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Some progress in large-eddy simulation
using the 3-D vortex particle method

By G. S. Winckelmans

1. Summary of motivation, accomplishments, and future plans

This two-month visit at CTR was devoted to investigating possibilities in LES

modeling in the context of the 3-D vortex particle method (=vortex element method,

VEM) for unbounded flows. A dedicated code was developed for that purpose. Al-

though O(N _) and thus slow, it offers the advantage that it can easily be modified

to try out many ideas on problems involving up to N ,_ 104 particles. Energy

spectrums (which require O(N 2) operations per wavenumber) are also computed.

Progress was realized in the following areas: particle redistribution schemes, relax-

ation schemes to maintain the solenoidal condition on the particle vorticity field,

simple LES models and their VEM extension, possible new avenues in LES. Model

problems that involve strong interaction between vortex tubes were computed, to-

gether with diagnostics: total vorticity, linear and angular impulse, energy and

energy spectrum, enstrophy. More work is needed, however, especially regarding

relaxation schemes and further validation and development of LES models for VEM.

Finally, what works well will eventually have to be incorporated into the fast parallel
tree code.

2. The 3-D VEM method

We use the 3-D regularized vortex particle method (=vortex element method,

VEM) as in Winckelmans & Leonard (1993). The particle representation of the

vorticity field is then taken as

(,,x_x.,,,,,)
,$

(1)

with 7"(t) = ws(t)vol" the particle strength, C the regularization function, and a

the core size. All particles have the same core size, and it remains constant in

time. Particles usually have the same volume of fluid, vol, associated with them

(e.g., vol = h 3 for particles initially on an h × h × h lattice). Sometimes however,

the discretization of an initial condition (such as a torus for discretizing a vortex

ring) leads to particle volumes that are not quite identical, see e.g., Winckelmans

& Leonard (1993). Since the flow is incompressible, the particle volume remains

constant in time. We also define the singular (delta-function) particle representation

of the vorticity field as

= xS(t)) • (2)
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The velocity field, u_, is computed from the particle representation of the vorticity

field as the curl of the vector potential, ¢_, which solves V2¢_, = -&_. Hence it is

divergence-free.

Vortex elements are convected by the local velocity

_xd q(t)= u_(xq(t),t) , (3)

and their strength is subjected to 3-D stretching by the local velocity gradient. The

general mixed scheme is obtained as (Winckelmans 1989, Winckelmans & Leonard

1988, 1989, 1993),

_iTg(t )d= (a Vua(xq(t),t) -t- (1 - a) (Vua(xq(t),t)) T) • 7q(t) . (4)

Three different cases are: a = 1 for the classical scheme, a = 0 for the transpose
scheme, and c_ ----0.5 for the symmetric scheme.

For the present version of the VEM code, Gaussian smoothing is used (Leonard
1985, Winckelmans 1989, Winckelmans & Leonard 1993):

1 _3/2
((p)= , (5a)

G(P)= 4- p ( ) , (Sb)
1

g(p) = _ (G(p)- ((p)) , (5c)

1

F(p) = _ (3K(p)- ¢(p)) , (5d)

with _ the vorticity smoothing function, G the Green's function for the vector

potential (= streamfunction), K the Biot-Savart function for the velocity evaluation,

F a function used in evaluating the velocity gradient, and p = r/a the dimensionless
distance. This choice leads to a second order method, provided 0 < h/a < 1.

The error function eft(x) is computed using e -x2 and Eq. 7.1.26 in Abramowitz

and Stegun (1972). For small p, Taylor series expansions are used to evaluate G, K,

and F. Notice that, in general, switching from f = fa if x < x0 to f = fb if x _> x0

is programmed without an "if' statement by making use of a Heaviside function:

1

f = fa + (fb -- fa) _(1 + sign(1,x -- x0)). (6)

With the particle strength exchange scheme for viscous diffusion (Mas-Gallic

1987, Degond & Mas-Gallic 1989), we have:

....

2u
l ("x'(t)- xq(t)")+ :: ())vol',,_t__V' ¢ ' (7)
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_ 1 _tp_ Note that the Gaussian smoothing is the only one for whichwhere_l(p)= pdp _ /"
TI(p) = ((p). (It is also the natural kernel for the diffusion equation (Winckelmans

&: Leonard 1993).) For non-uniform diffusion coefficients (such as in LES), the

formulation simply becomes:

....

1 l (Hx'(t)-xq(t)H)+_-i E(v(x'( t))+"(xq(t)))(v°lqT"(t)-v°l" 7q(t)) _-_rl a "
8

(s)

2.1 Particle redistribution schemes

One needs to maintain the condition that particle cores overlap. In some cases,

this calls for a particle redistribution scheme. The high order A2 scheme used by

Koumoutsakos (1993) and Koumoutsakos & Leonard (1992, 1995) was adopted.

It consists of replacing the whole set of vortex particles by a new set. The new

particles are located on an h x h > h lattice (hence all particles have vol = ha).
Consider first the normalized 1-D problem with unit spacing. Then, in the A2(x)

1 < x < ½ gives -½x(1 - x) of its strength toscheme, an old particle located at -_ _ _
the new particle located at -1, (1 - x)(1 + x) of its strength to the new particle

located at 0, and ½x(1 + x) to the new particle located at 1. This scheme is such
that:

xn=(-1) n (-Ix(l-x))+(0) n ((1-x)(1+x))+(1) n (lx(l+x)) (9)

for n = 0, 1, 2. In 3-D, one applies the scheme as A2(x)A2(y)A2(z). This scheme

then conserves exactly total vorticity, II = fv w dx = _-_s 7 s, linear impulse, I =

1 fv x x = 1 x" 1 (x x  )dx =_ )-_s x 7 s, and angular impulse, A = _ fv x x

! _8 xs x (x s x 7_). It usually performs very well on energy conservation and wella
on enstrophy conservation.

