
NASA-CR-200928

NASA/WVU Software IV & V Facility

Software Research Laboratory
Technical Report Series

NASA-IVV-95-009
WVU-SRL-95-009

WVU-SCS-TR-95-29
CERC-TR-TM-95-012

/ ,_. f

An Approach to Verification and Validation of a Reliable

.Multicasting Protocol

by John R. CaUahan and Todd L. Montgomery

,__ .:_: _,_..,-. .

National Aeronautics and Space Administration

West Virginia University

https://ntrs.nasa.gov/search.jsp?R=19960021670 2020-06-16T05:08:00+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42777879?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


An Approach to Verification and Validation

of a Reliable Multicasting Protocol

John R. CaUahan and Todd L. Montgomery

{callahan, tmont } @cerc.wvu.edu

NASA Independent Software Verification and Validation Facility

Fairmont, West Virginia

Abstract: This paper describes the process of implementing

a complex communications protocol that provides reliable

delivery of data in multicast-capable, packet-switching

telecommunication networks. Tile protocol, called the

Reliable Multicasting Protocol (RMP), was developed

incrementally using a combination of formal and informal

techniques in an attempt to ensure the correctness of its

implementation. Our development process involved three

concun'ent activities: (1) the initial construction and
incremental enhancement of a formal state model of the

protocol machine; (2) tile initial coding and incren,,mtal

enhancement of the implementation; and (3) m_:xlel-based

testing of iterative implementations of the protocol. These

activities were carried out by two separate teams: a design

team and a V&V team. The design team built the first

version of RMP with limited functionality to handle only

nominal requirements of data delivery. In a series of

iterative steps, the design team added new functionality to

the implementation while the V&V team kept the state

model in fidelity with the implementation. This was done

by generating test cases based on suspected errant or off-

nominal behaviors predicted by tile current model. If the

execution of a test was different between the model and

implementation, then the differences helped identify

inconsistencies between the model and implementation. The

dialogue between both teams drove tile co-evolution of the

model and implementation. Testing served as the vehicle

for keeping the model and implementation in fidelity with

each other. Tiffs paper describes (1) our experiences in

developing our process model; and (2) three example

problems lbund during die development of RMP.

This work is supported by NASA Ccoperative Agreement
NCCW-0040 under supervision of the NASA Independent

Software Verification and Validation (IV&V) Facility, Fairmont,

WV.

1.0 INTRODUCTION

Much work has been done in the area of verifying that

implementations of communication protocols conform to their

specifications [1,2]. Conformance is usually verified through

extensive testing of an implementation in which tests are
derived directly from the protocol specification. If an

implementation behaves in a manner predicted by the

protocol specification, then the implementation is said to

conform to the specification. If not, then an error exists in

the implementation of the protocol. Although this method

does not formally verify that a protocol specification and an

implementation are consistent, it represents the state-of-the-

practice in this domain of software development.

This paper describes our experiences while trying to

formally specify and implement a complex communications

prot,__ol that provides reliable delivery of data in multicast-

capable, packet-switching teleconununications networks. The

protocol specification, called the Reliable Multicasting

Protocol (RMP), was developed concurrently with its

implementation. The implementation was developed

incrementally using a combination of formal and informal

techniques in an attempt to ensure the correctness of its

implementation with respect to the evolving protocol

specification. We found that many formal methods did not

help us in the development of the protocol specification nor its

implementation. We concluded that the best uses for formal

methods in our situation was in tile specification of the

protocol requirements and the generation of tests derived

from the specifications applied to prototype versions of the

software during development.

One of the primary goals of our effort was to achieve

high-fidelity between the specification and implementation

during development. High-fidelity means that the protocol

specification and an implementation of protocol agree regarding

the behavior of the protocol. The agreement is based on

equivalence of state transitions taken in the specification and

implemented in code. We felt that if fidelity was not a

primary concern, then there existed the strong possibility

that the specification and the implementation would diverge

in behavior. Tiffs would render analysis of any tbrmal

specification model irrelevant in the development and

maintenance of the software since such analysis would offer



Event Ordering

Data(A, 1)
Data(B,1)
Ack((A,1),(B,1),A,1)
Nack(C,1,3)
Ack(NULL,C,4)
Data(B, 1) [retransmit]
Data(A,2)
Ack((A,2),B,5)

_ Nack(C,1,3)
Ack((A,2),B,5)

Media _

Data(B,1)
Ack((A, 1),(B, 1),A, 1)

Ack(NULL,C,4) Data(B, 1)
Data(A,2)

Figure 1: An example of an RMP token ring and events

little assurance that the actual code behaved iu an identical

manner.

