
AS

There is No Free Lunch: TradeoEs in
the Utility of Learned Knowledge

SMADAR KEDAR
KATHLEEN MCKUSICK

ARTIFICIAL INTELLIGENCE RESEARCH BRANCH

NASA AMES RESEARCE CENTER
MOFFETT FIELD, CA 94035-1000

MS 269-2

AN EXTENDED ABSTRACT OF THIS PAPER IS PUBLISHED IN THE “PROCEE1)INGS OF

THE FIRST INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE PLANNING
SYSTEMS” , JAMES HENDLER (ED.), SILVER SPRINGS, MD., JUNE, 1992

Ames Research Center
Artificial Intelligence Research Branch

Technical Report FIA-92-04

June, 1992

https://ntrs.nasa.gov/search.jsp?R=19960022269 2020-06-16T04:53:13+00:00Z

There is no Free Lunch:
Tradeoffs in the Utility of Learned Knowledge

Smadar T. Kedar
Kathleen B. McKusick

NASA Ames Research Center
Artificial Intelligence Research Branch

Mail Stop 269-2
Moffett Field, CA 94035

kedar@p t olemy. arc .nasa. gov
mckusickept olemy.arc.nasa. gov

June 12, 1992

Abstract

With the recent introduction of learning in integrated systems, there is a need to
measure the utility of learned knowledge for these more complex systems. A diffiLulty
arrises when there are multiple, possibly conflicting, utility metrics to be measured. In
this paper, we present schemes which trade off conflicting utility metrics in order to
achieve some global performance objectives. In particular, we present a case study of a
multi-strategy machine learning system, mutual theory refinement, which refines worId
models for an integrated reactive system, the Entropy Reduction Engine. We provide
experimental results on the utility of learned knowledge in two conflicting metrics -
improved accuracy and degraded efficiency. We then demonstrate two ways to trade off
these metrics. In each, some learned knowledge is either approximated or dynamically
‘forgotten’ so as to improve efficiency while degrading accuracy only slightly.

0 Function: Planning, learning

0 Other keywords: Reactivity, theory refinement, failure-driven learning

1 Introduction and Motivation
Successful planning and control systems in realistic domains depend on the
ability to improve with experience. One characteristic of such systems is the
ability to gracefully recover from failures, and avoid similar failures in the
future. The long term objective of our machine learning research (Kedar et.
al., 1991; Kedar & Chrisman, 1992) is to improve systems for planning and
control by autonomously and systematically detecting failures, and refining
domain knowledge so as to avoid such failures in the future.

Although for many years machine learning research has defined its pri-
mary god as performance system improvement (Simon, 1983) , it is only in
the past five years or so that the field has sufficiently matured to facilitate
experimental validation of the utility of learned knowledge’ for performance
(Langley & Kibler, 1991). The notion of a utility problem was first presented
in (Minton, 1988), referring to the degradation of system performance by
machine learning. Minton shows that efficiency degrades, rather than im-
proves, when certain search control rules are acquired using explanation-
based learning. This results from learned rules whose high match cost over-
rides benefits in reducing search cost. Holder defines the general utility prob-
lem as the “degradation of performance due to increasing amounts of learned
knowledge” (Holder, 1988). This notion generalizes utility to other learning
paradigms and other performance metrics. For example, degraded eficiency
due to increased match cost caused by analytic learning is similar to the
problem of decreased accuracy in overfitting caused by empirical learning.
In a parallel effort, the AI planning community has taken a recent interest
in experimentally validating its research, attempting to identify what con-
stitutes a successful planning system through more rigorous experimentation
and analysis (Langley & Drummond 1991), (Al-Badr & Hanks, 1991).

Despite these contributions, research on utility is still myopic. Most of
the approaches to utility analysis focus on a single performance system, a
single learning paradigm, and a single measure of utility (e.g. efficiency in
Minton, 1988; Tambe 1990; or accuracy in Holder, 1991). Yet with the recent
introduction of learning in integrated systems, there is a need to measure

‘Because of unfortunate choice in terminology, the ‘utility’ of learned knowledge as
referred to in machine learning is not technically related to the decision-theoretic con-
cept. ‘Utility’ in decision theory is a value or cost of a state (see (Berger, 1980) for an
introduction to decision theory).

1

the utility of learned knowledge for these more complex systems. A difficulty
arises when there are multiple, possibly conflicting, utility metrics to be
measured.

