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I. INTRODUCTION 

A hollow-cathode based plasma contactor has been selected for use on 

International Space Station Alpha (ISSA) to control the electrical potential of the 

spacecraft structure. A plasma contactor is a device which ionizes an expellant gas 

and creates a localized plasma plume which can establish an electrical connection to 

another plasma such as the ambient space plasma. Through this connection the 

contactor may either emit electrons to or collect them from the ambient space plasma, 

thereby controlling the potential of the spacecraft to which it is connected. The 

hollow-cathode plasma contactor has many features, described elsewhere [ 1,2], which 

make it attractive for spacecraft potential control. Detailed theoretical models of 

space-station interaction with the Earth's ionosphere predict that the contactor will 

typically have to emit ampere-level currents to maintain the desired spacecraft 

potential [3]. 

A critical design requirement for any electrical device on ISSA, including the 

plasma contactor, is that it not create electrical noise that can adversely affect the 

operation of other electrical and electronic equipment. Electrical noise is defined as 

"unwanted signals that produce undesirable effects in the circuits of the control 

systems in which they occur" [4]. Noise is random, spontaneous fluctuations 

resulting from the fundamental physics of electrical devices [5] and hence must be 
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analyzed statistically. It limits the performance of electrical systems and it can have 

fatal consequences in medical and military applications 161. Operation of the plasma 

contactor might generate types of noise typically found in electrical circuits and also 

noise peculiar to plasma sources. 

Some kinds of electrical noise commonly found in conventional electrical 

circuits are thermal noise, shot noise, and flicker noise. Thermal noise is due to the 

random electron motions in a conductive material, e.g. a resistor, because of its finite 

temperature. Statistically, at any point in time there may be more electrons at one 

end of the resistor than the other, hence a voltage difference and a current will exist 

in the resistor. This thermal noise is measurable and has a well-defined root-mean- 

square value [5,73. Shot noise is a result of discontinuous current flow, i.e. pulses of 

current caused by the uneven flow of discrete charges. It is associated with current 

flow across a potential barrier and hence is observed in diodes and vacuum tubes, for 

example [5,rJ. Flicker noise; also known as excess, contact, or llfnoise; results 

from the fluctuating conductivity of a device through which a direct current is 

flowing. First observed in vacuum tubes, it is also seen in composition resistors, 

diodes, and light sources [5,3. The hollow-cathode plasma contactor could be 

expected to produce any of these types of noise. 

Perhaps the most common examples of noise caused by plasma phenomena are 

natural, e.g. lightning, sunspots, and cosmic noise. On Earth, plasma noise from gas 

discharge tubes has historically been a popular and reliable noise source for testing 

electrical systems [7]. Plasma noise associated with hollow cathode operation may be 

caused by many different mechanisms in addition to those mentioned above. There 
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may be natural fluctuations in the plasma potential, the d 

and also in the mean electromagnetic fields that exist in the plasma. These 

fluctuations may be independent of, or may be related to, various types of waves 

which can propagate in a plasma. These waves may be standard electromagnetic 

waves or plasma waves such as ion acoustic waves or electrostatic waves [8,9]. 

of ions and electrons, 

Extensive discussions of plasma waves may be found in refs. 8 and 9. 

Electrical noise may be separated into two groups as suggested in Fig. 1: 

conducted emissions (CE) and radiated emissions (RE). Radiated emissions may be 

further classified as either far-field or near-field radiation. Far-field radiation exists 

at D B X / ~ ~ F ,  where D is the distance through which the noise is radiated, and X is the 

wavelength of the radiation. The near-field exists at D = M27r and D Q M27r 

[10,11,12,13]. 

All types of noise which may be present in a system can be classified as RE or 

CE. There are four coupling mechanisms, or path classifications, by which 

electromagnetic energy, including noise, can be transferred: 1) conductive (via direct 

contact), 2) capacitive (via electric fields), 3) inductive (via magnetic fields), and 

4) radiative (via transverse electromagnetic waves) [ 101. Conducted emissions couple 

directly along a solid conductive medium, such as an electrical wire, as current 

fluctuations. Radiated emissions, on the other hand, couple through a diffuse 

environment such as space [4,13]. In the case of near-field radiation, coupling occurs 

either capacitively or inductively. At the frequencies of interest in this study, the 

radiation will be entirely near-field, i.e. there will be no TEM waves which, by 

definition, exist only in the far field [12]. 
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Special difficulties are encountered when attempting tb measure RE produced 

by an operating plasma contactor. The plasma plume created by the contactor 

expands out into space to a size many times larger than the contactor itself [3,14] and 

it may thereby envelop potential victim equipment. In ground-based experiments, the 

plasma plume will spread to fill a vacuum chamber, and any instrument within the 

chamber that is used to measure RE, such as an antenna, will necessarily be 

immersed in this plume. 

In this study, a monopole antenna was used to sense RE produced by the 

plasma contactor. The monopole antenna directly measures only electric-field 

fluctuations, thus the noise sensed in a vacuum chamber by the antenna might come 

from any of the three sources depicted in Fig. 2. First, the noise may be near-field 

EM waves which are produced some distance from the antenna either at the contactor 

(source #1) or by the plasma (source #2) and must pass through the plasma to reach 

the antenna. On the other hand, the noise may be electric-field fluctuations in the 

plasma caused by the motion of charged particles (current fluctuations) in the 

immediate vicinity of the antenna (source #3). These current fluctuations in the 

plasma are also known as plasma electrostatic waves [8]. Figure 3 summarizes these 

three noise sources and the relationships between them. As suggested in the figure, 

radiated emissions due to current fluctuations (electrostatic waves) that occur adjacent 

to the antenna will be designated locally-produced noise. Radiated emissions due to 

remote, near-field EM waves will be designated remotely-produced noise in this 

report. 
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Included in Fig. 3 is a description of which contactor noise production 

mechanisms are addressed by existing military testing standards which have been used 

extensively in the past to regulate RE on spacecraft [refs. 15 and 16, for example]. 

The locally-produced noise in particular complicates the interpretation of RE 

measurements in accordance with these standards. This complication is a 

consequence of the fact that the standards [ I 7  and specifications [18j apply in general 

to "black boxes" consisting of self-contained electronic components and 

interconnecting cables. An assumption implicit in the application of these testing 

standards is that the device being tested is the source of all noise. In the case of a 

hollow-cathode plasma contactor this means that the testing standards for RE 

measurements are meant to apply only to the noise produced by the contactor itself, 

not to any noise that may be produced in the contactor plasma. An antenna used to 

Sense RE, however, does not distinguish between these sources of noise. Now recall 

that the purpose of the specifications is to assure that noise associated with plasma 

contactor operation will not interfere electrically with the operation of other 

equipment. Thus, both locally and remotely-produced RE must be considered when 

defining the noise produced by the plasma contactor. In this report, the term radiated 

emissions will be used to refer to all of the noise detected by a monopole antenna. 

