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Abstract 

We describe how the TDAG algorithm for learning to predict symbol sequences 
can be used to design a predictive cache store. A model of a two-level mass storage 
system is developed and used to calcdate the performance of the cache under various 
conditions. Experimental simulations provide good confirmation of the model. 

Introduction 
A cache is a multi-tier store consisting of a hierarchy of storage media with different access 
speeds, capacities, and costs. The medium with the highest capacity is simultaneously the 
one with the least cost per byte and the slowest data access rate. In a typical mass storage 
system (MSS), for example, the majority of archival data is kept on tape, while the portions 
in active use are retained on disk or in RAM. 

A request for a segment of data that is not available in the higher-speed store (or cache) 
is answered by replacing one of the current segments in the cache by the requested segment. 
Moreover, if the segment being replaced has been modified, it must be rewritten to the slower 
storage medium. In view of the penalty in waiting time to be paid whenever a requested 
segment is not in higher-speed store, the choice of which segment to replace can have a 
significant impact on the performance of the system. 

A variety of algorithms have been used in an effort to minimize transfers of segments 
between the cache and the secondary store. The LRU (least-recently-used) strategy, for 
example, replaces the segment least recently referred to by the user(s), on the assumption 
that the more time since a segment was requested, the less likely it is to be requested soon. 
The general idea of LRU and other such strategies is, of course, to predict future segment 
usage. 

The cost of making such a prediction, however, cannot be ignored. In virtual storage 
systems, for example, only extremely fast prediction algorithms can be considered. In other 
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circumstances, however, one may justify spending more time to make better predictions. 
Mass storage systems and theorem provers are examples of such applications, and in this 
paper we investigate the application of more sophisticated learning/prediction methods to 
the design of an MSS. The model is based upon the specifications for a proprietary MSS 
under development by a major high-technology company. 

The MSS Model 
Our model consists of a number of segments S, a cache with Cslots each able to hold exactly 
one segment, and a number of users U. By assumption, U < C < S. Each segment has an 
associated read time, which is the cost of making a user wait while the segment is read into 
the cache. Each user is assigned a priority so that the waiting time of a high-priority user 
adds proportionally more to the cost. 

A stream of user requests is generated by some hidden process. Each request is simply 
the name of the segment the user wishes to view paired with a length of time the user 
will spend before issuing his next request. This use time is relevant only to our simulation 
and is not available to the predictive algorithms described later. Since we are interested 
in situations where time is available to take advantage of sophisticated prediction, the use 
times are typically an order of magnitude larger than the read times, and both are measured 
in (simulated) seconds. Typical values are 10 seconds to read a segment into cache, and 200 
or more seconds for the user to spend viewing the segment. 

Whenever a user requests a segment not in cache, the user enters a waiting state where 
he remains until the read is completed. The user’s waiting time multiplied by his priority 
factor is added to the system’s total waiting time. The goal of any predictive algorithm is 
simply to minimize this total waiting time (cost). 

The selection of the cache slot to replace on a read is of central importance. The segments 
currently in use are, of course, locked and not replaceable until a user requests a different 
segment. All other slots are kept in a queue whose head contains the next segment to be 
replaced. With a pure LRU strategy, the head is the segment least recently requested by any 
user. An alternative strategy for ordering this queue is explored in the following sections. 

The TDAG Algorithm 
A prediction algorithm can be used to develop online a probabilistic model of the request 
source, in order that the next few requests might be predicted and the contents of cache be 
adjusted accordingly. In this study we applied the TDAG sequence-prediction algorithm for 
this purpose. Based in part upon the Markov stochastic-process model, the TDAG algorithm 
can quickly learn complex sequential patterns in a stream of requests. It has been used 
successfully for other applications, including text compression and program optimization. 
See 171 and [8] for a detailed description. 
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Input to the algorithm is a stream {si I i 2 1) of symbols. Each symbol is treated as a 
distinct item and, in our application here, will be the name or address of a file segment. The 
algorithm builds a tree structure representing the most likely subsequences in the stream 
and, when data are sufficient to make a confident prediction, the algorithm predicts the 
next segment (or the next few segments) in the form of a partial probability distribution, 
e.g., "Segment S72 with probability 0.53, or segment S23 with probability 0.38, or some 
other segment whose probability is too low to worry about". The algorithm is designed to 
capture high-probability sequences without using valuable storage to record the myriads of 
low-probability events. Parameters control how much time and storage the algorithm can 
use in developing its model. 

