
Intelligent Computer-Aided Training
Authoring Environment -

Robert D. Way LinCom Corporation

(713) 483-1899 Houston, TX 77058
way@ gothamcity .jsc.nasa.gov 1020 Bay Area Blvd. Suite 200

ABSTRACT
Although there has been much research into intelligent tutoring systems (ITS), there are few
authoring systems available that support ITS metaphors. Instructional developers are generally
obliged to use tools designed for creating on-line books.

We are currently developing an authoring environment derived from NASA‘s research on
intelligent computer-aided training (ICAT). The ICAT metaphor, currently in use at NASA, has
proven effective in disciplines from satellite deployment to high school physics. This technique
provides a personal trainer (F’T) who instructs the student using a simulated work environment
(SWE). The PT acts as a tutor, providing individualized instruction and assistance to each student.
Teaching in an SWE allows the student to learn tasks by doing them, rather than by reading about
them.

This authoring environment will expedite ICAT development by providing a tool set that guides
the trainer modeling process. Additionally, this environment provides a vehicle for distributing
NASA’s ICAT technology to the private sector.

INTRODUCTION
“industrial, business and commercial training accounts for about half of the total

educational expenditure in the United States.”
(Richardson 1988)

Education, training and re-training are frequently documented as expensive and inefficient by the media. Recent
research in intelligent tutoring systems (ITS) and intelligent computer-aided instruction (ICAI) are often promoted as
the remedy to educational problems.

Anecdotally, these claims seem well fvided. Schank’s “Case-Based Teaching” (Riesbeck 1991) and Woolf’s
“Discourse Management” (Woolf 199 1) demonstrations both show amazing ability to intelligently interact with
students. Unfortunately, the theories behind these systems are still the subject of intensive research. It may take
several years before training based on these metaphors is commercially available. At any rate, many ITSs have been
around long enough to show an influence on the commercial market. Equally as innovative, and more often quoted,
Anderson’s Geometry and LISP Tutors, (Anderson 1985) Johnson & Soloway’s PROUST system for Pascal
programming (Johnson 1984), and Hollan & Hutchins’ industrial trainer Steamer (Hollan 1984), were all well
published successes before 1988.

Yet despite being updated with the latest multi-media effects and hyper-text links, most available educational
products do not employ any of the instructional techniques pioneered by ITSs during the past decade.

One reason for this lack of transfer is that while there has been much research into intelligent tutoring systems, there
are few authoring systems available that support intelligent tutoring concepts. For example, no commercially
available authoring tool supports all five common components (Burns 1991) of an ITS: domain expert, instructional
expert, student model, intelligent interface, and simulation.

Instructional designers are commonly obliged to use general purpose authoring tools. These tools, like Authorware
and ToolBook, shield designers from the complexities of color graphics, digitized sound and video, but do nothing to
assist in the intricacies of ITS design. Deprived of basic student modeling capabilities, designers are discouraged from

584

https://ntrs.nasa.gov/search.jsp?R=19960022634 2020-06-16T04:50:17+00:00Z

creating systems which vary remediation based on the ability of each student. Worse yet, lacking new instructional
metaphors, general purpose tools tend to promote systems which are either high-tech slide shows or on-line books.*

u ter- Aided Training
We are developing an authoring environment derived from NASA's research on intelligent computer-aided training
(ICAT). The ICAT instructional metaphor, currently in use at NASA, has proven effective in disciplines from
satellite deployment to high school physics (see related work section). This technique provides a personal trainer
(PT) who instructs the student within a simulated work environment (SWE). The PT acts as a personal tutor,
providing individualized instruction and assistance to each student. Teaching in an SWE allows the student to learn
tasks by doing them, rather than by reading about them.

Figure 1 shows a simulated environment developed to train astronauts in operating the Spacehab module. Concepts
are presented in the personal trainer window on the right hand side of the screen. Students respond to the trainer by
identifying and manipulating objects in the environment. Navigation around the shuttle is performed using the
displays in the top right comer. Switches and dials are directly manipulated using the mouse.

Different fidelities of simulated environment and personal trainer are used depending on the needs of the training. In
this case the personal trainer is implemented using only text. Other systems have required more personality. In these
cases the PT is presented using video of a real person. This helps capture the feeling of interacting with a human
trainer.

Figure 1
Simulated Environment for Space-Hab Training

* Capable instructional systems have been developed using current tools, but these systems owe
more to the experience of the author than to the support of the tool.