Notice that a simpler scheme is the A1 scheme: in that case, an old particle
1 <X< 1 1located at -_ _ _ _ gives _ - x of its strength to the new particle located at

1 and 1 1 This scheme is such that:-_, _ + x to the new particle located at _.

• = + +,) (10)

Thisfor n = 0,1. Again, in 3-D, one applies the scheme as A_(x)Al(y)Al(z).

scheme then conserves exactly total vorticity and linear impulse. It does not con-

serve angular impulse. It usually performs poorly on energy conservation and very

poorly on enstrophy conservation. We do not recommend its use.

The A2 scheme has been incorporated in the fast 3-D parallel tree code as well

(Winckelmans et al. 1995). Particle redistribution is programmed using the tree

code data structure. It runs very efficiently. Its cost is much less than the cost
associated with the field evaluation.
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2.2 Relaxation schemes for the particle vorticity field

The particle representation of the vorticity field, &_, does not constitute a gener-

ally divergence-free basis (Saffman & Meiron 1986, Winckelmans & Leonard 1988,

1993). Thus, although the initial particle discretization of a vorticity field can be

made very near divergence-free, this condition does not necessarily remain satisfied

in long time computations. A relaxation scheme can be applied, if and when neces-

sary, which ensures that the particle field, _, remains a good representation of the

true divergence-free vorticity field, wo = V × ua. Different approaches have been

proposed (Winckelmans 1989, Pedrizzetti 1992, Winckelmans & Leonard 1993).

Notice first that, once computed, the velocity gradient tensor, Vua, contains

all the necessary components to evaluate the true vorticity field at the particle

locations. This vorticity field is then used in both relaxation :schemes considered

here. Notice also that wa = V x ua = V x.(V x ¢_) = -V2¢_ + V(V.¢_). Recalling
that V2¢_ = -&_,, it follows that V(V- ¢_) = w_ - &_.

The P-relaxation scheme (Pedrizzetti 1992) was developed in the framework of

singular vortex particles. It is modified to be used in the context of regularized

vortex particles. At every time step, the particle strength vector is modified using
the filtering:

7qew = (1 -/At)../q + fat w_(xq) ii_qll (11)
II .(xq)ll

where w_,(x q) is the true local vorticity field and where f is a frequency factor. The

time scale 1/f must be "tuned" with respect to the time scale(s) of the physical

phenomena under study to give satisfactory results. This relaxation scheme basi-

cally acts as a "spring" that tries to maintain the particle strength vector aligned

with the true vorticity vector. This simple scheme is such that: (1) It doesn't do

anything to the particle strength vector if that vector is aligned with the vorticity
vector; (2) It is a simple local operation on the particle strength vector. No system

of linear equations involving neighbor particles needs to be solved.

The W-relaxation scheme (Winckelmans 1989, Winckelmans & Leonard 1993) is
based on the functional representation of the vorticity field: one requires that, at

particle locations, the particle vorticity field be equal to the true vorticity field:

Z 1 ('[xq-x"[)"yn_ew=w_(x')'a-a_a (12)
s

This scheme is best applied after the particle redistribution scheme. The fact that

the particles are then well-aligned on a regular lattice greatly fawgrs the reconstruc-

tion of a smooth function from the particle strengths.

It is also best to use Gaussian smoothing as this smoothing permits a "good-

quality" reconstruction of a smooth function from the particle strengths in the

whole range of core overlapping: 0 < h/a < 1.5 . With other smoothings, the

window of acceptable h/a is much narrower.

The W-scheme amounts to solving a system of linear equations involving only

near neighbors. This is done using an iterative method such as Relaxed-Jacobi (in
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the tree code) or Relaxed Gauss-Seidel. Notice that the matrix is not diagonally

dominant. Actually, with Gaussian smoothing and particles on a regular lattice in

d-dimension, the diagonal dominance is violated as soon as < _.

l-D, this means h/a < 1.25. In 2-D, h/a <_ 1.77, and in 3-D, h/a < 1.99. Thus: (1)

The higher the dimension, the worse the non-diagonal dominance; (2) The smaller

h/a, the worse the non-diagonal dominance. Since we operate here in 3-D, and at

h/a -- 0.75 - 1.0 or so (to satisfy the core overlapping condition), we definitely do

not have diagonal dominance.
At this point, the efficient iterative solution of this system is still a subject of

active research (A. Leonard, private communication). There appears to be an "op-

erating window" of h/a where, although not diagonally dominant, all eigenvalues of

the matrix are still real and positive. In that case, iterative solvers (with or without

preconditioning) can be developed. For instance, it is known that the Gauss-Seidel

iteration converges for any symmetric, positive definite matrix (Golub and Van

Loan 1983). The matrix here is symmetric. It is also positive-definite as long as all

eigenvalues remain real and positive.

2.3 Time integration

For time integration, the O ((At) 2) Adams-Sashforth scheme (AB2) is used.

Since this scheme is not self-starting, an O ((At) 2) Runge-Kutta scheme (RK2)

is used for the first time step (after the initial condition or after each use of the
particle redistribution scheme). This approach allows one to maintain second order

accuracy. Numerical experiments have indeed shown that an O (At) Euler scheme

for the start-up step is simply not acceptable. The RK2 scheme is efficiently pro-

grammed as follows: Euler predictor, Trapezoidal-rule corrector.

3. Energy, enstrophy, and their spectrum

A formulation developed by Leonard (1976 unpublished, private communication)

(see also Leonard 1985, Shariff et al. 1989), is used to compute the energy spec-
trum. Although developed in the context of vortex filament methods (for which

the filament vorticity field is, by construction, equal to the true vorticity field), the

formulation also applies to vortex particle methods as long as the particle vorticity

field, &_, remains a good representation of the true vorticity field, w_. If this con-

dition is violated, then the evaluation of the energy and of its spectrum becomes

very complex, see e.g., Winckelmans (1989), Winckelmans _z Leonard (1993), Kiya

(1993).

