
NASA Contractor Report 4723

Applications of Formal Methods to
Specification and Safety of Avionics Software

D. N. Hoover, David Guaspari, and Polar Humenn

Contract NAS1-20335

Prepared for Langley Research Center

I II
April 1996

https://ntrs.nasa.gov/search.jsp?R=19960023949 2020-06-16T04:56:19+00:00Z





NASA Contractor Report 4723

Applications of Formal Methods to
Specification and Safety of Avionics Software

D. N. Hoover, David Guaspari, and Polar Humenn

Odyssey Research Associates, Inc. • Ithaca, New York

National Aeronautics and Space Administration
Langley Research Center • Hampton, Virginia 23681-0001

Prepared for Langley Research Center
under Contract NAS1-20335

April 1996



Printed copies available from the following:

NASA Center for AeroSpace Information

800 Elkridge Landing Road

Linthicum Heights, MD 21090-2934

(301) 621-0390

National Technical Information Service (NTIS)

5285 Port Royal Road

Springfield, VA 22161-2171

(703) 487-4650



Abstract

This report treats several topics in applications of formal methods to avionics software development.

Most of these topics concern decision tables, an orderly, easy-to-understand format for formally

specifying complex choices among alternative courses of action.

The topics relating to decision tables include: generalizations of decision tables that are more

concise and support the use of decision tables in a refinement-based formal software development

process; a formalism for systems of decision tables with behaviors; an exposition of Parnas tables

for users of decision tables; and test coverage criteria and decision tables. We outline features of a

revised version of ORA's decision table tool, Tablewise, which will support many of the new ideas

described in this report.

We also survey formal safety analysis of specifications and software.





Contents

Introduction 6

1.1 Basics of Decision Tables ................................. 8

1.2 Summary of Table Forms ................................. 9

1.3 Logical Notation ...................................... 10

Three Extensions of Decision Table Syntax and Semantics

2.1

2.2

2.3

11

Recursively Partitioned Decision Tables ......................... 12

2.1.1 An Example .................................... 14

2.1.2 Decision Diagram Representations and Algorithms for Partitioned Decision

Tables ........................................ 15

Decision Tables with Preconditions or Illegal Configurations .............. 15

Assertion Tables ...................................... 17

2.3.1

2.3.2

2.3.3

2.3.4

Checking a Table Against Assertions ....................... 18

Generating Selection Tables from Assertions ................... 19

Semantics of Decision Tables and Assertion Tables ............... 20

Refinement of Assertion Tables and Decision Tables .............. 24

Tables with Behaviors

3.1

3.2

3.3

3.4

3.5

3.6

26

Table Definitions and Their Environments ........................ 28

Type declarations ...................................... 28

Variable Declarations .................................... 29

Expressions ......................................... 30

States and Assignments .................................. 30

Decision Tables with Behaviors .............................. 3()



3.7 Checking .......................................... 31

3.8 FunctionTables....................................... 32

A Guide to Parnas Tables

4.1

4.2

4.3

4.4

4.3.1

4.3.2

4.3.3

4.3.4

4.3.5

4.3.6

4.3.7

34

Taxonomyof ParnasTables ................................ 34

Background:DataStatesandBlack-BoxProgramSpecifications........... 35
The Tables ......................................... 36

NormalFunctionTables.............................. 36

InvertedFunctionTables ............................. 38

VectorFunctionTables .............................. 40

Normal,Inverted,andVectorRelationTables;Mixed VectorTables ..... 41

PredicateExpressionTables............................ 42

CharacteristicPredicateTables.......................... 43

GeneralizedDecisionTables............................ 44

Conclusions......................................... 45

5 Testing Decision Tables and Code Generated from Decision Tables 1 47

5.1 Coverage Properties and Associated Terminology .................... 48

5.2 Test Categories vs. Test Cases ............................... 51

5.3 Independent Effect ..................................... 52

5.4 Pure Conditional Code, Tree Code, Decision Trees, and Context ........... 54

5.4.1 Condition statements and Expressions ...................... 54

5.4.2 Boolean Expressions ................................ 55

5.4.3 Straight Line and Pure Conditional Code .................... 56

5.4.4 Context ....................................... 56

5.5 Decision Tables and Short Circuit Operations ...................... 58

5.6 Generating Testable Code and Tests from Decision Tables ............... 60

5.6.1 Testable Tree Code ................................. 60

5.7 Testable Opproc by Opproc Code ............................. 61

5.8 Testable Code Containing More General Decisions ................... 63

1We thank Steve Miller for numerous explanations that have made this chapter possible. Any errors that it still

contains are the fault of the authors.