586

ARCHITECTURE
The STB's authoring environment plans elaborate on NASA's second generation ICAT architecture (see Figure 2).
NASA's architecture, shown in the lower level, defines which modules are necessary to build an ICAT, what each
should do, and how they communicate. This architecture does not, however, specify how to implement each module.
Previous ICAT system have used different methods of implementation. This project will provide a common library '
for all new ICAT systems and tools to guide the instructional designer through the development process.

Figure 2
ICAT Architecture

Building an ICAT system based on this architecture requires both simulating the work environment and modeling a
personal trainer. Unlike previous systems, Space station ICATs will use a pre-existing simulated work environment
built for Part-Task Trainers. To simplify this process we have minimized the interaction between the SWE and the
personal trainer modules of the ICAT system. The SWE only interacts with the PT through the student history and
the action evaluator. The SWE is shown as the lone round module in Figure 2.

Rectangular modules in Figure 2 represent sections of the personal trainer. A personal trainer has three main duties,
each assigned to a separate module:

Lesson Planner: Assign appropriate exercises to each student.
Action Evaluator:

Remediation:

Watch what the student does and compare it objectively to the exercise's expected
behavior.
Point out the student's mistakes and give assistance tailored the student's past
perfOllTlanCe.

The three other modules shown in Figure 2 provide basic support to these core routines. The Student History
remembers what the student did, what the student knows, and what we told the student. The Supervisor provides
the personal trainer's graphical interface with the student and coordinates execution of the ICAT. The Decoder acts
as a mini database for the ICAT. It maintains a list of all actions, concepts, exercise names, messages, and
misconceptions used in a particular ICAT. These support modules are well understood (for the purposes of this
proposal) and are not discussed further.

After reviewing previous ICAT implementations and relevant literature, The STB has selected synergistic
implementations fox each KAT module (Lesson Planner, Remediation, etc.). On top of each module, The STB has
layered a graphical modeling notation. These notations enable an instructional designer to easily diagram a new
ICAT design.

586

But, while these notations greatly aid in specifying ICAT knowledge, someone with programming knowledge of
these particular algorithms must still hand translate the diagrams into computer data files. The main goal of this
project is to construct an authoring environment which helps an instructional designer create a new ICAT system.
This environment will provide graphical editors for each modeling notation, and automatically translate diagrams
into the required data files. In addition, these editors will be integrated with the run-time algorithms. This will allow
the editors to also act as debugging tools . While a student is working an exercise, the editors will automatically
highlight the ICAT diagrams to show the student’s progress.

The remainder of this document is broken into four sections, one explaining the SWE and three explaining to the
core modules above.

Simulated Work Environment
Figure 3 shows one of the approximately twenty-five panels that make up the Spacehab Intelligent Facilities Trainer
(SHIFT) Simulated Work Environment. Each of the switches, buttons and lights on the panel is active. An astronaut
throws switches using the mouse. Indicator lights are controlled by an underlying engineering model of the
Spacehab module.

Astronauts leam procedures which involve throwing a series of switches and checking for the appropriate indicators
to light up. They also monitor the system, listening for alarms and looking for problem “signatures”.

The GUI and engineering models of previous S W s have required up to two-thirds of the total effort allotted to
creating an ICAT system. By using pre-existing part task trainers we expect to dramatically reduce the development
time of space station ICAT systems.

Figure 3
Panel from the SHIFT simulated work environment

Action Evaluator
Once an SWE is defined, the instructional designer must develop exercises to be performed in the environment.
ICAT theory defiies two different types of exercises: those which present new material to the student and those
which & the material. These concept application lessons also serve as the way the ICAT system evaluates the
-student’s progress.

587

The STB has developed a graphical notation called operating procedure language (OPL) which enables an
instructional designer to specify what things a student should do during a lesson. Figures 4 and 5 show examples of
this notation. The STB has also implemented algorithms which allow the action evaluator to compare the student's
behavior to the specified notation.

Figure 4 shows the OPL notation for an exercise which presents a new procedure to the student. Rectangles represent
actions the student is expected to carry out. Rounded rectangles represent the sequence interactions given to the
student. Circles represent commands to the simulated work environment. Notice that a presentation exercise
normally has a linear structure.