With Gaussian smoothing, the energy spectrum is finally obtained as

Z(k)=e-_ JE(k) with /_(k)= _ Z _ _:x_-H
q s

(13)
and the total energy as (Winckelmans & Leonard 1993)

/0 1E = E(k)dk = _ _ Z 47r[[xq - xS[[ erf V_a ]
q s
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(14)

The enstrophy spectrum is E(k) = k 2 E(k) and the total enstrophy is (Winckelmans

&: Leonard 1993)

q s

= _ _ _ w_ dx. (15)

Notice that the cost associated with evaluating the energy spectrum is O(N 2) for
each k.

A special case is the vortex ring of circulation F and radius R (Leonard 1985).
In that case we obtain for the energy spectrum of the infinitely thin vortex ring:

_,(k): (_____)22r(FR)2 /_ sin(2kRlsin_2 )cosCd¢

(1) 2 _ sin (2kRsin _)= 47r (FR) 2 2kR sin 2_ cos ¢ de

(1= 47r (FR) 2 _ sin(2kRp) -fi dp

-fo ]sin(2kRp) (l_:2)]/2dP]

ix) 1= 4r(rR)_ 7 1 + .=,_ (2n + 1) (n + 1)tn! k-K J

" (-(kR)_)" (161
=- (FR)2 Y_ (2n + 1) (n + 1)!n!

n----I

This complements a result presented in Leonard (1985):

lfl] (kR(e p2)ll2)dpk(k) = (rR) 2 5 j2 _ . (17)

The spectrum, computed using a particle discretization of the vortex ring, is

presented in Fig. 1. For small kR, E(k) = (kR)-----_2For large kR, E(k) asymptotes to6

(kR)-_ (Leonard 1985). The fact that/_ --_(kR) 2 for small kR is a consequence of
2

the non-zero linear impulse associated with the vortex ring, e.g., see Phillips (1956).
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FIGURE 1. Energy spectrum of a singular vortex ring:
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It is found numerically that for a given wavenumber, k, the spacing, h, between

the particles used to discretize a ring only needs to satisfy kh < 5 or so in order for

the discrete sum, Eq. (13), to correctly capture the exact integral, Eq. (16). This

is very surprising (and not understood at this time) because the integrand varies

quite a bit from one particle to the next (1 versus roughly _).

For comparison with the single Vortex ring, the spectrum of two opposite rings is

shown in Fig. 2.
In that case, the linear impulse is zero and one finds that E _ (kR) 4. Actually,

with sufficient symmetry, one can even create a system with E ,_ (kR) s. This

was obtained by considering six vortex rings on the surface of a cube, see Fig. 3.

Finally, we find that all vortex loop configurations considered lead to a spectrum
/_(k) ,,_ k -1 for large k and that this appears to remain so when they evolve in time

using VEM, inviscid or viscous (including LES), see Section 5.

4. LES and the possible extension to vortex methods

We consider turbulent flows away from solid boundaries. We also consider the

general vorticity formulation (Winckelmans 1989, Winckelmans _z Leonard 1993),

together with an LES formulation which conserves the zero vorticity divergence

(Mansour et al. 1978):
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for any a. The symmetric case a = 1/2 leads to Sijwj for the 3-D stretching, with

Sij the rate-of-strain tensor.
In the basic LES Smagorinsky's model, the turbulence eddy-viscosity is taken as

Vturb _- (Cs h) 2 (2 SijSij) 1/2 (19)

with SijSij = S 2 > 0. Typically, Ca lies in the range 0.1 - 0.24 (Rogallo _z Moin
1984, Lesieur et al. 1995). Consider the eigenvalues A1, _2, and _3 of the rate-of-

strain tensor, with A1 + _2 + _3 = Sii = V • u = O. The model then produces an

eddy-viscosity

vturb = (C, h) _ (2(_, _ + _ + _))'/2 (20)

We certainly agree with Lesieur et al. (1995) that "this simple eddy-viscosity hy-

pothesis is extremely arbitrary, and substantial progress in LES might be achieved

by relaxing this assumption". For the time being, however, a simple extension

to particle methods of this eddy-viscosity LES model is considered. Since our a-

regularization of the vortex particle method is basically a Gaussian filter, it appears
natural to replace the usual Eulerian grid filter h by the particle core size a (Recall

that h/a = O(1)) and to take:

//turb : (Ca 0") 2 (2 SijSlj) 1/2 • (21)

Other simple ways of constructing an LES eddy-viscosity have been proposed,

e.g., the model based on local enstrophy of Mansour et al. (1978):

Vturb = (Cv h) 2 (wiwi) ½ (22)

with wiwi = w 2 >_ 0 and Cv _ Cs (Cv _ 0.2 in Mansour et al. 1978). If we recall

the vector identity,

$2 1 2
= _w + V. (V. (uu)) (23)

together with the Euler equations,

0U

_- + V- (uu) _ -VP, (24)

it appears that, to first order, the two models differ by ½w2 - S 2 _ V2P. This is

an interesting result as it could be used to explain the differences in the behavior

of these two models depending on the pressure's Laplacian. Indeed, although ½w2
and S 2 are both positive-definite, their difference, V2P, can have any sign.

