
I C
Predictive Caching using

the TDAG Algorithm

PHILIP LAIRD
AI RESEARCH BRANCH

RONALD SAUL
RECOM TECHNOLOGIES

ARTIFICIAL INTELLIGENCE RESEARCH BRANCH

NASA AMES RESEARCH CENTER
MOFFETT FIELD, CA 94035-1000

MS 269-2

I ’

NASA Arnes Research Center
Artificial 1 ntelligence Research Branch

Technical Report FIA-92-30

December, 1992

https://ntrs.nasa.gov/search.jsp?R=19960022267 2020-06-16T04:53:19+00:00Zbrought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42777854?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Predictive Caching using the TDAG Algorithm
(Technical Report FIA-92-30)

Philip Laird Ronald Saul

AI Reseasch Branch
NASA Ames Research Center

Moffett Field, California 94035 (U.S.A.)

Abstract

We describe how the TDAG algorithm for learning to predict symbol sequences
can be used to design a predictive cache store. A model of a two-level mass storage
system is developed and used to calcdate the performance of the cache under various
conditions. Experimental simulations provide good confirmation of the model.

Introduction
A cache is a multi-tier store consisting of a hierarchy of storage media with different access
speeds, capacities, and costs. The medium with the highest capacity is simultaneously the
one with the least cost per byte and the slowest data access rate. In a typical mass storage
system (MSS), for example, the majority of archival data is kept on tape, while the portions
in active use are retained on disk or in RAM.

A request for a segment of data that is not available in the higher-speed store (or cache)
is answered by replacing one of the current segments in the cache by the requested segment.
Moreover, if the segment being replaced has been modified, it must be rewritten to the slower
storage medium. In view of the penalty in waiting time to be paid whenever a requested
segment is not in higher-speed store, the choice of which segment to replace can have a
significant impact on the performance of the system.

A variety of algorithms have been used in an effort to minimize transfers of segments
between the cache and the secondary store. The LRU (least-recently-used) strategy, for
example, replaces the segment least recently referred to by the user(s), on the assumption
that the more time since a segment was requested, the less likely it is to be requested soon.
The general idea of LRU and other such strategies is, of course, to predict future segment
usage.

The cost of making such a prediction, however, cannot be ignored. In virtual storage
systems, for example, only extremely fast prediction algorithms can be considered. In other

Predictive Caching

circumstances, however, one may justify spending more time to make better predictions.
Mass storage systems and theorem provers are examples of such applications, and in this
paper we investigate the application of more sophisticated learning/prediction methods to
the design of an MSS. The model is based upon the specifications for a proprietary MSS
under development by a major high-technology company.

The MSS Model
Our model consists of a number of segments S, a cache with Cslots each able to hold exactly
one segment, and a number of users U. By assumption, U < C < S. Each segment has an
associated read time, which is the cost of making a user wait while the segment is read into
the cache. Each user is assigned a priority so that the waiting time of a high-priority user
adds proportionally more to the cost.

A stream of user requests is generated by some hidden process. Each request is simply
the name of the segment the user wishes to view paired with a length of time the user
will spend before issuing his next request. This use time is relevant only to our simulation
and is not available to the predictive algorithms described later. Since we are interested
in situations where time is available to take advantage of sophisticated prediction, the use
times are typically an order of magnitude larger than the read times, and both are measured
in (simulated) seconds. Typical values are 10 seconds to read a segment into cache, and 200
or more seconds for the user to spend viewing the segment.

Whenever a user requests a segment not in cache, the user enters a waiting state where
he remains until the read is completed. The user’s waiting time multiplied by his priority
factor is added to the system’s total waiting time. The goal of any predictive algorithm is
simply to minimize this total waiting time (cost).

The selection of the cache slot to replace on a read is of central importance. The segments
currently in use are, of course, locked and not replaceable until a user requests a different
segment. All other slots are kept in a queue whose head contains the next segment to be
replaced. With a pure LRU strategy, the head is the segment least recently requested by any
user. An alternative strategy for ordering this queue is explored in the following sections.

The TDAG Algorithm
A prediction algorithm can be used to develop online a probabilistic model of the request
source, in order that the next few requests might be predicted and the contents of cache be
adjusted accordingly. In this study we applied the TDAG sequence-prediction algorithm for
this purpose. Based in part upon the Markov stochastic-process model, the TDAG algorithm
can quickly learn complex sequential patterns in a stream of requests. It has been used
successfully for other applications, including text compression and program optimization.
See 171 and [8] for a detailed description.

