. In all of the cases, 

the roll angle is determined within a degree even when the flap angle errors are large. This 

supports the argument that the roll is independent of flap angles 1 and 3. In each case, the 

smallest two eigenvalues of the deployment angle covariance are of the same order as the 

roll angle error. After 8 minutes, these eigenvalues are less than two degrees in all cases 

and less than 1 degree in most. This is consistent with the F W S  baseline errors. An error 

of 5 cm in a 2.5 m baseline would result in about one degree of error in the roll angle, 

which would in turn affect the deployment angles by a similar amount. 

The previous case studies for the equatorial region have shown that the roll angle 

may be determined to less than a degree and the deployment angles may be determined to 

within a degree of their relative positions. For cases 3,4, and 8, in which one deployment 

angle is go”, only 1-2 GPS SV’s were visible at the poles for the entire 8 minute period, 

and so these cases could not be studied. For the remaining cases, four SV’s were visible 

instead of the six available at the equator. However, the results are similar to those for the 

equator: the roll angles are determined within a degree and the deployment angle errors 

are correlated to less than a degree. 

For all the cases, both at the equator and poles, the integer ambiguities were 

resolved after 4 minutes. Thus the least-squares solution from 4 minutes worth of data 

may be sufficient for some purposes. However, 8 minutes of data result in significantly 

better baseline estimates: the errors are two-thirds to half as great as those resulting from 

4 minutes. The comparisons of the RMS baseline errors using 4 and 8 minutes of data for 
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baseline 1 and 2 are presented in Figure 3 f and Figure 32, respectively. Similar 

comparisons for the polar regions are shown in Figure 33 and Figure 34. 

In all cases, both equatorial and polar, using 8 minutes of data gives baselines 

within at most 4.5 cm of their true values. For such baseline errors, the differences 

between the deployment angle errors are known with accuracies of 2" or less. However, 

the fact that one deployment angle error cannot be specifically resolved is unavoidable. 

The deployment angle errors found here are used in the Kalman filter to be discussed in 

the following section. 
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Figure 34: RMS Errors of Baseline 2, Polar Cases 

5.2.2 I(alman FYter Attitude Detennination 
The roll and flap angle estimates resulting from the previous section are now used 

in a Kalman filter to solve for the attitude of the spacecraft. This is the second stage in the 

attitude determination process. The formulas of Section 2.2, Kalman Filter Equations, are 

used to sequentially filter the differential phase measurements created in the simulation. 

Because they are coupled, the TRACE spacecraft attitude and the flap angles of the solar 

panels cannot both be determined in a Kalman filter. Some assumptions were necessary to 

estimate the flap angles in the previous section, but the accuracy depends upon the initial 

uncertainty in the pitch and yaw angles of TRACE. Thus, the Kalman filter attitude 

determination is fundamentally limited in its performance capabilities. 
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After the initialization step of the previous section, the integer ambiguities are 

resolved for the SV's in sight. This means that the attitude is known within one 

wavelength, and so the integer ambiguities can be determined for any SV's that 

subsequently come into view. The determined deployment angle errors are used to form 

the transformation matrix from the body to solar panel reference frames. Equation 56 is 

then used to calculate the observed body frame baselines. Lastly, the line biases are as 

determined from the least-squares solution. The following sections describe the other 

quantities needed to run the Kalman filter. 

5.2.2.1 State Vector and State Transition Matrix 
Since the first step of the attitude determination process has provided most of the 

parameters needed in the differential phase equations, the only parameters to be 

determined in the Kalman filter are the three Euler angles for the attitude. The three 

angular rates associated with pitch, roll, and yaw will not be included here. Immediately 

after step one, then, the estimated attitude is nominal pitch and yaw, and a roll angle as 

previously computed. The current attitude estimate from the inertial to body frame will be 

referred to as er. The attitude is formulated as small corrections to the estimate as 

follows23 : 