In addition to problems related to the sources of RE, other problems arise 

when RE associated with a plasma device are measured with an antenna in ground- 

based facilities. For example, when tests are performed in metal vacuum chambers, 

EM waves that are produced by contactor operation will reflect from chamber walls 

and create regions of constructive and destructive interference that could lead to 
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inaccurate RE measurements in those regions. Whether feflbctions are significant or 

not depends on the frequency of the wave and its wavelength compared to the 

experimental system dimensions and this must be investigated. Furthermore, the 

conductive surfaces of an antenna immersed in the contactor plasma plume may 

interact with the plasma and affect the ability of the antenna to make accurate 

measurements. These problems must be overcome, or at least their effects must be 

recognized and taken into account, before RE can be reliably measured. 

Additionally, it is desirable to determine the causes of plasma contactor RE so 

that noise levels may be reduced through engineering design and proper choice of 

operating conditions. Conducted emissions also need to be measured and their 

relationship to RE needs to be determined so that physical relationships between RE 

and CE can be established. Sources of noise which may be specific to ground-based 

tests (e.g. those due to laboratory power supplies) also need to be identified. 

Experimental [ 191 and theoretical [20] analyses have suggested a relatively 

good correlation between the magnitudes and trends of RE and CE. A theoretical 

model [20] has been used to predict RE data using experimentally obtained CE data, 

and these predicted RE data match the RE measured with a monopole antenna quite 

well. The model suggests that at low frequencies (less than 1 MHz) the contactor 

plasma behaves as a resistive medium and that the noise sensed by the antenna at 

those frequencies is due to current fluctuations in the conducting plasma near the 

antenna rather than to remotely-produced radiation. At frequencies greater than 

1 MHz, it is suggested that RE resulting from the time-varying current fluctuations in 
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the plasma far from the antenna begin to contribute to the electric-field fluctuations 

sensed by the antenna. 

Finally, it should be noted that plasma contactor experiments have been 

conducted in low-Earth orbit from the space shuttle cargo bay. During these tests, 

there were no reports of contactor operations interfering with either orbiter systems or 

other scientific payload experiments [21]. This is a good indication from space-based 

experiments that contactor RE and CE may be within allowable levels for space- 

station operation. 

This thesis investigates 1) the influence of the contactor plasma on the 

operation of a monopole antenna used to measure RE and methods that can be used to 

characterize and compensate for this, 2) difficulties associated with measuring 

contactor noise when operating in ground-based facilities, 3) the sources of and the 

relationship between RE and CE, and 4) the appropriateness of testing standards and 

specifications derived from military ones for contactor RE measurements. 
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II. EXPERIMENTAL APPARATUS AND PROCEDURES 

Many of the experiments performed in this study were cmducted in the 5.3-m 

long by 1.2-m diameter stainless-steel vacuum-tank facility shown schematically in 

Fig. 4. The plasma contactor was situated at one end of the tank, and a simulator, 

that sustained an ambient plasma representative of the space plasma, was located 

2.7 m from it. The contactor could be biased to emit electrons to the simulator and 

the tank walls through the ambient plasma. A monopole receiving antenna was 

positioned on a cart that could be traversed along the tank to measure RE at various 

locations. Except where specifically mentioned, the vacuum-tank RE data that will be 

presented in this paper were acquired with the antenna monopole tip 130 cm from the 

contactor. The contactor, simulator, and receiving antenna monopole were coaxial 

with the tank centerline. For certain tests, a broadcast antenna was also placed in the 

vacuum tank as shown in Fig. 4; it was removed when not needed for a specific 

experiment. 

Some of the experiments were performed in the vacuum-tank facility with a 

different equipment configuration, namely that shown in Fig. 5. In this altered setup 

the locations of the contactor and simulator were interchanged and they were 

positioned along the tank centerline so that they were facing each other. The 

receiving antenna was mounted on the cart with its baseplate horizontal and the 
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monopole pointed upward so that the antenna could be positioned behind the contactor 

to make noise measurements there. Experiments conducted with the altered 

configuration will be specifically identified in the text. 

The plasma contactor used in this study, which is shown schematically in 

Fig. 6a, consisted of a hollow cathode, through which xenon @e) expellant was 

supplied at a rate mc, and an anode composed of a stainless-steel disc and a tantalum 

loop in the same plane. An electrical discharge was established between the hollow 

cathode and the anode, and this discharge sustained the plasma plume that contacted 

the ambient plasma. The cathode insert was made of tantalum foil wound as a hollow 

cylinder and coated with a low work-function material (BaC03 and SrC03) which 

would emit electrons when heated. These electrons would ionize the expellant gas 

and flow to the downstream anode, simulator, and tank wall surfaces. Hollow- 

cathode operation has been described in detail elsewhere [1,2]. 

The simulator, shown in Fig. 6b, produced a low-temperature, diffuse plasma 

by ionizing Xe expellant in a small discharge chamber that employed a hot-filament 

cathode [22]. Several magnets were placed in the discharge chamber to induce a 

magnetic-field environment that would improve the expellant ionization efficiency by 

impeding the direct flow of electrons from the tungsten-wire cathode to the discharge- 

chamber body (anode). This relatively quiescent, hot-filament-cathode device was 

used so noise that might be produced by a second hollow cathode in the simulator 

would not be present to complicate the experimental results. 

The contactor, simulator and tank were connected together electrically as 

shown in the schematic of Fig. 7. Power supplies are depicted in the figure as 

14 
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Fig. 6 Plasma Contactor and Simulator Schematics. 
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squares, and meters as circles. A discharge between the hollow cathode and anode 

was initiated by establishing the Xe flow, heating the cathode insert with the heater 

power supply and then increasing the contactor discharge voltage (VcD) until a 

contactor discharge current (JCD) began to flow. The simulator discharge was 

initiated by passing a current (JsF) through the hot filament cathode that heated it to 

thermionic emission temperatures, then applying the simulator discharge voltage 

(VsD) to establish the simulator discharge current (JsD). The contactor was biased 

using the bias supply to a voltage (V,) that was sufficiently negative with respect to 

the simulator anode and tank walls (which were at ground potential) to induce the 

desired electron emission current (JCE). The majority of the electrons that were 

emitted by the contactor were collected on the tank walls because of their large area 

compared to the simulator anode. (Although the contactor could also be biased 

positive of the simulator to collect electrons from the simulator, this study focuses 

only on electron emission). 

Also shown in Fig. 7 is a 1-Q shunt resistor which was used to monitor the 

current fluctuations (conducted emissions) in the contactor-current return line. Lastly, 

the air-core transformer shown was installed so that current fluctuations could be 

induced at a prescribed frequency in the contactor-current return line. The 

transformer was driven by a radio-frequency (RF) power amplifier which received 

input from a signal generator. 

Noise measurements were also made when the plasma contactor was operating 

in the bell-jar facility, shown in Fig. 8. No simulator was used in this facility; the 

electrons which were emitted from the contactor flowed to a thin annular electron- 
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collection surface located downstream of the contactor. Experiments were conducted 

in the bell-jar facility because 1) RE measurements could be made with the antenna 

external to the system (i.e. not immersed in the plasma), and 2) the glass bell jar is a 

non-conducting surface and thus will not reflect EM waves. 