Our development process involved two teams: a design

team and a verification and validation (V&V) team. These

two teams worked in an iterative, interactive fashion that

allowed the design team to focus on nominal behaviors of

the software while tile V&V team examined off-nominal

behaviors. Off-nominal behaviors include event sequences with

non-ideal conditions such as site losses and network partitions.

The task of the design team was (1) to specify the protocol in

terms of mode tables and (2) implement the protocol in C++

as specified by the mode tables. Tile task of the V&V

team was to (1) analyze the consistency and completeness

of the mode tables by analyzing "paths" through the mode

tables and (2) generate tests from the mode tables for

suspect conditions. Suspect conditions include those paths

identified in the mode table model as being deadlock,

livelock, or potential sources of unexpected behaviors. The

V&V team used the requirements mode model to identify

cases that were considered by the design team to be

unusual or virtually impossible, hi retrospect, these cases

were the source of several errors in the specification and

implementation of RMP.

We use the terms "verification and validation" in a

different context from their typical usage because of our

bipartite, prototyping development process, hi our case, the
term "verification" 1 refers to activities that help in the

identification of off-nominal behaviors of the software based

on analysis of the specification model. We use the term

"validation" to refer to activities that involve testing the

implementation for properties based on potential problems

revealed through verification analysis such as livelock, deadlock,
and violations of invariant conditions.

The protocol specification as expressed in the mode tables

helped us organize and structure tests while developing

implementation prototypes. Testing formed the dialogue by
which the two teams communicated about the intended

behavior of the protocol and its implementation. This paper

relates our experiences in developing our approach and
describes details of our model-based testing methods. We

do not claim to have "formally verified and validated" the

RMP specification and its implementation, but rather we

have developed a str.--.egy and process by which the

evolution of RMP is enhanced by testing and verification.

Our approach has been to study the problems that have

occurred during development, testing, and operation of RMP.

Tlurough a post-mortem analysis of problems, we are trying

to find methods that may have discovered problems earlier

in the development lifecycle.

2.0 THE RELIABLE MULTICASTING PROTOCOL (RMP)

The Reliable Multicasting Protocol (RMP) [3] is based on

an algorithm originally developed for reliable delivery of

data in broadcast-capable, packet-switching networks [4].

The original algorithm, which we call the Token Ring

Protocol (TRP), allows sites in a packet-switching network

to establish a token ring for distributing responsibility for

acknowledgments. A single token is passed from site to site

around the ring and only the holder of the token (called

the current token site) can acknowledge certain data packets.

RMP has high-performance characteristics because

acknowledgments themselves are multicast to all other token

ring sites. When a site gets the token (i.e., it becomes the

current token site), it muiticasts an acknowledgment if and

only if it has seen all data packets since the last

acknowledgment it received. The token is passed in the

multicast acknowledgment packet. Tile acknowledgment

packet includes the source and sequence numbers of data packets

it is acknowledging. Tiffs allows each site to detect if any

packets are missing. A site will use negative acknowledgments

to request retransmission of any missing packets. When all

packets since the last acknowledgment received have been

received by the current token site, then that site can

muiticast its acknowledgment and thus pass the token to the

next site on the ring. When a token site sends an

acknowledgment, it is assumed that all data packets since it last

held the token have been received by all sites.



Packet Timestamp TokenPass and Data Number of Packets

Ack 1 B --_A

Data 2 (A,I)

Data 3 missing

Table 1: Ordering Queue for Site C with an empty slot

Packet Timestamp Token Pass or Data Number of Packets

Ack 1 B--cA 2

Data 2 (A, 1)

Data 3 (B,1)

Ack 4 A--,C 0

Ack 5 C--->B 1

Data 6 (A,2)

Table 2: Final Ordering Queue for Site C

Tile sender of a packet assumes that all messages since it last

had the token have been received by the other sites within

a requested quality of service (QoS) level. A packet is

marked delivered if and only if it satisfies its QoS level of

delivery. The QoS level allows for resilience of the

protocol in the presence of site failures and network

partitions. In the case of failures, the token ring ret'orms

itself around the failed site. In the presence of persistent

failures, the application program using RMP must decide to

degrade the QoS level or try again.