Malfunction

Messages
Figure 4

Material Presentation Exercise
Figure 5 shows an exercise which allows the student to practice a procedure. Practice exercises are not necessarily
linear, they allow students to work a procedure using any equivalent series of steps. They also support branching of
procedures based on the state of the SWE. Practice exercises may also be annotated to show common mistakes.

Expert Decision (i f)

Subnet
Figure 5

PracticeEvaluation Exercise

During the SHIFT project, OPL greatly simplified the creation of exercises. Although OPL provides an efficient way
of specifying exercises, each exercise must be translated by hand into the data files required for implementation. The
new exercise editor will facilitate both drawing OPL diagrams and generating the data files.

588

Remediation
In the course of working an exercise, the student will complete a number of actions. Each action, either correct or
incorrect, gives information about the student’s understanding of the material. The major part of trainer modeling is
watching the series of actions that the student performs, and identifying patterns of behavior which signify a
misunderstanding of the material. Once a misunderstanding is identified, the trainer gives the student an appropriate
message.

Trainer modeling is based on the assumption that we have available a human “trainer” who understands the material
and could teach it well in a one-on-one setting. If no one exists who could teach the proposed material we have found
it extremely difficult to create an effective ICAT system. If the assumption is true, however, trainer modeling simply
reduces to “doing what the human trainer would do.”

In creating various ICAT systems, we have talked to many teachers and trainers. These experts have told us that each
student comes into the training program with a personal conceptual model of the world. This conceptual model
drives the student’s assimilation of new material. If the student’s conceptual model is correct relative to the material
being taught, the assimilation is usually easy. If the student’s conceptual model is wrong, however, it can often lead
to misinterpretation of the material. These misinterpretations often cause the student to make mistakes during an
exercise.

Fortunately, many students have similar backgrounds and, therefore, have similar conceptual models of the world.
Because these similar models cause students to make similar mistakes, good teachers learn to quickly spot behavior
patterns which indicate misinterpretations of the material. This is a principle called “Misconception Theory.” (Way
1991) Misconception theory holds that teachers can easily describe what common mistakes students make, what
misconceptions causes these mistakes, and how to remediate them.

The remediation module of the personal trainer implements this process. The STB has developed an efficient
matching algorithm which stores patterns of behavior (student actions) and maps them to misconceptions. This
algorithm is facilitated by imbedding the pattern matching in a binary search tree (see Figure 6). In addition, the
algorithm provides for structured relationships between misconceptions. This allows the system to “fallback” and
remediate a more general concept if several related misconceptions have been diagnosed (see Figure 7). Thirdly, it
stores one or more types of remediation for each misconception. This allows the system to give appropriate levels of
explanation based on the student’s background.

\ Last

I
Don’t assign a value to the variable you’re solving
for. You must first solve for the value with a formula.

(SI..) Assigned value to ANSWER

there still forces acting on the object which
haven’t been identified? 1 \ IM I

(rta.) Forgot to draw an arrow

all the values given in the problem to the
variables used in the formula you selected.

cst/(rna.) All given variables for formula don’t have values

Figure 6
Remediation Pattern Matching Tree

589

This remediation mechanism was used with great success in the Intelligent Physics Tutor. However like OPL
notation, the misconceptions must be translated by hand into the tree notation shown in Figure 6. This project will
implement an editor to automate this process.

Figure 7
Related Misconceptions

Lesson Planner
The STB has developed a second algorithm, as a part of misconception theory, which allows the personal trainer to
select appropriate exercises for each student. Exercise selection is based on knowledge which the personal trainer
gained from watching the student complete previous exercises. This process is implemented as the Lesson Planner
module.

Selecting an appropriate exercise requires indexing meta-knowledge about each exercise. Meta-knowledge includes
concepts that must be understood to successfully complete the exercise and misconceptions commonly revealed
during this exercise.

As the student works each exercise, the lesson planner uses this meta-knowledge to compile a list of the concepts the
student has applied. The lesson planner also builds a list of misconceptions diagnosed by the remediation module.
Using these two lists, the lesson planer creates a third list recommending concepts for future study. Selecting
exercises simply becomes a matter of matching the concepts recommended to the exercise's meta-knowledge (see
Figure 7).

This technique was used with great success in the Intelligent Physics Tutor. Like OPL and misconceptions, these
meta-data indexes must be translated by hand into executable data files. This project will develop a tool for
graphically editing these data files.

