@ https://ntrs.nasa.gov/search.jsp?R=19960023949 2020-06-16T04:56:19+00:00Z

NASA Contractor Report 4723

Applications of Formal Methods to
Specification and Safety of Avionics Software

D. N. Hoover, David Guaspari, and Polar Humenn

Contract NAS1-20335
Prepared for Langley Research Center

April 1996

NASA Contractor Report 4723

Applications of Formal Methods to
Specification and Safety of Avionics Software

D. N. Hoover, David Guaspari, and Polar Humenn
Odyssey Research Associates, Inc. ® Ithaca, New York

National Aeronautics and Space Administration Prepared for Langley Research Center

Langley Research Center ® Hampton, Virginia 23681-0001 under Contract NAS1-20335
1

April 1996

Printed copies available from the following:

NASA Center for AeroSpace Information National Technical Information Service (NTIS)
800 Elkridge Landing Road 5285 Port Royal Road
Linthicum Heights, MD 21090-2934 Springfield, VA 22161-2171

(301) 621-0350 (703) 487-4650

Abstract

This report treats several topics in applications of formal methods to avionics software development.
Most of these topics concern decision tables, an orderly, easy-to-understand format for formally
specifying complex choices among alternative courses of action.

The topics relating to decision tables include: generalizations of decision tables that are more
concise and support the use of decision tables in a refinement-based formal software development
process; a formalism for systems of decision tables with behaviors; an exposition of Parnas tables
for users of decision tables; and test coverage criteria and decision tables. We outline features of a
revised version of ORA’s decision table tool, Tablewise, which will support many of the new ideas
described in this report.

We also survey formal safety analysis of specifications and software.

Contents

1 Introduction 6
1.1 Basics of Decision Tables 8
1.2 Summary of Table Forms, 9
1.3 Logical Notation 10

2 Three Extensions of Decision Table Syntax and Semantics 11
2.1 Recursively Partitioned Decision Tables 12

21.1 AnExample 14
2.1.2 Decision Diagram Representations and Algorithms for Partitioned Decision
Tables, 15
2.2 Decision Tables with Preconditions or lllegal Configurations 15
2.3 Assertion Tables 17
2.3.1 Checking a Table Against Assertions 18
2.3.2 Generating Selection Tables from Assertions 19
2.3.3 Semantics of Decision Tables and Assertion Tables 20
2.3.4 Refinement of Assertion Tables and Decision Tables 24

3 Tables with Behaviors 26
3.1 Table Definitions and Their Environments 28
3.2 Typedeclarations. 28
3.3 Variable Declarations 29
3.4 Expressions, 30
3.5 States and Assignments 30
3.6 Decision Tables with Behaviors 30

3.7 Checking e e 31

3.8 Function Tables e 32
4 A Guide to Parnas Tables 34
4.1 Taxonomy of Parnas Tables 34
4.2 Background: Data States and Black-Box Program Specifications 35
4.3 The Tables e 36
4.3.1 Normal Function Tables 36
4.3.2 Inverted Function Tables 38
4.3.3 Vector Function Tables 40
4.3.4 Normal, Inverted, and Vector Relation Tables; Mixed Vector Tables 41
4.3.5 Predicate Expression Tables 42
4.3.6 Characteristic Predicate Tables 43
4.3.7 Generalized Decision Tables, 44

4.4 Conclusions L e e e e e e e 45
5 Testing Decision Tables and Code Generated from Decision Tables!’ 47
5.1 Coverage Properties and Associated Terminology 48
5.2 Test Categoriesvs. Test Cases. o i it ittt in .. 51
5.3 Independent Effect L 52
5.4 Pure Conditional Code, Tree Code, Decision Trees, and Context 54
5.4.1 Condition statements and Expressions 54
5.4.2 Boolean Expressions 55
5.4.3 Straight Line and Pure Conditional Code 56
544 ConteXt e e e 56

5.5 Decision Tables and Short Circuit Operations 58
5.6 Generating Testable Code and Tests from Decision Tables 60
5.6.1 Testable TreeCode 60

5.7 Testable Opproc by Opproc Code 61
5.8 Testable Code Containing More General Decisions 63

'We thank Steve Miller for numerous explanations that have made this chapter possible. Any errors that it still
contains are the fault of the authors.

5.9 Test Coverage for Decision Tables.

Safety Analysis

6.1 Hazard Analysis
6.2 Safety Analysis
6.2.1 Fault-Tree Analysis
6.2.2 Fault-Tree Analysis of Software
6.2.3 Making the Analysis Mathematical
6.2.4 TFormal Safety Analysis via Petri Nets
6.2.5 Other Means of Formal Safety Analysis
6.3 Requirements Specification
6.3.1 Toolsfor RSML

Conclusions and Further Work

Notes on Tablewise 2

67
69
70
70
70
74
75
79
81
85

87

List of Figures

1.1

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9

3.1
3.2
3.3

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

A decision table with both selection and behaviors parts [25].

A recursively partitioned decision table. o000
A simple decision table. oo
Another partitioned decision table and an equivalent simple decision table.
Two equivalent decision tables with precondition annotations.
An assertiontable. L e e
A table to test against assertions.o
Results of assertion check. L e
A table generated from assertions. Lo

A weaker assertion table and the decision table it generates.

A type declarationtable. Lo o oo
A variable declarationtable. L L

Function table for the function compare.,

A normal function table. o
A functional decision table corresponding to Figure4.1.

A normal function table with three input variables, presented in slices.

8

18

A normal function table with three input variables, two of them “stacked” on the left. 39

An inverted function table. Lo oo
Decision table corresponding to Figure4.5.
A vector function table. L e
Decision table corresponding to Figure 4.7.

A normal relation table. L e e e e e e e e

39

4.10
4.11
4.12
4.13
4.14
4.15

5.1
5.2
5.3
5.4

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

A vector relation table. L 42
A predicate expression table., 43
A characteristic predicate table. 44
A generalized decision table. 44
Functional decision table equivalent to Figure 4.13. 45
The “true” Parnas-style decision table. 45
The definition of context., 57
Varying order of evaluation in a decision table. 59
Opproc-by-opproc code. 61
How to eliminate the conditional operator. 63
Afault-tree. ... 71
Fault-tree for a conditional. 73
Applying the template. 74
A Petri net model of a rail-crossing. L L. 77
A different marking of the Petrinet. 78
A reachability graph. L 81
A superstate. e e 83
A parallel state.. L 84

(2]

Chapter 1

Introduction

The theme of the research done on this project! and on its predecessor [12] is the use of formal
methods and formally based tools to produce precise, understandable specifications and to help
automate parts of the software production process, such as formulating specifications, checking
specifications, deriving code and documentation from specifications, and testing of specifications
and code. We have particularly concentrated on decision tables because, as discussed in Sherry
[25], they are easy to understand, suitable for specifying iterative reactive systems of the kind
common in avionics, and have a natural refinement methodology associated with them (missions
to operational procedures to scenarios to behaviors to dependent missions).

In the predecessor to this task we developed Tablewise, a tool supporting formal specification of
code using decision tables and generation of code from decision tables [12, 13]. Tablewise is a
basic tool supporting editing of decision tables, testing decision tables for consistency (at most one
outcome assigned under each possible scenario) and completeness (some outcome assigned to every
possible scenario), a form of structural analysis that localizes faults responsible for tables being
incomplete or inconsistent, and generation of Ada or C language code from decision tables.

Under this task, we have tried to broaden the scope of the project by identifying a broader range
of ideas in formal methods that can be of use in avionics software development in general or in
decision table methods or Tablewise in particular. The topics we have addressed are the following
listed by chapter. For the most part, each chapter was originally written as a separate report on a
particular topic.

e (Chapter 2) Extensions of decision tables.

— Incorporating preconditions into decision tables. This is a method of indicating the
context that a decision assumes and also of annotating relationships between the in-

1This research was carried out under NASA Langley Research Center Contract NASI1-20335, Technical Monitor
Michael Holloway. We thank Lance Sherry for the substantial input he has made to the content of this report. We
also thank Steve Miller for helpful and instructive discussions about testing, and David Rosenthal for his many useful
comments.

put variables that mathematically guarantee that certain scenarios cannot occur and
therefore can be excluded in analysis of the table.

— Permitting input variables to be partitioned into groups resembling records (as the term
1s used in programming languages). The resulting partitioned decision tables can express
the same information as a “flat” decision table far more concisely.

— Assertion tables, which represent more general logical formulas than decision tables.
Assertion tables permit one to write assertions about a specification that can be used
either to generate a decision table or else to check whether a given decision table says
what one thinks it should say.

Our algorithms for consistency and completeness analysis extend straightforwardly to decision
tables that may be partitioned or have preconditions. Consistency and completeness analysis
is essentially done automatically as part of generating a decision table from assertions. We
had to generalize our notion of structural analysis in order to apply it to partitioned decision
tables.

(Chapter 3) Placing decision tables in a more general formal program development methodol-
ogy. We propose a tabular specification method that permits a complex system to be specified
using a family of decision tables. These tables specify not only how to choose one of a num-
ber of courses of action (the selection), but also what each course of action actually is (the
behavior).

The resulting system is essentially a variant of Parnas’s A-7 specification method (10, 28],
using decision tables with behaviors rather than Parnas’s tables as the main definitional
element, and using other tabular forms to declare system variables.

Our system also bears a significant resemblance to Leveson’s RSML [17] minus its statecharts.
Leveson uses decision tables (selection part), divided up into pieces to define state transitions
in her statecharts. Essentially, a state transition (arc in the statechart) in RSML corresponds
to an operational procedure in ours. In Leveson’s approach, as in its parent, Harel’s state-
charts 7], the overall state is represented partly by locations in the statechart and partly by
values of state variables. In ours, as in Parnas’s A-7 method, the state is represented entirely
by state variables.

A promising idea that we have not worked out here is the idea of a decision table as an
object with an internal state (its operational procedure) and some associated methods (its
behaviors). We think it will provide a basis for a compelling connection between state machine
specification methods and decision tables.

(Chapter 4) In the context of his A-7 specification method, Parnas uses a variety of speci-
fication tables. On the ground that these may be useful instead of or in conjunction with
decision tables, we review the varieties of Parnas tables, explaining them in terms of decision
tables.

o (Chapter 5) We explore the problems of generating code that is testable according to a certain
test coverage criterion (MC/DC) and show how to generate such code along with a test suite
meeting the coverage requirement from a decision table.

We also explore the idea of a test coverage criterion for decision tables so that they can be
tested in order to validate them as requirements.

e (Chapter 6) We present a short survey of formal and quasi-formal methods as applied to
software safety.

e (Appendix A) We are developing a new version of Tablewise incorporating new methods

reported here. Appendix A is a short description of what will be new in Tablewise 2.

We believe that the most important contributions reported here are the table extensions in Chap-
ter 2 and the work on testing tables and test generation in Chapter 5.

1.1 Basics of Decision Tables
Operational Procedures Operational Procedure Op Proc 1 Op Proc 2
Operational Scenarios Scen 1 Scen 2 Scen 3
Scenarios
Inputs States
[Sh 81, 52 51 51 52
Scenario
grll%ms (SE) Sk 81,582,853 $1 s 81
States (s;
(2) SI3 81y.0+98n * 82 Sn
Behavior Behavior 1 Behavior 2
Operational -
Behavior Outputs Functions
I. BO, fi, f2 f2 f2
Behavior BO
Sputs (BOD | BO, firfs 2 fs
Functions (f;)
BOS flv"'sfm f3 f2

Figure 1.1: A decision table with both selection and behaviors parts [25].

A decision table (Figure 1.1, as presented in [25]) is a tabular format for specifying a choice of
the actions that a system is to take. Overall, the decision table specifies a mission. The possible
courses of action that will be used to implement the mission under different circumstances are called

operational procedures (or opprocs, for short). A decision table is divided into two parts. The top
half specifies the conditions under which each operational procedure will be selected. This half of
the table is called the selection part. The selection part is composed of two things.

o The signature lists input variables whose values affect the selection of an operational procedure
and the possible values, or states, that those variables may take.

In Figure 1.1, the input variables are SI;, SI,, and SI3; the possible states of SI,, are s1, Sg,
and ss3.

* The body associates an engagement criterion with each operational procedure. Each engage-
ment criterion is a set of scenarios, and each scenario is a list associating a set of possible
values to each input variable.

In Figure 1.1, the engagement criterion of Operational Procedure 1 consists of Scenario 1
and Scenario 2. Operational Procedure 1 will be selected if either of those scenarios holds.
Scenario 1 holds if SI;, SI; have value s;. The “x” opposite SI3 means that it may have any
value (“don’t care”).

A scenario or an engagement criterion corresponds in a natural way to a logical formula
that is true of the inputs if and only if the scenario or engagement criterion holds. We will
frequently abuse terminology by speaking as if the scenario or engagement criterion and the
corresponding formula were the same thing.

The bottom half of the decision table is the behaviors part. It specifies just what course of action,
or behavior, is associated with each operational procedure. A behavior is an assignment of values to
a number of behavior outputs. The values of behavior outputs are called functions (as in the word
“functionality,” rather than the phrase “mathematical function”). A function might be to assign
a particular value to some quantity or to assign an algorithm for computing a given quantity from
sensor inputs during the period that the operational procedure is in force. Some of the functions
might be defined by reference to other decision tables.

Note that while several scenarios can be associated with an operational procedure, an operational
procedure has only one behavior.

In all of this report except Chapter 3, we consider only the selections part of a decision table.
The main reason is that the selections part is where the logical content of a decision table lies;
therefore logical methods of analysis can be most easily and directly applied to the selections
part. Nevertheless, decision tables with behaviors appear to have important connections with state
machine based specification methods, such as statecharts [7, 17].

1.2 Summary of Table Forms

In Chapters 2 and 3 of this report we define a rather large number of tabular forms. We present a
summary of them here. In Chapter 4 we describe in addition a2 number of forms defined by Parnas
[22], but we do not describe them here, since they are relevant only to that chapter.

Selection table. The selection half of a decision table.

(Recursively) partitioned decision table. A decision table whose input variables have been grouped
into records like those of Pascal or Ada.

Decision tables with preconditions. Decision tables in which certain opprocs (Always, Never, Pre-
cond, Illegal) indicate conditions which are or are not expected to hold of the input variables of a
decision table.

Assertion table. A variant of a selection table that describes conditions under which various opprocs
must or must not be selected.

Assertion result table. A table showing ways in which a decision table violates assertions made in
an assertion table.

Type declaration table. A table defining names as abbreviations for complex types (essentially a
table of type definitions).

Variable declaration table. A tabular representation of variable declarations.

Function table (functional decision table). A decision table with a single behavior output, called
output, equipped with a list of formal parameter declarations that indicate how the table should
be translated into a function subprogram.

1.3 Logical Notation

In mathematical contexts we use the usual logical notations for Boolean operations. For the con-
venience of the non-mathematical reader, we summarize them here.

Symbol Meaning

AANB A and B (conjunction, meet)
AV B A or B (disjunction, join)

-A not A (negation, complement)
A= B if A then B (implication)

A< B Aif and only if B (equivalence)

10

Chapter 2

Three Extensions of Decision Table
Syntax and Semantics

This chapter gives the syntax and semantics for three extensions of decision tables: partitioned
decision tables, decision tables with preconditions or illegal scenarios, and assertion tables.

Partitioned decision tables are decision tables in which input variables may be (recursively) grouped
into records. This grouping has numerous advantages.

e Grouping input related variables helps organize a decision table and makes it more under-
standable.

¢ A partitioned decision table is typically less cluttered and can be far more compact than a
“flat,” simple decision table.

o Partitioned decision tables correspond closely to a well-structured “formal” English language
specification that uses logical constructs in an orderly fashion.

As presented here, partitioned decision tables are more general than previously described [12, 13,
11]. In those presentations an entire table was partitioned to a fixed depth. Here, variables are
individually structured into a structure of subvariables which is essentially the same as the concept
of a record type in programming languages.

Use of preconditions allows one to indicate scenarios that are always or never expected to occur,
clarifying the meaning of a table and making it possible for analysis to avoid reporting flaws in a
table that can never be exercised.

The purpose of assertion tables is twofold.

o First they allow one to make assertions about what a decision table specifies. One can then
check whether the table says what one thinks it says by testing whether it satisfies these
assertions.

11

e Second, one can design a table by using assertions to describe what the table should say. One
can then generate the table from the assertions, successively adding, removing, strengthing
or weakening assertions until a consistent and complete table is obtained.

Assertion tables present an important opportunity to apply the method of refinement [29, 6] to the
development of decision table-based specifications.

2.1 Recursively Partitioned Decision Tables

Ordinary “flat” decision tables have input variables that take values in an unstructured finite set.
Their type is what programming language definitions call an enumerated type or an enumeration
type. A standard way of structuring types is by forming record types. An variable of a record
type is essentially a collection of variables (fields) of simpler types. A value of the record variable
consists of an assignment of values to its fields. We can define record types based on enumeration
types as follows. We assume that a class Value of atomic values and a class Vble of variable names
are given.

TYPE ::= ENUM_TYPE | RECORD_TYPE
ENUM_TYPE ::= (w1,...,wn), w; € Value distinct
RECORD_TYPE == (v1 : T1,...,vn : Tp), v; € Vble distinct, T; € TYPE,:=1,...,n.

A record type is also called a signature, because it is a sequence of variables with their types.

Observe that a record type as shown above is like the signature of a decision table, whose variables

are vy,...,v, with types Ty,...,T,. If T1,...,T, were all simple types, it is clear in the context
of decision tables what an assertion about a value of that type should be: an engagement criterion
with entries suitable to 7Ty,...,T,. Formally, abstract entries, scenarios, and engagement criteria

are defined as follows.

e An entry for a simple type T = (wy,...,w,) is a set s C {wy,...,wp}.

o A scenario for a sequence of types (T1,...,7Tn) is a sequence (ey,...,en,) where for : =
1,...,m, ¢; is an entry for 7.

® An engagement criterion for (Ty,...,Ty) is a set of scenarios for (T1,...,Tn).

o An entry for a record type (vy : T1,...,vm : Trn) is an engagement criterion for (Ty,...,Txy).

The semantics of a recursively structured decision table is exactly what one would expect given the
standard idea that a scenario represents the conjunction of its entries and an engagement criterion
represents the disjunction of its scenarios.

12

Formally, the logical formula corresponding to an entry for a variable v of type T or a scenario or
engagement criterion corresponding to a signature is defined as follows.

e If v is a variable, T' = (wy,...,w,) and s C {wy,.. ., Wn} then the formula of s for v and T is
VES

or equivalently
v=w, V...Vv=w,,

where s = {w;,,...,w;_ }.
o If o =(v1:T1,...,v, : Ty) is a signature and s = (ey,...,e,) is a scenario for (71,...,T,),
then the formula of s for o is
P1 A APy
where, for : = 1,...,n, ¢; is the formula of e; for v; and ¢;.
o If E = {s1,...,5,) is an engagement criterion for the signature o, then the formula of E for
o is
¢1 V e V ¢m
where, for j = 1,...,m, ¢; is the formula of s; for 0.

e If ¢ is a formula and v is a variable, then ¢V is the formula obtained by replacing each variable
name v’ occurring in ¢ by v.2'.

e If v is a variable of a record type T = (v : T1,...,v, : T,) and e is an entry for T, namely
an engagement criterion for (vy : Th,..., v, : Ty), the formula of e for v and T is
¢’U

where ¢ is the formula of e for T (considered as a signature).