RMP differs from previous reliable broadcast protocols like

TRP in that an acknowledgment packet may acknowledge an

arbitrary number of data packets. Previous protocols

specified that each data and acknowledgment packets have a

one-to-one relationship. This dramatically improves

throughput in networks with sporadic losses and allows an

application to tradeoff performance and quality of service

requirements.

Each site in a token ring maintains a data structure called

an Ordering Queue (OrderingQ) in which acknowledgments

and data packets are organized based on timestamps. Pal

Ordering Queue is consistent if and only if there are no

missing data packets for pending acknowledgments. A

missing packet will appear as an empty slot in the

OrderingQ that must be filled. When a site becomes the

token site, all empty slots in the OrderingQ since the last

acknowledgment received must be filled. For example, in

Figure 1 we show 3 sites of a token ring and a global

sequence of events. No site has complete knowledge of this

sequence. It is only shown to illustrate a possible scenario.

Next to each site is a list of the messages sent by that

site. First, site A sends a data packet signified as

Data(A,1) where the first parameter is the sending site and

the second is the sequence number of the message. Sequence

numbers are unique to individual sites. Second, site B

sends a data packet (Data(B,l)). The initial token site is

site B who then acknowledges both data packets and passes

the token to site A. The Ack((A,I),(B,I),A,1) message

contains a list of source identifiers and sequence numbers

for two packets, followed by the next token site and the

timestamp of the acknowledgment. We assume that site C

missed the data packet Data(B,l). Table 1 shows a

snapshot of the OrderingQ data structure at site C after it

receives the Ack((A,I),(B,1),A,I) message. Upon receiving

this acknowledgment, site C realizes it has missed the

Data(B,l) message that should fill the third slot of the

OrderingQ. It knows this because the Data(B,1) packet is

listed in the Ack message from B. Each slot in an

OrderingQ corresponds to a timestamp whether explicit in

the case of Ack messages or implicit in the case of Data

packets. Site C will multicast a Nack message to request the

data packet to fill the one slot in its OrderingQ at timestamp 3.



CurrentMode

NotTokenSite

NotTokenSite

NotTokenSite

Getting

TokenSite

Event/Alarm

Ack

Ack

Ack

Data

PassAlarm

Condition

OrderingQconsistent
andthissitenamednew
tokensite

Thissite not named
newtokensite(other
sitenamed)

OrderingQinconsistent
andthissitenotnamed
newtokensite

OrderingQconsistent

OrderingQconsistent

NewMode

TokenSite

NotTokenSite

Getting

TokenSite

Passing

Table 3: A fragment of RMP specification mode tables

Action

Send Nack for missing

packets

Send Null Ack

After a period during which no data packets are

transmitted, Site A will time-out and subsequently send a

multicast NULL Ack packet with timestamp 4. This passed

the token to site C. Site B responds to the Nack by

retransmitting the Data(B,l) message. The sequence number

identifies this message uniquely to distinguish it from new

messages. After the retransmission of Data(B,1), site A

multicasts another data packet with sequence number 2 as

Data(A,2). Since site C's OrderingQ is consistent, it

multicasts an acknowledgment of the Data(A,2) packet and

passes the token to site B. Table 2 shows the final configuration

of site C's OrderingQ.