Indicated in Fig. 8 by dashed lines is a moveable metal cylinder that could be 

placed over the bell jar and antenna. The metal cylinder was used to determine the 

changes in RE induced by placing this conducting surface around the plasma 

contactor. The receiving antenna used in the bell-jar tests was the same receiving 

antenna used in the vacuum-tank tests and it could be positioned at various locations 

above the contactor with its monopole aligned along the contactor centerline. The 

electrical circuit that was used for bell-jar experiments is the same as that shown in 

Fig. 7, except the simulator and its associated power supplies were replaced with the 

annular electron-collection surface. Additionally, the bell-jar electrical circuit was 

allowed to float with respect to the aluminum base flange which was at ground 

potential. 

For experiments conducted in the vacuum tank, the standard operating 

conditions were a discharge current (JcD) of 0.6 Amperes and an expellant flow rate 

(mc) of 4.0 sccm of Xe. The contactor typically was operated in the 'clamped mode' 

(JCE = 2 A) or the 'idle mode' (JcE = 0 A) although other emission currents were 

also investigated. These standard conditions were the same for the bell-jar facility 

except a lower expellant flow rate (0.72 sccm Xe) was required to assure stable 

operation at the desired contactor operating points. The pressure (Po) in the vacuum- 

tank and bell-jar facilities during experiments was nominally 20-30 pTorr. 
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The monopole receiving antenna used for these experiments consisted of a 

51-cm x Sl-cm baseplate, signal amplifier, and a telescoping monopole with a 

diameter that depended on the monopole length. The length was varied by collapsing 

or removing parts of the monopole to obtain lengths of 19 cm (0.7 cm dia.), 1.8 cm 

(1.1 cm dia.), or 0.5 cm (0.3 cm dia.). Electric-field fluctuations sensed by the 

antenna were computed using the signal output of the amplifier and a calibration 

factor, provided by the manufacturer for each of the different monopole lengths used 

in this study. The broadcast antenna was constructed using a 41-cm diameter 

baseplate and a 56-cm long, 1.9-cm diameter monopole wrapped with a thin dielectric 

material and was driven by a signal generator (5 V maximum peak-to-peak amplitude 

and 50-0 impedance). The broadcast antenna monopole and baseplate are physically 

small compared to the shortest wavelength of radiation investigated in this study (X/18 

and X/23, respectively). The broadcast antenna calibration factor is not known, but 

the frequency-dependant radiation pattern was measured as described in Appendix A. 

Noise measurements were made by recording the voltage fluctuations across 

the shunt resistor (GE) and the signal output from the receiving antenna amplifier 

(RE) on an oscilloscope. Typically, these data were acquired sequentially although 

they were occasionally acquired simultaneously to demonstrate time correlation 

between signals. The frequency ranges and resolution bandwidths with which data 

were recorded, explained in ref. 15, are dictated by established testing standards. 

The data, which then were analyzed on a computer using a Fast-Fourier-Transform 

technique [19], are presented 

in the power spectral density 

in two different ways. Radiated emissions are displayed 

(PSD) format, Le. mean-squared signal amplitude 
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divided by the resolution bandwidth, in the units used in typical NASA specifications 

(dB[CLV/m/MHz] E 10 loglo [(~v/m)~/MHz]) [15,16]. Conducted emissions are 

shown as current fluctuation amplitude divided by emission current (dB[CLA/A] = 

20 loglo [CtA/A]). In some cases, RE and CE data are both presented together in the 

PSD format (log lo[(V/m)2/Hz] and log lo[mA2/Hz], respectively) which facilitates the 

identification of frequency-dependent noise structures and also direct comparison of 

corresponding RE and CE data. 

The noise data acquired during this experimental investigation were found to 

be fairly repeatable within each experiment and also from day-to-day. Typical RE 

data acquired with the monopole antenna when the plasma contactor was operating in 

the clamped mode are plotted in Fig. 9 as dB(pV/m/MHz) v. frequency for 

experiments performed on two different days (Tests A and B). It can be seen that the 

two sets of data from Test A are very similar. At the majority of frequencies they 

agree to within 1-2 dB, although there are rare differences of as much as 10 dB near 

30 kHz and 3 MHz. The measurement uncertainty due to the data acquisition and 

analysis process is on the order of 2 dB [19] so these data are considered to be 

essentially identical. Comparison of the RE data from Tests A and B demonstrates 

that the day-to-day measurement repeatability is also fairly good. Differences 

between RE data are less than about 10 dB at all frequencies. Analysis of CE data 

showed repeatability similar to that of the RE data. Thus, when comparing noise data 

acquired during this study, differences of 10 dB or less will generally be considered 

to be within day-to-day repeatability. 
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The RE data that are presented in this report will also be compared to 

specifications that have been set for the maximum allowable RE produced by the 

plasma contactor. The specifications shown will be those set by the U.S. military for 

broadband RE produced by equipment installed on spacecraft [17,18]. Recall, 

however, that caution must be exercised when comparing RE data to specifications 

because of the inherent assumption in the military testing standards that noise is 

generated at the device under test only. 
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III. EXPERIMENTAL RESULTS AND DISCUSSION 

Antenna Measurement Methods in a Plasmq 

It has been shown that signal levels measured using a monopole antenna with 

its conductive surfaces exposed to a plasma can be reduced substantially below true 

values because of signal current flow through a low-impedance path which can 

develop through the plasma between the monopole and baseplate [19]. Those 

experiments were performed with the antenna baseplate fixed at ground potential. In 

this study, a series of experiments was conducted to investigate the interaction of the 

ambient plasma with the conductive surfaces of the antenna when the baseplate 

potential was changed. Specifically, it was desired to determine which antenna 

configuration, i.e. the amount of isolation from the plasma and also the potential of 

the baseplate, would yield the most accurate measurements. 

An initial test was conducted in the vacuum-tank facility in which RE were 

measured with the monopole and baseplate exposed to the plasma and with the 

baseplate either floating or grounded (Le. electrically connected to the tank wall 

which was collecting most of the electrons emitted by the contactor). The results of 

this test are shown in Fig. 10 where RE data are plotted as dB(pVlmlMHz) v. 

frequency. The data indicate that signals sensed by the antenna when the baseplate is 

grounded are substantially lower than those sensed when it is floating. In fact, the 
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signals measured when the baseplate was grounded are nearly the Same as the ambient 

noise floor, i.e. the signal levels measured when the plasma contactor and simulator 

were not operating. It appears that grounding the baseplate introduces an interference 

that makes the antenna insensitive. 

This test was repeated in a separate experiment in which the antenna monopole 

was isolated from the plasma by wrapping it with a thin layer of dielectric material. 

Figure 11 displays the results of this test along with the RE data from Fig. 10 where 

the monopole was exposed to the plasma and the baseplate was floating. It is evident 

from the data in Fig. 11 that, when the monopole is isolated from the plasma, similar 

RE are obtained whether the antenna baseplate is grounded or floating. These data 

are also very similar to those acquired when the.monopole is exposed to the plasma 

and the baseplate is floating. 

The results of Figs. 10 and 11 are consistent with the results of a previous 

investigation [19]. It appears that, when the monopole is exposed to the plasma and 

the baseplate is grounded (Le. electrically connected to the tank walls), a low- 

impedance path develops between the monopole and the baseplate which substantially 

reduces the signal levels measured by the antenna. It was also discovered, however, 

that this effect was not present when the baseplate was floating instead of grounded. 