590

I Student Model Abstract

3
2 I
3 2 1
3
4 1 1
2
2 1
3
2 2 1
1
3 3 3

-
6

dies
-
1
1
1
1

1

Match Recommended
column to Exercises
that best apply

Figure 7
Meta-Ihowledge Index

CONCLUSIONS
The ICAT authoring environment will allow space station trainers to develop KAT training without outside
programming help. By eliminating dedicated knowledge engineers and reusing existing simulations, we should see an
inherent 50% reduction in development cost. This coupled with ICATs ability to provide more people, more training
in an equivalent time, will provide a substantial cost savings in required personnel. Additionally, when completed,
this environment will represent a product which could distribute NASA's ICAT technology to the private sector.

REFERENCES
Anderson, J.R., Boyle, C.F., & Yost, G. (1985). The geometry tutor. In A. Joshi (Ed.), Proceedings of the Ninth

Burns, H., & Parlett, J.W. (1991). The Evolution of Intelligent Tutoring Systems. Intelligent Tutoring Systems

Hollan, J.H., Hutchins, E.L., & Weitzman, L. (1984). S t e r : An interactive inspectable simulation-based training

Johnson, L., & Soloway, E. (1984). Intention-based diagnosis of programming errors. Proceedings of American

Richardson, JJ. (1988) Directions for Research and Applications (page 251). Foundations of Intelligent Tutoring

Riesbeck, K.C. & Schank. R.C. (1991) From Training to Teaching: Techniques for Cased-Based ITS. Intelligent

Way, R.D. (1991) An Intelligent Tutoring System for Physics Problem Solving. NASA's 1991 Conference on

Woolf, B. (1991) Representing, Acquiring, and Reasoning About Tutoring Knowledge. Intelligent Tutoring Systems

International Joint Conference on Artificial Intelligence @p. 1-7). Los Altos, CA Morgan Kaufmann.

Evolutions in Design. Hillsdale, NJ: Lawrence Erlbaum Associates.

system. AI Magazine, 5,lS-27.

Association of Artificial Intelligence Conference @p. 162-168). Los Altos, CA Morgan Kaufmann.

Systems . Hillsdale, NJ: Lawrence Erlbaum Associates.

Tutoring Systems Evolutions in Design. Hillsdale, Nk Lawrence Erlbaum Associates.

Intelligent Computer Aided Training, NASA Conference Publication 10 100, Vol.1

Evolutions in Design. Hillsdale, NJ: Lawrence Erlbaum Associates.

591

NNAEhEG

Intelligent Computer-Aided Training
Authodng Environment

What is hteliigent Computer-Aided Training?

Simulated Work Environment
Students learn by doing real tasks
Presents new concepts as on-the-job training

Automated Personal Traina
Customizes lessons for each student
Provides immediate feedback and help
Summarizes student progress for the instructor

What is ICAT?
How are ICATs built?
W h y an authoring environment?
Authoring environment vision?

hesent the concepts in the real environment with the real
objects. (Simulate the Work Environment)
Have the student do what you want him to learn.
Watch as the student does the job, take note of everything.
Watch quietly as the student works.
Give appropriate help when asked.
Point out errors while they're still in context
Let the student r m v a from errors if possible.
Never give a formal "Test".

592

Mast of these misconceptions are easily recognizable from
patterns of student actions.
We then respond by mimicking a t e d e r who suspects a
certain misundasranding.
Once the misconceptions are known we are able to relate
common on= as a teacher would.
We then adjust the curriculum to double-ched the
students understanding.

Action Evaluator Procedures

-.).l-.-

Teaching Principles

Teacher‘s recognize a set of common misunderstandings.
They normally gear their responses more to these
misunderstandings than to the students queries.
If their initial instinct appears inconvct they fall back to
other commonly related misconceptions.
They double-check themselves by watching to see if the
student exhibits other signs of the misconceptions.

NNI\€Esc= ---
Remediation Hierarchy

593

Remediation Tree

<.N̂ &z] ----
Why Authoring TQOIS?

currenr systems
Labor intensive to build
Requite programmers trained in ICAT to maintain

Space Station Training
Multiple KATS training five separate subsystems
Must use pre-exiting simulation models
ICATs must be maintainable by without programming

wi,..nT*Br-, .% J
m.am "

ICA T Authoring Tool

Immediate "teacher like" feedback to student
actions.
Context sensitive help at all times.
Adjustment of mataid based on the demonsested
understanding of the student

I Teacher level summaria of both student and class I
progress.

594