3.0 VERIFICATION AND VALIDATION OF RMP

A formal proof of correctness for tile original protocol

specification exists [5], but we also wanted to ensure a high

degree of fidelity between the specification and

implementation of the protocol. To achieve this fidelity, we

adopted a mode-based, tabular approach based on a variant

of SCR- based tables [6] to express the protocol

specification instead of the axiomatic approach in the

original proof. Table 3 shows a small portion of the

protocol specification tables for RMP. The In'st column

shows the current mode. A mode is a superstate that

encapsulates a larger set of specific states of an

implementation [7]. While an implementation may change

specific variables and thus move from state to state, the

mode may remain unchanged until a major event and

condition occur. Modes allow the specification to view

states of the protocol machine at an appropriate level of

abstraction for our analysis. Mode names in Table 3

include TokenSite (the site holds the token), NotTokenSite

(the site does not hold the token), and Getting (the site

holds the token, but must retrieve missing packets). The

second column specifies the event which includes the arrival

of a packet (data or acknowledgment (ACK)) or a time-out

alarm. The third column specifies the condition under

which a mode transition will occur given the event. In

Table 3, we show conditions including checks for

consistency of the Ordering Queue and checks to see if an

incoming acknowledgment packet names this site as the

new token site. We considered using condition tables [8]

but our approach is currently sufficient for our protocol

specification. The fourth column specifies the new mode if

the event and condition are true. Finally, the fifth coltmm

specifies the action that takes place upon the mode

transition. An action includes variable settings, conditions,

and output events.

We used model checking to explore potential problems in

the requirements mode model and used testing to explore

suspect cases in the implementation. These tests helped

verify that the implementation had the same behavior as the

specification in specific cases. We tried several different

specification methods for RMP including PVS [9], Murphi

[101, SMV [IlL and SPIN [12]. We settled on a modified

version of Murphi since (1) it was amenable to our tabular

specifications and (2) includes temporal logic operators for

verification of liveness, deadlock, and invariant properties of

the specification. Tests were generated by hand from

suspect cases and added to the test suite based on analysis of

the Murphi models of the RMP specifications.

This type of approach to analysis played a major role in

our effort even though we hoped that formal methods would

reduce the need for testing. We discovered, however, that

testing did not help us verify the protocol after its

completion but rather it helped us to discover problems

during the concurrent specification and implementation. We

built a test scaffold for RMP by creating a low-level

network stub and used testing as the vehicle for keeping



our evolvingimplementationand specification in fidelity

with each other. The code was annotated with debugging

statements that produced a trace of events and conditions.

Such traces were compared against the specification tables

to validate the behavior of the implementation relative to

the formal model. This approach proved to be very useful

since the formal model helped us organize our test suite

and provided an abstract model we could analyze.

We built the protocol specification and its implementation

concurrently because pragmatic constraints of implementing

tile protocol had a feedback effect on the protocol

specification. Performance requirements, programming

language peculiarities, and other pragmatic aspects of the

implementation forced us to consider changes to the

requirements during implementation. We adopted an

iterative approach to development because we expected

these types of problems tooccur. The design team built the

first version of RMP with limited functionality to handle

only nominal requirements of data delivery. This initial

version did not handle off-nominal cases such as network

partitions or site failures. Meanwhile, the V&V team

concurrently developed the Murphi model of tile

requirements using the existing mode tables. Based on

these requirements tables, the V&V team developed test

cases to exercise the implementation, h_ a series of

iterative steps, the design team added new functionality to

the implementation while the V&V team kept the Murphi

state model in fidelity with the implementation. This was done

by generating test cases based on suspected errant or off-

nominal behaviors predicted by the current model. If the

execution of a test in the model and implementation

agreed, then the test either found a potential problem or

verified a required behavior. However, if the execution of

a test was different in the model and implementation, then

the differences helped identify inconsistencies between the

model and implementation, hi either case, the dialogue between
both teams drove the co-evolution of the model and

implementation.

Based on the RMP requirement tables, we constructed a lbrmal

model of RMP using different model checkers to explore

potential problems in tile specification. We tried several different

specification methods for RMP including PVS, SMV, Murphi,

and SPIN. After trying all these tools and comparing their

pertbrmances, we finally settled on Murphi and SPIN. Both of

them have tile following desired properties:

Both are automatic model checkers and the RMP

specifications can be easily transferred to the tool-specific

specification language, i.e. PROMELA for SPIN,

• Both of them support high-level language features, such as

user-defined data type, procedures, structures, and

Both are designed for the verification of asynchronous

concurrent systems, including detecting the absence of

deadlock, unexecutable code, incomplete specification, non-

progressive loops and the validation of system invariants.