In practise, we will avoid prefixing the name of a record-valued variable to the names of its fields
by choosing distinct field names for fields of distinct variables.

As usual, a decision table (abstractly) consists of a signature o and a body B. The body B is
a function associating each of a set of operational procedures with an engagement criterion for
o. The table specifies that an operational procedure opp be selected whenever the formula of its
engagement criterion for ¢ holds.

13

Operational Procedure Il Takeoff 1l Climb [ClimbInt Level]| Cruise |
Input Variables States |! I 1l I |
flightphase :_lur?sl; climb climb climb cruise
Altitude AC_Alt > 400 FTE.J%% TRUE * * >
compare(AC_Alt, LT EQ - -
Status Acc_Alt) GT LT EQ GT
Altitude Alt_Capt Hold TotE | FALsE | TRUE || FALSE | TRUE TRUE TRUE
compare(Alt_Target, LT EQ - - - -
Target Status prev_Alt_Target) GT GT GT

Figure 2.1: A recursively partitioned decision table.

[Operational Procedure 1 Takeoff i Climb [Climb_Int_Level || Cruise |
Input Variables States
Flightphase Chl?lb climb | climb climb climb climb cruise
cruise
TRUE * * * *
AC_Alt > 400 FALSE TRUE | TRUE
compare(AC_Alt, LT EQ N
Acc_Alt) GT LT LT EQ GT | EQ GT GT
Alt_Capt_Hold TRUS || FALSE | TRUE || FALSE | TRUE TRUE TRUE
compare(Alt_Target, LT EQ * * *
prev_Alt_Target) GT GT GT EQ

Figure 2.2: A simple decision table.

2.1.1 An Example

Figure 2.1, adapted from [24], gives an example of a recursively partitioned decision table equivalent
to the simple decision table in Figure 2.2.

In Figure 2.1, one of the top-level input variables, flightphase, is simple and the other two, Altitude
Status and Altitude Target Status, are record variables with simple components. The grouping
of AC_Alt> 400 and compare(AC_Alt,Acc_Alt) into Altitude Status clarifies their meaning, but
has not been used otherwise since their entries are essentially the same as if they had been simple
variables. The entries for Altitude Target Status under Takeoff and Climb have been grouped into
a mini-engagement criterion. Doing so avoids duplicating the entries for flightphase and Altitude
Status, simplifying and further clarifying the structure of the table.

14

According to Figure 2.1, the engagement criterion of Takeoff is equivalent to the formula

flightphase = climb A AC_Alt > 400 A AC_Alt < Acc_Alt A
(—Alt_Capt_Hold v (Alt_Capt_Hold A Alt_Target > prev_Alt_Target)).

Engagement criteria in partitioned decision tables correspond closely to a well-structured English-
language specification. For example, the engagement criterion of Takeoff can be written as follows.

Operational procedure Takeoff will be engaged if all of the following conditions hold.

The flightphase is climb.
The aircraft altitude is above 400 feet.
The aircraft altitude is less than the acceleration altitude.

=W o

Either of the following conditions hold.

(a) Altitude capture hold is false.
(b) Both of the following conditions hold.
1. Altitude capture hold is true.
ii. Altitude target is above the previous altitude target.

As Figure 2.3 shows, tables in which several groups of variables can be grouped into records can
offer a great saving in space over equivalent simple decision tables. (Note that in this table we have
not bothered including names for the records, which are not essential if all field names are distinct.)

2.1.2 Decision Diagram Representations and Algorithms for Partitioned Deci-
sion Tables

Partitioned decision tables can be manipulated using decision diagram algorithms similar to those
for simple decision tables that we described in [13, 12]. The decision diagrams associated with
partitioned decision tables are, however, enriched by giving a record structure to the decision
variables, as partitioned decision tables do.

Given the enriched decision diagram algorithms, consistency and completeness analysis are essen-
tially the same for partitioned decision tables as for simple ones. The notion of structural analysis
had, however, to be generalized in order to be applicable to partitioned decision tables.

The enriched decision diagram algorithms can potentially support similar analysis and manipulation
of Parnas tables [22], described below in Chapter 4.

2.2 Decision Tables with Preconditions or Illegal Configurations

It seems that, for some decision tables, certain configurations of “illegal” or “impossible” values are
expected never to occur. Looked at from another point of view, the table is expected to be used
only when some precondition holds which excludes the illegal configurations.

15

[Operational Procedure “ OP]
[Input Variables TStates ” |

A TF | T F
B TF | T *
a TF |T|F | F
B TF *1 T ¥
v TF ¥ x| F
L Operational Procedure L opP ﬂ
l Input Variables] States ” |
A TF |\|T|T|T|F|F|F
B TF | T|T|T|*|*]|*
a TF |T|F|F|T|F|F
8 TF *TT1*| *| T]| *
~ TF * | x| F| *| *| F

Figure 2.3: Another partitioned decision table and an equivalent simple decision table.

A natural way to require or exclude certain conditions is by adding dummy operational procedures
Precond, Illegal, Always and Never. Their intended meaning is as follows.

o The engagement criterion of Never denotes conditions which are guaranteed never to hold
when the table is invoked, and which may be completely ignored in analyzing the table. For
example, an overlap between two engagement criteria that is contained in the engagement
criterion of Never will not be reported in an inconsistency analysis. In generating code, no
action need be taken on inputs satisfying the engagement criterion of Never, because there
will never be any.

The two tables in Figure 2.4 are equivalent. They define the three-valued comparison compare.
In this case, Never annotates a mathematical dependency between input variables: it is not
possible for z < y and z > y to both to be true.

o Always is similar to Never but states restrictions in a positive form, i.e., conditions that will
always hold. Scenarios lying outside the Always condition are entirely ignored.

e Precond and Illegal are respectively like Always and Never but are less strict. Their en-
gagement criteria represent conditions that are ezpected always/never to hold when the table
is invoked. Just in case, however, overlaps of engagement criteria that fall outside Precond
or inside Illegal will be reported by consistency analysis, and in generated code, scenarios
outside Precond or inside Illegal will raise an exception.

16

One can imagine further ways to treat preconditions, but there must be an end of such things. The
four kinds of precondition annotations can, of course, be used in combination. They are provided in
positive/negative pairs simply because sometimes it is simpler to express the negation of a condition
as an engagement criterion, and sometimes it is easier to express the condition itself.

In general, excessive use of Precond and Illegal, or Always and Never, except when they annotate
mathematical relations among input variables, make decision tables less reusable. If a table is
correct only if used in a context that guarantees certain preconditions, then it cannot be used
without modification in another context that does not guarantee the same preconditions.

In general extending our algorithms to tables with precondition annotations is trivial. Sometimes,
however, one might want to express an engagement criterion in the simplest possible way given
that it does not matter whether impossible scenarios are included or excluded. What is a good
algorithm for performing such a simplification?

[Operational Procedure ” LT “ EQ || GT |” Never]

| Input Variables | States || [i | Il]
z <y TF | T F | E T
y<z TF F F T T

| Operational Procedure [LT EQ] GT Never |

| Input Variables | States || I | il |
z<y TF T | F * T
y<z TF * F T T

Figure 2.4: Two equivalent decision tables with precondition annotations.

2.3 Assertion Tables

Assertion tables permit one to specify more general relations between operational procedures and
logical conditions than are possible in decision tables. In an assertion table, sets of operational
procedures may be associated with several engagement criteria, and in several ways: in an if, in
an only if, or in an iff (if and only if) relation.

o An if relation means that some opproc in the set must be selected if the engagement criterion
holds, but may also be selected under other conditions.

¢ An only if relation means that an opproc in the set may be selected only if the engagement
criterion holds, but does not have to be selected just because the engagement criterion holds.

17

e An iff relation is the combination of if and only if —the engagement criterion states the exact
conditions under which some opproc in the set will be selected.

These different relations can be used to make assertions about what a decision table is meant to
be like. These assertions can be used either to check whether a decision table satisfies them or to
construct the least specific decision table that does satisfy them.

Figure 2.5 gives an example of an assertion table. It says the following things.

o If the flightphase is climb then one of the opprocs Takeoff, Climb, or Climb Int Level will be
selected. One of these opprocs will be selected only if the flightphase is climb.

o Takeoff may be selected only if AC_Alt < Acc_Alt.
e Climb may be selected only if AC_Alt > Acc_Alt.

e Climb Int Level will be selected if and only if flightphase is climb, Alt_Capt_Hold is true, and
Alt_Target > prev_Alt_Target.

o If the flightphase is cruise then the operational procedure Cruise must be chosen.

1 2 3 4 5

Assertions Takeoft, Climb, | .7} g | Climb || Climb Int Level || Cruise
Climb Int Level

Input Variables | States iff only if || only if iff if

flightphase clm:zb climb * * climb cruise
cruise

AC_Alt < Acc Alt TF * T F * *

Alt_Capt_Hold TF * ¥ * T *

Alt_Target > prev_Alt_Target TF * * * F *

Figure 2.5: An assertion table.

2.3.1 Checking a Table Against Assertions

Checking a selection table against an assertion table produces a result table listing violations of
the assertions.

The selection table in Figure 2.6 is a sort of botched condensation of the table in Figure 2.1.
Testing the table in Figure 2.6 against the assertion table in Figure 2.5 produces the result table
in Figure 2.7. The result table indicates the following things.

e The first column says that Assertion 1 is violated because the indicated scenario is not assigned
an operational procedure by the selection table.

18

Operational Procedure Takeoff | Climb || Climb Int Level || Cruise
Input Variables [States
flightphase clm.ab climb || climb climb cruise
cruise
AC_Alt < Acc_Alt TF T T * *
Alt_Capt_Hold TF F| T|F|T T T
Alt_Target > prev_Alt_Target TF *I'T | *| T * *

Figure 2.6: A table to test against assertions.

e No violation of the second assertion is listed, indicating that it is satisfied.
o The third assertion is violated by both scenarios under Climb in the selection table.

® The fourth assertion is violated because the engagement criterion of Climb Int Level fails to
exclude the case Alt_Target > prev_Alt_Target.

The fifth assertion is violated because the engagement criterion of Cruise restricts Alt_Capt_Hold.

Of course, most of these errors are silly and have been contrived to illustrate all the different kinds
of possible errors.

Assertion Results Asserfxon.l Assertion.3 Assertion.3 Assertion.4 Asser.tion.S
(unassigned) Climb.1 Climb.2 Climb Int Level.1 Cruise.1
input Variables | States
flightphase climb climb climb climb climb cruise
cruise
AC_Alt < Acc Alt TF ¥ T T = *
Alt_Capt_Hold T F F F T T F
Alt_Target > prev_Alt_Target TF * * T T *

Figure 2.7: Results of assertion check.

2.3.2 Generating Selection Tables from Assertions

A natural way to develop a selection table is to write down principles it is supposed to embody
as assertions, then build a table that satisfies those assertions. In fact, the selections table can be
generated automatically from assertions. Figure 2.8 shows the table generated from the assertion
table in Figure 2.5. This generated table is in fact complete and correct.

In general, however, a set of assertions will not fully specify a complete and correct decision table.
Typically, we would expect a designer to proceed incrementally, as follows.

1. Write down an assertion.

19

Operational Procedure Takeoff | Climb || Climb Int Level || Cruise
Input Variables I States
flightphase cimb 4y | climb climb cruise
cruise
AC_Alt < Acc Alt TF T F * *
Alt_Capt_Hold TF F| T |F|T T *
Alt_Target > prev_Alt_Target TF *I'T || *{ T F *

Figure 2.8: A table generated from assertions.

2. Generate and examine the induced selection table.
3. Add or modify assertions accordingly, or else correct the table by hand.

4. Go back to step 2.

To illustrate this process, consider the weaker set of assertions in Figure 2.9. Those assertions
generate the decision table in the same Figure. In that decision table Takeoff and Climb have not
been disambiguated and no restrictions have been placed in the opproc for the scenario in which
flightphase is cruise and Alt_Capt_Hold is false. These deficiencies might be corrected by revising
the assertion table to be the same as that in Figure 2.5.

2.3.3 Semantics of Decision Tables and Assertion Tables

In this section we will define and justify our algorithm for generating decision tables from assertion
tables. Justifying the algorithm means defining the semantics of assertion tables and decision tables
and showing that the semantics of an assertion table and the semantics of the decision table are
equivalent.

Consequently, we will go into some detail about the semantics of decision tables and assertion
tables, providing enough detail to prove that our algorithm preserves semantics. Thinking about
decision tables in relation to assertion tables has also caused us to revise our earlier definition of
decision table semantics [12]. The changes only affect tables that are incomplete or incorrect and
therefore are irrelevant to the finished product of decision table development. We made the changes
for the following reasons:

e to help design a sensible algorithm for generating a decision table from assertions;

e to make reducing inconsistency and incompleteness in a decision table correspond to refining
it (strengthening the formula it denotes);

e to make refinement of an assertion table (i.e. adding assertions) correspond to refinement of
the decision table it generates.

20

. Takeoff, Climb, . .
Assertions Climb Int Level Climb Int Level || Cruise
Input Variables | States iff iff if
flightphase dm.lb climb climb cruise
cruise
AC_Alt < Acc Alt TF * * *
Alt_Capt_Hold TF * T T
Alt_Target > prev_Alt_Target TF * F *
Operational Procedure TaleOﬁ Climb Int Level | Cruise *
Climb
Input Variables | States
flightphase clm.qb climb climb cruise || cruise
cruise
AC_Alt < Acc Alt TF *# * * *
Alt_Capt_Hold TF F T T T F
Alt_Target > prev_Alt_Target TF * T F * *

Figure 2.9: A weaker assertion table and the decision table it generates.

Semantics of Assertion Tables

There is only one thing about the semantics of assertion tables that is not clearly annotated in
the table: exactly which opprocs may be selected? We adopt the convention that only the opprocs
listed in an assertion table are possible outputs. One can always make sure all intended opprocs
are there by adding an assertion

(list of all selectable opprocs) = true.

Abstractly, an assertion table is a set of triples
(engagement criterion, logical connective, set of opprocs);

The engagement criterion is a logical formula in terms of input variables and their possible values.
The logical connective is one of =, <=, or <. The meaning [A] of an assertion

A= (EC,=,{op,,...,0p,})
is

EC = (OP =o0p, V...V OP = op,),

21

where OP denotes the opproc to be selected. The meaning [A] of an assertion table
A={A,..., A}

is
[A1]A...A[AJA(OP =o0py V...V OP = op,,)

where {op;,-..,0p,,} is the set of selectable opprocs.

Semantics of Decision Tables

Abstractly, a generalized decision table of the sort generated from assertions is a set of clauses,
which are pairs of the form

(engagement criterion, set of opprocs),

where the engagement criterion is, as it always is abstractly, a logical formula in terms of the table’s
input variables and their possible values. In a “normal” decision table, the set of opprocs must
always contain exactly one element, but in tables generated from assertions, the sets of opprocs
may have more than one element or be empty. The difference from the elements of an assertion
table is that the logical connective has been left out as understood. But what connective should be
understood? The candidates are: A, =, < and <. Furthermore, should the interpretations of the
clement clauses of a decision table be conjoined, as for assertion tables, to form the interpretation of
the whole table, or should they be joined together some other way? Two reasonable interpretations
of a decision table present themselves. Let

D = {(ECy, 1), - .,(ECm,Sn)}

be a decision table (set of clauses).

o [D]: = ([EC1] A OP € 51) V...V ([ECr] A OP € spn).
° IID]]Q = (IIECI]I = 0P € 81) A /\(I[ECmII = QP € Sm).

Let us consider the properties of these two interpretations.

1. If ECy,...,EC,, are exhaustive and mutually exclusive, then [D}; and [D]; are equivalent.

2. If EC; and EC; overlap but s; and s; do not, then [D]; is ambiguous (allows OP to be either
a member of s; or a member of s;), but [D]. is inconsistent.

3. [D]1 says that the input variables must always satisfy EC1 V...V ECy,. [D]- leaves the choice
of opproc completely unspecified if EC1 V...V EC, does not hold.

22

4. In [D]y, a clause (EC, {}) is vacuous—adding or deleting it does not change the interpretation.
In [D]2, (EC,{}) means that the input variables are forbidden to satisfy EC.

5. [D]y becomes stronger (is refined) if each [EC:] is made stronger (smaller) and each s; is
made stronger (smaller). [D], becomes stronger if each [EC:] is made weaker (larger) and
each s; is made stronger (smaller).

Elsewhere [13] we have given [D]; as our interpretation of decision tables.

On overlap, we are inclined to believe that [D]; is the best interpretation: if engagement criteria
overlap, that probably means we have failed to decide exactly which opproc to choose in some cases.
Incompleteness, on the other hand, probably means that we have forgotten about some cases and
have therefore failed to specify them. That corresponds to [D].. We therefore adopt the following
modification of [D]; as our official interpretation of decision tables.

[[D]]:(ECl/\OPEsl)v...v(ECm/\OPesm)v(ﬁEcl/\,,./\ﬁEcm)_

That is, on inputs satisfying some EC;, i = 1,..., m, OP must be selected compatibly with one of
the clauses of the table. Otherwise the opproc selection is unspecified.

This interpretation preserves both overlap as ambiguity and incompleteness as failure to specify
some cases. In [D], a clause (EC, {}) also becomes a contradiction if EC is not contained in the
union of the other engagement criteria. It is also the case that [D] is equivalent to [D]1 as long as
D the engagement criteria of different opprocs in D are mutually exclusive.

Generating Decision Tables from Assertions

The interpretation of a decision table is a formula and so is the interpretation of a set of assertions.
If a decision table is generated from a set of assertions, then those formulas should be equivalent.
We achieve this by the following translation algorithm, each step of which preserves equivalence of
interpretations. Tablewise uses a more efficient decision diagram algorithm to produce the same
result.

1. Replace each assertion of the form (EC, &, s) by two assertions (EC, =,s) and (EC, <, s).

2. Replace each assertion of the form (EC,<,s) by (nEC,=,s°), where s¢ is the set of all
opprocs which do not belong to s but are mentioned in the table.

3. Replace each pair of assertions (EC, =, s), (EC’, =, s') by the three assertions

(ECA=EC',=,s),
(ECAEC ,=,sns),
(EC' A =EC, =,s'),

discarding any of these for which the first component is equivalent to false. Repeat until for
every such pair of assertions, EC A EC’ is false.