In this paper, we present schemes which trade off conflicting utility met-
r i c ~ in order to achieve some global performance objectives. In particular, we
present a case study of a multi-strategy machine learning system, mutual the-
ory refinement, which refines world models for an integrated reactive system,
the Entropy Reduction Engine (Bresina & Drummond, 1990). We provide
experimental results on the utility of learned knowledge in two conflicting
metrics - improved accuracy and degraded efficiency. We then demonstrate
methods of trading off these metrics, whereby some learned knowledge is ap-
proximated so as to improve efEciency while degrading accuracy only slightly.

In Section 2 we familiarize the reader with the architecture of the case
study. Next, in Section 3, we describe our experimental results on the utility
of the learned knowledge for the case study. In Section 4, we step back from
the details of the particular case study to discuss the general issue of tradeoffs
of different utility measures for multi-strategy learning in integrated systems.
We present our conclusions in Section 5.

2 The Architecture
In this section we describe the architectures of the performance and learning
systems. We focus only on those aspects directly relevant to our experimen-
tation (see associated references for a more thorough treatment). The current
testbed for the integrated system discussed below is the NASA Tileworld ex-
perimental domain (Philips, 1991). This Tileworld consists of a simulator of
a single agent in a two-dimensional grid of cells, able to move in four compass
directions, grasp and release tiles. The domain is simple, yet has challenging
aspects of real-world domains such as actions with stochastic outcomes, and
unexpected external events such as winds'.
2.1 The Entropy Reduction Engine System
Reactive systems are situated in an environment in which they sense and act.
Our case study is cast within one such system, the Entropy Reduction Engine
(ERE) (Bresina & Drummond, 1990; Drummond, Bresina, & Kedar, 1991). Unlike
systems which consist of hand-coded reactions tailored to a particular task

2For a discussion as to the usefulness of the tileworld as a domain for experimentation,
see (Pollack, 1990; Ai-Badr & Hanks 1991).

2

(notably Brooks’s (1986) subsumption architecture), ERE integrates planning
and scheduling with reaction in order to automatically syn
appropriate to the given goals and environment. For the
paper, we present a high-level algorithmic description of
of ERE: the planner and the reactor. Given as input a set of operators
and constraints on the domain, the planner performs temp
version of forward search) to find a sequence of operators to
Using goal regression, the plan is then compiled into a set of situated control
rules (SCR’s). The SCR’s provide ‘advice’ from the planner to the reactor
as to which operator to apply when, so as to achieve the goal. The reactor
either executes an applicable SCR, or resorts to an applicable random action.

ERE models the world with operators and domain constraints. The op-
erators model the agent’s actions in terms of preconditions and effects. The
operators are further divided into specializations containing additional pre-
conditions and specialized effects. Operator effects are a set of nondetermin-
istic variant outcomes, with associated probabilities of occurrence. Domain
constraints model physical laws, e.g., “the agent cannot be in two locations
at once.” Actions are performed in the world (or simulator), which moves
from one state to the next. The operators and constraints are only approx-
imate models, and therefore may not always predict the observed results
of actions. That may lead to prediction failures, which drive the learning
system to refine these world models.
2.2
Mutual theory refinement (MTR) (Kedar et, af., 1991) is a multi-strategy learn-
ing method3 used to refine the world models of a reactive system. Since these
world models are always approximate in some way, occasionally the system
may predict that a particular outcome of its actions will be observed, and in-
stead encounter a prediction failure, where its predicted and observed states
are at odds. Such failures drive the learning system to correct the world
model so that future similar predictions are correct. MTR builds on earlier
work in learning from failure (Schank, 1982; Simmons,l988; Sussman, 1985)and
explanation-based learning (EBL) from failure for refining approximate the-
ories (e.g. (Hammond, 1986; Chien, 1989)). MTR differs from most in that
instead of assuming that a complete and correct theory is available to fix

3The term multi-strategy learning means that an array of learning techniques is available

Learning Through Mutual Theory Refinement

to apply to a problem, rather than a single method.

3

Figure 1: Missing Preconditions: observed and predicted states

the approximate one, MTR can refine one approximate theory with another,
when possible. 0 therwise, it degrades gracefully, using induction or rote
learning.

