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The radiated noise from isotropic
turbulence and heated jets

By G. M. Lilley

1. Motivation and objectives

Our understanding of aerodynamic noise has its foundations in the work of Sir

James Lighthill (1952), which was the first major advance in acoustics since the pi-

oneering work of Lord Rayleigh in the last century. The combination of Lighthill's

theory of aerodynamic noise as applied to turbulent flows and the experimental

growing database from the early 1950's was quickly exploited by various jet propul-

sion engine designers in reducing the noise of jet engines at takeoff and landing to

levels marginally acceptable to communities living in the neighborhoods of airports.

The success in this noise containment led to the rapid growth of fast economical

subsonic civil transport aircraft worldwide throughout the 1960's and has contin-

ued to the present day. One important factor in this success story has been the

improvements in the engine cycle that have led to both reductions in specific fuel

consumption and noise. The second is the introduction of Noise Certification, which

specifies the maximum noise levels at takeoff and landing that all aircraft must meet

before they can be entered on the Civil Aircraft Register. The growing interest in

the development of a new supersonic civil transport to replace 'Concorde' in the

early years of the next century has led to a resurgence of interest in the more

challenging problem of predicting the noise of hot supersonic jets and developing

means of aircraft noise reduction at takeoff and landing to meet the standards now

accepted for subsonic Noise Certification.

The prediction of aircraft noise to the accuracy required to meet Noise Certifica-

tion requirements has necessitated reliance upon experimental measurements and

empirically derived laws based on the available experimental data bases. These

laws have their foundation in the results from Lighthill's theory, but in the case

of jet noise, where the noise is generated in the turbulent mixing region with the

external ambient fluid, the complexity of the turbulent motion has prevented the

full deployment of Lighthill's theory from being achieved. However, the growth of

the supercomputer and its applications in the study of the structure of turbulent

shear flows in both unbounded and wall bounded flows, which complements and

in certain cases extends the work of the few dedicated experimental groups work-

ing in this field for the past forty years, provides an opportunity and challenge to

accurately predict the noise from jets. Moreover a combination of numerical and

laboratory experiments offers the hope that in the not too distant future the physics

of noise generation and flow interaction will be better understood and it will then

be possible to not only improve the accuracy of noise prediction but also to explore

and optimize schemes for noise reduction. The present challenge is to provide time

and space accurate numerical databases for heated subsonic and supersonic jets to
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provide information on the fourth-order space-time covariance of Lighthill's equiva-

lent stress tensor, Tij, which governs the characteristics of the farfield radiated noise

and the total acoustic power. Validation with available experimental databases will

establish how close Lighthill's theory is to the accurate prediction of the directiv-

ity and spectrum of jet noise and the total acoustic power, and the need, in the

applications of the theory, to include the effects of flow-acoustic interaction.

2. Accomplishments

2.1 IAghthill's acoustic analogy

Our understanding of the theory of jet noise has its foundations in Lighthill's

theory of aerodynamic noise (1952, 1954, 1962, 1963, 1978). Lighthill's theory
is based on an acoustic analogy whereby the exact Navier-Stokes equations for

fluid flow are rearranged, using an ingeneous technique, to form an inhomogeneous

wave equation for the fluctuating fluid density. Since all disturbances created by a

turbulent flow result in alternate compressions and expansions of a fluid element as
it is convected by the flow, the time rate of change of this fluid element, _V, per

unit volume of fluid, following the fluid is

1 D6V Dlnp
lim -- -- V" v (1)6v--.o _V Dt Dt

and as a consequence noise is generated and radiated away from the fluid element

with a propagation speed equal to the speed of sound. Although the dilatation,
0 = _7-v, in Eq. 1 is zero in an incompressible flow it is always finite in compressible

flows, and similarly so is _7 • pv. In order to ensure the finiteness of the latter

throughout the flow in calculations concerning aerodynamic noise, Lighthill derived
the inhomogeneous wave equation for the density fluctuations by eliminating _7 •

pv between the equations of conservation of mass and momentum. The forcing

function on its right-hand side represents a distribution of acoustic sources in the

ambient flow at rest, replacing the complete unsteady flow. In Lighthill's theory

02Tij/OxiOxj is the strength of these acoustic sources per unit volume, where

Tij = pv, v i - rii+ (P - c_p)6ii (2)

is Lighthill's instantaneous applied acoustic stress tensor, p, p, c, and vii are re-
spectively the pressure, density, speed of sound, and the viscous stress tensor. In

this acoustic analogy the equivalent acoustic sources may move but not the fluid.