B c I  =ape:' = ( I + @ " ) B ( y  (65) 

where I is the identity matrix and 0" is the skew-symmetric form of the vector 68: 
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Here, 60 is the small correction vector to the attitude and its components form the state 

vector x=[6e1 N2 6O3IT of the filter. Using Equation 66 to defme the dynamics of the 

correction angles, the state transition matrix Q, may be written simply as: 

a= I+@" 

5.2.2.2 Observation Mhhix 
To find the observation matrix necessary for the Kalman fdter, the derivative of the 

differential phase with respect to the state elements must be found. The differential phase 

of Equation 5 1 written to explicitly include the attitude transformation matrix "c' is 

Using Equation 65 this then becomes 

The partial derivative of the differential phase with respect to 60 is thus given by 
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Here, Bt is the skew-symmetric form of the baseline i. Equation 70 produces one 1x3 

row of the observation matrix H at the time t. The two rows of the observation matrix are 

formed by using Equation 70 for each of the two baselines. 

5.2.2.3 State Noise Covariunce Matrix 
The attitude control system of TRACE is expected to hold sun-lock within 2.5" as 

a conservative estimate. The limit cycle associated with this maximum pitch and yaw error 

is taken to be 24 minutes, one-fourth the orbital period of the spacecraft. In one-fourth 

the limit cycle, then, the pitch and yaw may change by as much as 2.5". Thus between 

measurement epochs, the attitude correction angles in the state may change by a maximum 

of 0.007At degrees, where At is the time between measurements in seconds. Thus the 

state noise covariance is given the value Q=(O.O07At)I. 

5.2.2.4 Measurement Noise Covanknce Matrix 
The covariance matrix R associated with the measurement noise is determined by 

using data from the JSC experiments described in Chapter 3, Noise Model Development. 

The covariance matrix of the differential phase residuals for two baselines in that 

experiment is simply taken as the 2x2 measurement noise covariance matrix for TRACE. 

The field data was used because of the lower variance of its noise. Note that R will not be 

diagonal because the same antenna is used as the master for each baseline. This introduces 

correlations into the measurement noise. 
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5.2.2.5 KaIman filter Results 
With all the parameters defined for the TRAGE mission, the Kalman filtering 

process outlined in Section 2.2 is now implemented. The test attitude history is shown in 

Figure 35. For demonstration purposes, the pitch and yaw are allowed to vary between 

+1.75", and the roll varies between So., The attitude results for the Kalman filter using 

perfect knowledge of the deployment angle errors are also included in the figure for 

reference. The errors are shown in Figure 36; the filter is seen to provide attitude 

information with 0.2" accuracy. 
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Figure 35: Reference Attitude History 
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Figure 36: Reference Attitude Errors 

The Kalman filter is next run for Case 1 , in which the roll angle and all the 

deployment angles are zero. The results of the initialization step are used to begin the 

process. The RMS roll angle error was found to be 0.7" after 8 minutes. The final RMS 

of the deployment angle errors were 12.6", 12.0", and 12.2", respectively (See Figure 

24(b)). Both line biases were found within 0.8 cm. Using all these errors in the Kalman 

filter leads to the attitude history shown in Figure 37. The filter performance seen in 

Figure 38 is close to that of the perfect assumption comparison case. The offsets seen in 

all three Euler angles are largely due to the line bias error. The large deployment angle 

errors, however, had little effect on the attitude accuracy. This is because the plane 

formed by the three antennas, but not the actual antenna positions, was well-determined. 