To construct a formal model with high fidelity to the

specifications requires a suitable level of abstraction. If the

model is too abstract, the model checker may not be able to

supply useful information. On the other hand, if the model is too

detailed, the model checker may not be able to handle the state-

explosion problem and the large memory requirement. It is

important to make this decision on the right level of abstraction

so that the protocol specification can be fully described by the

model checker and the formal model can supply useful feedback

to the protocol design.

Due to the complexity of the protocol and the limitations of the

existed tools, we adopted a two-step method. First, a high-level

single-site state-machine transition model was constructed using

Murphi. Murphi is specifically designed for the high-level finite-

state concurrent systems, and it supports the verification of

liveness specifications written in linear temporal logic (LTL) and

the specification of fairness properties. This high-level model

served to check the completeness of the specification of state
transitions as well as some invariants conditions. After

specifying fairness properties on events, we are confident that tile

protocol does preserve the required properties if the fairness

properties hold. These properties are crucial to the services that

RMP attempts to provide. For example, properties relating to

passing the tokeu and eventually getting the token are inherently

crucial for RMP to meet its requirements of ordered, atomic

delivery of data.

Secondly, we constructed a lower-level, multiple-site interactive

model using SPIN. Even though the current version of SPIN

supports linear temporal logic specifications, it is better utilized

as a tool for validating data communication protocols through

simulation. Consequently, it has explicit support for processes

communications, i.e. asynchronous message channels and

synchronization by rendezvous. At this lower-level model, we
were more h_terested in the mutual-interactions between

different site members in order to verify that the protocol

specifications are correct to the extent that they guarantee the

reliable delivery of data packets among token ring members.

Combining the SPIN and Murphi models, we made significant

progress in verifying the state-transitions as the result of site

event-response and the interaction between sites.

The model checkers have been used in two ways: checking

deadlock and checking invariants. By default, checks for

deadlock conditions are performed by an exhaustive search of all

possible state transitions. This is used to determine the

completeness and consistency of the specification. The system

invariants and state-assertions are used to verify the required

properties of the protocol. During the initial development of the

formal model, deadlock or failed assertions are almost

unavoidable due to overly pessimistic analysis of the state space

and the lack of appropriate fairness conditions. Through

interactions with the protocol designers and the iterative

improvement of the formal model, those deadlock conditions and

failed assertions were elided with appropriate changes and

fairness conditions added (e.g., that the network will eventually

deliver a message). Consequently the specification and the

formal model were refined in the process. After the model has

been established in the deadlock-free state, more modifications

and fine-tuning were required to put system-wide and state-



specificinvariantsintothemodel. In this way, we successfully

identified some incomplete specification and design flaws. Some

examples of problems found using this approach are discussed in
section 4.

While maintenance of the formal model through testing the

evolving implementation took considerable effort, it also

required work to develop a testing framework. This framework

was designed to be able to simulate any path through the

specifications and show that the implementation exhibits a

specific sequence of events and state transitions, hi the

implementation, the actual components that are responsible for

protocol operation (i.e., the OrderingQ, DataQ, and event

handling routines) were implemented with an interface that

provides a generic way of handling any event specified in the

specifications. With this interface in place, the development of

the testing framework was facilitated. In addition, a scripting

language was developed based on the event interface that

allowed every aspect of the implementation's state to be

examined between events. These included the ability to examine

RMP data structures, such as the OrderingQ, the ability to force

specific conditions to be true or false based solely on the event

type and event data, and the ability to control the order and

frequency at which events are processed. In contrast to the year

of development and 22,000+ lines of C++ code for the RMP

implementation, the scripting code was developed in three days

and consists of about 1,200 lines of yacc, lex, and C++ ccxle.

Much of the scripting code was enhanced as needs arose to
examine the state of the test relative to the formal model. Our

approach proved to be a valuable development tool as well as an

indispensable testing and verification tool during development.

The scripting framework developed for RMP has general purpose

applications because the same methodology can be applied to

other implementations of event-based systems. Event-based

mechanisms are becoming increasingly popular programming

approaches for many developers. For example, many window-

oriented operating systems require programming in an event-

based paradigm. Such systems allow programmers to design

systems that respond specifically to certain input conditions and

events. However, event-based systems have several problems.

First, event-based systems must carry large amounts of state

around between events. This makes it difficult to express event-

based systems using functional specifications because the entire

state must be passed as an argument to each function.