Here we follow Lighthill's approach and derive the inhomogeneous wave equation

for the fluctuating pressure in the form derived by Lilley (1973), where the only

deviation from Lighthill's derivation is in the replacement of O(p - pc_)/Ot by its

equivalent terms from the total enthalpy, hs, equation together with continuity,

giving

O(p - cLp ) (3, - 1) Opv 2 pv(h, - hoo) (7 - 1)

c ot - ot v boo + XT"(q + v. v). (3)
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where q is the heat flux vector and 7 is the ratio of the specific heats. The suffix

cx_ denotes ambient conditions. The resultant inhomogeneous wave equation is

02p

cLOt2
V2P = V" (V'pvv - r)- (7- 1) 02pv 2 0 pv(h, - h_)

2c 2 Ot 2 - _7" _ h o¢

+(3' - 1) 0
c-----_ V "-_(q + v. T) = A(x,t) (4)

having the unbounded solution

1 Iv daY(p - p_)(x, t) = _ [A(y, t)] [z - Yl (5)

where the [ .. ] denotes the function is evaluated at the retarded time, v = t -Ix -

y]/c_. The far-field approximation, when Ix - Yl _ x, is

__;(p- w)(* t) _ a dau-_z pu_ - T=
' 47rzc_ Ot

('_ - 1)P v2 + (3' - 1) pux(h" - ho_) _ (7 - 1) (qx +u___rk_)_ (6)

2 c_ coo ]

where ux is the component of the velocity in the direction joining the source at y

to the far-field observer at x. We find the integrand in Eq. 6 is identical with the

component, (xx), of Lighthill's stress tensor, Tii. Apart from the noise generated

by the diffusive terms, q and v, which at high Reynolds numbers is shown to be

very small and can be neglected, the major sources of sound in a turbulent flow

involve the fluctuations of the momentum flux, pvv, and the fluctuations of the

total enthalpy flux, pv(hs - h_). The fluctuations of the kinetic energy, pv2/2,

make a small contribution to the radiated noise. (In an inviscid incompressible flow

the time gradient of the integral of the kinetic energy would be zero.)

2.1.1 The acoustic power output in isotropic turbulence

The intensity, I(x), of the radiated sound in the far-field is proportional to the

square of the fluctuating pressure and is defined by

< (p _ p_)Z >
I(_,t) = (7)

Similarly the autocorrelation, I(x, t*), for a stationary turbulent flow is

1

I(x,t*) = 16n2x2pccc _ Iv day f 04 P

where t* is the far-field time difference and the spectral density, I(x, w) is

(8)
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1/I(z,w) = _ I(z,t*)exp(iwt*)dt*

7'/'034 /V-- 2x2p_c 5 P_z,_z(y,k,w)d3y (9)

where r is the spatial separation in fixed coordinates, r is the retarded time differ-

ence defined by r = t* + z. r/xcoo, w is the far-field circular frequency, and Pz_,_

is the source, (y),-observer, (z), aligned space-retarded time covariance of Ti), and

Pxz,zx(y,k,w) = 1167r4 f exp(ik.r)d% f exp(i r)P ,,, (V,r,r)dr (10)

is the four-dimensional wavenumber-frequency spectrum function corresponding to

the aligned space-retarded time covariance of Tij. The frequency of the sound, w,
is the same as in the turbulence, and the wavenumber vector of the sound, k =

-wz/xc_, equals the wavenumber vector in the turbulence. In near incompressible

flow, where the wavelength of sound is large, Ikl --* O. In the turbulence small values
of kx receive contributions from all scales of turbulence.