23

4. For each set s of opprocs, if
(EC1,=,8),-..,(ECn,=,3)
are all the assertions with third component s, replace them by

(EC1V ...V ECy,,=,5).
5. Form a decision table D by eliminating the middle component of each assertion.

The final set of assertions .A; has the property that for any two distinct assertions (EC, =, s) and
(EC',=,s') in it, s # s’ and EC A EC’ is equivalent to false. We have

[4s]1= [P} = [P],

the equality by definition and the equivalence by our remark above that [D] and [D]; are equivalent
when the engagement criteria of different opprocs D are mutually exclusive, as is the case here.

Preconditions and Forbidden Scenarios

We require that assertions related to preconditions (Always, Never, Precond, Illegal) take one of
the following forms.
(EC, <, positive restriction)

and
(EC', =, negative restriction)

That is, such an assertion must state either that a condition EC must hold or that a condition EC’
must not hold.

In generating a decision table from assertions, we replace an assertion about a positive restriction,
such as, (EC, <=, Precond), by a negative form, in this case (~EC,=, not-Precond). It is necessary
to do so because the semantics of positive preconditions is dual to that of negative preconditions
and ordinary opprocs, but in generating tables we need to treat all opprocs and preconditions the
same.

2.3.4 Refinement of Assertion Tables and Decision Tables

We mentioned above that we have modified our definition of decision tables and have set up our
relation between decision tables and assertion tables in order to be compatible with a notion of
refinement. Here, we will outline what refinement is, why it is important, and how refinement
applies to decision tables.

A specification of a simple computer program or subprogram has the form (P, R), where P, the
precondition predicate, is a logical formula in terms of the inputs to the program, and R, the input-
output relation, is a logical formula in terms of both the inputs and the outputs. For example, Z

24

schemas [27] are always of this form—the part above the line is P and the part below the line is
R. P defines the competency of the subprogram, that is, the conditions under which it is valid to
invoke it. R specifies, though perhaps only partially, what effect the subprogram will have when
it is invoked. Together, P and R amount to much the same thing as the single formula P = R,
which can be considered as an input/output relation. Sometimes, however, R may not make sense
or may be ill-defined when P fails, so it is best to indicate P separately.

An important operation on specifications is that of refinement. One refines a specification by
making it logically more precise. We say that a specification (P, R') refines (P, R) if

P'AR = R.
That is, within its competence, R’ is consistent with and at least as specific as R.

Refinement is an accepted formal method for developing specifications. One starts with a rather
loose (weak) specification and proceeds to refine (strengthen) it until it is strong enough to translate
easily into code.

What is refinement for decision tables? First, what is the specification associated with a decision
table? There are two definitions: strict, counting only Always and Never as real restrictions and
treating Precond, or rather not-Precond, and lllegal as ordinary opprocs; and liberal, treating
Precond and Illegal as restrictions.

Let D be a decision table
D= { (Opl9 ECl)a ey (Opn’ Ecn)a

(Always, EC gjyays),
(Never, ECNever)7
(Precond, ECprecond)s

(Illegal, ECpjjegay) },

where op,,...,op, are distinct and not among Always, Never, Precond, and Illegal.

e The strict specification consists of
P= ECA]ways A =ECNever
and

R = EC1AOP = op,V...VEC,AOP = op, V not-Precond A —EC precond V lllegal A ECIHegaI-

e The liberal specification consists of
P = ECAIways A ~EC Neyer A ECprecond N "‘ECIIIegaI

and
R=ECiANOP=0p,V...VEC, A OP = op,,.

In either sense, adding assertions refines the specification (either kind) of the generated decision
table.

25

Chapter 3

Tables with Behaviors

Elsewhere in this report we deal with decision tables that only choose a course of action, called an
operational procedure, that shall be active under a given set of conditions, called its engagement
criterion. But an operational procedure does cause something to happen; that something is called
a behavior. A behavior consists of outputs, whose values are called functions, as in the phrase
“what is the function of this object,” rather than the phrase “mathematical function.”

Once one begins to treat behaviors in decision tables, it becomes natural to use decision tables to
define the different possible behaviors. One would want, then, to define a framework supporting
systems of decision tables that refer to each other. This chapter is our preliminary essay in this
direction. The ideas worked out here closely resemble Parnas’s A-7 requirements model 10, 28].
The idea of regarding a decision table as an object, described below, suggests ways of going beyond
what we do here and possibly making connections to explicitly state machine-based specification
methods such as Harel’s statecharts [7] or Leveson’s RSML [17].

A classical way to view a decision table is as a means of denoting a subprogram in some programming
language. In that case, a behavior consists of simply a value to be returned as a result (if a function
subprogram) or an assignment of values to out variables or globals (if a procedure subprogram).

A more modern way to look at a decision tables with behaviors is as an object or state machine
whose main internal state variable is the operational procedure. The function of the object may
be to provide methods for computing certain values. How those values are computed depends on
the current value of the operational procedure. From time to time the operational procedure itself
would be determined as indicated by the decision table, either periodically or as triggered by some
sort of event.

For example, suppose we have a system whose operational procedure is determined once per second,
but whose function is to compute some control values fifty times each second.

It might be that under operational procedure O, the control value z will be computed as y?, where
y is the current value of some sensor, while under operational procedure O’ the value z displayed is
computed as (w + z)/2, where w and z are the values of two other sensors. What the operational

26

procedure determines is not the value of z, but the formula to be used to compute z fifty times
during the second in which that operational procedure is in force.

These two points of view are not entirely at odds—they can be reconciled by imagining a subprogram
that returns a mathematical function for computing the value of z, as can easily be, indeed, is best
done in an “impure” functional programming language like ML. We remark also that an ob ject-
oriented programming language is not actually required to treat a decision table as representing an
object.

Our point of view in this chapter will be the more old fashioned idea that a decision table is meant
to specify a subprogram in a programming language. One reason for this choice is that we came
to understand the idea of a decision table as an object after most of this work had been done, and
have not had time to rethink it. The other reason is that the subprogram point of view is adequate
to represent the idea of a function embodied by methods if mathematical functions can be returned
as values.

For concreteness, we will imagine the programming language to be Ada.

Considering behaviors and regarding decision tables as subprograms requires that we face a number
of problems.

e How are behaviors to be represented?

e Will it be one subprogram or more? In Ada or C++ we would implement the object oriented
point of view by having one subprogram to select the operational procedure and one for each
behavior output.

o How will the signature of the subprogram(s) be represented?

e The signature of a selection table acts as a set of declarations of its input variables or pa-
rameters. But those “variables” need not be or correspond to variables of a programming
language—they can be more general expressions. The programming language variables in
them need to be declared somewhere.

e Complex systems are normally assemblages of subprograms, organized according to some
module structure. Presumably we would want the same for complex systems specified by
families of decision tables.

We will spend the rest of this chapter addressing these problems.

If we were to carry the idea of systems of decision tables with behaviors to its logical conclusion, we
would build a small design specification or programming language (or both) that included decision
tables. In terms of Ada, a logical thing to do would be to embed decision tables into Ada as a way
of defining subprograms. Such ideas are considered by Metzner [19]. We have not pursued things
so far, however, partly because of the work it would involve, and partly because, from the point
of view of design, we would first like to explore (elsewhere) the relationship of decision tables to
statecharts, RSML, and object oriented methodology. Accordingly, we will keep the programming

27

language aspects of things as simple as possible. Nevertheless, thinking in terms of Ada gives a
concreteness that helps point out some potential problems, so we will do so.

Since we originally did this work, we have had second thoughts about whether it is a good idea to
try to connect decision tables closely to an existing programming language. Not to do so, however,
would require making decision tables into their own language—perhaps no improvement—and
would require code generation to be more sophisticated. Of course, this is by no means impossible,
but would require much more thought and work.

This work is based on simple decision tables in which variables have simple types, and has not been
upgraded to support partitioned decision tables and record types.

3.1 Table Definitions and Their Environments
A system of decision tables will be a list of the following kinds of things in any order:

e type declarations;
e variable declarations;

e decision tables (including selection, behavior, and subprogram signature).

We will define each of these in turn in the following sections. They may occur in any order, subject
types and variables being declared before use. In order to permit recursion, we do not require
tables to be defined before use.

3.2 Type declarations

A type declaration is essentially an Ada enumeration type declaration. It is of the form:
id : (idy,...,idy)

where id, idy, .. .,id, are Ada identifiers, idy, ..., d, distinct; id is the type name, idy, ..., id, the
name of its elements. The type name id may not be integer or boolean (which are considered
predefined) or any type name that has occurred earlier in the list of type declarations.

We have excluded real as a type, assuming that floating-point types will not be used because of
the difference between machine arithmetic and mathematical arithmetic of real numbers.

Type declarations will be grouped in tabular form as in Figure 3.1. Descriptive phrases for the
type and its elements could be added for use in generating documentation. Each type must have
at least one element listed.

28

Type Name Elements Type phrase element phrases
Flightphase | climb, cruise | flightphase type climb, cruise
Comparison | LT, EQ, GT comparison less than, equal, greater than

Figure 3.1: A type declaration table.

A type declaration table induces a set Type of types, consisting of all types mentioned in the list,
a set Value of values, consisting of all values listed, and a mapping valset : Type — P (Value),
where for 7 € Type, valset(7) is the set of values listed beside 7 in the type declaration table.

The set Value is not necessarily the value set of any decision table, but any decision table defined
in an environment with value set Value may use only values in Value.

3.3 Variable Declarations

A variable declaration is a pair
ud : type_name

where id is the variable name, an identifier that has not occurred earlier as a variable name or as
the name of an element of any type (including TRUE, FALSE), and type_name is the name of one of
the types previously declared (or predefined). Like type declarations, variable declarations can be
grouped together and represented in tabular form along with descriptive phrases, as in Figure 3.2.

| Variable Name | Type [l Description |
flightphase Flightphase flightphase
ac_alt integer aircraft altitude
acc_alt integer acceleration altitude
alt_capt_hold boolean altitude target being captured or maintained
alt_target integer altitude target
prev_alt_target integer previous altitude target

Figure 3.2: A variable declaration table.

As for types, the variable declaration table defines a set Variable of variables, consisting of all the
variables declared, a function type : Variable — Type, mapping each variable, to the type listed
beside it, and a function valset : Variable — P, (Value) given by valset(v) = valset(type(v)).

Note that Variable is not the same as the set Vble of “input variables” of a decision table. The
“input variables” are actually expressions, defined below.

29

3.4 Expressions

Since expressions other than variables may appear in decision tables either as “input variables” or
as values to be assigned to output variables, we need to define expressions before going on to define
decision tables for a given environment (class of type and variable declarations).

We could use any reasonable notion of expression. For concreteness, we give a simple definition
adequate for the examples we have encountered.

e An integer expression is either:

— an integer variable or constant;
— abs(E),(—-FE), E1+ E2, Ey — E, or E, x E,, where E, Ey, E; are integer expressions.

e A Boolean expression is either:

— a Boolean variable or constant;

- E, < Ey, Ey < Ey, Ey = Ey, Ey > Ey, 01 Ey > E,, where E; and E, are integer
expressions;

~ not B, BandC, or BorC, where B and C are Boolean expressions.

e An expression of any other type is a variable or constant of that type.
For any type, function tables of that type, which we will define below, are also expressions.
Our definition gives each expression e a type type(e). We can also define valset(e) = valset(type(e)).
3.5 States and Assignments

Given a set of variables V and an assignment valset : V — S of a nonempty value set to each
variable, a state for valset is a mapping o0 : V — § such that for each v € V, o(v) € valset(V).

3.6 Decision Tables with Behaviors

The environment of a decision table declaration consists of the type and variable declarations earlier
in the system as well as all decision tables.

A decision table with behaviors consists of the following items.

e A name, not already used in the environment.

e A set OP of operational procedures.

30

e A selections signature whose simple variables are all expressions of a type whose elements are
the same as the set of values assigned by the signature. (In fact, the set of values is already
determined by the type of the expression as determined by the environment.)

¢ A selections body, that is, a mapping eng_crit from OP to finite sets of scenarios.
® A set of variables O declared in the environment (the output variables).

* An assignment e for O (a map e defined on O such that for each v € O, e(v) is either an
expression of the type of v or else a decision table in the environment that has v as an output
variable. If e(v) is a decision table, that table e(v) is said to be a dependent table of the table
in whose behaviors it occurs.

The semantics of the table is a binary relation R on states, defined as follows.

A pair of states (0,0') € Ry if for each table 7’ that occurs as an output expression in T there is
a state o7+ such that (o,07/) € Rz such that

e there is some opproc op € OP such that eng_crit(op) is true when variables are given the
values assigned to them by o; and
e for any variable v in the environment,

d(v) = ofv), vg O
o(e(v)), e(v) an expression,
= or(v) e(v)=T".

Notes:

e (0,0') € Rr means that if o is the initial state, o’ is a possible output state. If T is complete
and consistent, then there is only one possible output state, and Ry can be regarded as a

function.

e We are assuming that each dependent table is invoked only once in an invocation of T, even
though it may occur more than once in 7. Furthermore, if a dependent table has output
variables that do not occur in T, then their values do not change in the state.

3.7 Checking

A decision table with behaviors is complete (consistent) if it and all its (recursively) dependent
tables are complete (consistent).

One would expect that in checking completeness and consistency of a dependent decision table,
the (disjunction of the) engagement criteria of the opprocs under which it occurs could be used as

31

a precondition. In the examples we have looked at however, the variables relevant to dependent
tables have been all or mostly different from those in the master table, so this kind of dependency
checking seems, so far, to be irrelevant. Rather, the situation suggests an organization into objects
so that the variables of different tables are (mostly) the state variables of different objects.

3.8 Function Tables

The use of dependent tables above was slightly odd. The master table corresponds to a procedure
subprogram: it changes the state. A dependent table, however, acts more like function subprograms:
it only changes the state of the output variable in whose row it occurs. The fact that “output
expressions” are not just expressions, but either expressions or tables, suggests that we should
augment expressions with tables corresponding to function subprograms, and eliminate the special
case in output expressions.

Use of function tables also makes it possible to define expressions that we could not define before.
For instance, the compare function, which appears in Figure 2.1, takes values of type Comparison,
an enumeration type, is defined as follows.

compare(z,y) = LT, z<y
= EQ, z=y
GT, z>vy

But according to our definition, the only expressions of an enumeration type are constants and
variables, so for distinct integer variables z and y, compare(z,y) cannot in general be defined.

A function table consists of the following items.

e A name.
¢ An output type.

e A variable declaration table, declaring the arguments of the table considered as a function
subprogram.

e A decision table with behaviors that has only one output variable, called output. The envi-
ronment of this table is the environment of the function table itself with the local variable
declarations added to the environment variable declarations (superceding the environment if
there are any name clashes).

For each opproc op, the expression assigned to output under op must be of the output type.
A function table named T with arguments z1,...,2, of types 71,...,7» can be invoked as an ex-

pression by writing T(Es, ..., En) where Eyq,. .., E, are expressions of types 71, .. ., Tn, Tespectively.

Figure 3.3 shows what a table defining the function compare would look like.

32

Function table “ compare 7
X integer
y integer
output Comparison
L H
Selection
Input Variables] States ” ” Illegal
X<y TRUE, FALSE | TRUE | FALSE | FALSE | TRUE
X=y TRUE, FALSE || FALSE | TRUE | FALSE || TRUE
Behavior
output] Comparison ” LT I EQ] GT ”

Figure 3.3: Function table for the function compare.

Notes.

o Given type and variable declarations, the listing of states (possible values) of input expressions
of a decision table is redundant, though helpful. Listing the possible functions (expressions)
that can be assigned to an output does not seem useful. Instead, we have listed the type,

which is helpful in filling in the table.

e “Ordinary” (not functional) decision tables would look like functional ones except that the
title would be something like “Procedure Table,” there would be no list of local declarations,
there would be headings giving operational procedure names, and there could be more than

one output.

o Note that in the compare table, we have used lllegal to indicate that it is impossible for both
z < y and z = y to be true. A potential enhancement would be to build in basic checking for

order and equality.

33

Chapter 4

A Guide to Parnas Tables

Originally Parnas’s A-7 specification method [10] relied on English-language specifications. Since
then it has come to be more oriented toward formal specifications expressed in the form of tables
[28]. In the report [22], Parnas describes a number of different kinds of tables for use in representing
specifications or logical formulas in general.

The purpose of this chapter is to summarize Parnas’s tables in a way easy for users of decision
tables to understand and to examine ideas in Parnas’s work that may be applicable to our work on
decision tables.

The part of Parnas’s report [22] that is most difficult to understand is the definitions of tables
of more than two dimensions, which cannot easily be illustrated by a diagram. Our approach
will be to avoid higher dimensions and abstract definitions, explaining by example. We suggest
that readers who are familiar with decision tables and are interested in thoroughly understanding
Parnas’s report should first read this chapter, then Parnas’s report concentrating on imagining
what generalizations of tables to higher dimensions would be like, then Parnas’s report another
time carefully reading the definitions.

The table definitions are not, of course, the whole of Parnas’s A-7 method. That method is similar
to the specification framework described in Chapter 3, but with any of Parnas’s tables used instead
of only decision tables with behaviors.

4.1 Taxonomy of Parnas Tables
In all, Parnas defines ten kinds of tables:

e normal function tables;
e inverted function tables;

e vector function tables;

34

e normal relation tables;

e inverted relation tables;

e vector relation tables;

e mixed vector tables;

o predicate expression tables;

e characteristic predicate tables;

e generalized decision tables.

Besides these, he defines a number of forms (conjunction grids, union grids, substitution grids, and
concatenation grids) designed to reduce clutter in favor of structure in the rows of tables. In this
chapter we will discuss only the tables listed, not the ancillary forms.

Since Parnas’s tables include several kinds of function tables, we will use the term “functional
decision table” to denote what were called “function tables” in Chapter 3.

4.2 Background: Data States and Black-Box Program Specifi-
cations

The purpose of Parnas tables (and decision tables, for that matter) is to specify programs. Let us
start, then, by reviewing the basic ideas of program specification.

By a data state of a program we mean a function o : Variable — Value that assigns a value of the
appropriate type to each variable of the program.

A black boz specification of a subprogram is composed of two parts:

* a precondition P(c), which is a state predicate (set of states) indicating on which input states
the subprogram can be expected to behave reasonably;

e an input-output relation R(o,0’) such that:

— for any data state o, if P(c) then there exists o' such that R(o,o”);

— whenever the subprogram is invoked in an initial state o that satisfies P(c), the program
will terminate and its final state o’ will satisfy R(o,o").

Often there is only one intended output to a program on a given input; in that case the relation R
can be replaced by a function F such that F(¢) = o/ whenever R(o, o).

Using an input/output relation instead of a function allows nondeterminism—a subprogram can be
permitted to produce a variety of different outputs. Sometimes one may really want such a program,

35

but more often this is a specification device to avoid specifying at an early stage exactly what
a subprogram should do (design nondeterminism—Heimdahl and Leveson [9] argue against this
practise). Usually, though, a deterministic specification (with a function F') is easier to understand
than a nondeterministic one (with a relation R).