The need to examine the state of objects and ask "what if"

questions of the RaMP implementation has proven to be one of

the most valuable features of the testing framework used by both

RMP development teams. The framework allows questions to be

asked that would be difficult to duplicate in actual application

execution. Amy formal model can address only limited levels of

detail to avoid state explosion problems, but the scripting

framework can continue to ask questions at relatively detailed

levels. For example, the V&V team often developed "what if"

questions based on intuition and tested the implementation for

conformity to their expectations. Subsequently, the test results

were compared to the formal model for conformity to the

specifications. This approach complemented the analysis of the

formal model and further helped refine the specifications.

The scripting language made test management simpler by

automating test generation and organizing the execution of
regression tests. The ability to make assertions on the state of

data structures allowed scripts to be developed that contained

key assertions checked during test execution. If a script passed

all the assertions, then the test passed. This provided an efficient

means of detecting problems but it also gave convenient clues as

to the source of errors. The scripting framework also helped as a

configuration management tool. The set of scripts used for

regression testing became larger over time. In an effort to control

this expansion, scripts were given versions to show the relevance

that a particular sequence of events had on the current model.

Some scripts were outdated as the specifications changed to meet

problems. Typically, these scripts would fail as they no longer

were valid with the current specifications. These scripts were

then updated to meet the new specifications. Other configuration

management issues have also been applied to the scripting

framework, such as date/time stamps on scripts to examine the

effects of changes. The scripting framework also had a reverse

effect into the implementation development as assertions were

placed directly into the code to check for dangerous conditions

during actual operation. The placement of these assertions was

dependent on problems previously encountered in scripts, hi this

way, the scripting framework has acted as a catalyst to spark

development into thinking about possibly errant condi.ions in the

design.

To this point, testing of RMP has consisted of deriving tests from

the requirements state machine. This entails the creation of test

scripts that define paths throu'gl_ the state machine.

Traditionally, testing along these paths is used to increase

confidence that the implementations meets the specifications.

We felt, however, that this process best serves to help refine the

requirements themselves. The scripts derived from these

requirements are executed in the scripting framework on the

evolving implementation.

One major problem has been determining which paths constitute

an adequate test suite, hfitially, we created paths starting at an

initial state and continuing until the path had reached a state that

had been previously visited. These paths only focused on the

gross state transitions of the protocol engine rather than changes

to specific variables. These test paths form a test tree with the

initial state at the root.

We used the method described above primarily to examine the

reformation aspects of RMP. Reformation is the process by

which an RMP token ring adapts to network partitions and site

failures. We began our testing on reformation aspects of RMP

because we were still developing the reformation specifications

of the protocol. We felt that testing would give us the insight

necessary to refine the requirements and the implementation

concurrently. This method served its purpose and we were able

to find many problems. Again, a few of these will be described
in the next section.

However, this method of test suite generation was unacceptable

for the remainder of the RMP specification. Since RMP has such

a large state space, 12 states, and a large number of events, 15,

we decided that the test suite would contain more than 80,000

separate test paths even when limited to gross state transitions.



Thestateexplosionproblemforcedusto lookfor another
approach.Weneededamethodthatwouldbepowerfulenough
tofinderrors,buthavearelativelysmalltestsuite.

The W methods [1] of test suite generation is a powerful

technique for finding operational and transitional errors. The

partial W method has the same power and generates fewer test

paths in the suite. However, we did not used these methods for

two reasons. First, the methods only characterize a state machine

by its inputs and outputs. Toe methods assume that the state of

the machine cannot be known at any time. In our case, however,

the scripting framework does allow the tester to examine the

state between events. Furthermore, the W methods work well

only for a restricted set of state machines. This includes small

state machines with no global variables. RMP was too large and

depends on the state of the Ordering Queue as a global variable.

If our RMP model was restricted within these limits, we felt that

the new state machine would no longer be representative of the

implementation. We were able to restrict exploration of paths
based on a transition cover of the state machine. A transition

cover consists of examining each state's behavior to all possible

events regardless of whether or not an event causes a transition
or not. The cover starts at the initial state and continues until all

states have been explored. Verifying the completeness of tile

implementation in this manner has given us confidence that each

state behaves as the specifications require. In addition, the

number of tests needed for the cover was less than 200, which

was not an unreasonable amount.