A third model based on the relative rate of change of local enstrophy due to 3-D

stretching of vortex lines,

1 D 2wiSijwj (25)
_wi Dt (_iwi) = wiwi '
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could also be constructed, e.g.,

Vturb = (Cw h) 2 2 03iSijO3j (26)
toiodi

This model has the property that it "selects" the eigenvalues used to compute the

eddy-viscosity according to the relative orientation between the vorticity vector, w,

and the principal axes (eigen vectors) of the rate-of-strain tensor. Indeed, writing

the components of the vorticity vector in the system of principal axes as (wl, w2, w3 ),
this model becomes

//turb m. (Cw h) 2 2 --ff----_---:_ .
wa +w2 +w3 ]

(27)

Hence a vorticity-weighted average of the eigenvalues is used to produce the eddy-

viscosity. This model produces a negative eddy-viscosity in regions where enstrophy
is decreasing (i.e., where vorticity is compressed). Since this is undesirable, one

should use IwiSijwjl (version 1) or max (O, wiSijtoj) (version 2) instead of wiSijwj
(version 0).

In axisymmetric strain (Xa = X2 = -X/2 and X3 = X), the classical LES model

gives (Cs h) _ _ IXh regardless of the orientation of the vorticity vector. If vorticity

is aligned with the direction of highest rate-of-strain, the "selective" model (ver-

sion 1) gives (Cw h) 2 2 IX1. If vorticity is perpendicular to that direction, it gives

(Cw h) 2 IX[. Since 1 < v/3 < 2, this result also suggests that using Cw = Cs as a

first "calibration" for the selective model is a fairly good choice.
In DNS of the Euler equations, the emergence of flat pancake-like structures

("potato chips") that shrink exponentially in time is also observed, e.g., Brachet

et al. (1992). In that case, two eigenvalues become exponentially large, ha

X (-½- e'/T), X3 ,._ X (--½ + eqT), while the intermediate eigenvalue, X2 _ X,

remains roughly constant. During this self-similar collapse, it is observed that

the vorticity tends to remain aligned with the eigenvector corresponding to the

intermediate eigenvalue. Instabilities similar to those leading to streamwise vortices

in the context of free shear layers are expected to subsequently concentrate the

vorticity and produce isolated vortex filaments. Modeling such flows with LES, a

classical model would produce, during the collapse phase, an exponentially large

eddy-viscosity (hence kill the collapse phase in its early stages by dissipating the

energy rapidly) while the selective model would produce a fairly constant eddy-

viscosity (hence dissipate the energy at the end of the collapse phase). Thus, the

two models would behave quite differently.

Finally, mixed-schemes that are a judicious combination of the above models

could also be considered. Whatever the choice, they would have to be validated

somehow (e.g., using DNS data), including the determination of the "constants".

One interesting question is whether one of the simple models above (or a suitable
mix of them) can produce better results than what is so far obtained with the

classical Smagorinsky's model.
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Note that the vortex method also has potential for the development of a dynamic

LES model, in the same spirit as in Germano et al. (1991), Ghosal et al. (1992),

Moin & Jiminez (1993), Ghosal & Moin (1994), Moin et al. (1994), Ghosal et al.

(1995). For instance, one could compute the velocity fields and derivatives from

the particle locations and strengths by using Gaussian smoothing at two levels:

e.g., a filter of width a and a filter of width 2a. This information could then be
used to "compute" Cs in a way similar to what is done so far with dynamic LES

in grid methods. One must recall, however, that the vortex method with Gaussian

smoothing is a second-order method. If dynamic LES requires higher order methods

(as it may . . . , Ghosal, private communication), it might not be feasible in the
context of VEM.

5. Fast and slow VEM codes

A fast parallel oct-tree code, originally developed for three-dimensional N-body

gravitational problems (Salmon 1990, Salmon _ Warren 1994, Warren K: Salmon

1995) has been modified into a fast N-vortex code for vortex flow computations using

the vortex particle method combined with the particle strength exchange scheme
for viscous diffusion, with the A2 particle redistribution scheme, and with both P-

and W-relaxation schemes (Salmon, Warren & Winckelmans 1994, Winckelmans et

al. 1995a,b,c,d).
Gravitation, VEM, etc. are all O(N 2) in complexity: for each of the N elements,

find the derivatives of the field induced by all N elements. This is the expensive

part of the computation. The other tasks (particle strength exchange scheme, par-

ticle redistribution, etc.) are all fairly local operations and are not computationally

expensive. The use of fast tree codes in 2-D and 3-D reduces the computing cost
associated with all evaluations from O(N 2) to something much more tractable:

O(NlogN), or O(N 1+_) with e << 1, or even O(N), depending on the complex-
ity of the implementation. The "big-O" notation can, however, be misleading for

practical values of N and desired level of accuracy. In our implementations of the
VEM, multipole expansions of order p = 2 are used (i.e., monopole + dipole +

quadrupole). Particular attention is given to ensuring that the error introduced by

the use of multipole expansion approximations remains below a desired level for all

evaluations. A run-time parameter, etol, determines the maximum allowed error

bound for any particular multipole evaluation.
The tree code is written entirely in ANSI C and has been ported to several

parallel and sequential platforms. Problems with N = O(104 - 106) and beyond are

computed on parallel supercomputers. Problems with N = O(103 - l0 s) are also

computed on the "degenerate" parallel case of single processor workstations.

For the present two-month "exploratory" work at CTR, it was decided to stick

with a slow O(N 2) VEM code. (Actually, an all-new VEM code was written for that

purpose.) Recall that computing an energy spectrum is also an O(N 2) operation
for each wavenumber k anyway. Although this O(N 2) code sets a limit of N _ 104

on the number of particles (even on a CRAY C90), it provides for an easy and

convenient way of experimenting with many ideas: different LES models, different

particle redistribution schemes, different relaxation schemes, etc.
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6. Some computational results

6.I Twelve rings compact vortex system

We consider a "compact" vortex system which, by construction, has the following

desirable properties: zero vorticity (as always in 3-D), zero linear impulse, zero

angular impulse, and zero helicity, H = ½ fv u# x & dx. Initially, it is formed of

twelve circular vortex rings, each of circulation F = 1: six rings of radius R = 0.6 (38

sections per ring, with 9 particles per section (1 in the center with circulation F/2,

and 8 around the center, at a distance rc = 0.123 and with circulation F/16) laid on

the surface of an outer cube of size S = 1 and with self-induced velocity directing

them towards the cube's center, and six rings of radius R = 0.3 (19 sections per

ring, again with 9 particles per section) laid on the surface of an inner cube of size

S = 0.5 and with self-induced velocity directing them away from the cube's center.