Normally, ¢ and ¢’ will occur in R only in a form such as o(z), where z is a variable. The o
is mostly just clutter, so it is usual to let the variable itself stand for its value in a given state.
The problem here is that we are interested in values of variables in two states, before and after
execution of the subprogram. Most often this is done by writing z for the value of the variable z
before execution and z’ for the value after execution (this has the advantage that P does not have
to have any primes in it). Parnas, however, writes ‘z for the value of z before execution and z’ for
the value of z after execution. Parnas also calls R the characteristic predicate of the subprogram.

The classic specification of this kind is the Z schema [27], which consists of exactly the definition
of such a P (the part above the line) and R (the part below the line), together with the necessary
type and variable declarations.

Floating-point computations provide natural examples of nondeterministic specifications because
one normally specifies the result only up to roundoff error. Consider, for example, a subprogram
sqrt(z,y) such that, on input z > 0, on return z has not changed but y is the square root of z with
relative error at most some constant €. Its precondition P and input/output relation R would be

P(z) < z2>0,

R(xay?xlayl) — = z' A Iy' - \/I_L'—l < 6\/5.

4.3 The Tables

In the interest of understandability, we will mainly consider tables that can be represented in two
dimensions. Mostly we will consider the different kinds of Parnas function tables and how they
would correspond to functional decision tables.

4.3.1 Normal Function Tables

Consider Figure 4.1, which is Figure 1 in Parnas [22].

The table defines a function of f(z,y) using different formulas for the result depending on the
conditions on z and y listed along the side (for z) and across the top (for y) of the table. For
instance, if £ < 3 and y > 27 then

f@y)=y+y-(-3)

Since this kind of a table defines a function, it should correspond to functional decision table.
Figure 4.2 shows such a functional decision table.

Remarks:

36

L 9=27 T "y>21 | y<2zi |

=3 27 +/27 54 + /27 yv> +3
T<3) |21+ V-(=-3)]y+/—(z-3) ¥+ (z - 3)°
>3 21+vz -3 [2+y+vVz-3 |y +(3-2)

Figure 4.1: A normal function table.

[Function table | compare]
X real
y real
output real
L
Selection
Input Variables | States |
LT,
compare(z,3) EQ GT LT,GT LT LT EQ
compare(y,27) LTé,Ii:,Q’ LT EQ GT LT
Behavior
output | real | 2+ (z—3)? 27+ V3=¢ | y+vV3—=¢ | v +3
(continuation)
compare(z3) | 7% EQ EQ GT GT
compare(y,27) LT(’;;:Q’ EQ GT EQ GT
Behavior
output l real I 27+v27 | s4+v27 127+ ve-3[2+y+vz-3

Figure 4.2: A functional decision table corresponding to Figure 4.1.

The table in Figure 4.1 does not directly specify whether z and y are formal parameters of
the function or global variables. We have treated them as formal parameters.

In this example, where almost every pair of conditions on inputs has a different output
expression, Parnas’s form is more compact and more perspicuous than the functional decision
table.

On the other hand, when there are more than two arguments, we have problems representing
a normal function table on two dimensional paper.

37

One approach would be to present the table one two-dimensional slice at a time. An example
with a third variable z, for which the relevant predicates are z = 0, z < 0,and z > 0, is
shown in Figure 4.3.

An alternative approach would be to simply divide the variables into two groups, “stacking”
them when one or both of the groups contains more than one variable. Figure 4.4 gives the
stacked equivalent of the table in Figure 4.3.

(Both slices and stacking are our idea—they do not come from Parnas [22].)
e Corresponding to the requirement of consistency for a decision table, Parnas has a notion of

a normal function being proper, namely that the conditions designating different outputs do
not overlap.

e Note that the output expressions are arranged so that the argument of square root is always
positive. The precondition of square root is that its argument is nonnegative.

[z>0] | y =27 l y > 27) y<27 |
z=3 27 + /272 54 + /272 ¥ + 32

z<3| [27T+ /- -3)z |y+V/-(c—3)z | y* + (z—3)*2
z>3 2T+ Jz—3z |2%y+vz -3z |y +(B-1)2

[2<0] | y =27 I y > 27 [y<21 |
=3 27 — V272 54 — /272 ¥t +3z
z<3| [2T+ /= -3)z |y—/-(z—3)z| y* + (¢ - 3)°
z>3 27+ vz —3 2+y—vz—3z |y —(3—1z)°z
[z=0] [y=27 l y > 27 [y<21T |
=3 7 54 >
z<3 27 y+v-(z-3) Y7
>3 27 2+xy++Vz -3 y?

Figure 4.3: A normal function table with three input variables, presented in slices.

4.3.2 Inverted Function Tables

The inverted form of function table is suitable when conditions on the variables are more numerous
than the different formulas for output. The name “inverted” comes from the fact that, compared

38

L 9=27 [y>21 | y<ar |

r=3 274+ /272 54 + /272 v? + 3z
2>012<3) 1274+/—(z-3)z [y+/-(z-3)2 | ¥’ + (z - 3)%2
z>3 21T+vVz -3z [2xy+Vz-32 | 4>+ (3-12)2
r=3 27 — /272 54 — 27z ¥+ 3z
2<0)2<3) |27+ /~(z-3)z [y—/~(z=3)z | 2+ (z - 3)°
z>3 27T+ vz -3 2¢+y—+vzr -3z |y —(3-12)%z
=3 27 54 y°
z2=0|z<3 27 y++v—(z - 3) Yy’
z>3 27 2%y ++/7 -3 v

Figure 4.4: A normal function table with three input variables, two of them “stacked” on the left.

to the normal function table, the output values and the conditions for one of the input variables
have changed places. An example is Figure 4.5, which is Parnas’s Figure 2.

[t+y | z—y [x*yj

=3 y<3 y=3 y>3
z<3 y<rz y>z | y==z
z>3 y<-z|y>-z{y=-z

Figure 4.5: An inverted function table.

Here, the conditions on z are written along the side, the conditions on y are in the body of the
table, and the output expressions are along the top. For example, if 2 < 3 and y = z then the
output is z * y.

This arrangement permits a different set of conditions on y to be used for each condition on z. A
different notion of properness applies: the conditions on z (the left hand column) must be complete
and consistent and each set of conditions on y must be complete and consistent.

Recasting Figure 4.5 as a functional decision table gives Figure 4.6. Recasting Figure 4.5 as a
normal function table would yield 2 more awkward three dimensional table.

Notes:
o Although in this case the inverted function table is rather neat, we can see that the circum-

stances that make it so are rather special: even though each condition on z is associated with
a different set of three conditions on y, there are still only three output expressions.

39

r Function table I anonymous J

X integer

y integer

output integer
L |
Selection
Input Variables | States ||
compare(z,3) | LT, EQ, GT || EQ | LT GTEQILT|GT| EQ| LT | GT
compare(y,z) | LT, EQ, GT || LT | LT * TEQ|GT| * | GT|EQ}| *
compare(y,—z) | LT, EQ, GT || * * VLT * * 1GTYH * * | EQ

Behavior l
output [integer || T4y | -y | THy B

Figure 4.6: Decision table corresponding to Figure 4.5.

e It is perhaps even more obvious here than for normal function tables that properness is
not just a matter of propositional logic, but may depend on other mathematical properties,
usually properties of order.

4.3.3 Vector Function Tables

Vector function tables are to normal function tables as procedure decisional tables (those with
several named outputs) correspond to functional decision tables. That is, they are basically the
same thing except that they have several named outputs instead of a single unnamed outputs.

These tables have the drawback that only tables with a single input variable can be represented
directly in two dimensions. In that case they essentially are decision tables. For example, consider
Figure 4.7, which is Parnas’s Figure 3.

[w<0 [w=0 | w>0 |

z+y+qlz+2—-qf z—w
y+2 z+y |z4+y+2

z—w z z4+w

Figure 4.7: A vector function table.

As we understand it, a vector function table indicates an operation changing the values of the

40

output variables. Thus, in the row of Figure 4.7 corresponding to the output z, we understand z
and y (and ¢) in the expression z + Y + ¢ to mean the values of those variables before invocation
of the table (or of the subprogram specified by the table).

Figure 4.8, the functional decision table corresponding to Figure 4.7 is nearly the same.

If we used the “stacking” representation for vector tables with several input variables, we would
end up with tables quite similar to what we call Parnas-style decision tables, discussed below and
shown in Figure 4.15.

| Decision table [compare |
w integer
z integer
Y integer
z integer
L]
Selection
Input Variables l States “
|_compare(w,0) [LT, EQ, GT] LT | EQ I GT 7]
Behavior
z integer z+y+qgllz+2-g T —w
Y integer y+2 z+y z+y+2
z integer z—gq z z4+w

Figure 4.8: Decision table corresponding to Figure 4.7.

4.3.4 Normal, Inverted, and Vector Relation Tables; Mixed Vector Tables

Normal relation tables are like normal function tables except that the entries of the body of the
table, instead of being expressions of the desired output type, are Boolean expressions (logical
formulas) containing a special symbol r standing for the output (“result”). The idea is that any
value satisfying the formula is an acceptable output if that formula is selected. For example consider
Figure 4.9, which is Parnas’s Figure 4. If z < 3 and V¥ > 27 (and implicitly y > 0), then any
output R satisfying 2% = r? (i.e.,,R = tz) is acceptable. If z = 3 and y < 0 then any value of R is
acceptable, since any value of R satisfies the formula true. If z < 3 and y < 0 then no value of R is
acceptable.

Inverted and vector relation tables are analogous to inverted and vector function tables except that,
as for normal relation tables, acceptable outputs are indicated by formulas that they must satisfy
instead of expressions giving their value.

For vector relation tables, the output variables are named, so the formulas use the name of the

41

i< [Ji>2] w9<0]
z=3| [P+ y?=R]| 2’ =y* true
<3 y’> = R® z? = r* false
>3 Z2—R’ |z=R>3|2°+y° =R’

Figure 4.9: A normal relation table.

appropriate output instead of R. In my view, this makes vector relation tables somewhat confusing,
because some occurrences of variables in the formulas specifying the outputs indicate values of
variables before invocation and others values after invocation, and the only way to tell which is
which is to see which variable the row belongs to. For instance, in Figure 4.10, which is Parnas’s
Figure 6, it appears that in the z row, z stands for the value after, but in the y row it stands for
the value before invocation of the table.

| w<0 [w=0 [w>0 |
r=w =4 T4 =w

v =z +2 y=z+2 |y=|z|[+2
=ty tw | =24y z2=5

Figure 4.10: A vector relation table.

These problems are fixed in characteristic predicate tables, described below.

Mixed vector tables allow some output values to be specified by an expression and others by a
formula, with a notation to indicate which are which.

We could make a decision table analog of relation tables by allowing formulas instead of expressions
to define outputs.

4.3.5 Predicate Expression Tables

In form, predicate expression tables are like normal function tables, except that the entries of the
body are logical formulas instead of terms. This class of tables provides a means to represent logical
formulas two dimensionally without identifying some values as inputs and others as outputs.

A two-dimensional table with formulas A, ..., A, listed in the Jeft-hand header, formulas By,..., Bn
in the headers across the top, and formulas C; ;, 1 <1< m,1 <7< n,in the body denotes the

42

formula
\/ A; AN B; A Ci ;.

1<i<m,1<j5<n
Here V means “or” (disjunction) and A means “and” (conjunction).

A particular example is shown in Figure 4.11, which is compressed from Parnas’s Figure 8. Fig-
ure 4.11 is equivalent to the following formula.

(:c§3/\w§0/\y=5)
V (2<3Aw>0Ay+z=uw)
v (:c>3/\w§0/\y>7)
V (2>3Aw>0Ay—z=6)

[w<0] w>0]

z<3 y=5|ly+z=w
z>3 y>7|y—z=6

Figure 4.11: A predicate expression table.

4.3.6 Characteristic Predicate Tables

Characteristic predicate tables are similar to predicate expression tables except that each variable
T occurring in it occurs in two versions, ‘z and z’, never plain z, standing for the values of z
before and after some subprogram is invoked. Thus a characteristic predicate table is suitable for
defining the input/output relation of a procedure subprogram, the characteristic predicate of the
subprogram. (In our discussion in section 4.2, we wrote plain z instead of ‘z.)

A characteristic predicate table is in some ways an alternate (and, in our opinion, better) way to
write a vector relation table.

Figure 4.12 is essentially Parnas’s Figure 9. It says, for example that if the initial value of z is 3
and the initial value of w is 0, then the final values of z and w are both equal to the initial value
of y.

Note that in Figure 4.12 the variables occurring in the headers are both “before” variables. We
would expect this to be the normal case, though there is no rule that says header variables must
be of that kind.

43

. ' =‘z A =y A ' =‘y A
r=3 w = ‘z y_ ¢)
= w' ="'y w'="y
c$<3 ylzgx y,:‘y wlzn,w
‘l’>3 y12=4 x’+w’:‘y yl—‘.’E

Figure 4.12: A characteristic predicate table.

4.3.7 Generalized Decision Tables

The main difference between generalized decision tables and decision tables as we would write them
is that the input expressions need not be finite valued and the entries of the body are predicates
on that input expression rather than lists of permitted values. The symbol # indicates where the
input expression for a given row goes in a predicate in that row. Parnas also permits just one
output (as for a functional decision table) and writes the output values for each column at the top.

Figure 4.13 is Parnas’s Figure 10. Figure 4.14 is the equivalent “ordinary” decision table.

EETREETE

T kY # <20 | #<20
zfy | |[#220] #=20
z* true | # > 20

Figure 4.13: A generalized decision table.

Remarks:

e In the generalized decision table, the list of input expressions is, strictly speaking, unnecessary,
since one can use them to replace the instances of # in the row, then delete the input
expression listing, as in Figure 4.15. In fact, we think that would be more in the spirit of the
other tables, whose principle characteristic is the use of logical formulas as entries.

e Writing predicates as entries in the body avoids making up functions like compare, whose
meaning may not be immediately apparent to the reader. For this reason alone we think
that this form of decision table is worth considering. The fact that entries to the table are
predicates may pose some (minor) problems for our checking algorithms, but may also provide
some new ideas about structured decision tables and structured decision diagrams.

44

Function table ” anonymous j

X integer
y integer
output integer
L]
Selection
Input Variables | States (
T*y <20 TRUE, FALSE | TRUE || TRUE
compare(z/y,20) | LT, EQ, GT EQ, GT EQ
z? > 20 TRUE, FALSE * TRUE
Behavior
output | integer | z+y [z-y

Figure 4.14: Functional decision table equivalent to Figure 4.13.

L e+y [o-y |

zxy<20|z*xy<20
z/y>20 | z/y =20
true z% > 20

Figure 4.15: The “true” Parnas-style decision table.

4.4 Conclusions

e Compared to decision tables, Parnas tables economize on space by eliminating the signature,
but to some degree pay back by having more complex entries (formulas).

Eliminating the signature has the more important benefit of allowing input conditions to be
divided into two groups, as in Figure 4.4. Doing so reduces the need to duplicate conditions,
as typically must be done in decision tables.

Note that although in theory the input conditions to a Parnas table could be divided into
arbitrarily many groups, but in practise, tables are written in two dimensions, so either the
conditions must be put into two groups or else the table printed in slices.

In the table definitions as given by Parnas and described above, each condition is a single

predicate. There is, however, no real reason why such predicates could not be organized in
tabular form like an engagement criterion in a decision table, as in a partitioned decision

45

table. The motivation for tabulating the individual predicates is the same as for using tables
in the first place—it organizes the predicates expressed and makes them clearer and easier to
understand.

Though we have not discussed them here, Parnas has a system of grids for abbreviating sets
of formulas by tabulating them in a number of ways. Tabulating formulas into engagement
criteria might be considered an extension of the abbreviation grids.

In general, we think that the idea of permitting general predicates to be table entries is
interesting because it allows great flexibility. On the other hand, requiring entries to match a
given signature, as in a decision table, helps classify and clarify the information in the entries,
forces it to be simple, and makes it easier to perceive logical dependencies between entries.
This is particularly true of partitioned decision tables.

As to form assisting expression, inverted Parnas tables seem to be the most interesting since
they provide a neat way to tabulate a decision involving two variables in which the conditions
on the second variable are dependent on the first variable. Nevertheless, it does not seem
entirely satisfactory because the results that can be obtained cannot also depend on the
condition on the first variable as it can in normal function tables. Is there a compact tabular
form that combines these features of normal and inverse function tables?

Parnas tables all define functions or relations. Not having a notion comparable to operational
procedure, they do not directly represent objects in the way that we suggested for decision
tables in the previous section, though of course objects can always be modeled indirectly by
setting state variables on which other functions depend.

Parnas’s A-7 specification method is properly a way of defining the functions and relations
needed to define the transition and observer functions used in a complex system composed
of state machines, but it does not provide a notation for directly defining the component
state machines (objects), as Statecharts and RSML do. A form of object table might bring
Parnas’s method closer to the others and permit more synergy between the methods.

46

Chapter 5

Testing Decision Tables and Code
(enerated from Decision Tables!

No matter how rigorously formal methods may be applied, and no matter how completely its results
are accepted, testing will still be needed at two points in the process of developing embedded
software.

o At the beginning of the development process, the formal specification must be tested in order
to validate it, i.e. to ensure that it says the right thing. Examining the results of these tests
can also help designers and others understand what the formal specification does say. This
testing of the specification amounts to a systematic simulation of a number of cases.

e At the end of the development process, when the software is finally integrated with the
system’s hardware, the entire system must be tested in order to confirm that the combined
system of hardware and software behaves as expected.

Besides these two points, software development standards such as the quasi-regulatory DO-178B
[23] specify the use of testing to verify correctness of software, and suggest the use of particular
test coverage criteria in this testing. Generating test cases that meet one of these coverage criteria
together with the test results specified generated by the decision table may therefore smooth the
way to acceptability of code generated from decision tables.

Systematic testing normally requires that one apply a suite of tests selected so as to satisfy some
test coverage criterion. The test coverage criterion represents some attempt to test rationally so as
to maximize the likelihood of finding (certain types of) errors for a given amount of testing effort.

Section 5.1 describes a number of test coverage criteria mentioned in DO-178B. One of them
is modified condition/decision coverage (MC/DC). MC/DC testing is believed to be as effective

'We thank Steve Miller for numerous explanations that have made this chapter possible. Any errors that it still
contains are the fault of the authors.

47

in practise as testing according to the most thorough test coverage criterion, multiple-condition
coverage (M-CC), but normally requires far fewer tests (typically N +1 for N conditions in MC/DC,
compared to 2V tests for M-CC). Drawbacks of MC/DC are that it is more difficult to understand
than other test coverage criteria and that not all code even has a test suite providing MC/DC
coverage.