This suggests that, under these prevailing ambient plasma conditions, the baseplate 

does not have sufficient area to make direct coupling between the monopole and the 

baseplate significant, and that the added area of the tank walls is necessary for 

substantial signal reduction. 
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An additional experiment was conducted in which the antenna baseplate was 

isolated from the plasma by enclosing it in mylar. This experiment was performed 

when the contactor and simulator positions in the vacuum-tank were interchanged, 

thus the RE may be expected to be somewhat different than those shown in the 

previous two figures. During this test, the antenna monopole was isolated from the 

plasma and the baseplate was allowed to float. Radiated-emissions data acquired 

during this test are compared in Fig. 12 to RE data acquired in a separate test when 

the baseplate was exposed to the plasma. The small differences between the two RE 

spectra are within day-to-day variations in experimental conditions, thus it appears 

that isolating the baseplate from the plasma with the monopole isolated does not 

significantly affect antenna measurements. 

The results of these experiments suggest that all that is required to reduce 

interference from the plasma to an acceptable level when measuring RE is to prevent 

the monopole from coupling to the baseplate through the tank walls. This can be 

accomplished by isolating the monopole from the plasma or by leaving the monopole 

exposed and allowing the baseplate potential to float. There is a complication 

associated with floating the baseplate, however, that may arise when making RE 

measurements with the antenna. This can be understood by considering the 

mechanism by which the antenna detects electric-field fluctuations. Electric-field 

fluctuations near the antenna induce currents on the surface of the monopole which 

induce a voltage difference between the monopole and baseplate across an impedance 

in the amplifier. The amplified voltage is the output signal from the antenna. If the 

baseplate is allowed to float, its potential may fluctuate in response to fluctuations in 
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potential or density of the plasma adjacent to it. A fluctuating baseplate potential 

would establish a fluctuating reference potential and, if those fluctuations are large 

enough, would create false signals in the RE spectra. This effect may in fact be the 

cause of the differences observed in Fig. 11 near 2-3 MHz. Thus, it was determined 

that the most accurate RE measurements would be made with the antenna monopole 

isolated from the plasma and the baseplate grounded. Although it was also 

determined that the baseplate could be isolated or left exposed the plasma, it was left 

exposed for simplicity. 

Another possible error that must be avoided when making antenna 

measurements in a plasma environment is saturation of the antenna amplifier circuitry. 

Saturation occurs when the amount of current induced in the antenna monopole by 

external electric-field fluctuations is too great for the amplifier circuitry to process. 

In such a case, the output signal is reduced in magnitude (Le. compressed) by the 

circuitry. Compression can frequently be recognized in analyzed data because signal 

amplitudes are compressed by approximately the same amount at the majority of the 

frequencies investigated. Saturation and the resulting data compression may be 

eliminated by reducing the amount of current induced in the monopole by reducing its 

length. It may be concluded that the length has been reduced sufficiently when 

decreases in length followed by signal analysis using proper calibration factors for 

each length yield RE spectra that are essentially the same over the full frequency 

range. 

Several tests were conducted to determine the monopole length that should be 

used to avoid amplifier saturation when RE measurements are being made. These 
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tests were performed in the vacuum-tank facility with the altered configuration 

(Fig. 5) and the monopole 55 cm upstream of (behind) the contactor orifice. 

Figure 13 compares RE data acquired with three different monopole lengths under 

similar test conditions. It can be seen from the figure that the data acquired with the 

73-cm-long monopole are more than an order of magnitude less than the data acquired 

with the other two monopole lengths at almost all frequencies; thus data acquired with 

the 73-cm monopole are compressed. The data acquired with the 19- and 0.5-cm- 

long monopoles, however, are very similar at frequencies above 20 kHz and hence it 

is argued that neither of these sets of data are being compressed. At frequencies 

below 20 kHz the shorter monopole gives lower output because the sensitivity of this 

antenndmonopole configuration is poorer at lower frequencies. Additionally, the 

signal-to-noise ratio in the amplifier circuitry becomes a performance-limiting factor 

with shorter monopoles. In fact, experiments have shown that RE data acquired with 

the shorter monopole (0.5 cm) can yield electric-field data that are masked by the 

noise floor in the amplifier circuitry at frequencies greater than 10 MHz, though this 

effect is not observed in Fig. 13. Thus, true contactor RE spectra at higher 

frequencies may be less than those indicated by antenna measurements made with the 

shorter monopoles. For these reasons, it is desirable to use the longest monopole that 

does not lead to saturation. 

A comparison of the data in Figs. 11 and 12 shows that the magnitudes of the 

RE levels are generally lower in Fig. 12 than they are in Fig. 11. This is because the 

receiving antenna was positioned in different locations with different orientations in 

each experimental configuration (the reason for these different RE magnitudes will 
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become clear later in the tekt). The data of Figs. 10, 11, and 12 were acquired with 

sufficiently short antenna monopoles, and thus were not compressed. 

Influence of Vacuum-Chamber Walls on RE Measurements 

Several tests were conducted to determine the effects of EM wave interactions 

with the walls inside the vacuum tank as a function of frequency. These tests were 

performed without a plasma present in the tank, i.e. the contactor and simulator were 

not operating. The first test was conducted with the broadcast antenna monopole 

aligned along the tank centerline. Using the cart, the receiving antenna was moved 

along the tank centerline and the amplitudes of the signals from it were recorded from 

the oscilloscope. 

Representative data for several frequencies are shown in Fig. 14 as normalized 

amplitude (amplitude divided by maximum amplitude) v. distance between antennae 

base plates. At frequencies of 1 MHz and below, the signal levels show the same 

behavior along the tank centerline. At the higher frequencies, the data show 

markedly different behavior. This test was repeated with the broadcast antenna 

positioned off of the tank centerline, the position seen in Fig. 4, and these results are 

shown in Fig. 15. Again, at frequencies of 1 MHz and below, the signal levels show 

the same behavior along the tank centerline, and at higher frequencies there is much 

different behavior. Although it is possible that the effects observed in Figs. 14 and 

15 are due in some part to the frequency-dependent radiation pattern of the broadcast 

antenna, this is not considered to be a significant factor. The measured radiation 
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patterns for several frequencies (see Appendix A) have no prominent radiation lobes 

that might cause the effects seen in those figures. 

The data of Figs. 14 and 15 show behavior that is indicative of that found in 

microwave cavity resonators. In order to determine if resonance was a possibility, 

the resonant electromagnetic modes of a cylindrical cavity having the same 

dimensions as the vacuum tank were investigated. A simple analysis [23] indicated 

that the lowest resonant frequency possible for the Transverse Electric mode was 

about 150 MHz, and that for the Transverse Magnetic mode was about 190 MHz. It 

is known, however, that discontinuities and obstructions in a cylindrical cavity, such 

as all of the equipment inside the vacuum tank, can change the resonant frequencies 

of the system [23]. It is unlikely, though, that this effect will cause the resonant 

frequencies to decrease to as low as 5 MHz, where the resonant-like behavior is seen 

in the vacuum tank. 