The total number of particles is N = 3078. The spacing between particles along the

ring is h _ 0.10. The two cubes share the same center. The outer cube is directed

along ex = (1,0,0), _y -- (0,0,1) and ez = ex x ey. To break the symmetry,

the inner cube is arbitrarily oriented along ex, ey, ez, with ex = (½,-_--_,-¼),

= ( _ ½) ^' (ez=ez/)[e_[I aridly =_,x(exey^l 0, , , ez = ex x ey,

To ensure core overlapping for a long time, a large value of a = 0.20 is used (hence

h/a ,._ 0.5). The time step is At = 0.02. The symmetric stretching scheme is used,

a = 0.5. The LES model of Eq. (21) is used, with Cs = 0.1. The W-relaxation

scheme is used every 10 time steps (with 50 Gauss-Seidel iterations).

Initially, the energy is E = 1.428 and the enstrophy £ -- 46.21. Following classical

definition of (isotropic) turbulence, the integral length scale is obtained as

L= fo k-lE(k) k
4 E = 0.490 (28)

and the Taylor microscale as

A = 5 = 0.393. (29)

At first, a run without particle redistribution is conducted up to t = 4. Contour

plots are presented in Fig. 4. The histograms of energy and enstrophy are provided

in Fig. 5.

The energy decays due to LES diffusion. Due to vortex stretching, the enstrophy

first increases. It then decreases due to vortex reconnection by viscous diffusion.

Notice that two enstrophy curves are presented. The C-curve refers to enstrophy as

defined by Eq. (15). The Cb-curve refers to enstrophy defined as

Eb= (30)

As long as the particle vorticity field, &#, remains a good representation of the

divergence-free field, wa, the two curves remain identical. Their difference is thus a
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FIGURE 4. Twelve rings interaction. 3-D contour plots of w_ = 2.0 at t = 0.0 and
2.0.
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global indication of problems with _, # w_. In the present case, it is seen that the

W-relaxation scheme does a fairly good job at keeping &a _ wt, up to t _ 2 or so.

Energy spectrums are provided in Fig. 6. It is seen that the high end of the

spectrum starts filling up at t _ 2 or so. This is also indicative of problems with

&_ # wa. This is confirmed by a close look, for all particles, at the amplitude of

we, and wa and at their relative orientation. It is also seen that the low end of the

spectrum does not remain well-behaved as time evolves. The behavior is physically

acceptable as long as it remains above (kS) 4. The fact that it evolves to (kS) 2

indicates that .spurious creation of linear impulse has occurred. This is confirmed

by a close look at the histogram of I(t).. Finally, total vorticity, ft(t), also does not

remain zero as it should. This could be somewhat improved by using the transpose

scheme, a = 0, instead of the symmetric scheme (Winckelmans 1989, Winckelmans
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& Leonard 1993). The W-relaxation scheme, however, does not conserve n. Again,

all the above "symptoms" are indicative of problems with &a _ wa.

For comparison, a run with A] particle redistribution every 50 time steps (and

with h = 0.10) is also carried out. From N = 3078 at t = 0, this leads to N = 6590

at t = 1, and to N = 11160 at t = 2. Because of the O(N 2) code, the computation

cannot be carried out much further than t = 2, and is ended at t = 2.6. Histograms

of energy and enstrophy are provided in Fig. 5. The conclusion is that the AI

scheme is definitely not acceptable: it dissipates too much energy and enstrophy.

In particular, it totally overshadows the amount of energy dissipated by the LES

model. Another interesting result is that the correspondence _ba = w_, is better

maintained with particle redistribution than without. This confirms that the W-

scheme is indeed best applied when combined with redistribution. Energy spectrums

are also provided in Fig. 6. This time, the high end of the spectrum is still fine

at t = 2. So far, the low end of the spectrum also behaves fine. Although the A]

scheme exactly conserves n and I, it is likely that spurious creation of fl and I

will also occur eventually due to the W-relaxation scheme and to the symmetric

stretching scheme.

One conclusion so far is the following: If one is to do controlled LES with the

VEM, it must be that the energy dissipation due to redistribution or relaxation is

less than the one due to LES. A good run might be to use the A2 scheme every 10

or 20 steps. (This scheme indeed conserves much better energy and enstrophy, see
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below.) This could not be done with the present O(N 2) code, however, due to the

large increase in the number of particles required.

Another conclusion is that the W-scheme does not conserve f_ and I. (Neither

does the P-scheme.) One further improvement would be to develop a relaxation

scheme which conserves 12 (and, if possible, also conserves I).

One question arises regarding the "inertial" range of such vortex tubes interac-
tions. Is there a (kS) -5/3 Kolmogorov range that develops? In Kiya (1993), it

is argued that yes, there is. We claim that no, there is not. In considering the

filtered energy spectrum, E(kS), of Fig. 6, it is hard to tell whether there is a Kol-

mogorov range or not. One finds the answer by considering instead the unfiltered

energy spectrum, F_,(kS), of Fig. 7. Then, there is a clear indication that (1) the

computation blows up (see comments above), and (2) as long as it doesn't blow
up, the spectrum remains as (kS) -1. This point will become clearer below, on a

computation that replicates the one presented in Kiya.