Predictive Caching

Input to the algorithm is a stream {si I i 2 1) of symbols. Each symbol is treated as a
distinct item and, in our application here, will be the name or address of a file segment. The
algorithm builds a tree structure representing the most likely subsequences in the stream
and, when data are sufficient to make a confident prediction, the algorithm predicts the
next segment (or the next few segments) in the form of a partial probability distribution,
e.g., "Segment S72 with probability 0.53, or segment S23 with probability 0.38, or some
other segment whose probability is too low to worry about". The algorithm is designed to
capture high-probability sequences without using valuable storage to record the myriads of
low-probability events. Parameters control how much time and storage the algorithm can
use in developing its model.

A Predictive Caching Algorithm
To implement a TDAG-based caching strategy, we create a separate TDAG for each user. On
every segment request, the name of the segment is fed to the TDAG as its next input symbol.
Over time, if there are stable patterns in the user's request sequences, the TDAG will be
able to return a probability distribution on the next expected segment. This prediction can
be used to compute an expected cost function Cost(Si) for each segment. The expected cost
of not having Si resident in the cache is given approximately by

cost(si) = rob,(S;)ReadTirne(Si)Priority(u),
ufusera

where Probu(S;) is the probability that user u will request segment S;, ReadTirne(S;) is the
time required to read S; into cache, and Priority(u) is the priority factor of user u.

This cost can now be used to rank the unlocked segments resident in cache. Segments
whose probability of being requested is too small to predict are considered lowest cost and
are scheduled for replacement by the default LRU mechanism. Furthermore, the predicted
segment of highest expected cost not already in the cache can be prefetched if it will replace
a segment of lower expected cost. We assume that prefetches can be cancelled immediately
when a real user request comes in, so that the only cost associated with a prefetch is the
danger of replacing the wrong segment-

For example, Figure 1 shows a cache with four slots. User U1 is viewing segment SI7 and
U2 is viewing Sa. U2 has twice the priority of VI. Projections and costs for some segments
in the system are shown in the table. Because segment Sss has the highest expected cost
and is not present in the cache, a prefetch would now be issued. It would be read into slot
3, replacing S42, since of all (unlocked) segments in cache, s42 has the lowest expected cost.

Validation Experiment
To verify that our simulator works correctly and that we have implemented the model as
intended, we ran a series of tests over a very simple scenario where it is possible to compute

Predictive Caching

Segment
s85

S92

, ~ ~ ~ n t u~ and ;;N! state:^ ~ ,
User Priority Current Segment Slot

- - s51 4
s42 -

User Probability FkadTime Expected Cost
ul 0.64 15 9.60
U Z 0.38 10 7.60

...
s5l

s42

... 1..
Ul 0.07 11 0.77
(no prediction) 9 0.00

Figure 1: An example using predictions to determine which segment(s) to prefetch.

in closed form the expected waiting times. In this scenario there is one user and a cache with
two slots-ne in use and one available for prefetch. There are five segments SI through
S5, and to each is assigned a fixed probability Pi, 1 5 i 5 5. Assuming the user is current
viewing segment S;, his next request is for segment Sj (i # j) with probability P j / (l - Pi).
This stochastic process can be represented by a Markov chain with five states; tlie TDAG
algorithm can learn this process using a tree with 26 nodes.

Test cases were generated by assigning likelihoods and read-times to the five segments at
random. It is fairly straightforward to compute the expected mean and standard deviation
of the waiting time per request under the LRU (non-prefetch) strategy. The formula for the
mean is given by

Here, Prob,,(si) is the probability that, at a randomly selected instant, segment Si has been
viewed most recently. It is equal to the stationary probability distribution of the states in
the Markov chain and is easily calculated using well-known techniques. Prob(Sj1Si) is the
probability that a request for Sj follows that for Si and, as noted above, is given by Pj/(l -Pi) .
Given that Si and Sj axe the two segments in cache, we can compute the expected waiting
time for the subsequent segment request; this is the third term in the formula and is a sum
of the read times for each segment not in cache weighted by the probability of its being
requested. Note that no waiting cost is incurred if segment S; (which is already in cache)
happens to be the next to be requested.

Predictive Caching

Now consider the situation when segments can be prefetche . It is easy to show that
the optimal prefetch strategy is to always read the segment th the highest product
pi x ReadTime; unless it is already being viewed, in which case we should fetch the segment
with the next highest product, Pj x ReadTimej. With this observation we can also compute
the expected mean and standard deviation of the waiting time under an optimal prefetch
strategy.