The high-level algorithm for the control structure of MTR is as follows:
MTR detects a prediction failure (different predicted and observed states).
MTR then collects all possible diagnoses of the failure (existence or absence
of literals in the predicted and observed states help determine what could
have gone wrong). To repair the failure, a heuristic selection method selects
the most effective repair. Each faulty literal in the prediction failure votes on
one repair method. The method with the most votes gets used. To repair the
failure, MTR searches through the set of available repair methods to check if
one exists for this failure. If so, the failure is repaired. If not, other repairs are
attempted. The system loops until all failures are repaired, or no more r e p ~ r
methods are available for this failure. In that case, the system updates the
statistics collected on the probabilities of the variant outcomes, and outputs
the refined operator or domain constraint model.

Prediction failures for ERE may result from missing or extra preconditions;
missing or extra variant outcomes; incorrect preconditions or outcomes; miss-
ing, extra, or incorrect domain constraints. For purposes of this paper we
present algorithmic descriptions for learning missing preconditions and miss-
ing variant outcomes only (see (Kedar et. al, 1991) for more detail). MTR
performs plausible refinements which are annotated and may be revised with
further information.

Learning missing preconditions: For ease of exposition, we focus on a
simple NASA Tileworld example in Figure 1. (The agent is the black circle,
and the tiles are the outlined figures.) Consider the MOVE operator. Suppose
that the precondition that tests whether the destination cell is clear is missing

4

Figure 2: Missing variant outcomes: observed and predicted states

(similar errors of omission actually occurred as we wrote the operators for the
original system). The reactor detects a prediction failure after it attempts
unsuccessfully to move the agent to a cell containing a tile in it (an obstacle) .
The predicted outcome, that the agent be at the destination cell, differs from
the actual outcome, in which the agent stays put because of the obstacle.
Given as input the predicted and actual states, MTR explains the prediction
failure as a violation of the domain constraint “two things cannot occupy the
same cell.” Using an algorithm similar to explanation-based learning from
failure, the domain constraint is negated and regressed through the operator.
It is added as a new (and generalized) precondition on the MOVE operator. It
states that MOVE is applicable only if as a result “two things will not occupy
the same cell” (or, before the move, the adjacent cell is c l e a ~) ~ .

Learning variant outcomes: Again, consider the simple example above.
For the MOVE operator, the only expected outcome is that the agent move
straight to the destination cell. However, since the world (or in our case,
the simulator) is not so predictable, the agent may veer to the right (or left)
of its destination, illustrated as in Figure 2. (The agent’s previous Iocation
is shown as a grey circle.) In such cases, the reactor will again detect a
prediction failure. Given as input the predicted and actual states, the ap-
proximate domain constraint theory cannot explain the failure (unlike the
above case, no domain constraint is violated by the prediction that the agent
move straight). Without a theory, the learning method gracefully degrades to
a weaker form of generalization (induction or rote learning). In this example,

4Note that this scenario illustrates that one approximate theory (the domain con-
straints) was sufficient to be used by MTR in refining another approximate theory (the
operators). Conversely MTR can also mutually refine the approximate model of domain
constraints using the approximate operator model.

5

it simply augments the operator with the observed outcome as an additional
variant outcome, that of veering to the right (or left) of the destination cell.

3 Experiment at ion
While the goal of mutual theory refinement is to reduce prediction failures, its
ultimate aim is to improve the overall performance of the associated system.
In the following experiments, we illustrate how refinement by MTR affects
ERE performance in a particular case study. To simplify the preliminary
experiments, we focus initially on only two classes of refinements: adding
missing preconditions and adding missing variant outcomes. The data was
obtained by running the ERE/MTR system written in Allegro CommonLISP
on a SUN SPARCstation 1 with 16M of memory. In order to facilitate the
experiment ation and avoid inefficiencies in our original implemkt ation, we
reimplemented simplified fast versions of MTR and ERE (as in Drummond &
Levinson, 1991), simulating only the parts of the original systems needed for
the experimentation. For the purpose of reproducing the experiments, the
implementation and testbed can be obtained directly from the authors.

In these experiments, we provide the system with an initial theory: a
faulty domain theory with no preconditions and variant outcomes, and ob-
serve the resulting effects on performance as the system corrects the theory.
The system adds discovered missing preconditions and variant outcomes, re-
sulting in an endpoint theo$. In effect, the domain theory is an independent
parameter which changes over time as it is corrected and augmented. System
performance is measured in terms of dependent parameters accuracy and ef-
ficiency. Accuracy is percent goal achievement, measured as the number of
goals achieved by the integrated ERE planner and reactor. That is, it de-
scribes the success rate achieved by the reactor using the planner’s advice
(SCR’s). Efficiency is measured in two ways. One is search cost, defined as
the total number of nodes expanded during planning search. The second is
match cost, defined as the number of function calls within the matcher when
an operator is being tested for applicability.