6.2 Six rings compact vortex system

We consider next another compact vortex system with zero vorticity, zero linear

impulse, zero angular impulse, and zero helicity. Initially, it is formed of six vortex

rings, each of circulation r = 1 and of radius R = 0.6 (38 sections per ring, with 9

particles per section (1 in the center with circulation F/2, and 8 around the center,
at a distance rc = 0.123 and with circulation F/16) laid on the surface of an outer

cube of size S = 1 and with self-induced velocity directing them towards the cube's

center. The rings are elliptical (in order to break the symmetry) with ab = R 2

and a/b = 1.25 (top), 0.80 (left), 1.33 (bottom), 0.75 (right), 0.85 (front) and 0.90

(back). The total number of particles is N = 2052. The spacing between particles

along the ring is h _ 0.10.

A value of a = 0.14142 _ v/2h is used (hence h/a ,_ 0.707). The time step is

At = 0.025 and the computations are carried out up to t = 4. The symmetric

scheme is used, a = 0.5. The LES model of Eq. (21) is used, with Cs = 0.2. The
W-relaxation scheme is used every 10 time steps (with 50 Gauss-Seidel iterations).

Initially, the energy is E = 1.745 and the enstrophy E = 65.39 (hence _ = 0.365).

Notice that the application of the A1 scheme to that perfectly fine initial condition

leads to E = 1.642 (loss of 6%) and C = 57.91 (loss of 11%). For comparison the

application of the A2 scheme leads to E = 1.741 (loss of 0.24%) and £ = 64.84 (loss

of 0.83%). This illustrates the superiority of the A2 scheme over the A1 scheme,

regardless of the time evolution of the vortex system.
Three runs were done: one without particle redistribution, one with A2 redistri-

bution at t = 2, and one with A1 redistribution at t = 2. Contour plots for the first

run are presented in Fig. 8.

The histograms of energy and enstrophy are provided in Fig. 9. Again, the

energy decays due to LES diffusion. Due to vortex stretching, the enstrophy first
increases. It then decreases due to vortex reconnection by viscous diffusion. As

long as &_ remains close to w_ (here Up to t _ 2), the two curves, C and Eb remain

identical. The A1 scheme is again clearly unacceptable. The A2 scheme performs

much better. However, it is believed that it should have been used more often (i.e.,
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FIGURE 8. Six rings interaction. 3-D contour plots of w_ = 2.0 at t = 0.0, 2.0 and
4.0.
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every 10 or 20 steps instead of every 80 steps) to give a better performance. Again,

this could not be done, due to the O(N 2) computational cost of the code. Finally,

the correspondence &_ = W_r (and hence £ = Cb) is again better maintained with
redistribution than without.

The energy spectrums are provided in Fig. 10. The high end of the spectrum

starts filling up at t _ 2. This is again indicative of problems with &_ _ w_ and is

confirmed by a close look at both &_ and wa for all particles. The low end of the

spectrum remains well-behaved as time evolves, with very little spurious creation

of linear impulse and of total vorticity. The six rings interactiort here constitutes a

"gentler" problem than the previous twelve rings interaction.

Again, regarding the "inertial" range of these vortex tubes interactions, it is

again closer to a (kS) -] behavior (filtered by the Gaussian) than to a (kS) -5/3
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Kolmogorov behavior.

6.3 Six thin rings inviseid vortex system

To settle the issue, a run that replicates Kiya (1993) is also done. In that case,

six circular rings of radius R = 1 and of circulation F = 1 are laid on the surface

of the cube of size S = 1.25. Each ring is discretized using a single line of 256

particles (hence h _ 0.0245. In Kiya, the high order algebraic smoothing is used,
with a* = 0.10. Recalling that the self-induced velocity of such a ring is obtained

as (Leonard 1985, Winckelmans 1989)

u- 4¥n

whereas the velocity of the ring with Gaussian smoothing is (Leonard 1985, Winck-

elmans 1989)

U- 4_'R

the proper scaling requires that our computation be done with a = 0.05724. Thus,

these are much thinner rings than before. Hence a wider "inertial" range is expected.

The computation is carried up to t -- 1.5, with At ----0.01. Again, the symmetric
scheme is used, a = 0.5. This is also a simple VEM computation. Hence, no relax-

ation scheme, and no redistribution scheme. Finally, this is an inviscid computation.

Hence, no LES.

The energy spectrums are provided in Fig. 11. As claimed by Kiya, the filtered

spectrum, E(kR) suggests a (kR) -_/a behavior. This is purely due to the filter,

however. Indeed, from examining the unfiltered spectrums, E(kR), it is clear that
(1) the behavior remains as (kR) -1 for a long time (forever.'?), and (2) the compu-

tation eventually blows up (as was the case in Kiya). The histograms of energy and

enstrophy are provided in Fig. 12. From the difference between the curves E and

Cb, it appears that the computation blows up at t _ 1.2.
In conclusion, it appears that interactions involving only vortex tubes lead to a

k -1 behavior. It may require the interaction between both vortex tubes and vortex

sheets to obtain a Kolmogorov-like spectrum. A model involving spiral vortices

(i.e., rolled-up vortex sheets) is presented in Lundgren (1982).

6.4 DNS of two rings fusion using the -fast parallel tree code

This work was not done while at CTR. It was done in collaboration with Salmon,

Warren and Leonard (Winckelmans et al. 1995d). It is also presented here in order

to illustrate the capabilities of the fast parallel VEM code. We consider a high
resolution DNS of the fusion of two vortex rings: radius R -- 1, circulation F -- 1,

Gaussian vorticity distribution with O'R ---- 0.10, spacing of the two rings center to

center S = 2.70, angle of each ring w.r.t, vertical = 20 degs. Each ring is discretized

with 126 sections and 225 particles per section (i.e., 7 layers, see Winckelmans &:

Leonard 1993). The inter-particle spacing is then h _ 0.05. The computations were
run with At = 0.05, a = 0.0625, a = 0, u = 0.0025 (i.e., Re = F/u = 400) on
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: without redistribution: E

both 32 nodes of the NAS IBM-SP2 and 64 nodes of the Caltech Intel Paragon.