4.0 LFASONS LEARNED

Most of the problems found in tile RMP specifications and

implementation were caused by incomplete requirements
where it was assumed that certain conditions could not

occur but actually did occur in practice. Sometimes, the

implementation was coded before the specification was

updated if a pragmatic consideration made such a change

expedient in the code. Other times, we explored solutions

in the tables before coding it. We believe that testing

between the specification and implementation during

incremental development helped reveal these problems much

earlier than if traditional testing had been done after full

development.

4.1 The Perpetual Getting Problem

As shown in Table 3, a site will transition from

NotTokenSite mode to TokenSite mode if tile OrderingQ is

consistent. If the OrderingQ is not consistent, then the site

will enter the Getting mode while retrieving missing

packets. Once the OrderingQ is consistent, the site will

transition from Getting mode to the TokenSite mode. This

fact was correctly specified in our mode tables, but the

implementation was incorrect because a portion of code for

the Getting mode did not check for consistency of the

OrderingQ. Tile implementation livelocked in the Getting mode

in the case of missing packets.

We were able to discover the problem during analysis for

livelock modes using temporal assertions. A pessimistic

analysis yielded potential off-nominal paths in the

specification. Under ideal operating conditions of the

protocol, no site should have to enter the Getting mode

since no loss occurs under ideal conditions. Indeed, the

problem was not discovered in testing on a Local Area

Network where there was no loss of packets unless the

network was congested (a rare condition). Subsequently, no

sites ever entered the Getting mode to retrieve missing

packets. Tile mode specifications do not explicitly model

the loss of a packet, rather the condition of an inconsistent

OrderingQ is an off-nominal behavior when a site becomes

the token site. We constructed a test case for this scenario and

found the problem in tile implementation.

4.2 The Time-To-Live Problem

RMP relies on an unreliable IP Multicasting layer [13] in

which packets have a time-to-live (TrL)field that controls

their propagation in Wide Area Networks. At each router,

the TI'L field of a packet is decremented by 1 and checked
to see if it is above or below tile router threshold. If the

TrL is above the threshold, the router forwards the

multicast packet. If not. the packet is not forwarded. This

allows control of the propagation of multicast packets to

local, national, and world-wide distribution.

RMP extends the original TRP work by allowing for the

initial fl)rmation and subsequent modifications to the token

ring membership list during execution. RMP allows sites to

join and leave the token ring dynamically. Our

implementation, however, overlooked the fact that token

rings sites can be local to one another (i.e., at low TrL

values), but new sites can be very far 6 away (i.e., at high
TI'L values). When the far site tries to join a ring, the

far site will not see any messages due to their low TrL

values. Subsequently, when the ring fails to pass the token

to the far site. This failure will trigger a reformation of the

ring to exclude the far site. This situation can repeat itself

ad infinitum as long as the far site keeps trying to join the ring.

Time-to-live information was not included in the mode

specifications. Therefore, no analysis of the formal model

could have revealed this problem and we could not

construct a test for this condition from the model. We feel,

however, that this problem could have been detected during

implementation when the design team needed to fill in the

TI'L field of tile packets. The designers should have noted

that the requirements are silent on how to fill-in the TI'L

field of any packet constructed. This silence invites a

designer to make inconsistent assumptions about the

behavior of the protocol machine.

4.3 The Leaving Ring Timestamp Problem

When a token site tries to leave a ring in a controlled

fashion (i.e.. rather than an abrupt site failure), it must

wait until the token completes a cycle of the remaining

ring sites before actually leaving the ring. The reason for

this restriction is due to the fact that the departing site



mayholdpacketsthatare missing at other sites. If the departing

site leaves too soon, then some empty slots in the Ordering

Queues of other sites cannot be filled.

The specifications incorrectly stated that a site may leave the

ring when it has seen N timestamped packets where N is

the number of site remaining on the token ring. The

problem with this approach is that any intervening data

packet can fill a timestamp slot causing the departing site

to exit the ring before all remaining sites have

acknowledged. We incorrectly assumed a one-to-one

relationship between timestamps and acknowledgment

packets. As a result, the ring is wedged in a livelock state

because sites cannot fill some empty slots in their Ordering

Queues.