Nonetheless, it is apparent from the data in Figs. 14 and 15 that some type of 

interaction is taking place between the vacuum-tank equipment and the EM waves that 

depends on frequency and location in the tank. The vacuum-tank contains many 

different metallic objects of various sizes including the cart and positioning system for 

the receiving antenna, the simulator and its associated hardware, and numerous other 

wires and objects that are not a part of this experimental study. The electromagnetic 

fields produced by the broadcast antenna will interact with all of these objects 

differently at different frequencies and this might affect the measurements made with 

the receiving antenna. Hence, it is extremely difficult to determine or predict 
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accurately the extent to which the metallic surfaces in the vacuum tank will influence 

the measurement of plasma contactor RE with the receiving antenna. 

So, while the data of Figs. 14 and 15 do not conclusively show that EM waves 

are being reflected from the walls of the vacuum tank, it is acknowledged that this is 

a possibility. Additionally, it is recognized that some phenomenon exists which 

causes EM waves at frequencies above a few MHz to behave unusually inside of the 

vacuum tank, depending on frequency and location in the tank, and that this must be 

remembered when interpreting RE measurements. When the plasma contactor is 

operating, however, the plasma in the tank will alter the behavior of the 

electromagnetic fields and it will also provide a mechanism for attenuation of any EM 

waves which are travelling through the plasma. Thus, the effects of interactions of 

EM waves with the metallic surfaces in the vacuum tank may be mitigated and may 

not even be a problem at all. 

A direct comparison of EM-wave-reflection effects with and without an 

electrically conductive surface surrounding an operating plasma contactor was 

performed in the bell-jar facility. In this experiment the receiving antenna was 

located at the top of the glass bell jar so that the metal cylinder could be placed over 

both it and the bell jar easily and quickly. Figure 16 shows a typical direct 

comparison of clamped-mode RE data acquired with and without the cylinder 

surrounding the bell jar. The data indicate that, within experimental error, there is no 

difference in RE spectra acquired in the bell-jar facility if the plasma plume is 

surrounded by a conductive surface or not. Idle-mode RE data acquired with and 

without the metal cylinder in place are compared in Fig. 17. With the exception of a 

37 



0 co 
c 

3 
P P 

0 
0 
P 

38 



w e n  
7" > 7" ' 

0 
00 
r 

0 
c\l 

0 
0 0 

(D 

39 



modest, reproducible difference in data near 10 H z  the data are nearly identical. 

Since the reflective metal cylinder might induce EM wave reflections at some 

frequency, the results of Figs. 16 and 17 suggest that EM waves may not be the 

source of the noise sensed by the antenna at any of the frequencies investigated when 

a plasma is present, although this possibility is not excluded. 

The results of EM-wave-reflection experiments show that caution must be 

exercised when interpreting RE data acquired in the vacuum-tank facility. Data 

collected at frequencies greater than 1 MHz may not represent true contactor RE 

because of the interactive effects of EM waves with tank metallic surfaces. The 

results of the bell-jar experiment, however, indicate that no reflection effects are 

observed at any frequency when the contactor is operating in that facility. Extension 

of these results to the vacuum tank is difficult because of the geometrical differences 

between the two facilities, and also because of the different contactor operating 

conditions in each facility. It may be concluded, though, that EM wave interactions 

with the vacuum-tank metallie surfaces are probably not important except at the 

higher frequencies where the wavelengths are comparable to the tank dimensions. 

Noise Induced bv Power Supplies 

Several experiments were performed to determine the extent to which RE and 

CE were induced by laboratory power supplies. Series-connected groups of lead-acid 

batteries were used to replace the conventional laboratory contactor-discharge, 

simulator-discharge, and bias power supplies. The laboratory equipment was set up 

so that the power supplies could be switched from conventional to battery power 
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sufficiently quickly (a few seconds) so that significant changes in flow or discharge 

conditions were unlikely. Both RE and CE were measured using various 

combinations of battery and conventional power supplies to determine the baseline 

noise levels associated with the three power supplies. These tests were performed in 

the vacuum-tank facility with the altered configuration and the receiving antenna 

located 100 cm downstream of the contactor. 

The effect of changing all of the aforementioned power supplies from 

conventional to battery on clamped-mode RE data is shown in Fig. 18 where it is seen 

that the data are essentially identical. Idle-mode RE data, shown in Fig. 19, are also 

very similar although there are minor differences near 500 kHz. Data were also 

acquired with all other mixes of conventional and battery power supplies and the 

results were the same, indicating that none of the conventional power supplies were 

contributing significantly to the noise sensed by the antenna. Conducted-emissions 

data were measured similarly and those results are seen in Fig. 20 as dB(pAIA) v. 

frequency. At frequencies below 1 kHz there are substantial differences between the 

two spectra, while at higher frequencies the differences are minor. By studying the 

effects of the various possible mixes of battery and conventional power supplies, it 

was discovered that the bias supply caused the higher CE noise levels shown below 

1 kHz in Fig. 20. 

The results of these comparative experiments conducted with conventional and 

battery power supplies lead to the conclusion that plasma phenomena rather than 

power supplies are the sources of noise sensed by the antenna and that noise produced 

by the contactor is not amplified by the power supplies. The results also indicate 
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that, at frequencies between 1 kHz and 30 MHz, phenomena related to the operation 

of the contactor and/or simulator are the source of CE. 

RelationshiD Between RE and CE 

Typical clamped-mode RE and CE data acquired with the contactor operating 

in the vacuum-tank facility are compared in the power spectral density format in 

Fig. 21. Here, CE data are presented as mA2/Hz and RE data as (V/m)2/Hz. These 

two sets of data show the same general trends and are proportional in the frequency 

ranges 3 to 40 kHz, and 200 to 800 kHz. These trends suggest that there is a direct 

relationship between RE and CE at these low frequencies. At frequencies greater 

than 1 MHz, the correlation between the two sets of data appears to be poorer. 

Comparison of RE and CE data acquired when the contactor was emitting 1 A of 

current showed an even better correlation at frequencies less than 1 MHz. 

A qualitative test in which the responses of the antenna and shunt resistor were 

compared in the time domain yielded the typical data shown in Fig. 22. These are 

simultaneously-acquired, raw RE (output of the antenna) and CE (voltage fluctuations 

across the shunt resistor) data from a bell-jar experiment. It can be seen that the 

general trends of both RE and CE data are very similar, and that several peaks occur 

in each set of data at the same times (e.g. near 22 p e c  and 34 psec). The latter 

observation is important because it indicates the two signals are in phase at the lower 

frequencies. Although the correlation between RE and CE data measured in the 

vacuum tank was not as good as that for the data of Fig. 22, the signals still 

correlated reasonably well at lower frequencies. Encouraged by these results and by 
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theoretical predictions, several experiments, described in the following sections, were 

undertaken to investigate the relationship between RE and CE at various frequencies. 