Accordingly, this chapter does the following things.

e We discuss testing as a means of validating specifications in the form of decision tables.
Testing a decision table by asking what result it would produce on a given input is not a
problem. Rather, the problem is deciding on a reasonable test coverage criterion in order to
get a good overall picture of what the table specifies. We propose an analog of MC /DC that
applies to decision tables (as opposed to code) and an algorithm for generating an appropriate
suite of tests.

o We address the need for testing code generated from tables by producing algorithms that
generate MC/DC testable code from any decision table together with a test suite providing
MC/DC coverage.

Testing is a big subject and we have been able to address only a very small part of it here. Testing
or generating a test suite for an individual decision table or the code generated from it is only a
small part of what is needed to validate the specification of a complex system or to provide a test
suite adequate to test the software implementing that system when it is installed in the hardware
it is to control. We believe, however, that it is a step in the right direction.

5.1 Coverage Properties and Associated Terminology

Here are definitions of some important test coverage properties as given in Chilenski and Miller [5].
The first four are quoted by Chilenski and Miller from the Glossary of DO-178B [23], though only
MC/DC seems to be mentioned in the text of [23].

e Statement Coverage (SC): every statement in the program has been executed [by the test
suite] at least once.

e Decision Coverage (DC): every point of entry and exit in the program has been invoked at
least once and every decision in the program has taken all possible outcomes at least once.

e Condition/Decision Coverage (C/DC): every point of entry and exit in the program has been
invoked at least once; every decision in the program has taken all possible outcomes at least
once; and every condition in a decision in the program has taken all possible outcomes at
least once. [L.e., DC plus: every condition in a decision in the program has taken all possible
outcomes at least once.]

48

¢ Modified Condition/Decision Coverage (MC/DC): every point of entry and exit in the pro-
gram has been invoked at least once; every condition in a decision in the program has taken
all possible outcomes at least once; and each condition has been shown to independently
affect the decision’s outcome (by varying it while keeping the other conditions in the decision
fixed).

e Multiple-Condition Coverage (M-CC): every point of entry and exit in the program has been
invoked at least once and all possible combinations of the outcomes of the conditions within
each decision have been taken at least once.

We say that a test coverage property A subsumes a test coverage property B if for every program
P, any test suite for P satisfying A also satisfies B.

With the exception of M-CC and MC/DC, it is clear that each coverage property on the list
subsumes the previous ones. M-CC does not subsume MC/DC, however, because M-CC does not
require to show that all conditions have independent effect, as MC/DC does. In fact any program
has a test suite satisfying M-CC. That is not the case for MC/DC, because, as we shall see later,
In some programs not every condition has independent effect in the decision in which it occurs.

The definitions above use a number of technical terms that need to be explained. For concreteness,
we will couch our explanation in terms of Ada programs.

® Program. This term must be taken to mean Just one particular subprogram containing the
conditions and decisions in question, not any context in which it is called or any further
subprograms that it calls. The reason is that it will often not be possible to exercise, for
example, all possible outcomes of every condition when a subprogram is used in a particular
context.

 Condition, Decision. DO-178B gives the following definitions.
Condition: A Boolean expression containing no Boolean operators.

Decision: A Boolean expression composed of conditions and zero or more Boolean
operators. A decision without a Boolean operator is a condition. If a condition
occurs more than once in a decision, each occurrence is a distinct condition.

We make the following observations.

— Formally, conditions and decisions are instances of Boolean expressions rather than
Boolean expressions.

— The definition does not cover Ada case statements. According to Miller (private com-
munication), a case statement

case COLOR of
red, green => ...
blue => ...

end case;

49

should be treated as if it were

if COLOR = red or COLOR = green then .
else if COLOR = blue then ...
end if;

— In a statement
if A and (B or C) then ...

expressions 4 and (B or C),B or C, 4, B, and C are all decisions. Normally, one thinks
only of the first, & and (B or €) (a maximal decision) as the decision, but a little
thought will show that it makes no difference to the coverage properties whether decisions
are all Boolean expressions or only maximal ones.

— A decision need not occur only in a control statement (if then else, case or while).
For example

A :=Bor C;

both A and B or C are decisions.

e An outcome of a decision or condition is simply one of the values (true or false) that it may

take.

Entry, ezit. In an Ada subprogram, the only point of entry is the beginning of the subprogram,
exercised by every test, and the exits are the return statements and any exceptions that can
be raised but are not handled, and, in case of a procedure subprogram, the end of the body
of the subprogram and of each exception handler.

We do not consider exceptions that are not explicitly raised in the subprogram as exits. As we
understand it, critical programs are normally written so as not to raise predefined exceptions,
such as CONSTRAINT_ERROR, and the property of not raising such exceptions is tested using
some form of extremal testing different from what we are discussing here.

Statement. An Ada statement.
Independent effect. The key clause of the definition of MC/DC says:

A condition is shown to independently affect a decision’s outcome by varying just
that condition while holding fixed all other possible conditions.

Here, we understand the phrase “all other possible conditions” to include at most the con-
ditions occurring in the subprogram containing the particular decision. The word “possible”
says that the outcomes of some of these conditions may also be varied, but is vague about
the exact conditions under which it is permitted to vary them. We discuss this topic further
below in Section 5.3.

In any case, the two test cases required to show the independent effect of a condition on its
decision must both cause control to reach the given decision. For example, the condition A
does not have independent effect in the second decision in the following code.

50

if A then ...; elsif not A then ...; end if;

A does not independently affect the second decision because the second condition, if reached,
can only come out true. This gives us a rule of thumb for making code MC/DC testable: a
sequence of elsifs must end with a reachable else.

5.2 Test Categories vs. Test Cases

Properly speaking, a test case is an assignment of values to the variables (parameters and global
variables) of a subprogram. Test coverage criteria, however, are defined in terms of how values of
conditions and decisions must be covered rather than directly in terms of values of variables. There
is a difference because some of the conditions are defined in terms of relations applied to actual
variables, as with the condition x < y.

Values of conditions also play the leading role in decision tables. Consequently it makes sense
to divide the task of finding a test case of a certain kind into two subtasks: first find a suitable
combination of values of conditions, then find values of variables that give the required values to
the conditions.

We call an assignment of values to conditions a test category. A test case which gives each condition
the value assigned to it by a test category C is called a realization of C.

Because there can be mathematical relations between conditions, it is not always possible to realize
a test category. For example, consider the following code.

if x < 0 then if x > 0 then raise Impossible; end if; end if;

A test category that exercises the statement raise Impossible is an assignment of the value true
to each of the two conditions x < 0 and x > 0.

A test case that realizes this test category must assign to x a value v that satisfies both v < 0 and
v > 0. Since there is no such value, there is no such test case, and the test category cannot be
realized by a test case.

In general, to find whether a test category is realizable by a test case, it is necessary to look into the
structure of its conditions. Even then it is, in general, not possible to decide whether there exists
any test case realizing a given test category. In some commonly occurring special cases, however,
it is possible to determine whether test cases exist and, if so, find them.

e Ada variables of a Boolean or enumeration type.

e alinear inequality ayz; +...ap,z, +b < 0, where ay, ..., ay,, b are constants with values known
at test time.

e Equivalent to a finite function of the foregoing, but in the form of atomic expressions—no
explicit Boolean operations. (E.g. the three-valued comparison, compare.)

51

The decision tables from avionics that we have worked with have all had conditions like this.

In this special case, we can, by a combination of linear programming and propositional logic,
effectively determine whether a test category is realizable and, if realizable, find a test case that
realizes it (see Nelson and Oppen [20] or Shostak [26)).

We will not further address test category realization here, however, but will concentrate on gener-
ating test categories whose realizations, if any, must satisfy certain test coverage requirements.

If all unrealizable test categories are documented among the impossible scenarios under the pseudo-
operational procedure Never, then no unrealizable test categories will be generated from the table.

Test categories may also be useful because it appears to be easy to piece together a test category for
a program with another test category for a subprogram it calls to form a test category for program
and subprogram together. It does not seem so easy to do the same for test cases.

5.3 Independent Effect

The meaning of “independent effect” and of the phrase “al] other possible conditions” that occurs
in its definition requires more detailed discussion. Let us begin with the following simple example.

if p = q then ...; elsif p then ...; else ...; end if;

In order to show independent effect of the p in the second condition, we need two test categories v
and v’ that differ on p, say v(p) = T, v(p) = F, both of which exercise that instance of p.

Let us make some observations.

e Technically, the p in the first decision is a distinct condition. Clearly it is not possible to
change the p in the second decision without changing the other p in the first decision.

e In order to change the p in the second decision, we must also change the g in the first decision.

Thus, the two test categories must be v(p) = T, v(q) = F, and v'(p)=F,v'(g)=T.

Why does this pair of test categories show independent effect of the p in the second decision?
Because under both, the second decision is executed and the other two conditions (i.e., other than
the instance of p in the second condition) that v’ changes are not in the second decision at all.

Reasoning in this manner, we arrive at the following definition of independent effect.

A test category v causes a condition p to be evaluated in a decision A if evaluating v(A) does
require evaluation of p, taking account of short circuiting. For example, if v(p) = T, then in p or
else g, v causes the evaluation of p, but not ¢.

A test category v masks a set § of conditions in a decision A if v(A) does not depend on the values
of conditions in S. That is, treating the members of S as distinct variables distinct from all other
variables in A and changing their values arbitrarily would not change v(A).

52

The test categories v and v’ show independent effect of the condition p lying in the decision B if
the following conditions hold.

e B is evaluated under both of the test cases v and v’.
® v(B) # v'(B).

e Both v and ' mask in B the set of all instances of p other than the one whose independent
effect is being shown. Further, for every condition ¢ # p that is evaluated in B under both v
and ', v(q) = v'(q).

The limitation that only values of conditions evaluated under both v and v’ need be preserved is
intended to allow for legitimate use of short circuit operators to prevent conditions to be evaluated
when they are not well defined. The following code provides an example.

X = 0 or else y/x > 100

It does not make sense to evaluate the second condition unless z # 0, so we do not require test
cases giving different values to z = 0 to give different values to y/z > 100.

For better or worse, this rule makes it far easier to demonstrate independent effect when short
circuit Boolean operators are used instead of “normal” ones. Consider the following code.

if

p and not q then OP := opil;
elsif

p or else q then OP := op2;
endif;

Call the second decision B. This code is strongly testable. The test cases
up)=u(g)=T, v'(p)=u'(q)=F

demonstrate independent effect of the p in B, while the test cases
v(p)=v(p)=2"(g) = F, v(q)=T

demonstrate independent effect of the g in B. If the or else were replaced by or, which is not
short circuit, changing the value of ¢ between u and u’ would not be allowed, so u and u’ would
not show independent effect of p in B. Indeed, in the code with or instead of or else, p does not
have independent effect.

Now, in fact the instance of p in B is superfluous and the code could be rewritten so as to be MC/DC
testable without any evasions. We cannot, however, show that it is always possible to rewrite code
so that all conditions have independent effect without introducing short circuit operators in one way
or another. This advantage suggests that the definition of independent effect should be weakened so
that the use of short circuit operations does not make such a difference. We suggest the following.

53

(Weakly independent effect) Every condition ¢ in B, other than the instance of p whose
independent effect is being shown, such that v(q) # v'(¢g) and g is evaluated in B under
both v and ¢, lies in a subexpression C of B such that v(C) = v'(C).

Short circuit operators still have it easier under this definition, but the difference is not as great
and one can always rewrite pure conditional code to be testable in this sense without introducing
short circuit operators.

In Section 5.6, we shall make shameless and systematic use of short circuit operations to weaken the
requirements that we must meet in order to generate MC/DC testable code from decision tables.

5.4 Pure Conditional Code, Tree Code, Decision Trees, and Con-
text

Starting in this section, we will speak about code generated from decision tables in more technical
terms.

For the rest of this chapter, we will allow use only of conditions whose evaluation has no side effects.

5.4.1 Condition statements and Expressions
For simplicity, we will regard
if A then B else C end if

as the only form of control statement. All other forms of conditional statement are equivalent to
one of these. For example:

e The statement
if A then B end if;
is equivalent to
if A then B else null; end if;
o The statement
if A then B elsif C then ...end if;

is equivalent to

54

if A then B else if C then ...endif; end if;

e The statement

case F is
when A | B .. C => §;
wvhen D => §,

when others => S3;
is equivalent to

if E = Aor (B <= F and E <= () then S,
else if £ = D then 5,

else S
end if;
end if;

Strictly speaking, a more complex equivalent is required if £ has side effects. We always
assume that decisions have no side effects.

5.4.2 Boolean Expressions

We assume that the Boolean expressions that may be used are the following.

¢ Conditions (Boolean expressions that cannot be further decomposed).

e not A, A and B, A or B, A and then B, A or else B, A = B, where A and B are
Boolean expressions.

¢ A — B|C where A, B, and C are Boolean expressions.
The semantics of the alternative operator A — B | C is as follows.

Evaluate A. If the result is true, evaluate B and return its value; otherwise evaluate C
and return its value.

The semantics of the other Boolean operations are as in Ada.

The reader will observe that A — B | C is just a form of if ...then ...else ...end if that
applies to expressions instead of statements. Indeed, in some languages, such as Lisp or ML, there
is no difference. Hence we will often refer to the alternative as the conditional operator in order
to emphasize its close relationship to the conditional statement. The C language has a conditional
operator, written 4 ? B : (.

55

5.4.3 Straight Line and Pure Conditional Code

First, observe that the code generated from a decision table will always be pure conditional code,
defined as follows.

o Straight line code is a sequence of assignments possibly terminated by a return statement,
containing no non-constant Boolean expressions.

e Pure conditional code is either:

_ a statement sequence S of straight line code; or

— A statement
if A then 5; else S; end if;
where Sy and S are pure conditional code (and the decision A has no side effects).
e Tree code is the special case of pure conditional code in which each decision is a condition.

e Opproc-by-opproc code is of one of the following forms, where Sy,.. ., S,, are straight line

code.
if D; then S5i;
elsif D, then 5;
el:s.i.f D,, then S;;
or

if D; then S1;
elsif D, then S;;

else S,;
5.4.4 Context

The contezt of an expression B in a larger expression A or a statement § is a logical formula
representing the strongest property that can be guaranteed always to be true when B is evaluated
as part of evaluating A or S. Context is a sort of strongest precondition operator [6], and can
be defined for statements as well as expressions. To define it in generality requires the general
apparatus of predicate transformation, as discussed in [6]. For Boolean expressions without side
effects and pure conditional statements, however, context is easy to define.

The importance of context is the following. In all our discussions of code and testability, we are
assuming that predefined exceptions are not raised. What is it, however, that guarantees that

56

evaluation will not raise an exception? the context in which the expression is evaluated. For
example, the expression m div n, for integer variables m and n will not raise an exception if it is
evaluated in a context that implies n # 0.

Note that here, when we define the context of an expression B, we do mean an expression, not an
instance of an expression B. The definition can, however, easily be modified to define the context
of a condition or of any set of instances of expressions. The definition also applies when either A4
or B is an expression, statement, or statement sequence. (The most convenient point of view for
us would be that of ML or C, in which everything is an expression and statements do not form a
separate syntactic category, but expressions evaluated for side effects may be informally referred to
as statements.)

Figure 5.1 gives the definition of the context of one expression in another. The definition of a
condition, or any instance of an expression, is similar.

context(B, A) = false, if B does not occur in A
context(B, B) = true
context(B, not A) = context(B, A)

context(B, A and A’) = context(B, A or A')= context(B, (A = A')) =
context(B, A) V context(B, A")

context(B, A and then A') = context(B, A)V (A A context(B, A’))
context(B, A or else A’) = context(B,A)V (~AA context(B, A’))
context(B,A — C | D) = context(B,A)V (A A context(B,C) V (=A A context(B, D))

context(B, if A then S, else S, end if; =
context(B, A) V (A A context(B, S51) V (= A A context(B, S;))

context(B, case A is when C; => S;; ...when Cn => S,; end case;) =
context(B, A}V (A € Cy A context(B, 51))...V(A € Cp A context(B, S,)).

context(B, case A is when C; => §;; ...when Crn-1 => S,_1; when others => Sr.; end case;)=
context(B, A)V (A € Cy A context(B, §1))...V (A € C, A context(B, Sr)).

Figure 5.1: The definition of context.

Context is important for expressing code in different forms. We regard it as permissible to rewrite
code as long as the semantics remains the same in the absence of predefined exceptions: that is,

57

any predefined exception that can be raised by the rewritten code can be raised by the original
given the same initial state. If we require that in the rewritten code the context of each expression
is at least as strong as in the original code, then this property will be satisfied.

5.5 Decision Tables and Short Circuit Operations

Chilenski and Miller [5] point out that short circuit operations are sometimes necessary to ensure
that certain conditions will not raise an exception when evaluated, as in the following example.

if x /= 0 and then y/x < 100 then ...

If short circuit operators may occur in code generated from decision tables, we need a convention
to indicate short circuit operators in decision tables. The simplest convention seems to be to the
following.

o Interpret each column as a short circuit conjunction of the interpretations its entries, ordered
from top to bottom, omitting “don’t cares”.

e For partitioned decision tables, apply this convention recursively to the entries.

We did not say anything about the columns of an engagement criterion (or a complex entry of a
partitioned decision table) forming a short circuit disjunction. Rather, we regard them as forming
an ordinary disjunction. The reason is that we prefer to consider the columns of decision table as
occurring in no particular order. Regarding columns as unordered means that we cannot simplify
later columns by omitting conditions implied by the failure of previous columns. Accordingly, a
decision table must explicitly represent all conditions relevant to a given column.

Our convention gives a natural way to define context of an input variable in a decision table.

e The context of an input variable in a column is either

— false, if the variable’s entry in that column is “don’t care” (that is, the variable does not
occur), or

— the conjunction of the entries above it in that column.

e The context of an input variable in a decision table is the conjunction of:

— the strict precondition of the table (the conjunction of the engagement criterion of Always
and the negation of the engagement criterion of Never);

— the disjunction of the variable’s context in the columns of the table other than the strong
preconditions.

58

e For partitioned decision tables, apply this definition recursively to complex entries in the
obvious way.

® The context of a condition, or an instance of any expression, in a decision table is defined
similarly.

Regarding each column as a short circuit conjunction from top to bottom implicitly imposes the
restriction that the context of a condition in the table can only mention other conditions higher in
the table, never lower. One can imagine, however, three conditions A, B, and C, such that when
A is true, C may not be evaluated unless B is true, and when A is false, B may not be evaluated
unless C' is true. The way to work around this problem is to enter one of the input variables into the
table twice and specify under Always that the two copies always have the same value. Figure 5.2
illustrates this solution. The solution is a bit awkward, but we expect that this problem will rarely
come up.

O1 0, O3 O4 || Always
AT, F|\T|T| TIF[F|F*] *
BIT,F|\F{TyTIl*I**T|F
CI|T,F|*|T] FIF[T| T *]| *
BIT,F|*|*| I *|TIT F|TIF

Figure 5.2: Varying order of evaluation in a decision table.