Some things remained constant throughout the experiments. For all ex-
periments we use 10 sets of 50 training problems and 100 test problems
generated from the NASA Tileworld domain. All results are averaged over
10 runs. We fix the Tileworld grid size at 10 x 10 squares, with average

5By endpoint theory we mean a theory, still approximate, containing all preconditions
and outcomes that have been discovered for these operators via learning.

6

tile densi ty of 20%. Tile density in the TileWorld grid refers to the per-
centage of occupied grid cells. A density of 20% provides a scenario where
planning significantly improves the system’s goal achievement over a pure
reactive strategy (Drummond, M., personal communication). Start and goal
locations of the agent are randomly selected from the four corner positions
of the grid, but are always situated diagonally across from one another (to
provide problems of similar path length and difficulty).

Measuring accuracy while learning operator preconditions: The
first experiment evaluates the effect of adding missing preconditions on ac-
curate performance of the integrated ERE system. We begin with an initial
faulty theory that is missing the precondition which tests ‘obstacle in desti-
nation location?’ in all four MOVE operator specializations. Each operator
specialization represents whether the moving agent is hampered by tiles or
the grid boundary on one or both sides, or is moving freely as in the center
of the grid. To assess performance we measured the system’s level of goal
achievement as these preconditions were learned.

In Figure 3 we show the effects on system accuracy of adding missing
preconditions. The horizontal axis displays the number of training instances,
while the vertical axis displays the percent goal achievement attained by ERE.
The important result to notice is that as MTR adds preconditions, more goals
can be achieved by the combined planner and reactor in ERE. (The percent
goal achievement asymptotes at 85% because goals are blocked by tiles in
15% of these problems, and therefore are impossible to achieve.) The key
idea is that as long as the planner gives a plan to the reactor that is not
faulty, the reactor can just step along the path the planner has suggested
and achieve the goal. However, if the planner is using operators with missing
preconditions (e.g. it is unaware of obstacles), a faulty plan may wrongly
lead the reactor into an obstacle. When this happens the system registers a
prediction failure, and the reactor halts without achieving the goal.

Measuring accuracy while learning variant outcomes: The second
experiment evaluates the effect that adding variant outcomes has on accurate
performance. The initial faulty theory contains ‘moving straight’ as the only
outcome of the MOVE operators. However, we introduce ‘effector errors’ in
the simulator, which allow the agent to veer to the right (10% of the time)
or left (another 10% of the time) of a direction as it executes a move in that
direction, making the single expected outcome, moving straight, inadequate
for pIanning. To assess performance we measure the system’s level of goal

7

3 100
83% 85% E

0 0 3
-c 50

2 0 2 0

’ 50

8
3 J -a

2
8
2

Number of Training Instances 50 NumberofTrainingInstances 5O
Figure 3. Learning curve for integrated sys- Figure 4. Learning curve with initial domain
tem with incomplete initial domain theory. theory lacking variant outcomes. Training
Training adds operator preconditions, improv- adds operator effects, improving overall goal
ing overall goal achievement. achievement.

achievement as it learns the other missing variant outcomes.
We show the effects of adding missing variant outcomes on system accu-

racy in Figure 4. The important result to note is that as MTR adds variant
outcomes (describing expected veers to the right or left) during training, the
percentage of goals achieved on the test problems increases. After 50 training
instances the asymptote of 85% is nearly reached. The key insight is that as
the planner is equipped with a more complete operator model it can prepare
more alternative plans for the reactor to get to the goal should it get off
the main path. It uses a ‘robustify’ routine which considers high probability
deviations from the path found by the planner, and creates additional SCR’s
to guide the reactor back to the path or straight to the goal, should it deviate
from the main path (Drummond & Bresina, 1990). However, if the planner is
missing variant outcomes (i-e. the planner is unaware of possible veers by
the reactor) the planner may not prepare a ‘contingency plan’ for the reactor
(how to get to the goal if it veers of€ the path into an unpredicted location).
Thus when an unexpected veer happens, the system registers a prediction
failure and the reactor halts without achieving the goal.