A Predictive Caching Algorithm 
To implement a TDAG-based caching strategy, we create a separate TDAG for each user. On 
every segment request, the name of the segment is fed to the TDAG as its next input symbol. 
Over time, if there are stable patterns in the user's request sequences, the TDAG will be 
able to return a probability distribution on the next expected segment. This prediction can 
be used to compute an expected cost function Cost(Si) for each segment. The expected cost 
of not having Si resident in the cache is given approximately by 

cost( si) =  rob,( S;)ReadTirne( Si)Priority(u), 
ufusera 

where Probu(S;) is the probability that user u will request segment S;, ReadTirne(S;) is the 
time required to read S; into cache, and Priority(u) is the priority factor of user u. 

This cost can now be used to rank the unlocked segments resident in cache. Segments 
whose probability of being requested is too small to predict are considered lowest cost and 
are scheduled for replacement by the default LRU mechanism. Furthermore, the predicted 
segment of highest expected cost not already in the cache can be prefetched if it will replace 
a segment of lower expected cost. We assume that prefetches can be cancelled immediately 
when a real user request comes in, so that the only cost associated with a prefetch is the 
danger of replacing the wrong segment- 

For example, Figure 1 shows a cache with four slots. User U1 is viewing segment SI7 and 
U2 is viewing Sa. U2 has twice the priority of VI. Projections and costs for some segments 
in the system are shown in the table. Because segment Sss has the highest expected cost 
and is not present in the cache, a prefetch would now be issued. It would be read into slot 
3, replacing S42, since of all (unlocked) segments in cache, s42 has the lowest expected cost. 

Validation Experiment 
To verify that our simulator works correctly and that we have implemented the model as 
intended, we ran a series of tests over a very simple scenario where it is possible to compute 
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Segment 
s85 

S92 

, ~ ~ ~ n t  u~ and ;;N!  state:^ ~ , 
User Priority Current Segment Slot 

- - s51 4 
s42 - 

User Probability FkadTime Expected Cost 
ul 0.64 15 9.60 
U Z  0.38 10 7.60 

... 
s5l 

s42 

... 1.. ... ... 
Ul 0.07 11 0.77 
(no prediction) 9 0.00 

Figure 1: An example using predictions to determine which segment(s) to prefetch. 

in closed form the expected waiting times. In this scenario there is one user and a cache with 
two slots-ne in use and one available for prefetch. There are five segments SI through 
S5, and to each is assigned a fixed probability Pi, 1 5 i 5 5. Assuming the user is current 
viewing segment S;, his next request is for segment Sj (i # j )  with probability P j / ( l -  Pi). 
This stochastic process can be represented by a Markov chain with five states; tlie TDAG 
algorithm can learn this process using a tree with 26 nodes. 

Test cases were generated by assigning likelihoods and read-times to the five segments at 
random. It is fairly straightforward to compute the expected mean and standard deviation 
of the waiting time per request under the LRU (non-prefetch) strategy. The formula for the 
mean is given by 

Here, Prob,,(si) is the probability that, at a randomly selected instant, segment Si has been 
viewed most recently. It is equal to the stationary probability distribution of the states in 
the Markov chain and is easily calculated using well-known techniques. Prob(Sj1Si) is the 
probability that a request for Sj follows that for Si and, as noted above, is given by Pj/( l -Pi) .  
Given that Si and Sj axe the two segments in cache, we can compute the expected waiting 
time for the subsequent segment request; this is the third term in the formula and is a sum 
of the read times for each segment not in cache weighted by the probability of its being 
requested. Note that no waiting cost is incurred if segment S; (which is already in cache) 
happens to be the next to be requested. 
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Now consider the situation when segments can be prefetche . It is easy to show that 
the optimal prefetch strategy is to always read the segment th the highest product 
pi x ReadTime; unless it is already being viewed, in which case we should fetch the segment 
with the next highest product, Pj x ReadTimej. With this observation we can also compute 
the expected mean and standard deviation of the waiting time under an optimal prefetch 
strategy. 