The total acoustic power per unit volume of turbulence is found by integrating
the intensity per unit volume at the given source position, y, over a large spherical

surface so that for isotropic turbulence

(11)

When the acoustic sources are in uniform motion with the eddy convection speed,

Vc, and the space-retarded time covariance of Tij is measured in the moving frame,
where the moving coordinates are defined by

71= y - cooMer (12)

such that the source emits as it crosses the fixed point y at time t = r, the spectral

density of the sound intensity per unit volume is given from the Lighthill-Ffowcs

Williams eddy convection theory (1963) in the form

7F_) 4

{(z, w) -- 2X2pooC_ P_,_(y, k, wr).
(13)

Mc = Vc/co_ is the vector convection Mach number. The radiated sound in the far-

field at frequency, w, arises from turbulence in the moving frame with frequency, WT,

which is the D6ppler shifted frequency, with WT = w(1-M¢._/x). The wavenumber

in the turbulence, k = -w_/xcoo, and is unaffected by the eddy motion. When

the direction to the far-field is near the Mach wave direction, where normal to the
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Mach wave (Me • _/x = 1), detailed analysis shows that the relation between the

frequencies in the turbulence and that of the radiated sound becomes

2 2
Me =+ STM_) 1/2 (14)

where ST and MT = VT/C_ are respectively the characteristic Strouhal number and

Mach number of the turbulence. The reference Strouhal number of the turbulence,

which we assume to be a constant throughout a given turbulent flow and is of order

unity, is defined by ST = _tL/vT, where L is the local integral scale of the turbulence

and 9t is the reference frequency in the turbulence. The reference turbulent velocity

is given as VT = V/-2-K/3, where K is the local kinetic energy of the turbulence. In

isotropic turbulence VT is equal to _ u 2 >, where u is the velocity component in

any direction.

The corresponding result for the intensity per unit volume, found by integrating

(13) over all frequencies, is

1 _2 2, 2 _-5/2[ 04
i(x) = 16_r2z2p_c _ (]1 - Mc. z/x] 2 + DTVT/Cc_ ) J -_r4Pxx,xx(y, 6, r))d36

(15)

where $ is the separation distance in the moving frame and v is the corresponding

retarded time difference, showing the preferential direction for sound radiation in

the downstream direction of the convecting eddies with a sharp peak in the direction

normal to the Mach angle when the eddy convection Mach number is supersonic.

2.1.2 The specific noise power in heated isotropie turbulence

We will assume the turbulence has a uniform density, p0, and ratio of specific

heats, 70, compared with the ambient medium values of p_, and 7_. The mean

pressure in the turbulent flow is assumed equal to that of the external medium. We

found above there were three dominant source terms in Lighthill's aligned stress

tensor, Tx_, and if we further assume they are statistically independent, we find

their separate contributions to the radiated sound power are in the case of stationary

isotropic turbulence at rest

poU [ o4 < < u2 >2> d3,p_l) _ 1 2 S,-4
47r p_c_L J 0r 4 < u 2 >2

PO u O T ("/0 -- 1) 2 f 04p_2)= 1 2 s,-4
4r p_cS L 4 J or4 < u 2 >2

(16)

Pou bT 70 - 1

2 2 ,V2
< VAV B- < >2>d3 r (17)

04 < (Ux)a(h')A(Uz)B(ht)B-- < uxh' >2>d3 r
OT 4 <_ U 2 > h 2

(is)
where v and h' are respectively the fluctuation of the velocity and enthalpy, and

< .. > denotes a mean value. Suffixes A and B denote the two source positions,

distance r apart, forming the respective space-retarded time covariances.
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Let us consider the evaluation of the aligned velocity squared space-retarded time

covariance that appears in p(1) in (16).

2 2 u _ (19)p(1) (r_=<(UAU B-< >2)>
ZZIZZ\ /

Now this fourth-order isotropic tensor can be shown to be a function of the longitu-

dinal and lateral velocity squared covariances which are functions of r only. When

the turbulence follows Gaussian statistics, as assumed by Proudman (1952), we
find according to Millionshtchikov's hypothesis as given by Batchelor (1953) that

the velocity squared covariances can be replaced by the sum of the squares of the

corresponding second order covariances involving f(r) and g(r) where the second

order longitudinal and lateral covariances are respectively

up(z)ttp(z + r) = J f(r) 20)

and

u,(z)u,(z + r) = u2 g(r). (21)

Lighthill (1992) has shown more generally that the fourth- order longitudinal ve-

locity covariance

and a similar relation holds for the fourth-order lateral covariance by replacing the

suffix, p, by the suffix, n. The relationship between the respective fourth and second-

order covariances holds for the given retarded time difference, v. The velocity

flatness factor, T1 = u4/-u -i_ has the value 3 in Gaussian statistics, and is found by

Townsend (1956) to be nearly 3 in decaying isotropic turbulence. A similar result

was obtained in the (DNS) results of Sarkar and Hussaini (1993) and Dubois (1993).