Measuring effciency while learning preconditions: Figure 5 illus-
trates how adding preconditions affects the efficiency in terms of match cost.
Match cost is measured in terms of the total number of function calls within
the matcher as the planner finds applicable operators and constructs a plan.
We show cost as a percentage of the maximum match cost measured with the

8

I loo
3
4
5
E 50
4
5
$ 0

fully acquired endpoint theory6. The curve does not begin at zero because
the MOVE operators, even in the initial faulty theory, do contain some pre-
conditions which are matched. Note that efficiency degrades as the system
learns missing preconditions. As learning proceeds, the planner and reactor
must gradually test more preconditions to determine whether an operator is
applicable, hence match cost increases and efficiency degrades.

Measuring efficiency while learning variant outcomes: Figure 6
illustrates how adding variant outcomes affects the search cost. Search cost
is measured in terms of the total number of nodes expanded (grid locations
searched) during the planner’s search for a solution. We show cost as a
percentage of the maximum search cost (expanding every node on the grid,
i.e. 100 nodes per problem). Important to note here is that as learning
adds variant outcomes, the planner must explore more alternative paths to
the goal during robustification, increasing search cost. To achieve optimal
accuracy it searches the entire grid to handle low-probability veers, growing
as (O(n2)) with grid size.

c

5
B 9 0

4 Schemes for Computing Tradeoffs
Above we described experiments that demonstrated how MTR increased the
accuracy of the associated ERE performance system, while degrading its effi-

6790 function calls per problem is the cost of testing all preconditions of the fully
acquired endpoint theory for an average path length.

9

700
Match Cost m function calls

600
!,I 0 I 1 a

20 Search Cost in 60 nodes expanded 100

Figure 7. Learning curve for integrated sys-
tem with incomplete initid domain theory.
Training adds operator preconditions, improv-
ing overall goal achievement. achievement.

ciency. In this section we step away from the detailed experimental results of
our case study in order to ascertain what general lessons we can draw about
multi- s t rat egy learning in integrated systems. Ultimately, mult i-st rat egy
learning in an integrated system needs to satisfy some global performance
objectives. The difficulty, as we have shown in our specific experiments, is
that there will often be multiple, possibly conflicting utility measures (as
with accuracy versus efficiency in our case study). We need to investigate
how to trade off conflicting utility metrics in order to achieve some global
performance objectives.

Our preliminary solution is to provide data that clearly presents a range of
possible tradeoEs. Then, given a particular performance objective, a tradeoff
in conflicting utility measures can be selected that would satisfy the global
objectives. In most previous work on the utility of learned knowledge, a cost-
benefit tradeoff is calculated given a single dimension of utility (e.g. efficiency
related to analytic learning in Minton, 19SS; or accuracy related to empirical
learning in Holder, 1991). Yet the cost-benefit tradeoff may appear in terms of
different, and possibly conflicting dimensions of utility. We were inspired by
(Ellman, 1988), who measures cost-benefit tradeofFs for approximated theories
given conflicting utility metrics7. By measuring accuracy and efficiency at
each point that a theory is approximated, a scatter plot graphing the data can

7Ellman's goal in measuring tradeof€.. differs from ours; his aim is to determine how to

Figure 8. Learning curve with initial domain
theory lacking variant outcomes. Training
adds operator effects, improving overall god

trade off theory accuracy for tractability of explanation in EBL.

10

be produced to illustrate tradeoffs. On the scatter plot pureto-optimal points
(boundary points) can be identified. A pareto-optimal point represents a
version of the learned knowledge that cannot be improved in one dimension
without degradation in the other dimension. To choose which of the pareto-
optimal points is the desired tradeoff, one needs to determine how well the
associated metrics satisfy some desired global performance objectives.

Improving efficiency by approximating preconditions: We illus-
trate this process using data from our case study. Once our system has fully
acquired an endpoint theory, we introduce two methods for approximating
this theory. By approximating the endpoint theory, we can increase system
efficiency, and if the approximation is effective, can minimize the impact
on accuracy, This can be done without destructively modifying the original
body of learned knowledge. Our method differs from (Minton, 1988; Chase
et al., 1989; and Cohen, 1990) who store knowledge in approximated form,
as we seek to make dynamic approximations from an unabridged knowledge
base.