Electromagnetic Wave Broadcast ExDerimentS 

Experiments were performed in the vacuum-tank facility to determine the 

nature of EM wave behavior in the contactor-plasma plume. The broadcast antenna, 

positioned in the tank as shown in Fig. 4, was used to transmit EM waves of a 

prescribed frequency into the contactor plasma and both RE and CE data were 

recorded. Representative RE data are shown in Fig. 23 for no-broadcast, 100-MIz- 

broadcast, and 10-MHz-broadcast cases. No signal can be seen above normal 

contactor noise (no-broadcast condition) at 100 kHz for that broadcast condition. 

Large peaks can be seen, however, at the fundamental and the first harmonic for the 

10 MHz broadcast condition (the first harmonic is produced in the RF supply that 

powers the broadcast antenna and is unavoidable). Except for these peaks in the 

10 MHz broadcast test, the RE spectra for both broadcast tests are the same as for the 

no-broadcast condition. Additional tests were performed in which broadcast waves 

were successfully detected above the normal contactor noise at frequencies as low as 

1 MHz. An understanding of the theory of the interaction between an electromagnetic 

wave and a plasma can help explain these results. 

In a collisionless, uniform plasma there is a unique, critical frequency, called 

the plasma frequency, above which TEM waves will freely propagate through the 

plasma, At frequencies less than the plasma frequency, TEM waves will be 

completely reflected by the plasma. Recall that a collisionless plasma is a perfect 
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conductor and hence has zero skin depth [24]. If collisions are allowed, low- 

frequency waves (compared to the plasma frequency) will not be completely reflected 

but will penetrate and be attenuated some distance into the plasma determined by the 

plasma skin depth. In a collisional, non-uniform plasma such as that produced by the 

contactor and simulator there will not be a sharp cutoff but rather a range of 

frequencies near the plasma frequency in which waves will be attenuated to varying 

degrees [8]. Certainly, very-low frequency waves will be entirely reflected and/or 

attenuated by the plasma and very-high frequency waves will pass completely through 

the plasma. The plasma frequency in the vacuum-tank varies with position in the 

tank, but is expected to be of the order of 10 MHz on the tank centerline 1 m from 

the contactor [19]. Thus it is reasonable that the. 10 MHz signal is detected by the 

receiving antenna (and plausible that the 1 MHz signal is, too, even though it will be 

attenuated by the plasma much more than is the 10 MHz signal), while the 100 W z  

signal is not because it is reflected/attenuated completely by the plasma before 

reaching the receiving antenna. Recall, also, that these signals detected by the 

receiving antenna are near-field and will interact differently with the plasma than the 

TEM waves discussed here. 

A closer analysis of the magnitude of the 100 kHz signal, which was 

investigated at several receiving antenna locations in another experiment, supports this 

argument. During this experiment the broadcast antenna transmitted the 100 MIz 

signal inside the tank when no plasma was present as well as when the contactor was 

operating in the clamped mode. In both cases the amplitude of the signal generator 

driving the broadcast antenna was the same. When the contactor was operating in the 
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clamped mode, it was observed that a 100 kHz signal abbve the normal contactor 

noise was not detected by the receiving antenna as its position was varied between 

130 to 210 cm from the contactor. Since no 100 kHz signal level was detected, the 

signal magnitude can be no greater than the magnitude of the plasma noise floor 

which masks it. The results of the two tests are shown in Fig. 24 where the mean 

plasma noise floor at 100 kHz is plotted for the clamped-mode test and all data are 

normalized with respect to the maximum signal received in the no-plasma test. The 

data show that the clamped-mode plasma reduces the signal strength of the 100 kHz 

signal being broadcast into it by at least two orders of magnitude at nearly all 

positions. This suggests that the signal is indeed reflectedlattenuated by the plasma 

before it can reach the receiving antenna when. the antenna is located between 130 and 

210 cm from the contactor. 

Conducted-emissions data were also investigated during EM wave broadcast 

tests. Figure 25 shows RE and CE data acquired when a 10 MHz signal was being 

broadcast in the vacuum tank and the contactor was operating in the clamped mode. 

The 10 MHz broadcast fundamental and the first harmonic are apparent in both 

spectra, and the second harmonic is visible in the CE spectrum. The two CE peaks 

near 100 kHz are due to signal aliasing, a common numerical byproduct of FFT 

analysis [ 19,251, and thus are not physically present in the contactor-current-return 

line. Tests at other frequencies showed that broadcast EM, waves of frequencies of 

1 MHz or greater appeared as current fluctuations in the contactor-current-return line 

while those of lesser frequency did not. This important result indicates that a 1-MHz 

or greater frequency electrical disturbance in the plasma, e.g. a broadcast or naturally 
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occurring EM wave, may couple through the simulatorhnk walls and be transmitted 

to the hard-wired electrical circuit. 

The results of the EM wave broadcast experiments indicate that EM waves of 

frequency 1 MHz and greater are able to pass through the contactor plasma. Thus, 

the noise sensed by the antenna at frequencies above 1 MHz may be partially or 

entirely remotely-produced noise. At lower frequencies, EM waves are not able to 

pass through the plasma. Thus, the noise sensed by the antenna at these frequencies 

is probably not produced at locations far from the antenna. It must, therefore, be 

produced at locations relatively near the antenna. 

Induced Current Fluctuation Experiments 

A vacuum-tank experiment was conducted where, instead of broadcasting EM 

waves into the plasma, current fluctuations were superimposed in the contactor- 

current-return line using the air-core transformer depicted in Fig. 7. Noise data were 

recorded as a current fluctuation was induced in the return line at a prescribed 

frequency. Figure 26 shows RE and CE data acquired when a 100 kHz current 

fluctuation was superimposed in the return line. In the CE spectrum, the fundamental 

is obvious and some higher harmonics and noise generated by the RF source are also 

observed. The RE spectrum shows a single peak at the fundamental frequency. The 

test was repeated for superimposed current fluctuations of frequencies as high as 

10 MHz and as low as 50 kHz. In each case, correlated peaks were observed in RE 

and CE spectra at the fundamental frequency. 

54 



a 
0 

I I  
4 

> 
0 

I I  
.- 

a 
to 

It  
0 -F 

I 



The results of this experiment show that current fluctuations in the contactor- 

current-return line are communicated through the contactor plasma to the receiving 

antenna where they can be detected as electric-field fluctuations in the plasma. An 

important result can be obtained by considering these results in the light of the results 

obtained when EM waves were broadcast into the plasma. Electromagnetic waves 

broadcast at frequencies less than 1 MHz were unable to pass through the plasma to 

the receiving antenna, yet current fluctuations at those frequencies induced strong 

receiving-antenna signals. If the superimposed low-frequency current fluctuations had 

been completely transformed into EM waves at the contactor, they would not be 

expected to reach the receiving antenna, based on the results of the broadcast tests. If 

they remained current fluctuations, however, and traveled as currents through the 

resistive medium (Le. the plasma) to the vicinity of the antenna, they could be 

detected by the antenna. Thus it appears, as theoretical models predict, that low- 

frequency noise detected by the antenna is locally produced, rather than remotely 

produced. 