Under this convention, the engagement criterion of O; in Figure 5.2 would be the following.
(A and then not B) or (A and then B and then C)

The context of C in the table is
(A A B) V - A.

(We have omitted the Always condition because it is vacuous.)

For a table manipulation to be valid, not only must the tables be logically equivalent (considering
that input parameters take an arbitrary possible value in cases where they would actually raise an
exception), but the context of each input variable in the modified table or in generated code must
imply its context in the original table. Then, if evaluating any column in the original table will not
raise an exception, neither will an exception be raised in evaluating columns of the modified table
or in executing generated code.

Our algorithms for manipulating decision tables all assume that decision table as written will
require each input parameter to be evaluated only in a proper context. In the results they produce,
whether code or another decision table, each input variable always has a context at least as strong
as its context in the original table.

59

Perhaps it would be worthwhile, in a system like that described in Chapter 3, to provide a means
of specifying the minimum context required by each input variable. One could then check that a
given table provides a sufficiently strong context for each of its input variables.

5.6 Generating Testable Code and Tests from Decision Tables

5.6.1 Testable Tree Code

We say that a formula or Boolean expression B is logically independent of another formula A if
both B and —B are both consistent with A.

We say that a program is MC/DC testable in the context of a logical formula (Boolean expression
without side effects) A (a strict precondition) if the MC/DC testability requirements are satisfied
by a suite of test cases that satisfy A.

Theorem 5.6.1 Tree code is MC/DC testable in the contezt of A if every condition in it is inde-
pendent of the conjunction of A and its contezt in the code.

Proof. We prove by induction on tree code § that for any formula A, if every condition Cin §
is logically independent of A A context(C, §), then each such condition C can be shown to have
independent effect by a pair of test cases that satisfy A.

The basis case, where S is straight line code, is vacuous, since there are no conditions at all in §.

Suppose that S satisfies the hypothesis and is of the form
if B then S; else S endif;

To demonstrate independent effect of B, choose test cases T and 7 respectively satisfying AA B
and A A —=B. These exist since B is logically independent of A. They demonstrate the independent
effect of B in a vacuous sense because no conditions other than B are evaluated under both 7 and
T2.

Now demonstrate independent effect of some other condition C. Suppose that C lies in S, the
other case being symmetric. Apply the inductive hypothesis to A A B, §1, and C to obtain test
cases 1y and 7, satisfying AA B, demonstrating the independent effect of C in S;. These test cases
satisfy A and show independent effect of C in S because they agree on all conditions that both
evaluate in S, namely B and the conditions that both evaluate in $5;. O

It is easy to transform any pure conditional code into equivalent tree code. One way to do the
latter is to replace a statement of the form

if A and B then S; else S; end if;

60

by
if A then if B then §; else 52 end if; else S, end if;

Repeat this and similar translation steps for other Boolean operations until all decisions are con-
ditions. This translation preserves context. All conditions but those in B have the same context
in the translation. Those in B have their context strengthened by adding A to it.

Once tree code is obtained, examine each condition to see whether it is independent of its context.
If not, replace the statement containing it by its sole accessible branch. This operation preserves
context because either the eliminated condition or its negation is already implied by its context.
The resulting pruned code is equivalent to the original code in the context of any given precondition
A.

It is natural to generate tree code from simple decision tables in such a way that the context of
each condition in the code is at least as strong as its context in the decision table. Indeed that sort
of code is generated by Tablewise [13]. Partitioned decision tables suggest a more complex kind of
nested tree structure, the decisions corresponding to the possibly complex entries in the decision
table. We do not know how to generate MC/DC testable code while substantially preserving the
structure of the entries of a partitioned decision table. A modification of the definition of MC/DC
may be necessary to obtain such an algorithm. The problem of generating such code may be the
best place to start thinking about what such a modification should be like, as we consider below
in Section 5.8.

5.7 Testable Opproc by Opproc Code

Opproc-by-opproc code is of the form shown in Figure 5.3, the elsifs being regarded as the
equivalent else ifs. It is natural to generate opproc-by-opproc code from a decision table because
the decisions in the code correspond to the engagement criteria of opprocs in the decision table.

if D; then S§y;
elsif D, then S55;

elsif D, then S,;
[else S-n+1;]

Figure 5.3: Opproc-by-opproc code.

A segment of opproc-by-opproc code will be testable if each decision D; in it is testable in the
context of AA =Dy A...A~D,_; where A is some overall context.

Making a decision D testable in a context 4 can be accomplished by methods similar to those used
to make tree code testable.

61

We say that a decision D is in tree form if it and every subexpression of it has the formp — B | C,
where p is a condition.

The algorithm for making a decision D MC/DC testable in the context of A goes as follows.

e Translate D into tree form, preserving context. The simplest method is the following.

— Choose a condition p in D such that context(p, D) = true.

_ Let Dtrue and Df2lse be the formulas respectively obtained by replacing p by true and
false, then applying this algorithm recursively to the result.

— Reduce p — DU | Dialse yging equivalences such as the following.

(¢ — true | C) = (g or else C) (5.1)
(true - B|C)=B (5.2)

Return the result.

e Prune conditionals in which the condition is not independent of the conjunction of A and its
context.

Programming languages like Ada do not have conditional expressions, though some other languages
such as C do have them (A 7 B : C). In order to make a testable decision into a testable Ada
expression, eliminate conditional expressions using the following function f in Figure 5.4.

Theorem 5.7.1 If a tree ezpression B is testable in the context of A, f(B) is equivalent to B
and testable in the contezt of A. Furthermore, for any decision variable q, context(q, f(B)) =
context(g, B).

Proof. The clauses about equivalence of B and f (B) and their associated context functions are
trivial.

For testability, it will suffice to treat one of the middle cases, to show how they all go, and the last
case.

Suppose then that Bisp — C | T and f(B)is not p or else C. Any pair of test cases v, v’ that
respectively satisfy AApA~C and AA-p demonstrate the independent effect of p. Such valuations
exist because they are required to demonstrate independent effect of p in B.

Suppose that Bisp— C | D, C,D ¢ {T,F}, and that f(B)is
(p and then C) or (not p and then D).

Since B is strongly testable given A and neither C nor D is either T or F, there exist valuations
u,u’,v,v" such that

62

f()=1b, be {T,F}
fo—=T|F)=p

f(p— F|T)=not p

f(p—= C|T)=not p or else f(C)
f(p—=T|D)=p or else f(D)
f(p—C|F)=p and then f(C)
f(p— F|D)=not p and then f(D)

flp—=C| D)= (p and then f(C)) or else (not p and then f(D), C,D ¢{T, F}.
Figure 5.4: How to eliminate the conditional operator.

e u satisfies AApAC,
o u satisfies AA -p A D,
e v satisfies AA-pA D,

o u’ satisfies A Ap A -C.

The pair u,u’ demonstrate the independent effect of the first, positive occurrence of p in f(B),
while v, v’ demonstrate the independent effect of the second, negative occurrence of p in f (B). O

5.8 Testable Code Containing More General Decisions

We have been able to give algorithms only for generating code with a rather simple special
structure—either tree structured code or opproc-by-opproc code in which the decisions are tree
structured. We could use the same methods to generate more general testable code, in which de-
cisions could have more complex structure, if the conditions for independent effect were relaxed a

bit so that a conditional expression
A—B|C

would be treated in the same way as the conditional statement

if D then §; else 5, end if;

63

In the conditional statement, to show independent effect of a condition p in §; only requires two
test cases 7; and T2 that both make D true and that show independent effect of p in 5.

In the conditional expression, however, to show independent effect of a condition p in B requires
two test cases 7; and Ty, both making A true, showing independent effect of pin B, and agreeing
on all conditions in A that both 7 and 7, cause to be evaluated.

If conditional expressions were treated in the same way as conditional statements, and a similar
change in the rules was made for the short circuit operations and then and or else, then to show
independent effect of a condition C in a decision D built using only short circuit operations, one
would only need two test cases 71 and 73, both causing D to be evaluated (i.e. satisfying its context)
and giving D different values.

This notion of independent effect seems a bit weak; perhaps tightening it up a bit would yield a
more satisfactory test coverage criterion.

5.9 Test Coverage for Decision Tables

To test a decision table means to indicate what behavior it prescribes in a particular test case; that
behavior is easily computed from the table. The idea of prescribing a coverage criterion to be met
by a suite of tests is simply to ensure that the tests give a reasonably complete picture of what the
table says.

The aim of this section is to consider the idea of test coverage criteria for decision tables, and in
particular an analog to MC /DC. This work constitutes a preliminary essay toward developing such
a test coverage criterion. We believe that further work along the lines indicated in Section 5.8
would help delineate the idea that should underly such a testing criterion.

Let us start by returning to the definition of MC/DC and see which clauses of its definition can
apply to decision tables, and which cannot.

Modified Condition/Decision Coverage (MC/DC): every point of entry and exit in the
program has been invoked at least once; every condition in a decision in the program
has taken all possible outcomes at least once; and each condition has been shown to in-
dependently affect the decision’s outcome (by varying it while keeping all other possible
conditions fixed).

The notion of entries and exits does not make much sense for decision tables. In code generated
from decision tables, the one entry and all the exits get exercised automatically if other conditions
are satisfied. We will therefore ignore the first clause.

The second clause brings up the question: in a decision table what is a condition and what is a
decision?

The way conditions are grouped into decisions in code is rather arbitrary, as is shown by the contrast
between tree-form code (many decisions, one condition per decision) and opproc by opproc code

64

(only one decision per opproc, many conditions in each decision). Our considerations in Section 5.8
suggest that it might be possible to dispense with or at least reduce the importance of the rather
arbitrary way in which conditions are grouped into decisions. For the time being, however, we find
a reasonable way to apply the notion of a decision to decision tables.

For a decision table, there are a number of reasonable ways to define decisions.

e A decision is an entry.

* A decision is a column, regarded as a short-circuit conjunction of its nontrivial entries, ordered
from top to bottom.

® A decision is the engagement criterion of an opproc.

Here, we choose the second definition because it permits us to apply the idea of independent effect
to conditions in decision tables in an unproblematic but nontrivial way.

Analogy with the treatment of case statements above makes it clear that the conditions are state-
ments v = a where v is an input variable of the table and a is one of its possible values. (Of course,
v = true can be abbreviated by v and v = false by —w.) In the following table, the entry a, b, e for
variable v denotes the disjunction of three conditions, v =aVv =>bVuv=c.

v,a,b,c,d,e ...Ia,b,e[...

Our interpretation of independent effect for tables will be guided by the idea that the context of an
entry E in a decision table is the conjunction of the strict precondition of the table and the entries
above E in the same column.

We regard a test category as an assignment of values to input variables, rather than directly to
conditions.

Suppose that the entry E belongs to the input variable v, has context A, and E = {e1,...,¢r}. To
show independent effect of the condition v = ¢, ¢i € E, we require two test cases, o and 7, both
satisfying A, with o(v) = ¢;, 7(v) € E, and o satisfying all entries of the column of E.

Taking individual entries as conditions, but with the same context, would eliminate the need for o
to satisfy the rest of the column.

We do not require that all conditions implied by a decision table have independent effect, since
eliminating all conditions that do not have independent effect might interfere with modification
and reuse of specifications. For example, we might want to use a given column in tables with
different preconditions. One precondition might preclude independent effect of some conditions in
the column, while the other precondition might not. Any such conditions will be eliminated in code
generation in any case.

65

Rather, we say that a test suite 7 for a decision table T satisfies Tabular MC/DC for every condition
C of every entry of T’ that has independent effect, 7 contains a pair of tests demonstrating the
independent effect of C.

As an example consider the following table.

[Input Variables [Statess| A | B [Never |
P a,b,c|lalbcl| b c
q T.F ||| T | F F

The following test suite satisfies TMC /DC for this table. We use * as usual for “don’t care”—any

value will do.

[Tests [na]ra]rsllm]
plabelfal b c b
g| T,LF | = | T|T|F

For example, according to our definition either pair {72, 73} or {r2, 74} demonstrates independent
effect of the second entry in the second column of the decision table.

As a final remark, we note that there is no direct connection between test suites that satisfy
TMC/DC for a decision table T and test suites that satisfy MC/DC for various kinds of code
generated from T'.

66

Chapter 6

Safety Analysis

Previous chapters have considered table-driven code and the question of whether the entries in the
table determine an unambiguous output for every input. We want to turn toward the bigger picture
of how this code fits into the system as a whole.

Essentially, the component defined by each table is a state machine that interacts with other
software and hardware components. It seems reasonable to picture the entire system as a collection
of communicating state machines. This chapter summarizes a number of pPapers on requirements
capture and software safety, especially for systems of state machines. All the papers originate in
the group headed by Nancy Leveson, now at the University of Washington.

Some basic terminology (from [14]):

e hazard: a condition that could potentially lead to a mishap (accident)
e safety: the avoidance of hazards

o risk: a measure of the “expected value” of a system in terms of the likelihood of a hazard
arising, the likelihood the hazard will lead to a mishap, and the cost of the mishap.

Safety is defined as the avoidance of hazards rather than the avoidance of accidents themselves,
since the occurrence of an accident often involves conditions in the environment over which the
system designer has no control. (If the railroad crossing gate is up when a train comes roaring
through, that is a hazard even if it does not lead to an accident.)

Some distinct, but related notions: A failure is an error of any kind. The notion of failure treats
all errors as equal—a misspelled message equals a nuclear meltdown. Reliability is the avoidance
of failures. Safety and reliability sometimes conflict: a completely safe bomb, one that cannot go
off, is completely unreliable.

The goal is to find systematic ways to design an acceptable level of safety into a system before
producing it, by reducing or eliminating the occurrences of hazards. This poses problems in science
(such as proofs of correctness), engineering (such as fail-safe design), and management. The special

67

difficulty introduced by software is that errors in software components almost never result from
fabrication errors or failures of materials—whose likelihood can be estimated by well-founded statis-
tical techniques—but result, rather, from errors in design; and software designs can be enormously
complex. In real life catastrophes typically result when several things go wrong at once.

There are well-established general principles for safe design (in order of decreasing desirability):

o Intrinsically safe systems incapable of generating or releasing enough energy to create hazards.

e Elimination of hazards by design, for example

— Lockouts, lock-ins, interlocks

— Safety kernels that isolate critical from non-critical functions, that limit the authority
of code or users to execute certain functions, etc.

¢ Control of hazards when they occur, for example

— Fail-safe designs
— Isolation of hazards

_ Detection of hazards (and appropriate recovery strategies)
e Warning devices, emergency training, etc.

Having, in some way, identified the hazards one can proceed to a safety requirements analysis—that
is, to discovering the safety-relevant requirements on all the system components that will eliminate
or reduce the likelihood of these hazards. The papers considered here are principally concerned
with techniques for discovering the safety requirements on software components, and with general
techniques for specifying system requirements (not only safety requirements).

The discussion will try to make it clear when we are dealing with mathematical procedures and
when we are dealing with aids to systematic brainstorming, which may be formal in the sociological
sense of being highly organized, but are not mathematical. In this chapter “formal” always means
“mathematical.”

We will use a slight variation on Leveson’s terminology: Hazard analysis attempts to identify the
hazards of a system or, derivatively, the hazardous behaviors of system components that could result
in hazardous behavior of the system. It is necessarily informal-—though the product of a hazard
analysis might be a mathematical definition of the hazardous behaviors. Safety analysis begins
with some list of hazards and a formal or informal model of a system (or system component) and
tries to determine whether hazardous behaviors could actually occur. Safety analysis can be either
formal or informal, and is applicable to those parts of the overall system components under the
designer’s control. Strictly speaking, a safety analysis can only attempt to bound the probability
that a hazardous state will occur.

The paper [3] considers complex software-controlled systems with very stringent safety requirements
(i.e., a vanishingly small probability of mishap during the system’s expected operating life). It

68

argues that there will be no way to provide scientifically-based validation of such a system unless the
system is designed with validation in mind. For example, the analysis will always rely on knowing
certain probabilities that can only be estimated empirically. While there is a solid scientific basis
for bounding the probabilities of hardware failure there is none for bounding the probabilities of
software failure (not, at least, within the tolerances required). Thus the system must either be
designed so that software failures are not critical, or so that failures of critical software are ruled
out (e.g., by mathematical proof). Notice that we can often simplify the verification of a software
component by considering its safety specification alone, and ignoring other aspects of its functional
correctness.

This chapter represents safety analysis more concretely as follows: A system (or component) is a
non-deterministic state machine, a hazard analysis defines a set of hazardous states of that state
machine, and a safety analysis—which can be formal or informal—attempts to determine whether
any of the hazardous states are reachable by executing the state machine from one of its allowed
initial states. The picture can be dressed up by modeling failures as transitions to particular failure
states, by assigning probabilities to failures, etc. This may not be the most suitable picture for all
systems. In some cases it may be preferable to understand a hazard not as a dangerous state (a
snapshot in time) but as a dangerous sequence of events.

Note finally that, like any analysis technique, a technique for safety analysis might simply provide
a yes/no answer or might also help guide the search for an acceptable design.

6.1 Hazard Analysis

A hazard analysis attempts to identify hazards and evaluate their likelihood and seriousness, taking
into account normal operation, operation in maintenance modes, failures (e.g., hardware failures),
unusual occurrences in the environment, and operator error. In some cases some hazards are defined
by government standards or by law.

By its nature, the process of hazard analysis is informal. The question of whether we have the
right list of hazards, or whether the formal model is adequate to capture all the safety-relevant
information is extra-mathematical. If the system (or component) whose hazards we are describing
has a formal model, it is possible for the product of the hazard analysis to be expressed formally.
Ultimately, some of the products of some of the hazard analysis will have to be interpreted formally,
if we ever want to state precise requirements on the hardware and software components of the
system.

It is expected that hazard analysis, in various forms, will continue throughout the development
cycle. The paper [14] describes typical kinds of hazard analysis, including:

e Preliminary—an initial assessment to identify safety critical areas and functions.

® Subsystem—identifies hazards associated with the design of the subsystems (component fail-
ures, operators’ errors, etc.)

69

e System—identifies hazards created by interfaces between subsystems, such as occurrences of
multiple hazards or failures.

e Operating and support—examines, in particular, hazards created by the man-machine inter-
face.

Various methods can be used to perform these analyses, including design reviews, walk-throughs,
checklists, etc.

6.2 Safety Analysis

Whether safety analysis is done formally or informally, a common strategy is to work backward
from a hazard in an attempt to identify credible scenarios that will bring the hazard about. This
section describes some strategies for doing so.

6.2.1 Fault-Tree Analysis

One way of proceeding backward, informally, from hazards to hazardous scenarios is fault-tree anal-
ysis. A sample fault-tree for a patient monitoring system, taken from [14], is shown in Figure 6.1.

Each box corresponds to some possible situation. An expert in the problem domain and the design
of the system analyzes each situation into an “OR” (a list of scenarios, any one of which leads to
it) or an “AND” (a list of scenarios all of which taken together lead to it). When the top box
in the tree is a hazard the tree is called a fault-tree. One typically elaborates the tree until each
situation can be attributed either to a single system component or to the system’s environment.
We can then use the hazards attributed to a system component as a guide to formulating a safety
specification for the component.