For example, to improve efficiency in match cost once missing precondi-
tions have been learned, we approximated certain preconditions by truifying
or nullifying them (as in Keller, 1987). In particular, we set preconditions
in various of the MOVE operators to ‘almost always true’ instead of actu-
ally matching them to check. Then we ran our sets of test problems on the
system, measuring its resulting accuracy and efficiency using each of these
approximated theories. The scatter plot in Figure 7 shows results for all the
approximate theories we generated in this way (including the endpoint the-
ory). The horizontal axis plots efficiency, as measured in match cost, while
the vertical axis plots accuracy in terms of percent goal achievement. Each
point on the graph represents the average tradeoff yielded by a particular
approximated theory. Pareto-optimal points are circled.

Consider global objectives where desired accuracy is at least 60% goal
achievement, with maximum possible efficiency gain. We find the pareto-
optimal point which best satisfices the global objectives at 67% accuracy.
This point in the scatter plot corresponds to an approximate operator model
in which the precondition “clear-corridor” has been NILified. (Checking if a
corridor is clear amounts to testing whether the destination cell is clear when
surrounded by a ‘corridor’-occupied cells on both left and right). Using this
approximated theory we reduce our optimal accuracy of 85% by only 18%
while reducing the match cost by 15% (from 750 to 660 per problem). Note

11

that the reason this particular approximation is effective is that for a grid with
a 20% tile density, the chance of finding a ‘corridor’ configuration is not very
great. Because the tradeoffs on these approximations have been explicitly
plotted and measured, we are able to locate a meaningful approximation that
identifies the optimal tradeoff in order to achieve our performance objectives.

Improving efficiency by approximating variant outcomes: As a
second example, to improve efficiency in search once multiple variant out-
comes have been learned, another method ‘forgets’, or approximates the
operator model by pruning some of the learned variant outcomes. Recall
that the independent variable dictating the ‘effector errors’ was set to 10%
of the time for moving either right or left, and 80% of the time for moving
straight. The scatter plot in Figure 8 shows results for approximating the
variant outcomes of the move operator to just one or two outcomes (results
for the endpoint theory containing all three outcomes are also shown). The
horizontal axis plots efficiency, as measured in search cost, while the vertical
axis plots accuracy in terms of percent goal achievement. Each point on the
graph represents the average tradeoff yielded by a particular approximated
theory.

The interesting pareto-optimal points on this graph are clustered at the
center (all are optimal, plus or minus some statistical error). These points all
represent approximated theories in which two most frequent out of the three
variant outcomes are present (for each of the four operator specializations
in four compass directions) resulting in sixteen approximate theories. These
approximations decrease accuracy significantly (to 43% from 85%), while
improving efficiency somewhat, decreasing the number of nodes expanded
by nearly a third (from about 100 nodes per problem to about 72). The
key insight is that when the model is approximated to constrain the variant
outcomes used in planning to only the most frequently occurring ones, we
decrease the planner’s ability to prepare contingency paths should the agent
veer in the unexpected way (hence the decrease in accuracy of goal achieve-
ment) but permit it to plan more efficiently (hence increasing efficiency).

In this graph, the best satisficing pareto-optimal point is rather disap-
pointing, since we sacrifice quite a bit in accuracy to achieve minor gains
in efficiency. A more sophisticated method might perform a ‘percent prob-
ability approximation’, only expanding variant outcomes greater than some
threshold probability, and yield more useful tradeoff points. We conjecture
that an optimal approximation could bring the worst-case search cost down

12

from polynomial (O(n2)) to linear time (improving efficiency) while keeping
goal achievement close to that attained when the entire grid is searched, thus
maintaining accuracy.

Future work: The goal of these approximations is improved efficiency
without much degraded accuracy, thus satisfying some global performance
objectives. Given different objectives, different dynamic approximations on
the same learned knowledge might be done to satisfice those. We are cur-
rently implementing a,n ERE/MTR performance system monitor that could
gear the performance system to dynamically approximate the learned knowl-
edge, sensitive to various performance measures and performance system
components. Such an approach could lead to a flexible system which achieves
goals efficiently without being required to limit or destructively modify its
store of learned knowledge.

Acknowledgements

Lonnie Chrisman implemented version 2 of MTR. Thanks to John Bresina,
Lonnie Chrisman, Mark Drummond, Pat Langley, Amy Lansky, Rich Levin-
son, Steve Minton, and Keith Swanson for helpful discussions regarding ex-
perimentation, and/or comments on earlier drafts.

References

Al-Badr, B. and Hanks, S. (1991). Critiquing the tileworld: Agent archi-
tectures planning, benchmarks, and experimental methodology. Tech.
Report bniversity of Washington, FR-35, Seattle WA.