In weakly compressible flows, the turbulent Mach number is very small, and in

this case we may assume that the modulus of the wave-number k in the turbulence
is small also. In terms of the longitudinal velocity correlation function, f(r, v), the

contribution to the acoustic power spectral density is

/0 /0p_,)(w)=poow4 <u2>2(Tl-1) 2 costvrdr r4fOf'_ 2
cL 15rr \ Or ,] dr. (23)

as given by Lilley (1994). The integrals in (23) can only be evaluated when the

distribution f(r, v) is known.

Lilley (1994) used the (DNS) databases obtained by Sarkar and Hussaini (1993),

Dubois (1993) and the (DNS) and (LES) databases obtained by Witkowska (1994)

to obtain the spatial and temporal covariances. Thus using the data derived from

these database the value of the Proudman constant, s O), in

p!,)=   )pou' (24)
pooc_ L
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becomes

a_)= 1.80(T1 - 1)S_. (25)

When the flatness factor, TI = 3, as discussed above, and the reference Strouhal

number, ST = 1, we find the Proudman constant, a_ ) = 3.6. The available (DNS)

databases gave values of ST between 1 and 1.25. The temporal covariance was

checked between the (DNS) space-time covariance results of Dubois (1993) and the

fax-field acoustic spectra obtained by Saxkar and Hussaini (1993).

These results axe for low Reynolds numbers and low Mach numbers, and there

are doubts as to their applicability to higher Reynolds numbers and Mach numbers.

The low Reynolds numbers of the (DNS) data precludes the existence of an inertial

subrange and there is less than a decade of separation between wavenumbers in the

energy-containing and Taylor microscale ranges of eddies. The peak frequency of

the radiated noise is at a frequency slightly higher than that of the energy contain-

ing eddies. This suggests that the dominant eddies responsible for the generation of

sound are slightly smaller than those in the energy containing range. This is consis-

tent with the deductions of Lighthill and Proudman. At high Reynolds numbers all

simplified models of turbulence along with dimensional analysis suggest it is the ed-

dies of scales close to the energy containing range which are responsible for the bulk

of the sound generation. In a recent paper Zhou and Rubinstein (1995) consider

the noise radiated from the turbulent inertial subrange and find that the temporal

correlations derived by Lilley (1994) are consistant with the sweeping hypothesis of

Kraichnan (1964), and Praskovsky et al. (1993), involving a nonlocal property of

the energy containing eddies. Zhou et al. deduce that the noise power generated
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at high Reynolds numbers should have a spectral decay of w -4/3. The current low

Reynolds number database as shown in Fig. 1 suggests the decay law is of order

w -2 over a wide range of frequencies before falling exponentially in the dissipation

range, although near the energy containing range the spectral decay does follow the

(w/wm) -4/3 law. Zhou et al. also show, at high Reynolds numbers, the straining

hypothesis would lead to a spectrum of radiated noise, in the inertial subrange of
(w/w,,) -7/_. If we compare these results with the output from the DNS data, not-

ing an inertial subrange barely exists at these low Reynolds numbers, we find from

Fig. 1 this law could only exist at much higher wavenumbers. However Zhou et al.

show the assumptions made by Proudman (1952) lead to results for the acoustic

power output consistant with the straining hypothesis, whereas the assumptions
made by Lilley (1994) are more consistant with the sweeping hypothesis.

In addition Zhou et al. (1995) have examined a large databank of high Reynolds

number atmospheric and windtunnel turbulence data at around the peak and higher

wavenumbers to derive values of the incompressible fourth-order space time covari-

ance and so find values for the Proudman constant using the formulas derived by
Lilley (1994) and discussed above. Although this data is largely for anisotropic

turbulence it is regarded as a useful guide to the Reynolds number dependence of

the integral properties of isotropic turbulence which govern noise generation and its
acoustic power. The calculated value of the Proudman constant obtained by Zhou

et al. (1995) is within the range found by Lilley (1994), based on the databases

described above, suggesting there is only a weak dependence on Reynolds number.