There can be no guarantee that this procedure is complete. It is an aid to brainstorming. Nor is
there any guarantee that the component safety specifications obtained in this way, even if they are
interpreted formally, will combine coherently so as to avoid the hazard. Notice finally that there
is some ambiguity about what decomposition means. It can be understood as purely logical—e.g.,
decomposing “the door is not shut” into the OR of “the door is fully open,” “the door is partly
open.” It can be understood as temporal or causal—e.g., decomposing “the door is not shut” into
the OR of “the last person out failed to shut it,” “the latch failed.”

6.2.2 Fault-Tree Analysis of Software

Brainstorming via fault-trees need not stop at the boundary of a component: [16] suggests using a
fault-tree walk-through of the code in order to check that it meets those safety specifications, or to
determine where to insert checking code that will detect hazards. That paper considers software
written in Ada, though the method is applicable to any language.

70

wrong treatment
administered

@ﬁ

[

vital signs
erroneously reported
as exceeding limits

I

vital signs exceed
critical limits but
not corrected in time

@

| | 1
frequency of .
computer fails . nurse does not
me?()s(l:ligr;ent to raise alarm sensor failure respond to alarm
|

computer fails to human error mechanical nurse fails to input
read within required (doctor sets failure vitals manually, or
time limits wrong) inputs incorrectly

Figure 6.1: A fault-tree.

The software itself is associated with a well-defined model of execution, so it would seem that we
could actually provide a formal safety analysis along lines suggested by the fault-tree strategy. This
possibility will be discussed briefly in section 6.2.3.

The example given in the paper [16] considers a control system for a traffic light. Four sensors
detect traffic approaching an intersection, and the controller uses reports from those sensors to
change the settings of the lights. The sensors are labeled north, south, east, and west: the north
sensor guards the north approach to the intersection, etc. The sensors are represented by an array
sensor of Ada tasks indexed by these four directions.

The first step is to relate the hazards identified in the hazard analysis to events and states occurring

71

in the execution of the software. This is an informal procedure. The key part of each sensor task
looks like this:

loop
accept car_comes; -- Accepting an interrupt from
-- the appropriate sensor device

if (lights(dir) /= green) then
-- dir is the direction guarded by
-- this sensor

controller.notify(dir); -- (#)
-- Rendezvous with the controller
-- while it resets the signals

end if; -~ (%)
end loop;

The way hazard analysis works is to try to imagine each possible hazard and then check whether the
code allows it to occur. Let us examine the process of checking for the hazard described as follows:
“the north car enters the intersection as the east car enters.” This symmetric-sounding situation is
(implicitly) decomposed into subcases, and the particular case analyzed is “the sensor(east) task
is in rendezvous with the controller task and the sensor(north) task bypassed the rendezvous™:

e sensor(east) is in rendezvous if it is at (+), waiting for the completion of the rendezvous
controller.notify(east).

e sensor(north) bypassed the rendezvous if it reaches (*) because the test lights(north)
/= green was false.

So the authors have not only identified a particular hazardous subcase, but also interpreted it in
the form of events in the code. This interpretation requires insight that goes beyond identifying
the hazard in the first place.

The idea is that a fault-tree walk-through should identify execution sequences leading to the hazard.
Each programming language construct corresponds to a “generic” template representing the fault-
tree analysis for all instances of the construct. For example, Figure 6.2 gives the template for an
if-then-else. Fault-tree analysis of the code proceeds by applying these templates systematically.
In the case of tasks executing in parallel, the templates are applied separately in each task. There
are also templates representing the entry calls and accept statements whereby tasks communicate.
(This fault-tree procedure seems to omit the possibility of tasks communicating by shared variables.)

The authors apply this if-then-else template to the execution of the following conditional

if (lights(north) /= green) then

72

If-Then-Else
course failure

L.[ﬂ

|

Else part
causes failure
as exceeding limits

i th condition
evaluation
causes failure

ith Then part
causes failure

@
|

and

|

Else body
causes failure

controller.notify(north);

-- else
-- null;
end if;

in the task sensor(north). (To make the relation to the template clearer we have added, in

Condition false

before If

{th Then body
causes failure

{ th condition
true before If

Figure 6.2: Fault-tree for a conditional.

comments, a vacuous “else” part.)

Consider how the analysis of this statement proceeds inside task sensor(north) where the failure
condition is interpreted as “sensor(north) is at (%) after skipping the rendezvous” —presumably
with the additional understanding that the sensor(east) task is simultaneously at (+).

Since this failure condition assumes that the “then” part is not taken, and since there is no real
“else” part, the only possibility left to consider is that the condition evaluated to true and its
evaluation caused a failure, which the authors expand as in Figure 6.3. The “lights(north) is green
condition restates one of the assumptions about the case we are in. Where did the condition
“evaluation occurs as controller changes light” come from? It could result simply from puzzling
about what could go wrong; it could also be regarded as the place, at last, to record explicitly the

”

- ()

73

- (#)

Sensor (N)
atline 24

|

If (lights (N) /-green)
Then...causes failure

A

[Evaluation of lights

No (N) causes failure Controller.

else Notify

part [J causes failure
and

1

. Evaluation occurs
lights(N) - as controller
changes light

green before if

Figure 6.3: Applying the template.

assumption about the other task that makes this a hazard.

6.2.3 Making the Analysis Mathematical

Software fault-tree analysis provides a systematic framework for walking through code with safety
requirements in mind. It would take some hard work (especially, work on the semantics of tasking)
to make the procedure fully formal.

We should first of all note that the not-fully-mathematical nature of the procedure described here
gives the authors no heartburn at all. They say that “industrial users of the technique have
commented that the actual process of having people examine the code thoroughly was crucial to
its effectiveness.”!

1The authors mention tools for automating generation of the fault-trees, but it is not clear whether that simply
means some kind of structure editor that would pop up appropriate templates or whether it means something with

74

The authors note that their procedure is essentially predicate transformation, a well-known tech-
nique for analyzing the consistency of software with some given specification. In a certain sense
they are merely doing predicate transformation with respect to the predetermined specification “a
hazardous state does not arise.”

There are two problems with making this procedure precise. One is the highly technical one of
understanding how to do predicate transformation at all for a complex language, in particular for
code that involves tasking. The other is to define the language of “software events” into which the
assertions about hazards are translated.

For the example presented, the language of software events must be able to assert that executions
in two tasks simultaneously reside at certain control points, and that execution in one of those
tasks got there by proceeding along a certain path (because the if-test was false). One question is
whether, in general, we know what this language of software events will be.

Predicate transformation is not the only way to formalize safety analysis of software. We could
instead translate the code directly into a state machine and then use one of the techniques for
analyzing state machines. To make this tractable it might be necessary to reduce the number of
states by abstracting away from unnecessary information. If, for example, only the sequence in
which tasks rendezvous is important (not the values passed at each rendezvous) we can consider
a model that ignores the values passed. This may well lead to a model that contains execution
sequences impossible in the original, but such a conservative approximation is legitimate.

6.2.4 Formal Safety Analysis via Petri Nets

To repeat: a formal safety analysis (of the kind we are considering in this chapter) starts from a
formal model of a system as a state machine and a formal definition of all its hazardous states. The
paper [18] considers the case in which the system is formally modeled as a Petri net. The analysis
attempts to determine whether the hazardous states are reachable—and, if so0, to provide guidance
on how to redesign the system.

Intuitively, we can think of a Petri net model of a system as follows: the state of the net at some
moment represents a property of the system state at that moment. If the net can make a transition
from state s; to state s, that means that the system can make a transition from a state in which
“the property represented by s; is true” to a state in which “the property represented by s, is
true.”

Untimed Petri Nets

Somewhat more precisely, a Petri net consists of a collection of places and a collection of transitions.
Graphically, we represent each place by a circle and each transition by a bar. In F igure 6.4, taken
from [18], the places are Py, ..., Pi2 and the transitions are ¢, ... , t7. Each transition is associated
with one or more input places (graphically, arrows go from the input places to the transition bar)

more semantic content.

75

and one or more output places (arrows go from the transition bar to its output places). So, for
example, in Figure 6.4 the only input place of transition #; is P and its output places are P, and
Ps.

Each place may contain zero or more tokens, and the distribution of tokens on places is called the
marking of the net. Figure 6.4 has tokens in places P1, Ps, and Py, while Figure 6.5—a different
marking of the same net—has tokens in places P;, Ps, Fs, and P;;. The state of a net is its marking.
We can think of each place as representing a simple proposition about the system, which is true
when the place contains a token and false otherwise.?

The nets shown in Figures 6.4 and 6.5 model different states of a system that consists of a train,
a crossing gate that guards an intersection, and a controller for the gate. Place P;; represents the
proposition that the crossing gate is up and P, the assertion that it is down. Thus, the markings in
both Figure 6.4 and Figure 6.5 “say” that the gate is up (because Pi; contains a token). Similarly,
the places Py, ..., Py represent propositions about the train: Fi, which is marked in Figure 6.4,
says that the train is approaching the crossing, while P2, which is marked in Figure 6.5, says that
it is about to enter the crossing.

The transition rules tell us how to model the evolution of the system by moving tokens around the
net. A transition t is enabled if all its input places have tokens in them. In Figure 6.4 transition
t1, which represents the detection of the approaching train, is enabled. The transitions enabled
in Figure 6.5 are 1, representing the act of entering the crossing, and t4, an internal transition
of the controlling computer. When an enabled transition fires the tokens are removed from its
input places and one token is put on each of its output places, and the resulting marking “says”
something about the system in its new state.> Figure 6.5 is the result of firing transition #; in
Figure 6.4. A Petri net is executed by repeatedly firing enabled transitions.

In terms of this model we can formally describe what the product of a hazard analysis is supposed
to be—a list of all the markings of the Petri net that represent hazards. (The way in which we
decide what constitutes a hazard is still non-mathematical.) In this case, presumably, the hazards
are all those markings in which Ps and Pj; have tokens; that is, all those situations in which the
gate is up when the train is in the crossing.

From this formal definition of hazards and formal model of the system we can attempt a purely
mathematical safety analysis. There are two obvious strategies: one is to determine whether,
starting from some given initial state, a hazard is reachable by executing the net; the other is to
start from a hazard state and run the Petri net backward to see whether the given initial state
could have been a precursor of the hazard (and, if not, the hazard is avoided).

For a complex system brute force application of either method might be computationally in-
tractable. The authors of [18] suggest a strategy that is computationally cheaper. One first does
a relatively cheap search for certain “critical” states that represent key decision points: from a

2Gtrictly speaking, this interpretation makes sense only when there can never be more than one token on any
place.

3 Again, this discussion makes strict sense only if there is never more than one token on each place. The rules
concerning multiple tokens per place and multiple arrows between a place and a transition are straightforward.

76

Approach @

Before @ Py
Crossing @ UP
Within @ e @ Down
Pio Railroad
t3 Crossing
@ ts Gate

Past @

. Computer
Train

Figure 6.4: A Petri net model of a rail-crossing.

critical state it is possible for the system either to make a transition to either a safe or an unsafe
state. For example, if the system is in the state s = P, Py Py Py it can take two transitions:

e Transition ¢, results in the hazardous state P3P;PyP;;—hazardous because P; means that
the train is in the crossing and P;; means that the gate is up.

o Transition ¢r results in the state P, P;Pj5, which is completely safe—it is non-hazardous and
cannot lead to a hazardous state.

This makes s a critical state. To remove the hazard from our design, we can add to the design an
interlock giving preference to t7 over i,.

This strategy has strengths and weaknesses. The strengths:

e It is (relatively) computationally cheap.

e It can be used to help develop a safe design, and not merely to check a completed design for
safety.

Approach 9

Before @ Py
Crossing @ Up

t2 tﬁ t']
Within @ e @ Down
Pio Railroad
t3 Crossing
@ % Gate
. (2
Computer

Train

Figure 6.5: A different marking of the Petri net.

The weaknesses:

o It is conservative. The strategy may identify critical states that are not actually reachable
and, as a result, add features to the design for the sake of a nonexistent danger.

o The revised design, with its interlocks, is purely abstract and may not be straightforwardly
implementable. (How do you build the interlock that keeps the train from entering the
crossing until the gate is down? One cannot do so directly. One would have to build a more
complex model incorporating a mechanism to trigger an emergency brake if a train threatened
to enter the crossing before the gate was lowered.)

Timed Petri Nets

The Petri net formalism just described models the sequencing of states and transitions, but not
their timing. Various real-time extensions have been proposed. The authors of [18] adopt one
in which each transition t is associated with two numbers Min, and Maz;, between 0 and oc,
representing the minimum and maximum transition times for ¢. Intuitively, ¢ cannot fire unless

78

it has been continuously enabled for at least Min, and it must fire once it has been continuously
enabled for time Maz;. (To be sensible, one requires that Min; < Maz,.)

For example, safety of the railway crossing control system modeled by the Petri nets in Figures 6.4
and 6.5 may rely on a timing property: it always takes longer for a train to cross the approach
sector than it does for the crossing gate to be lowered. The untimed Petri net model of the system
is unsafe because it does not capture this property, which would naturally be captured in a timed
model.

General analysis of these timed models seems difficult. Instead, the authors incorporate them into
the strategy already described: One first ignores the timing information and identifies the critical
states just as before; but now a greater repertoire of options is available for designing around the
hazards. In particular, one can add to the design (or find already present in the design) timing
constraints that will force the system down a safe path. For example, it may suffice to add a
watchdog timer that will put the system into a safe state if it is taking too long for some transition
to fire.

Petri Nets with Failures

One can also generalize Petri nets in order to model failures, by adding to the model a special set
of failure transitions (distinct from the normal ones) and a special set of failure places (distinct
from the normal ones). The output place of a failure transition is a failure place. A failure place
might represent, for example, the failure of a processor.

In this formalism it is possible to model a number of important ideas about faults and fault-
tolerance. For example, a system is fail-safe (for some particular failure) if no execution that
proceeds from that failure transition arrives at a hazardous state. Based on engineering judgements
about the worst hazards and the most likely failures, this model can be used to design for safety in
the presence of various kinds of failures.

6.2.5 Other Means of Formal Safety Analysis

Two questions arise for formal safety analysis of the kind we are considering: Are some repre-
sentations of state machines more helpful than others? What other analysis techniques might be

helpful?

Representing State Machines

Consider again the crossing guard system represented by the Petri net of Figure 6.4. Note one way
in which the Petri net representation is economical. Even if we restrict attention to markings that
put at most one token on each place, the 12 places can have 2% different markings.* Thus this
small diagram represents a state machine that could have as many as 212 states, which is much

“Not all of these states are reachable from any given initial state.

79

more compact than the “garden variety” representation of a state machine in which each of these
states would be represented by a circle of its own. Here is a case in which the exponential function
is working in our favor.

Looking more closely, the system “really” conmsists of the interaction of three components: the
train, the controller, and the gate. There is always precisely one token on the places P, ... P4
(which represent states of the train) and precisely one token on the places P;; and P, (which
represent states of the gate). The markings of the controller are more complex. One weakness of
the Petri net formalism as a specification notation is the lack of a built-in mechanism for this kind
of decomposition. (That weakness is irrelevant if the Petri net is merely the “compiled form” of a
model initially described in a notation that is more highly structured.)

Thus the economy of this Petri net representation can largely be achieved by any formalism that
explicitly decomposes the problem into three communicating components, each of which is a state
machine. The one seeming advantage for Petri nets is representation of the controller, which
does have fewer places than the controller has reachable states. On the other hand, this “more
economical” representation can be obscure—the rules for firing transitions amount to a rather
opaque notation for writing programs.

Analyzing State Machines

Reachability We may regard the Petri net as simply one implementation technique for permit-
ting analysis of the reachability graph of the state machine it represents. The reachability graph can
be thought of as the directed graph that results from “unrolling” execution of the state machine.
Figure 6.6, taken from Figure 3 of [18] shows the reachability graph of the Petri net mode] from
Figure 6.4. Each node in the reachability graph is a state of the system (in the Petri net model,
that means a marking of the graph) and each arrow is a transition. Execution paths are paths
through this graph. For pedagogical purposes the nodes corresponding to hazardous states have
been drawn as rectangles.

In general, the reachability graph may be enormous. The critical-states trick described in sec-
tion 6.2.4 is a way of generating useful information by looking only at small pieces of the graph.
This trick can be implemented on top of any formal state-machine model—in particular, for RSML
or StateCharts (see section 6.3). We only need to be able to generate the set of successor states
and the set of predecessor states of any given state. This computation is easy for Petri net models
and more complex for the RSML or StateCharts models described in section 6.3.

Model-Checking

Model checking consists of clever ways to make brute force techniques for analyzing reachability
graphs more efficient and tractable. Symbolic model checking varies these techniques by incor-
porating symbolic manipulations roughly analogous to those used in symbolic algebra packages.
When successful, model checkers permit analysis of a richer collection of properties than those
expressible in the form “state s is never reached.” For example, model checking can analyze prop-

80

Figure 6.6: A reachability graph.

erties of the sequencing of events, such as “between every request and receipt there must be an
acknowledgement.” The literature on model checking and symbolic model checking is large [2, 1].

The symbolic model checking method of [1] can represent the timed Petri nets described above and
analyze such timing properties as “the system will never spend more than ¢ seconds continuously
in state 5.” It is an open question how well this method will scale up.

6.3 Requirements Specification

The Requirements State Machine Language (RSML) is a specification notation that allows a user to
describe a system as a collection of communicating state machines. The basic problem it addresses

81

is the problem of scale: how to write a large, complex, realistic specification in an intelligible
way. The paper [17] describes applying RSML to specifying TCAS II, the airborne collision alert
system for civilian aircraft; and [9] describes some techniques for automatically checking RSML
specifications for certain completeness and consistency properties.

The TCAS specification gives RSML a great deal of credibility: starting as a shadow project, the
RSML specification work outperformed the “ordinary” process so well that, part way through the
experiment, it became the official standard. In particular, the designers of RSML claim a good
degree of success in making the specifications accessible to pilots, external reviewers, programimers,
etc. This is the most serious example we know of applying formal descriptive techniques to a
complex reactive system.

The underlying mathematical model of RSML is state machine that can perform basic actions of the
following kind: receive an event that triggers a transition, resulting in a new state and (possibly)
the generation of more events. In particular, the environment in which TCAS operates can itself be
modeled by such machines, which provides a way to record all the assumptions about the operating
environment of TCAS.

Different kinds of specification information are written in different formats: graphs, tables, and
text. The graphical notation, depicting states and transitions between them, is based largely on
the StateCharts notation of Harel [7]. Once again the problem is scale: the authors estimate that,
if written out as a single conventional state machine, a model of TCAS II would contain 100 states.
The notation makes this manageable by organizing the graphical representation of a state machine
in certain hierarchical ways—in particular, using the notions of superstate and parallel states. As
a result, the specification uses only about 100 states.