For any given probabilities and waiting times, we can compute and compare the waiting 
times for both the LRU and TDAG-prefetch strategies. This provides an exact comparison 
of the two strategies under very special circumstances, but the main purpose of studying 
this simple case is to verify that the experimentally observed waiting-time statistics agree 
with the predictions and thereby to build our confidence in the accuracy of our simulation. 
We can then proceed to simulate more complex (and more realistic) user request processes 
and use our model as a low-cost way to compare the TDAG-prefetch strategy with other 
possible strategies. 

Mean Std. Dev. 
Expected cost (LRU): 9.858 6.622 
Expected cost (TDAG): 7.765 5.928 
Observed cost (LRU): 9.914 6.593 
Observed cost (TDAG): 7.918 6.062 

Segment Stat istics : 

Number of Misses* 
- 
- 

7252 
6455 

Prob. (Pi): 0.141 0.272 0.123 0.170 0.294 
ReadTime (z): 10.13 18.42 12.89 11.37 14.12 
P; * Ti: 1.43 5.01 1.93 4.15 
Stationary Prob.: 0.156 0.255 0.139 0.182 0.268 

Figure 2: Typical experimental results for the simple single-user, five-slot model. 

We generated over 650 test cases at random, computed the expected statistics, and then 
ran our simulator for 10000 requests in LRU strategy and 10000 requests using TDAG 
prefetching. Figure 2 shows the inputs and results for a typical test case. Also shown 
is the number of times during the simulations that a requested file was not available in 
cache. During the run with prefetch, this case issued 2138 prefetch requests, of which 1133 
successfully predicted the user's next request. 

This run matched others in providing quite good agreement between theory and exper- 
iment. With the TDAG strategy we consistently observed an average of about 3 percent 
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I Case 1 Case3 1 

Figure 3: Experimental results with multiple users and 12-slot cache 

more waiting time than the theory predicts. Although the exact nature of the discrepancy 
has not been carefully studied, exact agreement is not expected since the TDAG is subject 
to statistical fluctuations in its learning and prediction results. 

Averaged over all runs, the TDAG-prefetch strategy yielded a cost savings of about 15 
percent over LRU. In some extreme cases, the savings were as high as 48 percent, and in 
others there were no savings at all. The greatest savings occured in the cases where one 
or two segments stood out as having highest cost. No savings were possible when a l l  the 
segments had essentially equal expected costs. 

0 t her Experiments 
For our main experiment we used a cache with 12 slots and a pool of 30 segments. 

The number of users covering these 30 segments was varied: first 10 users were assigned 
3 segments each; then six users were given five segments; and finally 2 users were each 
assigned 15 segments. The users’ request sequences were generated by random stochastic 
finite automata. Each automaton had either 2 or 3 states per output symbol (segment), was 
fully connected and had an out-degree of 3. Thus the request sequences formed a complex 
pattern, but of the sort in which we expect TDAG to be able to find regularities. For 
simplicity, all users were assigned equal priorities so the cache manager’s task is purely to 
minimize waiting time. 

Each test consisted of two lengthy runs using the same set of users. Large numbers of 
requests were used to ensure statistical significance of the results. The first run was managed 
only by the default LRU strategy. However, during this run, a TDAG silently observed each 
user and built its representation of that user’s request pattern. On the second run, these 
already trained TDAGs were allowed to make predictions for the prefetch mechanism. The 
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cache manager then issued prefetches to fill the unlocked slots with the segments of highest 
expected cost. Thus the differences in the statistics between the runs is a best-case measure 
of how well TDAG prefetching can perform given these users with this configuration. 