The results for Case 6 are also presented. In this case, the roll angle is zero and 

the second and third deployment angle errors are 10". The RMS errors were found to be 

7.5", 7.0", and 6.8' for the deployment angles and 0.77' for the roll. The line bias errors 

had RMS values of 1.3 and 1.1 cm. The attitude history and resulting errors for this case 

are shown in Figure 39 and Figure 40, respectively. Again, the noticeable offset in the 

yaw angle is due mainly to the line bias errors. When the simulations for Cases 7 and 8 

are run, the resulting attitude errors are consistent with the initial 0.5" uncertainty in the 

pitch and yaw. This highlights the fundamental limit on the accuracy of the results: 

deployment angle errors are equivalent to uncertainties in the pitch and yaw and cannot be 

readily separated. 
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Figure 37: Case I Attitude History 
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Figure 38: Case 1 Attitude Errors 
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Figure 39: Case 6 Attitude History 
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Figure 40: Case 6 Attitude Errors 
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6. Conclusions and Recommendations 
One possible approach to the use of deployable-mounted antennas in GPS attitude 

determination has been developed in this investigation. Because the baselines may differ 

greatly from their nominal values, the following two-step procedure for determining 

attitude is recommended: 

1. Determine baselines using least-squares and assuming nominal attitude. 

a) Compare estimates from 2,4,  and 8 minutes of data to ensure convergence 

at 8 minutes. Eight minutes of data is recommended because the baseline 

errors are half those obtained from 4 minutes. 

b) Use baseline through axis of symmetry to estimate roll angle. This 

baseline is projected onto the plane the solar panels would form at full 

deployment. The angle between the projected vector and the nominal 

baseline vector is taken as the roll angle. This angle is then used to roll the 

nominal body frame into the observed body frame. 

c) Geometrically determine depIoyment angle errors. If these errors are all 

nearly equal but nonzero, it must be decided whether this is a likely 

scenario. If not, then the errors are probably due to baseline inaccuracies, 

and the solar panels may be assumed to be fully deployed. Similar 

arguments may be made for deployment angle errors near 90". 

2. Use Kalman filter to continuously update attitude using deployment angle errors 

found in step I .  
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This study has shown that the use of deployables as anterina mounting structures 

can lead to difficulty in accurately determining attitude in the case of deployment failure. 

Any initial uncertainty in the pitch and yaw angles for the TRACE spacecraft are 

indistinguishable from solar panel deployment angle errors. However, for constant pitch 

and yaw errors within OS",  the relative deployment angle errors can be resolved within lo. 

These relative errors then lead to final attitude accuracy of OS",  even with actual 

deployment angle errors greater than 10". This is of course consistent with the original 

attitude assumption and implies that little or no improvement can be made to the initial 

pitch and yaw uncertainties. However, the roll angle is insensitive to errors in the 

deployment angles. In this study, roll could be determined within 0.5" using a 2.5 m 

baseline through the spacecraft axis of symmetry. Such an accuracy was obtained even for 

cases in which one of the solar panels affecting the 2.5 m baseline was completely 

undeployed. 

In the simulations, the plane formed by the three antennas could be well- 

determined, but not the distance of this plane from the origin of the body reference frame. 

If one of the antennas was known with greater accuracy, say 2 cm, then the positions of 

the other two could be determined to a similar accuracy. This suggests that at least one 

antenna should be placed directly on the body of the spacecraft so that its position is 

known to within a few centimeters. The other antennas could then remain on the solar 

panels without loss of attitude accuracy. 

To further improve the accuracy of the attitude deterrnined by the Kalman filter, 

the line biases and angular rates of the spacecraft could be included as state elements. The 
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rates were not included in this study because the sampling period, 2.5 seconds, was short 

enough that the attitude did not need to be propagated forward in time with rate 

information. Including the angular rates in the filter may permit longer sampling intervals 

to he used with little performance degradation, and is recommended for further study. 

The determination of the deployment angles errors may be avoided altogether if 

the baselines, no matter how they are oriented in the nominal body frame, are used to 

define the body frame. However, determining the deployment angle errors of the solar 

panels allows for a better understanding of the physical condition of the spacecraft. 

Knowing the positions of the solar panels might allow one to explain, for example, the loss 

of power from one or more arrays. Additionally, incomplete solar panel deployment could 

change the moments of inertia of the spacecraft. If the attitude control system was 

seriously affected, knowledge of the solar panel deployment angle errors could provide the 

means to correct the problem. Thus the estimation of the deployment angle errors is 

deemed a worthwhile endeavor. 
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