The contribution p_) can be combined with p_l) and their combined contribution

is similar to that when enthalpy fluctuations are absent. In the evaluation of p_3) we

need the value of the fourth-order covariance < (uzh')A(uzh')B > . If we assume

Gaussian statistics and impose Millionshtchikov's hypothesis, and noting that in

isotropic turbulence < uxh _ > is zero in incompressible flow,

< (uzh')A(u_h')B- < uzh' >2>_< (u_)A(u,)B >< (h')A(h')B > . (26)

On the assumption that the non-dimensional correlation function for the enthalpy

fluctuations is equal to f(r, r), then the acoustic power spectral density arising from

p_3), is similar to that arising from p_l) and p_2). We find that

p_3) 4V/_ .2.6¢4= __ v0 _" _'T < (h') _ > (70 - 1) _

_r pooc_L h_ (700 - 1) _"
(27)

Our final values for the two terms in the contributions to the acoustic power output
are

po2 u8 u6
p, = olp +aH (28)

p_ c_L p_ c_L

where
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and

(4x/_ 70 -- S_ < (h')2 > (30)

We find that the term involving the enthalpy fluctuations generates acoustic power

proportional to u 6 and hence dominates over the u 8 contribution at low Mach

numbers. These results show that, typically, the dipole contribution equals the

quadrupole contribution when MT = 0.28.

2.2 The acoustic power from a hea_ed jet

The physical process of noise generation in the mixing region of a jet is assumed

similar to that in isotropic turbulence. However the turbulence is now anisotropic

and inhomogeneous and is dependent on the mean rate of strain. Its Reynolds

stress tensor contains both shear and normal stress components. Nevertheless with

respect to the principal axes of stress only the direct stresses act. The sum of these

enables us to find the local values of the average kinetic energy of the turbulence.

The turbulence intensity is assumed proportional to the velocity difference across

the shear layer. In the fully developed mixing region of a jet, the turbulent intensity

depends on the velocity difference between the center-line velocity of the jet, which

decays with downstream distance, and the external velocity. The integral scale

of the turbulence is assumed to be proportional to the local width of the mixing

region based on the vorticity thickness where the mean flow growth is governed by
entrainment and the mean shear. The intense turbulence is found to exist near the

center of the mixing region. The turbulence is intermittent, but a useful model is

to assume the average properties of the turbulence are approximately uniform over

the mean vorticity thickness of the jet and zero outside. The average convection

speed, Vc, of the main energy-containing eddies in a turbulent mixing region over

a wide range of different gases, velocities, and temperatures can be obtained from

the work of Papamoshou and Roshko (1988). For the mixing region of an unheated

jet near the nozzle exit, Vc is about 0.58Vj. With these properties we may assume

the turbulence is quasi-isotropic having a mean convection speed, Vc. In the model

used here we have neglected the orientation of the principal axes of strain to the

mean convection direction and its effect on the noise directivity.

The radiated noise to the far-field of a mixing region is estimated based on the

hypothesis that the fourth order space-retarded time covariance has similar prop-

erties in shear flow turbulence as in isotropic turbulence, apart from changes in the

scales of length and velocity. The local reference turbulent velocity, based on the

local kinetic energy, and a local reference integral length scale, corresponding to

the scale of the energy containing eddies, are defined at each section of the mix-

ing region or jet. The spectrum of turbulence is assumed to be similar to that of

isotropic turbulence but with the frequency of the peak energy, w,n, proportional to

the mean velocity gradient. The turbulent Strouhal number, ST, in the case of the

mixing region, is of order 1.7 when based on the values used for the peak frequency

and the reference velocity and length scales.

In the jet mixing region it is assumed that since the turbulent Mach number is

small we may neglect the effect of density fluctuations on the noise generated even
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in the case of the heated jet. We further assume the mean density to be a constant

across the mixing region at any station downstream of the nozzle exit with a value

based on the density at the position where the local mean velocity is equal to the

mean convection speed. The mean flow is assumed to be self-preserving and the

mean density, temperature, stagnation enthalpy, and velocity profiles are calculated

throughout the flow using a simple eddy viscosity model. In this model the equations

of momentum and total enthalpy are similar and hence the mean velocity is a linear
function of the mean total enthalpy. The reference density, compatible with the

convection speed, is then determined at each downstream station. The effects of

turbulence convection can be applied using the Lighthill-Ffowcs William (1963)
theory of convective amplification.

2.2.1 The noise power from heated jets and comparison with experimental data

The total acoustic power radiated from a circular heated jet can be evaluated

from the results for isotropic turbulence with the modifications discussed above

to allow for the effects of anisotropy, mean density variation, and convection. The

present theory does not address the acoustic power from supersonic jets when shock
waves are present and the 'mixing region' noise is augmented by shock-cell noise
and 'screech'.