Berger, J. 0. (1980). Statistical decision theory and bayesian analyses. New
York: Springer-Verlag.

Bresina, J. and Drummond, M. (1990). Integrating planning and reaction:
A preliminary report. A A A I Spring Symposium Series.

Brooks, R. A. (1986). A robust layered control system for a mobile robot.
IEEE Journal of Robotics and Automation, RA-2, 1423.

Chien, S. A. (1989). Using and refining simplifications: Explanation-based
learnin of plans in intractable domains. Proceedings of the Eleventh
IJCAI,%etroit, MI.

Drummond, M. and Bresina, 3. (1990). Anytime synthetic projection: max-
imizing the probability of oal satisfaction. Proceedings of the Ninth
A A A I Conference , Boston,%A.

13

Drummond, M., Bresina, J., and Kedar, S. (1991). The entropy reduc-
tion engine: integrating planning, scheduling, and control. AAA I Spring
Symposium Series.

Drummond, M., and Levinson, R. (1991). How planning can help a reactive
s stem. Submitted to the First International Conference on AI Planning
&stems.

Ellman, T. (1988). Approximate theory formation: An explanation-based
approach. Proceedings of the Seventh National Conference on Artificial
IntelZigence (pp. 570-574). St. Paul, MN: AAAI Press.

Hammond, K. J. (1986). Learning to anticipate and avoid planning prob-
lems through the ex lanation of failures. Proceedings of the Fifth AAAI

Maintaining the utility of learned knowledge using
model-based adaptive control. Master’s thesis, Department of Computer
Science, University of Illinois, Urbana, IL.

Holder, L. B. (1991). Selection of learning methods using an adaptive model
of knowledge utility. Proceedings of the First International Workshop on
Multistrategy Learning. (pp. 247-254). Princeton, NJ.

Kedar, S. and Bresina, J., and Dent, L. (1991). The blind leading the blind:
Mutual refinement of approximate theories. International Workshop in
Machine Learning, Evanston, IL, June, 1991.

Kedar, S. T. and Chrisman, L. (1992). Mutual theory refinement: A case
study. Tech. Report NASA TR FIA-92-03, NASA Ames, June 1992.

Keller, R. (1987). Defining operationality of explanation-based learning.
Proceedings of the Sixth National Conference on Artificial Intelligence
2, (pp. 482-487). Seattle, WA: AAAI Press.

Langley, P. and Drummond, M. (1990). Toward an experimental science
of planning. Proceedings of the 1990 DARPA Workshop on Innovative
Approaches to Planning, Scheduling, and Control (pp. 109-114). San
Diego, CA: Morgan Kaufmann.

Langley, P. and Kibler, D. (1991). The experimental study of machine learn-
ing. Unpublished Manuscript.

Minton, S. (1990). Quantitative results concerning the utility of explanation-
based learning. Artificial Intelligence, 42, 362-392.

Mooney, R. (1989). The effect of rule use on the utility of explanation-
based learning. Proceedings of the International Joint Conference on AI
(IJCAI), Detroit, MI (pp. 725-730), San Mateo: Morgan Kaufmann.

Philips, A. B. and Bresina, J. L. (1991). NASA Tileworld manual. Tech.
Report NASA TR-FIA-91-04, NASA Ames. February, 1991.

Conference, Philade P phia, PA.
Holder, L. B. (1988).

14

Pollack, M. and Ringuette, M. (1990). Introducing the tileworld: Experimen-
tally evaluating agent architectures. Proceedin s of the Eighth National
Conference on Artificial Intelligence 2, 183-184.

Schank, R. (1982). Dynamic memory: A theory of learning in computers
and people. Cambridge University Press.

Simmons, R. (1988). A theory of debugging plans and interpretations. Pro-
ceedings of the Seventh AAAI Conference, Minneapolis, MN.

Simon, H. (1983). Why should machines learn? In R. S. Michalski, J. 6.
Carbonnell, and T. M. Mitchell (Eds.), Machine learning: An artificial
intelligence approach (Vol. 2.). San Mateo, CA: Morgan Kaufmann.

Sussman, G. (1975). A computer model of skill acquisition. New York:
American Elsevier.

Tambe, M. and Rosenbloom, P. (1990). A framework for investigating pro-
duction system formulations. Proceedings of the Ninth AAAI Conference,
Boston, MA.

15