Plasma Exclusion Region Experiments 

Another vacuum-tank experiment was performed in which the ambient plasma 

was removed from the immediate vicinity of the receiving antenna monopole. This 

was accomplished by enclosing the monopole in a 130-mm-diameter Plexiglas 

cylinder, creating a 65-mrn-radius region of plasma exclusion between the monopole 

and the outer surface of the cylinder. The cylinder was closed at both ends except for 

a small hole on the centerline at one end which allowed insertion of the monopole. 
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Results of this experiment were compared to those where the antenna was insulated 

from the plasma by wrapping it with a thin dielectric material which provided a 

0.2-mm radial plasma exclusion region. 

Clamped-mode noise sensed by the antenna with the 65-mm-radius exclusion 

region are compared to those sensed with the 0.2-mm-radius exclusion region in 

Fig., 27. At frequencies greater than about 200 kHz, RE levels with the larger 

exclusion region are about an order of magnitude below those with the smaller 

exclusion region. At frequencies less than 200 kHz, however, a reduction in RE 

levels of up to three orders of magnitude is obtained with the 65-mm exclusion 

region. The Plexiglas cylinder surrounding the monopole does not significantly 

attenuate any incident EM waves which are created far from the antenna, thus the 

difference between RE levels observed with the two separate plasma exclusion regions 

must be related to a local phenomenon. Specifically, it is argued that current 

fluctuations in the plasma are closer to the antenna with the smaller exclusion region 

and that this causes RE to be greater than those sensed with the larger exclusion 

region where the fluctuations are further from the antenna. This behavior is 

consistent with the idea that the noise measured by the antenna at lower frequencies 

(less than 1 MHz) is locally produced, not remotely produced. Note that it is also 

apparent that RE at frequencies greater than 1 MHz are partially due to locally- 

produced noise. 

These observations were further supported when a comparison of RE data 

acquired with the 0.2 and 65-mm exclusion regions was made with the contactor 

operating in the idle mode. These results are shown in Fig. 28 where, at frequencies 
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above 10 Wz, there are relatively minor differences between RE data for each 

exclusion region size. These results are again considered consistent with the 

theoretical model because current flow near the antenna is expected to be negligible in 

the idle mode and this would cause locally-produced RE to be much less significant in 

this case. 

Comparison of Bell-Jar and Vacuum-Tank Results 

The size of the plasma exclusion region surrounding the receiving antenna 

monopole can be increased further by performing experiments in the bell-jar facility, 

where the antenna is located outside of the vacuum boundary. Data were acquired in 

both the vacuum-tank and bell-jar facilities with the contactor operating under the 

standard conditions for each facility. In order to make the plasma environment as 

similar as possible between the bell-jar facility, which does not include a plasma 

source other than the plasma contactor, and the vacuum-tank, which has the 

simulator, all vacuum-tank data were acquired with the simulator turned off. The 

antenna monopole was isolated from the plasma by a thin layer of dielectric material 

for the vacuum-tank test, and in both facilities the tip of the antenna was pointed at 

and located 130 cm from the contactor along its centerline. 

A comparison of RE data acquired when the contactor was operating in the 

idle mode was made first, and is shown in Fig. 29. The shapes of the curves are 

nearly identical and the bell-jar data are about two orders of magnitude less than the 

vacuum-tank data at frequencies up to about 1 MHz. At greater frequencies there are 

substantial differences in RE data, though the differences above 10 MHz are probably 
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due to different noise floors for the two different antenna lengths used in the tests 

(1.8 cm for the bell jar and 0.5 cm for the tank). These similar shapes of the spectra 

below 1 MHz suggest that similar physical processes are producing the noise observed 

below 1 MHz when the contactor is emitting no current. For example, the discharge 

between the hollow cathode and the anode is most likely very similar in each vacuum 

chamber. The differences in magnitudes are probably related to geometrical and 

plasma environmental differences between test facilities. Recall the results of 

Fig. 28, where the shapes of the RE data are identical for different exclusion region 

sizes. This indicates that the differences in RE magnitude between test facilities seen 

in Fig. 29 is probably not due primarily to differences in the plasma-exclusion-region 

sizes associated with the facilities. 

A comparison of RE data acquired when the contactor was operating in the 

clamped-mode in each facility is shown in Fig. 30. The RE data are markedly 

different in shape and magnitude at nearly all frequencies. Some of these differences 

are undoubtedly due to plasma environmental differences between the test facilities. 

These results are, however, not in conflict with the proposed model which indicates 

that the majority of lower-frequency RE noise is locally rather than remotely 

produced. In the bell-jar facility, electrons are collected on a small annular electrode 

and the current path may, therefore, be somewhat focused. In the vacuum-tank 

facility, on the other hand, diffuse current paths and electron flow adjacent to the 

antenna are expected as electrons are collected on the large area of the tank walls. 

Contactors emitting electrons along different current paths such as these could be 

expected to induce different electric-field environments. This would, in turn, give 
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rise to locally-produced contributions to the RE spectra that depend on the test facility 

and configuration. Recall that contactors emitting no electrons should have similar 

current flow patterns and should, therefore, show locally-produced RE that are similar 

regardless of the test facility being used. Indeed, Fig. 29 shows that the RE spectra 

are similar in shape at lower frequencies (less than 1 MHz). If the current patterns 

were known it should be possible to explain the differences between RE measured in 

each facility more precisely. 

The RE data acquired in the vacuum-tank and bell-jar facilities are also 

compared to the military specifications E181 for RE in Fig. 30. Recall, the limit that 

is shown applies for broadband RE produced by equipment installed on spacecraft. 

Both sets of data in the figure appear to exceed the specifications at frequencies less 

than 3 MHz, but recall that at frequencies less than about 1 MHz RE are locally 

produced, due to current fluctuations in the plasma, and that the military testing 

standards and specifications are not designed to cover this type of RE noise. The 

vacuum-tank and bell-jar data appear to meet the military specifications at frequencies 

greater than about 3 MHz and '10 MHz, respectively, even though it has been shown 

that some of that noise is locally produced. 

In order to obtain meaningful RE data, there must be methods for measuring 

RE that yield results independent of the measurement facility. The military standards 

for measuring RE [ 171 are deliberately designed in sufficient detail to produce RE 

spectra that are independent of test facility. An important observation drawn from the 

comparison of vacuum-tank and bell-jar RE data in this report is that the procedures 

for measuring RE of a contactor emitting electrons do not provide facility-independent 
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results at any of the frequencies investigated. This is a consequence of the fact that 

fluctuating currents in the plasma near the antenna contribute substantially to the noise 

measured by the antenna, particularly at lower frequencies, and that such 

contributions to RE are not actually addressed by the military standards. 
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IV. CONCLUSIONS AND RECOMMENDATIONS 

A monopole antenna which is used to measure RE while immersed in a plasma 

must be properly configured so that accurate measurements are obtained. It has been 

shown that it is necessary to prevent the monopole from coupling to the baseplate. 

through the plasma and it was demonstrated that enclosing the monopole in a thin 

dielectric material is a sufficient and desirable method to accomplish this. 

Additionally, the monopole length must be sufficiently short so that saturation of the 

antenna amplifier circuitry does not occur. The monopole length must be determined 

for each experimental condition so that adequate antenna sensitivity is achieved while 

avoiding amplifier saturation. 