For any given probabilities and waiting times, we can compute and compare the waiting
times for both the LRU and TDAG-prefetch strategies. This provides an exact comparison
of the two strategies under very special circumstances, but the main purpose of studying
this simple case is to verify that the experimentally observed waiting-time statistics agree
with the predictions and thereby to build our confidence in the accuracy of our simulation.
We can then proceed to simulate more complex (and more realistic) user request processes
and use our model as a low-cost way to compare the TDAG-prefetch strategy with other
possible strategies.

Mean Std. Dev.
Expected cost (LRU): 9.858 6.622
Expected cost (TDAG): 7.765 5.928
Observed cost (LRU): 9.914 6.593
Observed cost (TDAG): 7.918 6.062

Segment Stat istics :

Number of Misses*
-
-

7252
6455

Prob. (Pi): 0.141 0.272 0.123 0.170 0.294
ReadTime (z): 10.13 18.42 12.89 11.37 14.12
P; * Ti: 1.43 5.01 1.93 4.15
Stationary Prob.: 0.156 0.255 0.139 0.182 0.268

Figure 2: Typical experimental results for the simple single-user, five-slot model.

We generated over 650 test cases at random, computed the expected statistics, and then
ran our simulator for 10000 requests in LRU strategy and 10000 requests using TDAG
prefetching. Figure 2 shows the inputs and results for a typical test case. Also shown
is the number of times during the simulations that a requested file was not available in
cache. During the run with prefetch, this case issued 2138 prefetch requests, of which 1133
successfully predicted the user's next request.

This run matched others in providing quite good agreement between theory and exper-
iment. With the TDAG strategy we consistently observed an average of about 3 percent

Predictive Caching

I Case 1 Case3 1

Figure 3: Experimental results with multiple users and 12-slot cache

more waiting time than the theory predicts. Although the exact nature of the discrepancy
has not been carefully studied, exact agreement is not expected since the TDAG is subject
to statistical fluctuations in its learning and prediction results.

Averaged over all runs, the TDAG-prefetch strategy yielded a cost savings of about 15
percent over LRU. In some extreme cases, the savings were as high as 48 percent, and in
others there were no savings at all. The greatest savings occured in the cases where one
or two segments stood out as having highest cost. No savings were possible when a l l the
segments had essentially equal expected costs.

0 t her Experiments
For our main experiment we used a cache with 12 slots and a pool of 30 segments.

The number of users covering these 30 segments was varied: first 10 users were assigned
3 segments each; then six users were given five segments; and finally 2 users were each
assigned 15 segments. The users’ request sequences were generated by random stochastic
finite automata. Each automaton had either 2 or 3 states per output symbol (segment), was
fully connected and had an out-degree of 3. Thus the request sequences formed a complex
pattern, but of the sort in which we expect TDAG to be able to find regularities. For
simplicity, all users were assigned equal priorities so the cache manager’s task is purely to
minimize waiting time.

Each test consisted of two lengthy runs using the same set of users. Large numbers of
requests were used to ensure statistical significance of the results. The first run was managed
only by the default LRU strategy. However, during this run, a TDAG silently observed each
user and built its representation of that user’s request pattern. On the second run, these
already trained TDAGs were allowed to make predictions for the prefetch mechanism. The

Predictive Caching

cache manager then issued prefetches to fill the unlocked slots with the segments of highest
expected cost. Thus the differences in the statistics between the runs is a best-case measure
of how well TDAG prefetching can perform given these users with this configuration.

Sample results are shown in figure 3. We first call attention to the Mean Waiting Time
figures because, ultimately, this is the statistic that our prefetching strategy was aimed at
reducing. As before, these numbers are in (simulated) seconds per user request, and the
percentage improvement with prefetching is noted.

Previous literature on prefetching has often emphasized the miss ratio and the transfer
ratio as performance measures. The miss ratio is simply the number of demand faults divided
by the number of requests, i.e. the fraction of the time a user had to wait for a read. The
miss ratio is noted in parentheses next to the fault counts. The transfer ratio is the total
number of reads, both demand fault and prefetch, divided by total requests. Clearly, without
prefetching the miss and transfer ratios are equal, while with prefetching the transfer ratio
will rise somewhat while the m i s s ratio, hopefully, goes down.

In our simulation model, no cost was incurred for issuing a prefetch. This is reasonable,
assuming, as we were, that the MSS would have dedicated, interruptible hardware to handle
the reads. Therefore, we are relatively unconcerned with how much the transfer ratio rises,
but perhaps the dramatic rise to 2.44 in test case 3 deserves some discussion. In this case,
there were ten free slots which the cache manager could reconfigure after each request by
one of the two users. Given these parameters, one might expect a transfer ratio as high as
about 5.0. Other applications may have different cost considerations, and these should be
taken into account when designing the prefetch decision strategy.