Initially, there were 56,700 particles (19 CPU secs per step on SP2-32 and 68 on

Paragon-64). The As particle redistribution scheme with h = 0.05 was used every

10 time steps. At the end of the run, there were 218,696 particles (87 CPU secs per

step on SP2-32 and 236 on Paragon-64). The velocity error was roughly 0.0006 for

the mean over all elements, and 0.0008 for the max.

It is seen in Fig. 13 that the diffusion scheme, when combined with the high

order particle redistribution scheme, correctly captures the fusion process: First, the

energy and enstrophy losses associated with the As scheme are small enough that

they cannot be seen in the histograms. (They can only slightly be seen when they

are differentiated numerically.) Second, the normalized energy decay rate remains

(almost) equal to the enstrophy, as it should. For comparison, a run without particle
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redistribution was also done, see histograms in Fig. 13. In that case, the energy

decay rate is clearly incorrect. Finally, the conservation of linear impulse is also

much improved by the use of the redistribution scheme. Yet, even with particle

redistribution, linear impulse starts decreasing at t _ 4. It is believed that &_ is

then beginning to deviate from wa.

At this point, we are also experimenting with the two relaxation schemes when

used in conjunction with the redistribution scheme. Results obtained so far are

encouraging, yet too preliminary to be reported.

7. Conclusions

The VEM method has gone a long way since its early stages: accurate viscous dif-

fusion, particle redistribution schemes, relaxation schemes for the particle vorticity

field, fast and accurate field evaluation on both sequential and parallel platforms.

This work is still in progress. The time has come to start developing LES models

suitable to VEM. During this two-month visit at CTR, a dedicated O(N 2) LES-

VEM code was developed. Although slow, this code could be modified rapidly in

order to experiment with many different schemes and ideas. Energy spectrums

could also be computed. Some progress was accomplished in the following areas:

(1) LES models and how to incorporate them into VEM, (2) energy spectrums and

how to compute them, (3) particle redistribution schemes, (4) relaxation schemes.

More work is needed, however, especially regarding (1) relaxation schemes and (2)

further validation and development of LES models for VEM (which also requires

that they eventually be incorporated into the fast parallel tree code.)

It is believed that, when combined with recent developments in vortex techniques

for wall-bounded flows (P_pin 1990, Koumoutsakos 1993, Koumoutsakos &: Leonard

1992, 1995, Koumoutsakos et al. 1994), a matured and well-developed methodology

will permit the simulation of 3-D unsteady problems of engineering interest: flow

past airfoils including vortex wake, and flow past bluff bodies including vortex wake.

These body/wake computations will require the merging of the VEM code with a

Boundary Element Method (BEM) in order to determine, at each time step, the

vorticity flux required at solid boundaries in order to satisfy no-slip.

REFERENCES

ABRAMOWITZ, M. _: STEGUN, I. E. 1972 Handbook of Mathematical Functions

With Formulas, Graphs, and Mathematical Tables. Applied Mathematics Series

55, Tenth Printing. National Bureau of Standards.

BRACHET, M. E., MENEGUZZI, M., VINCENT, A., POLITANO, H. _c SULEM, P. L.

1992 Numerical evidence of smooth self-similar dynamics and possibility of

subsequent collapse for three-dimensional ideal flows. Phys. Fluids A. 4(12)_

2845-2854.

DEGOND, P. & MAS-GALLIC, S. 1989 The weighted particle method for convection-

diffusion equations, Part I: the case of an isotropic viscosity, Part II: the

anisotropic case. Math. Comput. 53, 485-526.



LES via the 3-D vortex particle method 413

GERMANO, M., PIOMELLI, U., MOIN, P. & CABOT, W. 1991 A dynamic subgrid-

scale eddy-viscosity model. Phys. Fluids A. 3(7), 1760.

GHOSAL, S., LUND, T. S. & MOIN, P. 1992 A local dynamic model for large-

eddy simulation. Annu. Res. Briefs, Center for Turbulence Research, Stanford

Univ. _z NASA Ames, 3-25.

GHOSAL, S. _: MOIN, P. 1995 The basic equations for the large-eddy simulation

of turbulent flows in complex geometry, d. Comput. Phys. 118, 24-37.

GHOSAL, S., LUND, T. S., MOIN, P. & AKSELVOLL, K. A. 1995 A dynamic

localization model for large-eddy simulation of turbulent flows. J. Fluid Mech.

286, 229-255.

GOLUB, G. H. 8z VAN LOAN, C. F. 1983 Matrix Computations. John Hopkins

Univ. Press.

KIYA, M. 1993 Simulating three-dimensional vortex motion by a vortex blob

method. S5dhanh. 18(3,4), 531-552.

KOUMOUTSAKOS, P. _: LEONARD, A. 1992 Direct numerical simulations using

vortex methods. Proc. NATO Advanced Research Workshop: Vortex Flows and

Related Numerical Methods, Grenoble, France, 1992, 15-19.

KOUMOUTSAKOS, P. 1993 Direct numerical simulations of unsteady separated

flows using vortex methods. Ph.D. thesis, California Institute of Technology.

KOUMOUTSAKOS, P., LEONARD, A. _ PI_PIN, F. 1994 Viscous boundary condi-

tions for vortex methods, d. Comput. Phys. 113(1), 52-61.

KOUMOUTSAKOS, P. _: LEONARD, A. 1995 High resolution simulations of the

flow around an impulsively started cylinder using vortex methods. J. Fluid

Mech. 296, 1-38.

LEONARD, A. 1980 Review: Vortex methods for flow simulation. J. Comput.

Phys. 37(3), 289-335.

LEONARD, A. 1985 Computing three-dimensional incompressible flows with vortex

elements. Annu. Rev. Fluid Mech. 17, 523-559.