The problem was found through direct analysis of the

formal model and testing revealed the problem in the

implementation. It took unusual conditions, however, to

reproduce this problem in practice because the network had

to be congested before the behavior appeared. The formal

model produced a suspect path and the corresponding test

produced a livelock condition. We feel that this problem

was easily revealed by analysis of the formal model. In

addition, the formal model helped structure exploration of test

conditions during the resolution of the problem after its

initial discovery.

5.0 CONCLUSIONS

We do not claim that RMP has been "verified and validated"

to the extent that it is totally correct, rather that we have

developed a technique that strengthens analysis and testing

in the long-term development of our software. Short term

problems did occur, but they helped us to evolve a

specification model in high-fidelity with an implementation.

Co-evolution of the formal specification model and the

implementation was the most useful result of our study. Our

technique allowed our two teams to structure their tests and

other analysis activities. Their activities supported each

other in the development of the implementation and

refinement of the specifications.

In the future, we will continue to use RMP as a testbed

problem and explore new specification and analysis

techniques that complement incremental software

development activities. We are continuing to evolve the

specifications even though the software has been released in

a Beta test version. This type of release scheme limits the

use of RMP to non-critical projects and helps us explore

operational problems. When a problem in operation does

occur, we are using the mode tables to trace where the

problem occurred. This has been useful in understanding

problems, finding why problems were or were not detected

earlier, and refining the specification incrementally.

REFERENCES

[1] Luo, G., G. v. Boclamann, and A. Petrenko, Test

Selection Based on Communicating Nondeterministic Finite-

State Machines Using a Generalized Wp-Method, IEEE

Transactions on Software Engineering, Volume 20, Number

2, February 1994, pp. 149-162.

[2] Sidhu, D. P. and T.K. Leung, Formal Methods for

Protocol Testing: A Detailed Study, IEEE Transactions on

Software Engineering, Volume 15, Number 4, April 1989, pp.
413-426.

[3] Montgomery, T., Design, Implementation, and

Verification of the Reliable Multicasting Protocol, M.S.

Thesis, West Virginia University, December 1994.

[4] Chang, J.M. and N.F. Maxemchuk, Reliable Broadcast

Protocols, ACM Transactions on Computer Systems, Volume

2, Number 3, August 1984, pp. 251-273.

[5] Yodaiken. V. and K. Ramamritham, Verification of a

Reliable Net Protocol, Formal Techniques in Real-Time and

Fault-Tolerant Systems, January 1992, pp. 193-215.

[6] Heninger, K.L., Specifying software for complex

systems: New techniques and their application, IEEE

Transactions on Software Engineering, Volume 6, Number 1,

January 1980.

[7] Jahanian. F. and A. K. Mok, Modechart: A Specification

Language for Real-Time Systems, IEEE Transactions on

Software Engineering, Volume 20, Number 12, December 1994,

pp. 933-947.

[8] Leveson. N. G., M. P. E. Heimdahl, H. Hildreth,

and J. D. Reese, Requirements Specification for Process-

Control Systems, IEEE Transactions on Software

Engineering, Volume 20, Number 9, September 1994, pp.
684- 707.

[91 S. Owre, N. Shankar, and J. M. Rushby, User Guide for

the PVS Specification and Verification System (Beta Release),

Computer Science Laboratory, SRI International, 1991.

[10] D. Dill, A. Drexler, A. Hu, and C. Yang, Protocol

Verification as a Hardware Design Aid, IEEE Conference on

Computer Design: VLSI in Computers and Processors, IEEE

Computer Society Press, October 1992.

[II] J. Burch, E. Clarke, D. l.xmg, K. McMillan, and D.

Dill, Symbolic Model Checking for Sequential Circuit

Verification, IEEE Transactions on Computer-Aided Design,

Volume 13, Number 4, April 1994.

[12] G. J. Holzmann and D. Peled, An improvement in

formal verification, Proceedings of the 7th International

Conference on Formal Description Techniques, FORTE 94,

Berne, Switzerland, October 1994.

[13] Deering S., E., Multicasting Routing in h_ternetworks

and Extended LANs, ACM SIGCOMM '88 Symposium,

August 1988.