To test the learning characteristics of TDAG we used the same user models and sys-
tem parameters. This time, however, the learning and prediction were intermixed so that
prefetching began as soon as the TDAGs had built enough of a model to begin issuing pre-
dictions. Figure 4 shows the m i s s ratio improvement under these conditions. These data
were collected by recording the run statistics after every 100 user requests, so the curves are
quite noisy. However, the overall trends are clear. After the first 3000 requests or so, each
curve has found its performance level and remains in the same range thereafter. These are
total request figures so 3000 represents approximately 300 training instances per TDAG in
the 10-user case and 1500 training instances in the 2-user case. Greater learning times per
user were to be expected in the %user. case due to the greater complexity of their Markov
chains (30 states versus 9).

We ran other experiments with varied parameters that served to confirm the obvious
intuitions about our cache manager scenario: Having a greater proportion of free slots is
always advantageous to both the LRU and Prefetch strategies; and, given a deterministic
user model, say a simple cycle among a set of segments, TDAG will become a virtually
perfect predictor and improve performance up to the limit imposed by the cache size.

However, it is worth noting that one c i ~ n easily build a non-Markovian user model advan-
tageous to LRU as follows: After the fist two requests, with probability p (say -8) reselect
the most recently used previous segment, and with probability 1 - p select uniformly at ran-
dom from the entire set of segments. Clearly, LRU is optimal in this case, and TDAG can

Predictive Caching

Miss Ratio

test-10-3
test-6-5

test-2-15

.......-..........

0 5000 loo00 15000

Figure 4: Miss Ratio Change with Learning.

only learn spurious relationships with low probability of being repeated. Using this model,
we were able to trick the prefetch strategy into actually degrading performance by up to 95
percent. Therefore, while TDAG learns well for a large variety of sequence types, designers
of database systems should study empirically the characteristics of their expected request
sequences before committing to a prediction strategy.

Discussion and Related Work
We have not yet made mention of the computation overhead that our prefetching strategy
entails. This was not a major consideration in this study, in keeping with our assumption
of a relatively slow, dedicated MSS. However any real system will have some resource limits
it must abide by. Our simulation environment was not amenable to collecting meaningful
computation measures. However, the TDAG algorithm is designed so that one may adjust
the tradeoff between speed and accuracy according to the available computational resources.
Parameters control the amount of storage available for remembering contexts and the max-
imum turnaround time (the time between arrival of an input symbol and the output of the
prediction for the next symbol). Parameters also control the prediction risk, i.e. how much
evidence is required before a prediction can be made on the basis of a given context.

Those familiar with the details of TDAG as described in [8] may be curious about the
parameter settings used in this study. For the record, the data presented here were collected
using the "Lazy" strategy, an extendibility threshold of 20, a projection threshold of 50 and

Predictive Caching

a maximum height of 11. The same tests were run multiple times with different random
number seeds and repeated using the “Eager” strategy, which is expected to learn somewhat
faster at the expense of more memory usage. The final results did not vary significantly and
the numbers shown here are representative.

There have been few attempts to implement significant prefetching strategies in virtual
memory systems [lo]. However, the idea of prefetching has been around for a long time.
Many models are based on the idea of sequentiality, especially in the work of Smith [15,
14, 161. Sequentiality is the observation that, due to the program or database structure, a
reference to page i is often a strong predictor of page i + 1. Other research has explored
the use of user-provided or compiler-generated predictions of page references [17, 18, 4, 13.
These studies have all supported the conclusion that good time savings can be gained by
prefetching, provided that a reliable predictor of future references exists. Our work aims at
learning these predictions automatically and we note that TDAG can readily learn sequential
reference patterns if it is given relative segment oflsets rather than absolute addresses.

A somewhat later study, and closer in spirit to the present approach, is the work of Lau
[9] and Martinez [ll]. These authors propose very similar empirical predictors which are
trained from traces of page requests. A matrix E (i , j) records the number of faults to page
j that occured within some parameter T references after a fault to page i. This matrix is
then used to rank the most probable future faults given a current fault. Lau combines this
prediction with the sequential model and considers fetching one extra page. Martinez weights
his predictions by the expected time until the next fault and considers models which prefetch
the most likely p pages. Both show encouraging results from their trace-based simulations.
While our cost model required learning the total request sequence regardless of faults, TDAG
could also serve as a tool for this model by feeding it input only after faults.