Tests and analysis have indicated that EM wave interactions with the vacuum- 

tank metallic surfaces can be significant at frequencies greater than 1 MHz. Thus, 

measured RE data may not represent true contactor RE at these higher frequencies. 

The results of bell-jar experiments, however, indicate that no reflection effects are 

observed over the complete frequency range investigated with the contactor operating 

in that facility. It was also determined that the conventional laboratory power 

supplies were not affecting either RE or GE at frequencies between 1 kHz and 30 MHz. 

Experimental results have shown a strong relationship between plasma 

contactor RE and CE. It has been demonstrated that electrical disturbances 
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originating in the plasma can be communicated to the contactor-current-return line at 

frequencies greater than 1 MHz, and that current fluctuations in the return line at 

frequencies as low as 50 lcHz can be communicated to the plasma and be detected as 

electric-field fluctuations by an antenna. It has also been shown that at frequencies 

less than 1 MHz the majority of RE sensed by the antenna are due to current 

fluctuations adjacent to the antenna monopole. Remote, radiative contributions to RE 

begin to become significant only at frequencies above 1 MHz. 

Accurate measurements of contactor RE should be made in ground-based 

facilities which approximate, as closely as possible, the space environment. In space, 

a plasma contactor will emit current into the diffuse ambient space plasma through a 

large solid angle. This situation is approximated by electron collection on metallic 

tank walls that completely surround the contactor. It is believed that a large vacuum- 

tank facility (not necessarily metallic) would be the best place to make measurements 

that can be used to infer contactor RE in space. In this type of facility the contactor 

plasma plume would be allowed to spread out into a large volume and current could 

be collected over a large area near the 'tank walls. The effects of EM wave reflection 

from tank metallic surfaces could be identified, if not quantified, using techniques 

similar to those employed in this study. 

In order to extrapolate contactor performance measured in ground-based tests 

to space, CE should be measured at frequencies below about 1 MHz. These data 

should then be used in a model (such as that in ref. 20) that describes the space and 

spacecraft environments to compute RE that reflect the effects of both locally and 

remotely-produced noise. 

67 



V. FUTURE WORK 

The results of this investigation of plasma contactor noise production lead to 

several interesting possibilities for additional experiments. Although much evidence 

has been given to support the conclusion that the majority of noise measured by the 

antenna at frequencies less than 1 MHz is due to current fluctuations adjacent to the 

antenna, more evidence could be obtained. For example, a direct measurement of the 

current fluctuations near the antenna with a small non-intrusive probe, and a 

correlation of those measurements with the noise sensed by the antenna, would likely 

provide even more conclusive evidence. Different means of collecting the electrons 

emitted by the plasma contactor could be used to force different paths of current flow, 

and the antenna measurements made in these new environments might be correlated to 

the current paths. 

Additionally, more experiments could be performed with different shapes and 

sizes of plasma exclusion regions. These tests could provide insight to the physical 

proximity necessary for current fluctuations to have significant bearing on antenna 

measurements. Indeed, preliminary experiments of this type have been performed 

and it was observed that low-frequency noise reduction like that in Fig. 27 was 

achieved with exclusion regions much smaller than the 65-mm one used to obtain 

those data. 
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As an expansion upon the exclusion-region tests, and also in return to the 

motivating factor for measuring plasma contactor noise emissions, it may be possible 

to surround sensitive space-station electronic equipment near the plasma contactor 

with baffles which would divert current flow (and hence noise) from near the 

equipment. This simple step could eliminate a majority of the low-frequency noise 

which may interfere with the operation of those instruments. These types of 

experiments could easily be performed in a large vacuum-tank facility. 
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APPENDIX A 

Measurement of Broadcast Antenna Radiation Pattern 

The broadcast antenna used in the experiments described in this report was 

built in the CSU laboratory specifically for these experiments. The antenna 

calibration factor (used to determine broadcast signal strength from input signal 

strength) was unknown, but it was not needed for the experiments that were 

performed. Several tests were conducted, however, to determine the radiation pattern 

of the broadcast antenna at different frequencies. The antenna radiation pattern is a 

two-dimensional, graphical representation of the radiated electric-field-fluctuation 

amplitudes in the space surrounding the antenna [12]. These tests were conducted to 

determine if the radiation pattern might be frequency dependent and might as a result 

complicate the interpretation of the experimental results. 

The pattern-measurement experiment was conducted in a large indoor bay 

adjacent to the laboratory where reflections from surrounding objects could be 

minimized. In this area the surfaces closest to the broadcast and receiving antennae 

capable of reflecting EM waves were more than four meters away. The base plates 

of the antennae were 133 em apart and the antennae were configured as shown in 

Fig. Ala. Note that under these conditions the receiving antenna will be measuring 

the near-field radiation patterns of the broadcast antenna. The tests were conducted 
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by fixing the receiving antenna and rotating the broadcast tenna through 180" about 

the intersection of the antenna monopole with the base plate. When the base plate of 

the broadcast antenna was in the reference plane the antennae monopoles were co- 

linear. A signal of a given frequency was transmitted by the broadcast antenna, the 

amplitude of the signal sensed by the receiving antenna was recorded, and the 

broadcast antenna was then turned to a new angle and the process was repeated. This 

experimental procedure was followed because it is less complicated than the 

equivalent procedure of rotating the receiving antenna about the broadcast antenna, 

shown in Fig. Alb. The results of radiation pattern measurement are generally 

described graphically from the perspective of the latter configuration. 

Typical results of the experiment are shown in Fig. A2a for three broadcast 

conditions. In this figure dimensionless signal amplitude is plotted on the radial axis 

and the polar angle 8 as defined in Fig. Alb is measured from the reference plane to 

the dotted line shown. It is evident from the data in Fig. A2a that the broadcast 

antenna radiation patterns are nearly identical for frequencies of 1 MHz, 100 W z ,  

and 10 kHz. Note that the patterns are symmetric about the line 8=90" even though 

the indoor laboratory bay is a highly asymmetric environment and the broadcast 

antenna points at different surrounding objects in the bay as it is rotated (Fig. Ala). 

This clearly indicates that reflection of EM waves from the surroundings was not a 

factor in this experiment. Radiation patterns for broadcasts of 5, 10 and 25 MHz are 

shown in Fig. A2b. Again the patterns are symmetrical, but they depart from the 

common patterns of Fig. A2a. As 8 is varied from 90" to 0" the signal amplitude 

does not decrease as it did for the signals of Fig. A2a. Instead, the amplitude of the 
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Fig. A2 Broadcast Antenna Radiation Patterns. 
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10 MHz signal decreases steadily and then increases, and the 25 MHz signal 

decreases until 8-45' and then remains fairly constant. The amplitude of the 5 MHz 

signal is much larger than those in Fig. AZa, but follows the same trends. 

Note that at each of the frequencies investigated, there are no radiation 'lobes' 

which are portions of the radiation pattern bounded by relatively weak radiation 

intensity [12]. The presence of a lobe in the broadcast antenna radiation pattern 

could, if no EM wave reflections occurred inside of the vacuum tank, produce results 

from no-plasma broadcast tests that indicated significant reflection effects. 
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