LESIEUR, M., COMTE, P. _ MI_TAIS, 0. 1995 Numerical simulations of coherent

vortices in turbulence. Applied Mechanics Rev. 48(3), 121-149.

LUNDGREN, W. S. 1982 Strained spiral vortex model for turbulent fine structure.

Phys. Fluids. 25(12), 2193-2203.

MANSOUR, N. N., FERZIGER, J. H. &: REYNOLDS, W. C. 1978 Large-eddy

simulation of a turbulent mixing layer. Report TF-11, Thermosciences Div.,

Dept. of Mech. Eng., Stanford University.

MAS-GALLIC, S. 1987 Contribution _ l'analyse numdrique des mdthodes particu-

laires. Th_se d'Etat, Universit6 Paris VI.

MOIN, P. & JIMINEZ, J. 1993 Large eddy simulation of complex turbulent flows.

AIAA 2$th Fluid Dynamics Conference, Orlando, FI., AIAA paper 93-3099.



414 G. S. Winckelmans

MOIN, P., CARATI, D., LUND, T., GHOSAL, S, _ AKSELVOLL, K. 1994 De-

velopments and applications of dynamic models for large eddy simulation of

complex flows. 7_th Fluid Dynamics Symposium on Application of Direct and

Large Eddy Simulation to Transition and Turbulence, Chania, Crete, Greece,

AGARD-CP-551, 1-1-9.

PEDRIZZETTI, G. 1992 Insight into singular vortex flows. Fluid Dyn. Res. 10,

101-115.

PEPIN, F. 1990 Simulation of flow past an impulsively started cylinder using a

discrete vortex method. Ph.D. thesis, California Institute of Technology.

PHILLIPS, O. M. 1956 The final period of decay of non-homogeneous turbulence.

Proc. Cambridge Phil. Soc. 52(1), 135-151.

ROGALLO R. S. & MOIN, P. 1984 Numerical simulation of turbulent flows. Annu.

Rev. Fluid Mech. 16, 99-137.

SAFFMAN, P. G. & MEIRON, D. I. 1986 Difficulties with three-dimensional weak

solutions for inviscid incompressible flow. Phys. Fluids. 29(8), 2373-2375.

SALMON, J. K. 1990 Parallel hierarchical N-body methods. Ph.D. thesis, California

Institute of Technology.

SALMON, J. K. &5 WARREN, M. S. 1994 Skeletons from the treecode closet, d.

Comput. Phys. 111(1), 136-155.

SALMON, J. K., WARREN, M. S. & WINCKELMANS, G. S. 1994 Fast parallel

tree codes for gravitational and fluid dynamical N-body problems, lnt. J.

Supercomputer Applications. 8(2), 129-142.

SHARIFF, K., LEONARD, A. _: FERZIGER, J. H. 1989 Dynamics of a class of

vortex rings. NASA Technical Memorandum 102257, Ames Research Center.

WARREN, M. S. _ SALMON, J. K. 1995 A Parallel, Portable and Versatile

Treecode. Proc. Seventh SIAM Conference on Parallel Processing for Scien-

tific Computing, San Francisco, CA, 15-17 Feb., 1995, 319-324.

WINCKELMANS, G. S. _x: LEONARD, A. 1988 Weak solutions of the three-dimensional

vorticity equation with vortex singularities. Phys. Fluids, Letters. 31(7), 1838-

1839.

WINCKELMANS, G. S. _: LEONARD, A. 1989 Improved vortex methods for three-

dimensional flows. SIAM Workshop on Mathematical Aspects of Vortex Dynam-

ics, Leesburg, VA, April, 1988, SIAM Proc. Series, R. E. Caflisch ed., 25-35.

WINCKELMANS, G. S. 1989 Topics in vortex methods for the computation of three-

and two-dimensional incompressible unsteady flows. Ph.D. thesis, California

Institute of Technology.

WINCKELMANS, G. S. 1993 Comments on a paper by Kiya et al. on the numerical

simulation of pseudo-elliptical vortex rings using the vortex particle method.

Fluid Dyn. Res., Brief Comm. 12, 57-60.



LES via the 3-D vortex particle method 415

WINCKELMANS, G. S. _; LEONARD, A. 1993 Contributions to vortex parti-

cle methods for the computation of three-dimensional incompressible unsteady

flows. J. Comput. Phys. 109(2)_ 247-273.

WINCKELMANS, G. S., SALMON, J. K., WARREN, M. S. _ LEONARD, A. 1995

The fast solution of three-dimensional fluid dynamical N-body problems us-

ing parallel tree codes: vortex element method and boundary element method.

Proc. Seventh SIAM Conference on Parallel Processing for Scientific Comput-

ing, San Francisco, CA, 15-17 Feb., 1995, 301-306.

WINCKELMANS, G. S., SALMON, J. K., LEONARD, A. L: WARREN, M. S. 1995

Three-dimensional vortex particle and panel methods: Fast tree-code solvers

with active error control for arbitrary distributions/geometries. Proc. Forum on

Vortex Methods for Engineering Applications, Albuquerque, NM, 22-24 Feb.,

1995, 25-43.

WINCKELMANS, G. S., SALMON, J. K., LEONARD, A. & WARREN, M. S. 1995

Simulations of airfoil three-dimensional vortex wakes via fast vortex particle

parallel and sequential tree codes. In Proc. Third Annual Conference of the

CFD Society of Canada, Banff, Alberta, 25-27 June, 1995, 349-356.

WINCKELMANS, G. S., SALMON, J. K., WARREN, M. S., LEONARD, A. _z

JODOIN, B. Application of fast parallel and sequential tree codes to computing
three-dimensional flows with the vortex element and boundary element meth-

ods. To appear in Proc. Second International Workshop on Vortex Flows and
Related Numerical Methods, Montreal, Canada, 20-24 August, 1995 (submitted

Sept. 95).