The contributions to the acoustic power axe integrated over the complete volume

of the flow. A large number of flow parameters must however be specified. These

include the jet exit Mach number and temperature, the flight Mach number, and the
corresponding convection Mach number. Also required is the corresponding mean

jet exit density and enthalpy ratios, the length of the potential core, the growth

of the jet in the initial mixing region and far downstream, the mean turbulent
intensity and its law of decay, and the ratio of the integral turbulence scale to the

local jet width. All these parameters are functions of the jet exit Mach number and

the ratio of the jet to flight Mach numbers. For the hot jet we require the mean

square of the enthalpy fluctuations. Due to the near linear increase in the turbulent

integral length scales in the jet mixing region with downstream distance, we find

the dominant frequency of the noise generation decreases inversely proportional to

distance from the nozzle exit. Thus the radiated noise spectrum reflects more the
peak energy contributions in the local noise spectra than the contributions from all

frequencies in the local spectra. A consequence is the radiated noise spectrum of a

jet increases as w2 before the peak frequency and then falls as w -2 . The proof of this

simplification in the pattern of the noise generation from a jet rests in the detailed

comparison between the far-field noise polar correlation measurements made by

Fisher et al. (1977) on model and full-scale jet engines and the corresponding

predictions made by Lilley (1991), using Lighthill's acoustic analogy with a jet
noise model similar to that described above.

Comparison of the present results with experimental data is also shown in Figs. 2

and 3. The results show the correct trends for the heated jet at low Mach numbers

and the changes in the acoustic power in the upper end of the subsonic jet Mach

number range and at supersonic speeds for the fully expanded jet. In these figures

A 1 and Vj are respectively the jet exit area and speed. Mj = Vj/c_ is the so-called
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An easily observable influence of flow-acoustic interaction occurs at high frequen-

cies, where the sound waves propagating through the flow at small angles to the

flow direction axe refracted by the flow, resulting in a near zone of silence in the

high frequencies close to the jet boundary as shown in Fig. 4. The present results

shown in Figs. 2 and 3 include the elementary effects of refraction. The theory of

flow-acoustic interaction, which embraces the effects of refraction, is discussed in

Goldstein (1978), and in the discussion on the detailed DNS calculations of Colonius

el al. (1995) on the vortex pairing phenomenon in mixing layers. An important

consequence of the phenomenon of flow-acoustic interaction is the result that the
far-field observer "hears what is seen".

3. Future plans

The present paper concerns the noise power per unit volume from near incom-

pressible isotropic turbulence based on the fourth-order space-retarded time covari-

ance of Tij. These results are extended analytically to the case of heated turbulence

on the assumption that for turbulent Mach numbers, based on the root mean square

value of the turbulent velocity and the ambient speed of sound, less than 0.3, the

effects of density fluctuations in the turbulence on the noise generated can be ne-

glected. A hypothesis is then introduced whereby the non-dimensional form of the

isotropic fourth-order space-retarded time covariance of Tij is used as an input to

compute the noise power from a heated circular jet at subsonic and supersonic
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speeds, when the jet is fully expanded and no shocks are present. The results are

compared with subsonic and supersonic noise measurements covering a wide range

of Mach numbers and jet to ambient temperature ratios. Fair agreement is obtained,

but of greater importance is the fact that the trends in noise power prediction for

the heated jet based on Lighthill's theory, but including the effects of refraction,

is verified by this comparison with experiment. Without the input from the DNS

database, this work would not have been possible.

Future work should include new evaluations of the fourth- order space retarded

time covariance of Ti) in heated isotropic turbulence, in compressible mixing regions,

and in jets at subsonic and supersonic speeds. Current DNS and LES mixing region

databases could be used as a start for these evaluations, but further work, using

LES, is needed to generate the corresponding data for the jet. To find the changes

with jet Math number and temperature on the total volume and amplitude of the

noise producing acoustic sources, it will be necessary to use two-equation RANS

calculations of the compressible circular jet covering a wide range of velocity and

temperature differences between the jet and the uniform external medium. There

is also need to extend the present work on flow-acoustic interaction to include its

effects at higher Reynolds numbers on the turbulent jet over a range of jet Math

numbers and temperatures.
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