Sample results are shown in figure 3. We first call attention to the Mean Waiting Time 
figures because, ultimately, this is the statistic that our prefetching strategy was aimed at 
reducing. As before, these numbers are in (simulated) seconds per user request, and the 
percentage improvement with prefetching is noted. 

Previous literature on prefetching has often emphasized the miss ratio and the transfer 
ratio as performance measures. The miss ratio is simply the number of demand faults divided 
by the number of requests, i.e. the fraction of the time a user had to wait for a read. The 
miss  ratio is noted in parentheses next to the fault counts. The transfer ratio is the total 
number of reads, both demand fault and prefetch, divided by total requests. Clearly, without 
prefetching the miss  and transfer ratios are equal, while with prefetching the transfer ratio 
will rise somewhat while the m i s s  ratio, hopefully, goes down. 

In our simulation model, no cost was incurred for issuing a prefetch. This is reasonable, 
assuming, as we were, that the MSS would have dedicated, interruptible hardware to handle 
the reads. Therefore, we are relatively unconcerned with how much the transfer ratio rises, 
but perhaps the dramatic rise to 2.44 in test case 3 deserves some discussion. In this case, 
there were ten free slots which the cache manager could reconfigure after each request by 
one of the two users. Given these parameters, one might expect a transfer ratio as high as 
about 5.0. Other applications may have different cost considerations, and these should be 
taken into account when designing the prefetch decision strategy. 

To test the learning characteristics of TDAG we used the same user models and sys- 
tem parameters. This time, however, the learning and prediction were intermixed so that 
prefetching began as soon as the TDAGs had built enough of a model to begin issuing pre- 
dictions. Figure 4 shows the m i s s  ratio improvement under these conditions. These data 
were collected by recording the run statistics after every 100 user requests, so the curves are 
quite noisy. However, the overall trends are clear. After the first 3000 requests or so, each 
curve has found its performance level and remains in the same range thereafter. These are 
total request figures so 3000 represents approximately 300 training instances per TDAG in 
the 10-user case and 1500 training instances in the 2-user case. Greater learning times per 
user were to be expected in the %user. case due to the greater complexity of their Markov 
chains (30 states versus 9). 

We ran other experiments with varied parameters that served to confirm the obvious 
intuitions about our cache manager scenario: Having a greater proportion of free slots is 
always advantageous to both the LRU and Prefetch strategies; and, given a deterministic 
user model, say a simple cycle among a set of segments, TDAG will become a virtually 
perfect predictor and improve performance up to the limit imposed by the cache size. 

However, it is worth noting that one c i ~ n  easily build a non-Markovian user model advan- 
tageous to LRU as follows: After the fist  two requests, with probability p (say -8) reselect 
the most recently used previous segment, and with probability 1 - p select uniformly at ran- 
dom from the entire set of segments. Clearly, LRU is optimal in this case, and TDAG can 
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Miss Ratio 

test-10-3 
test-6-5 

test-2-15 

.......-.......... 
---------- 

0 5000 loo00 15000 

Figure 4: Miss Ratio Change with Learning. 

only learn spurious relationships with low probability of being repeated. Using this model, 
we were able to trick the prefetch strategy into actually degrading performance by up to 95 
percent. Therefore, while TDAG learns well for a large variety of sequence types, designers 
of database systems should study empirically the characteristics of their expected request 
sequences before committing to a prediction strategy. 

Discussion and Related Work 
We have not yet made mention of the computation overhead that our prefetching strategy 
entails. This was not a major consideration in this study, in keeping with our assumption 
of a relatively slow, dedicated MSS. However any real system will have some resource limits 
it must abide by. Our simulation environment was not amenable to collecting meaningful 
computation measures. However, the TDAG algorithm is designed so that one may adjust 
the tradeoff between speed and accuracy according to the available computational resources. 
Parameters control the amount of storage available for remembering contexts and the max- 
imum turnaround time (the time between arrival of an input symbol and the output of the 
prediction for the next symbol). Parameters also control the prediction risk, i.e. how much 
evidence is required before a prediction can be made on the basis of a given context. 