Figure 6.7 (taken from Figure 5 of [17]) shows the representation of a superstate. In this example,
the superstate) contains two substates, R and 5. When a machine is in state € it is also
in (precisely) one of the substates R and S. (This is sometimes expressed by saying that @ is
OR-decomposed into R and §.) This representation allows certain economies in describing the
transitions of the machine. For example, transition C, represented by an outgoing arrow from
the boundary of the superstate @, is a transition from Q@—that is, a transition that takes place
regardless of which of its substates ¢ is in. Without the grouping of R and S into @, we would
have to represent the meaning of C by two arrows, one from R and one from S. Transition D, by
contrast, is a transition from S, and cannot be taken from substate R.

Figure 6.8 (taken from Figure 6 of [17]) shows the representation of parallel states. In this case,
state S is decomposed into the four states A, B, C, and D (which, in this picture, are themselves
superstates). Being in state S means being simultaneously in each of these states, which is some-
times expressed by saying that S is the AND-decomposition of A, B, C, and D. Since the four
parallel states are themselves superstates, being in S means being in exactly one of the (unnamed)
circles from each of the four states. Now a tramsition from S can be described with one arrow
instead of 3 x 3 X 2 X 4 (i.e., one for each possible combination of circles).

Each transition arrow is associated with three things: a triggering event, a condition (which must

82

Figure 6.7: A superstate.

hold if a triggered transition is actually to occur), and the events (if any) it generates.® In the
StateCharts notation this information is written directly beside each arrow. For the TCAS specifi-
cation that proved impractical, so in RSML the events and conditions associated with transitions
are separately specified in a format that is partly textual (name of transition, source and destination
states, triggering event, etc.) and partly tabular (the condition).

The top level of an RSML description is a set of components. Each component is a state machine
described in the hierarchical notation of superstates and parallel states. The events generated by
components are of two kinds, internal and external. An internal event generated by some transition
of component C is broadcast within C, and can trigger transitions of C, but is not visible outside
C. (Internal events are used to regulate the ordering of actions within a component.) External
events represent the sending and receiving of messages between components. The SEND(msg)
event triggers a corresponding RECEIVE(msg) event in the destination component, but SEND and

°In the language of tables that we have been using in other parts of the project, the condition for a transition
corresponds to the engagement criterion for a particular operational procedure.

83

N Y

Figure 6.8: A parallel state.

RECEIVE are not assumed to be simultaneous. Typically, a RECEIVE event triggers a transition
that causes a state change: certain input variables of the receiving component are updated with
information contained in the message and the transition may generate internal events as well.
Interfaces between components, which document the effects of these send and receive transitions,
are economically described by a special-purpose RSML construct.

Experience with the TCAS project led the authors to diverge from the StateCharts notation in
various ways. We have already noted that certain information-labels that StateCharts attaches to
the graphical arrows are represented separately in RSML. In addition, the RSML notation makes
heavy use of redundant information that supplies convenient cross-referencing. For example, an
identifier I that denotes a variable defined on page 32 is always written as I,_32, the subscript
v serving as a reminder that I is a variable and the 32 as a reminder of where the definition
can be found. Surprisingly, some of the more sophisticated notations of StateCharts that support
information hiding have been removed because their use was found to cause more problems than
they solved.

84

There is one substantial semantic difference between RSML and StateCharts, which lies in the
definition of a single “execution step” for a single component. The two definitions of execution
step have general similarities: some external events arrive at the boundary of a component; these
external events may trigger internal transitions, generating events that may trigger other internal
transitions, etc.; the resulting “step” of the component—which is atomic from the external point of
view—is completed when all such possibilities for internal transitions are exhausted. The difference
lies in the definitions of how the internal transitions cascade. The authors of [17] claim that RSML’s
definition of an execution step, though complex, is somewhat more intuitive than the definition in
StateCharts. However, the definition of step used in StateCharts does have one virtue that the
RSML definition lacks: it is guaranteed to terminate.

6.3.1 Tools for RSML

Leveson et al. have, or have under development, a number of prototype tools for RSML, including
a simulator, tie-ins with fault-tree analysis and other kinds of safety analysis, and tools for doing
consistency checking.

The consistency-checking tools, described in [9], have much in common with Tablewise. An RSML
specification describes, potentially, a very big state machine, which could in principle be defined
by a table. The consistency-checking problem amounts to checking whether this very big table is
exhaustive and exclusive.

The strategy is to define the state machine in a highly structured way so that its checking can be
factored into the checking of lots of smaller pieces. The natural pieces to consider are the definitions
of individual transitions. The idea is to restrict the definitions of individual transitions in such a
way as to guarantee that they will be well-behaved when put together.

Here are two illustrations of possibilities that complicate the composition of transitions, and must
be ruled out (if this particular kind of local analysis is desired).®

Example 1 Suppose that the event e can trigger both a transition from state A to state B
(enabling condition z > 0) and a transition from state A to state C (enabling condition z < 2).
If € occurs when z = 1 both transitions are enabled, but they cannot both be taken. In the
RSML semantics this is regarded as a nondeterministic choice. The nondeterminism complicates
the analysis, so the analysis tool must forbid it. The user must change the conditions so that an
event enables at most one transition from each state.

Example 2 Suppose that A and B are parallel states. We consider an example that introduces
undesired complexity into the definition of taking simultaneous transitions out of both states. We
have

®The underlying mathematics is not well explained in [9]. The interested reader should instead consult the Ph.D.
thesis [8].

85

e event e can trigger a transition A — A’ subject to the condition that “the system is also in
state B”

e event e can trigger a transition B — B’ subject to the condition “true”—that is, the transition
is always enabled and e can always trigger it

The analysis would represent simultaneous transitions via interleaving. That is, it would represent
the “simultaneous” transition from both of the parallel states as a result either of evaluating the
transition A — A’ followed by transition B — B’, or of evaluating transition B — B’ followed
by transition A — A’. For this to work the two choices must lead to the same result (and must lead
to the same result as a simultaneous transition). If we choose the first order, then after evaluating
the two transitions we are jointly in states A’ and B’. If we choose the second order, the effect of
transition B — B’ is to make the condition on the transition from A false (because the system is
no longer in state B). So the second transition is a no-op and we wind up jointly in the states A
and B, a different result. The analysis tool must forbid this pair of transitions.

86

Chapter 7

Conclusions and Further Work

Our work has introduced four significant advances in decision table methodology:

e structural analysis of decision tables;
¢ partitioned decision tables;
e assertion tables and generation of decision tables from assertion tables;
e preconditions for decision tables.
We believe that the idea of decision tables with behaviors as ob jects, if properly developed, and our

work on generating testable code, if properly finished, have the potential to be important advances
as well.

The following list describes a number of directions in which the work described in this report could
be pursued.

» Work out a form of structural analysis that applies to partitioned decision tables and decision
tables with preconditions. (In fact, we have worked out a preliminary algorithm for such a
form of structural analysis.)

o Follow up the idea that a decision table with behavior can represent an object. Use this idea
to forge stronger connections with state machine or statechart based specification approaches.

¢ Deepen the connection with formal program development methods begun by our methods of
generating decision tables from assertions.

o Sherry [25] associates with decision tables a specification development methodology with the
following non-formal refinement path.

87

mission (entire table) — opprocs — scenarios
— behaviors — dependent missions (tables)

Can we provide further formal support for this methodology?

Strengthen the Tablewise logic module so as to support (at least) linear arithmetic. Doing so
would allow it to support the following.

— Automatic detection of mathematical relations between table entries.
_ Automatic extraction of test cases from test categories in fairly general situations.

— Analysis of Parnas-style tables, where table entries are predicates.

Explore methods for automatically simplifying decision tables and code generated from deci-
sion tables in the context of a precondition.

Decision tables can be regarded as a means of describing transitions of state machines using
logical conditions expressed in tabular form. Petri nets can be looked at as a way of defining
states and transitions of state machines using logic in graphical form (a node of a Petri net =
a logical proposition). Can the two be usefully connected? Petri nets are also closely related
to the programming notation of UNITY [4], which is associated with a simple and elegant
temporal logic. Both Petri nets and UNITY specifications can be analyzed using techniques
such as model checking. Can a fruitful connection be made with decision table methods?

The underlying idea of decision tables, and more so of partitioned decision tables, is to
provide a well-structured way of stating logical propositions. The structure assists both
understanding by humans and analysis by automated means. Continue to exploit the idea
of using logical analysis to assist both understanding and analysis. Although humans and
computers have different abilities, we believe that on the whole something that is easier for
humans to understand is easier to analyze efficiently using a computer.

Implement generation of testable code and tests, as well as behaviors of decision tables, as
described in Chapter 3 and Chapter 5.

The work for this task has led to several major innovations in decision table methodology:
partitioned decision tables, assertion tables, preconditions for tables. Because these are inno-
vations, we need to promote their acceptance by using them for significant work on examples
and by refining them as necessary to make them more understandable and usable by ordinary
users.

88

Bibliography

(1] R. Alur, T.A. Henzinger, and P.-H. Ho. Automatic symbolic verification of embedded systems.
In Proceedings of the 1{th Annual Real-time Systems Symposium, pages 2-11. IEEE Computer
Society Press, 1993.

[2] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Symbolic model checking:
10?° states and beyond. Information and Computation, 98(2):142-170, 1992.

(3] R.W. Butler and G.B. Finelli. The infeasibility of quantifying the reliability life-critical real-
time software. IEEE Transactions on Software Engineering, 19(1):3-12, January 1993.

[4] K. Mani Chandy and Jayadev Misra. Parallel Program Design, A Foundation. Addison-Wesley,
New York, 1988.

[5] John Joseph Chilenski and Stephen P. Miller. Applicability of modified condition/decision
coverage to software testing. Distributed by FAA.

(6] E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, Englewood Cliffs, N.J., 1976.

[7] D. Harel. Statecharts: A visual formalism for complex systems. In The Science of Computer
Programming 8, pages 231-274, 1987.

(8] Mats Per Erik Heimdahl. Static analysis of state-based requirements. PhD thesis, UC Irvine,
Irvine, California, 1994.

[9] Mats Per Erik Heimdahl and Nancy G. Leveson. Completeness and consistency analysis of
state-based requirements. In Proceedings of the 17th international conference on software
engineering, April 1995.

(10] K. L. Heninger. Specifying software requirements for complex systems: New techiques and
their applications. IEEE Transactions on Software Engineering, SE-6(1):2-18, 1980.

[11] D. N. Hoover. Three extensions of decision table syntax and semantics. Technical report,
Odyssey Research Associates, Inc., Ithaca NY 14850-1326, March 1995.

[12] D. N. Hoover and Zewei Chen. Tbell: A mathematical tool for analyzing decision tables.
NASA Contractor Report 195027, November 1994.

89

[13] D. N. Hoover and Zewei Chen. Tablewise: A decision table tool. In John Rushby, editor,
COMPASS 95, 1995.

[14] Nancy G. Leveson. Software safety: Why, What, and How. Computing Surveys, 18(2):125-163,
June 1986.

[15] Nancy G. Leveson. Software safety in embedded computer systems. CACM, 34(2):34-46,
February 1991.

[16] Nancy G. Leveson, Stephen Cha, and Timothy Shimeall. Safety verification of Ada programs
using software fault trees. IEEE Software, pages 48-59, July 1991.

[17] Nancy G. Leveson, Mats Per Erik Heimdahl, Holly Hildreth, and Jon Damon Reese. Require-
ments specification for process-control systems. IEEE Transactions on Software Engineering,
20(9):684-707, September 1994.

[18) Nancy G. Leveson and Janice Stolzy. Safety analysis using petri nets. JEEE Transactions on
Software Engineering, SE-13(3):386-397, March 1987.

[19] John R. Metzner. Decision Table Languages and Systems. Academic Press, New York, 1977.

[20] Greg Nelson and Derek C. Oppen. Simplification by cooperating decision procedures. ACM
Transactions on Programming Languages and Systems, 1(2):245-257, October 1979.

[21] John K. Ousterhout. Tel and the Tk Toolkit. Addison-Wesley, Reading, Mass., 1994.

[22] David L. Parnas. Tabular representation of relations. Technical Report 260, McMaster Uni-
versity Communications Research Laboratory, Hamilton, Ontario, Canada L8S 4K1, October
1992.

[23] RCTA, Inc., 1140 Connecticut Ave. NW, Suite 1020, Washington, D.C. 20036. Software Con-
siderations in Airborne Systems and and Equipment Certification, December 1990. Document
No. RCTA/DO-178-B.

(24] Lance Sherry. Apparatus and Method for Controlling the Vertical Profile of an Aircraft. Hon-
eywell, Inc., Aug. 16 1994. United States Patent #5,337,982.

[25] Lance Sherry. A structured approach to requirements specification for software-based systems
using operational procedures. In IEEE Digital Avionics Systems Conference, 1994.

[26] Robert E. Shostak. A practical decision procedure for arithmetic with function symbols.
Journal of the Association for Computing Machinery, 26(2):351-360, April 1979.

[27] J. M. Spivey. The Z Notation: A Reference Manual. Prentice-Hall, Englewood Cliffs, N.J.,
2nd edition, 1992.

90

(28] A. John van Schouwen. The a-7 requirements model: Re-examination for real-time systems and
an application to monitoring systems. Technical Report CRL Report No. 242, Communications

Research Laboratory, Faculty of Engineer, McMaster University, Hamilton, Ontario, Canada
L8S 4K1, February 1992.

[29] N. Wirth. Program development by stepwise refinement. Comm. ACM, 14:221-227, 1971.

91

Appendix A

Notes on Tablewise 2

During work on the predecessor to this task, we developed a decision table tool, eventually named
Tablewise, and described in [12, 13]. Tablewise is composed of a window-based decision table editor
(selection part only) and a logic module that performs basic completeness and consistency analysis
of decision tables as well as structural analysis and naive generation of tree code. Analysis results
are displayed in table form by the table editor module.

During this task, we have been implementing a revision of Tablewise, called Tablewise 2, which
incorporates a number of the decision table extensions described in this report as well as making
a number of other improvements in both algorithms and “system” aspects. In this chapter we
summarize the changes made and the features to be added or not.

A.1 Decision Table Extensions in Tablewise 2

We intend that eventually Tablewise 2 will support all the decision table extensions described in
this report. As a deeply revered writer has observed, however, with man not all things are possible;
therefore the initial release of Tablewise 2 will support only the extensions that we consider the
most significant, innovative, and necessary to demonstrate by use of a decision table tool that
supports them.

Extensions to be Supported by Tablewise 2.

e Partitioned decision tables. The table editor will support only one-level as described in
[12, 13].

e Table preconditions (Precond, Illegal, Always, Never).
e Assertion tables, testing of decision tables against assertions, generation of decision tables

from assertion tables.

92

e Structural analysis for partitioned decision tables and tables with preconditions.

Extensions Not Included in the Initial Release of Tablewise 2.

Behaviors, systems of related tables. (Single tables with behaviors will be included in a later
release. Systems of tables need another design cycle, taking full account of the idea of ob Jject
tables.)

Generation of MC/DC testable code, test generation. We will probably include code gen-
eration in an early release, perhaps even in the initial release. For test generation, we will
probably wait until we strengthen the logic module to extract test cases from test categories,
which is a nontrivial task.

Parnas-style decision tables permitting arbitrary predicates as entries.

A.2 System and Algorithm Considerations in Tablewise 2

The logic module has been ported from SML to CAML Light, another ML dialect. CAML
Light produces far smaller executables that will load faster and will run conveniently on PCs
that have a normal amount of power by current standards.

It also produces a form of intermediate code that can be compiled into an executable for
any platform that has a CAML Light compiler (many Unix platforms plus PCs with DOS or
Windows 3.1). That means we can support the logic module on many platforms by simply
distributing the intermediate code.

The table editor is written in Tcl/Tk [21], as it was for the original Tablewise. It should
run on most Unix platforms, though we may have to either distribute source or support it
on those platforms ourselves. We believe that porting the table editor to PCs with Windows
will be straightforward but will require a significant amount of labor.

Because we have had a number of requests from people interested in using the Tablewise logic
module with a different interface, in Tablewise 2 we have coupled the table editor and the
logic module less closely than in Tablewise 1. The logic module will be run in batch mode
accepting input with the same syntax as the table editor uses to store tables. The table
storage grammar will be included in the Tablewise 2 release, probably in a Lex/YACC form.

Analysis algorithms will be much more flexible and adaptable than in Tablewise 1. Tablewise 2
will, in fact, economically perform several forms of analysis simultaneously, so the logic module
will not need to be called so often.

Because the analysis algorithms will be more flexible, others may want to adapt them to uses
we have not thought of. To this end, source for the top level of the logic module will be made

public.

93

Form Approved

REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Public reporting burden for this collection of information s estimated 10 average) hour per response, including the time for reviewing instructions, searcring existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments re?armng this burden estimate or any other aspect of this
Sollection of information, inctuding suggestions for reducing this burden. to Washington Headquarters Services, Directorate tor Information Operations and Reports, 1215 Jetferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302. and to the Office of Management anc Budger, Paperwork Reduction Project (0704-0 188), washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) |2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
April 1996 Contractor Report
4. TITLE AND SUBTITLE S. FUNDING NUMBERS
Applications of Formal Methods to Specification and
Safety of Avionies Software C NAS1-20335
TAQ2
6. AUTHOR(S) WU 505-64-50-03

D.N. Hoover, David Guaspari, and Polar Humenn

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
. REPORT NUMBER

Odyssey Research Associates, Inc.

301 Dates Drive

Ithaca, NY 14850-1326 T™™-95-0091
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR'I‘REIS; ém_o:rrostér;e
National Aeronautics and Space Administration AGENCY ums

Langley Research Center NASA CR-4723
Hampton, VA 23665-5225

11. SUPPLEMENTARY NOTES
Langley Technical Monitor: C. Michael Holloway
Final Report

123, DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Unclassified - Unlimited
Subject Category 62

13. ABSTRACT (Maximum 200 words)

This report treats several topics in applications of formal methods to avionics
software development. Most of these topics concern decision tables, an orderly,
easy-to-understand format for formally specifying complex choices among alternative
courses of action.

The topics relating to decision tables include: generalizations of decision tables
that are more concise and support the use of decision tables in a refinement~based
formal software development process; a formalism for systems of decision tables with
behaviors; an exposition of Parnas tables for users of decision tables; and test
coverage criteria and decision tables. We outline features of a revised version of
ORA's decision table tool, Tablewise, which will support many of the new ideas
described in this report.

We also survey formal safety analysis of specifications and software.

14. SUBJECT TERMS ' 15. NUMBER OF PAGES
Formal specification, decision tables, Tablewise, assertion 95
tables, Parnas tables, A-7 Specification method, code generation,| 16. PRICE CODE
testing, MC/DC test coverage, formal safety analysis, RSML A0S
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified Unclassified
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18
298-102