Horspool and Huberman [3] point out the desirability of maintaining the memory in-
c h i o n property. This property simply states that the pages a policy retains in memory is
always a subset of the pages that policy would retain given a larger memory. The lack of this
property leads to the famous FIFO anomaly and makes it difficult to predict how a policy
will scale to different memory sizes. Furthermore, Horspool and Huberman observe that
no previous prefetching scheme with which they were familiar possesses this property. The
method described in this paper uses a priority allocation scheme which ensures the memory
inclusion property.

More recent work has also demonstrated the desirability of anticipatory fetching (e.g.
[5]). Several researchers are exploring models similar to ours, requiring sequence prediction
modules. Palmer and Zdonik [12] use a nearest-neighbor pattern matcher to predict possible
sequence continuations. Salem [13] builds on the sequential approach by building a table to
record the times segment y followed segment 5, cleverly using parameters to limit storage
requiiements and remember the most useful relations.

Finally, Vitter and Krishnan [19] have applied the Ziv-Lempel compression algorithm to
the prediction task and have proved that for an ergodic Markov source the resulting online
prefetching algorithm is asymptotically optimal. Recent work by the same authors [SI has
strengthened this result. A practical application of these ideas is described in [2]. The authors

Predictive Caching

built a simulator very similar in essence to ours and ran it on benchmark database access
traces with arguably more realistic memory size parameters. They show excellent m i s s ratio
improvements, in the 20 to 60 percent range, especially with a Markov tree text-compression
algorithm called PPM that is closely related to TDAG.

Conclusions
Predictive caching, which uses predictions about which storage elements will be requested in
the future in order to decide which of the currently resident segments to replace, is simple
and effective using the TDAG sequence-prediction algorithm. The simplicity of the TDAG
model also enables us to compute theoretically the expected performance of the caching
system under some circumstances. Our own calculations agreed quite well with simulation
results based upon the model of a mass storage system. Further simulations give evidence
for the large cost savings that can theoretically be gained using adaptive prefetching.

References
[l] Glen Alan Brent. Using Program Structure to Achieve Prefetching for Cache Memories.

PhD thesis, University of Illinois at Urbana-Champaign, 1987.

[2] K. Curewitz, P. Krishnan, and J. Vitter. Practical prefetching via data compression.

[3] R. Nigel Horspool and Ronald M. Huberman. Analysis and development of demand

Manuscript received Dec. 1992.

prepaging policies. The Journal of Systems and Sofiware, 7(3):183-194, 1987.

[4] Eric E. Johnson. Working set prefetching for cache memories. Computer Architecture
News, 17(6): 137-141, 1989.

[5] D. Kotz and C. S. Ellis. Pra@ical prefetching techniques for multiprocessor file systems.
Distributed and Parallel Databases, 1~33-51, 1992.

[6] P. Krishnan and J. Vitter. Optimal prefetching in the worst case. Manuscript received
Dec. 1992.

171 Philip Laird. Discrete sequence prediction and its applications. In Proc., 9th National
Conference on Artificial Intelligence. AAAI, 1992.

[8] Philip Laird. TDAG: An algorithm for learning to predict discrete sequences. Technical
Report FIA-92-01, NASA Ames Research Center, AI Research Branch, 1992.

[9] Edwin J. Lau. Improving page prefetching with prior knowledge. Performance Evalua-
tion, 2(3):195-206, 1982.

[lo] Mamoru Maekawa, Arthur Oldehoeft, and Rodney Oldehoeft. Operating Systems: Ad-
vanced Concepts. Benjamin/Cummings, 1987.

ill] Michel Martinez. Program behavior prediction and prepaging. Acta Informatica,
17~101-120, 1982.

[12] M. Palmer and S. B. Zdonik. Fido a cache that learns to fetch. In Proceedings of 17th
International Conference on Very Large Data Bases, 1991.

[13] Kenneth Salem. Adaptive prefetching for disk buffers. Technical Report 1f.-91-46,
University of Maryland and CESDIS, Goddard Space Flight Center, 1991.

[14] Alan J. Smith. Sequential program prefetching in memory hierarchies. Computer,
11(12):7-20, 1978.

[15] Alan J. Smith. Sequentiality and prefetching in database systems. !hamactions on
Database Systems, 3(3):223-247, 1978.

Predictive Caching

[16] Alan J. Smith. Cache memories. Computing Surveys, 14(3):7-20, 1982.

[17] Kishor S. Trivedi. Prepaging and applications to array algorithms. IEEE Bansactions
on Computers, C-25(9):915-921, 1976.

[18] Kishor S. Trivedi. An analysis of prepaging. Computing, 22:191-210, 1979.

[19] J. Vitter and P. Krishnan. Optimal prefetching via data compression. In Proceedings
of the 32nd Annual IEEE Symposium on Foundations of Computer Science, 1991.