Those familiar with the details of TDAG as described in [8] may be curious about the 
parameter settings used in this study. For the record, the data presented here were collected 
using the "Lazy" strategy, an extendibility threshold of 20, a projection threshold of 50 and 



Predictive Caching 

a maximum height of 11. The same tests were run multiple times with different random 
number seeds and repeated using the “Eager” strategy, which is expected to learn somewhat 
faster at the expense of more memory usage. The final results did not vary significantly and 
the numbers shown here are representative. 

There have been few attempts to implement significant prefetching strategies in virtual 
memory systems [lo]. However, the idea of prefetching has been around for a long time. 
Many models are based on the idea of sequentiality, especially in the work of Smith [15, 
14, 161. Sequentiality is the observation that, due to the program or database structure, a 
reference to page i is often a strong predictor of page i + 1. Other research has explored 
the use of user-provided or compiler-generated predictions of page references [17, 18, 4, 13. 
These studies have all supported the conclusion that good time savings can be gained by 
prefetching, provided that a reliable predictor of future references exists. Our work aims at 
learning these predictions automatically and we note that TDAG can readily learn sequential 
reference patterns if it is given relative segment oflsets rather than absolute addresses. 

A somewhat later study, and closer in spirit to the present approach, is the work of Lau 
[9] and Martinez [ll]. These authors propose very similar empirical predictors which are 
trained from traces of page requests. A matrix E ( i , j )  records the number of faults to page 
j that occured within some parameter T references after a fault to page i. This matrix is 
then used to rank the most probable future faults given a current fault. Lau combines this 
prediction with the sequential model and considers fetching one extra page. Martinez weights 
his predictions by the expected time until the next fault and considers models which prefetch 
the most likely p pages. Both show encouraging results from their trace-based simulations. 
While our cost model required learning the total request sequence regardless of faults, TDAG 
could also serve as a tool for this model by feeding it input only after faults. 

Horspool and Huberman [3] point out the desirability of maintaining the memory in- 
c h i o n  property. This property simply states that the pages a policy retains in memory is 
always a subset of the pages that policy would retain given a larger memory. The lack of this 
property leads to the famous FIFO anomaly and makes it difficult to predict how a policy 
will scale to different memory sizes. Furthermore, Horspool and Huberman observe that 
no previous prefetching scheme with which they were familiar possesses this property. The 
method described in this paper uses a priority allocation scheme which ensures the memory 
inclusion property. 

More recent work has also demonstrated the desirability of anticipatory fetching (e.g. 
[5]). Several researchers are exploring models similar to ours, requiring sequence prediction 
modules. Palmer and Zdonik [12] use a nearest-neighbor pattern matcher to predict possible 
sequence continuations. Salem [13] builds on the sequential approach by building a table to 
record the times segment y followed segment 5,  cleverly using parameters to limit storage 
requiiements and remember the most useful relations. 

Finally, Vitter and Krishnan [19] have applied the Ziv-Lempel compression algorithm to 
the prediction task and have proved that for an ergodic Markov source the resulting online 
prefetching algorithm is asymptotically optimal. Recent work by the same authors [SI has 
strengthened this result. A practical application of these ideas is described in [2]. The authors 
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built a simulator very similar in essence to ours and ran it on benchmark database access 
traces with arguably more realistic memory size parameters. They show excellent m i s s  ratio 
improvements, in the 20 to 60 percent range, especially with a Markov tree text-compression 
algorithm called PPM that is closely related to TDAG. 

Conclusions 
Predictive caching, which uses predictions about which storage elements will be requested in 
the future in order to decide which of the currently resident segments to replace, is simple 
and effective using the TDAG sequence-prediction algorithm. The simplicity of the TDAG 
model also enables us to compute theoretically the expected performance of the caching 
system under some circumstances. Our own calculations agreed quite well with simulation 
results based upon the model of a mass storage system. Further simulations give evidence 
for the large cost savings that can theoretically be gained using adaptive prefetching. 
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