2



6

5.9 TestCoveragefor DecisionTables............................. 64

Safety Analysis
6.1

6.2

6.3

67

HazardAnalysis ...................................... 69

SafetyAnalysis ....................................... 70

6.2.1 Fault-TreeAnalysis ................................ 70

6.2.2 Fault-TreeAnalysisof Software.......................... 70

6.2.3 MakingtheAnalysisMathematical........................ 74

6.2.4 FormalSafetyAnalysisviaPetri Nets ...................... 75

6.2.5 Other Meansof FormalSafetyAnalysis ..................... 79

Requirements Specification ................................ 81

6.3.1 Tools for RSML .................................. 85

7 Conclusions and Further Work

A

87

Notes on Tablewise 2 92

A.1 Decision Table Extensions in Tablewise 2 ........................ 92

A.2 System and Algorithm Considerations in Tablewise 2 .................. 93

3



List of Figures

1.1 A decision table with both selection and behaviors parts [25] .............. 8

2.1 A recursively partitioned decision table .......................... 14

2.2 A simple decision table ................................... 14

2.3 Another partitioned decision table and an equivalent simple decision table ...... 16

2.4 Two equivalent decision tables with precondition annotations ............. 17

2.5 An assertion table ...................................... 18

2.6 A table to test against assertions .............................. 19

2.7 Results of assertion check .................................. 19

2.8 A table generated from assertions ............................. 20

2.9 A weaker assertion table and the decision table it generates ............... 21

3.1 A type declaration table ................................... 29

3.2 A variable declaration table ................................. 29

3.3 Function table for the function compare .......................... 33

4.1 A normal function table ................................... 37

4.2 A functional decision table corresponding to Figure 4.1 ................. 37

4.3 A normal function table with three input variables, presented in slices ......... 38

4.4 A normal function table with three input variables, two of them "stacked" on the left. 39

4.5 An inverted function table ................................. 39

4.6 Decision table corresponding to Figure 4.5 ........................ 40

4.7 A vector function table ................................... 40

4.8 Decision table corresponding to Figure 4.7 ........................ 41

4.9 A normal relation table ................................... 42

4



4.10 A vectorrelationtable................................... 42

4.11 A predicateexpressiontable................................ 43
4.12

4.13

4.14

4.15

A characteristicpredicatetable.............................. 44

A generalizeddecisiontable................................ 44

Functionaldecisiontableequivalentto Figure4.13................... 45

The "true" Parnas-styledecisiontable.......................... 45

5.1 Thedefinitionof context .................................. 57

5.2 Varying order of evaluation in a decision table ...................... 59

5.3 Opproc-by-opproc code ................................... 61

5.4 How to eliminate the conditional operator ......................... 63

6.1 A fault-tree ......................................... 71

6.2 Fault-tree for a conditional ................................ 73

6.3 Applying the template ................................... 74

6.4 A Petri net model of a rail-crossing ............................ 77

6.5 A different marking of the Petri net ............................ 78

6.6 A reachability graph ..................................... 81

6.7 A superstate ......................................... 83

6.8 A parallel state ........................................ 84



Chapter 1

Introduction

The theme of the research done on this project 1 and on its predecessor [12] is the use of formal

methods and formally based tools to produce precise, understandable specifications and to help

automate parts of the software production process, such as formulating specifications, checking

specifications, deriving code and documentation from specifications, and testing of specifications

and code. We have particularly concentrated on decision tables because, as discussed in Sherry

[25], they are easy to understand, suitable for specifying iterative reactive systems of the kind
common in avionics, and have a natural refinement methodology associated with them (missions

to operational procedures to scenarios to behaviors to dependent missions).

In the predecessor to this task we developed Tablewise, a tool supporting formal specification of

code using decision tables and generation of code from decision tables [12, 13]. Tablewise is a

basic tool supporting editing of decision tables, testing decision tables for consistency (at most one

outcome assigned under each possible scenario) and completeness (some outcome assigned to every

possible scenario), a form of structural analysis that localizes faults responsible for tables being

incomplete or inconsistent, and generation of Ada or C language code from decision tables.

Under this task, we have tried to broaden the scope of the project by identifying a broader range

of ideas in formal methods that can be of use in avionics software development in general or in

decision table methods or Tablewise in particular. The topics we have addressed are the following

listed by chapter. For the most part, each chapter was originally written as a separate report on a

particular topic.

• (Chapter 2) Extensions of decision tables.

- Incorporating preconditions into decision tables. This is a method of indicating the

context that a decision assumes and also of annotating relationships between the in-

1This research was carried out under NASA Langley Research Center Contract NAS1-20335, Technical Monitor

Michael Holloway. We thank Lance Sherry for the substantial input he has made to the content of this report. We

also thank Steve Miller for helpful and instructive discussions about testing, and David Rosenthal for his many useful

comments.



put variables that mathematically guarantee that certain scenarios cannot occur and

therefore can be excluded in analysis of the table.

Permitting input variables to be partitioned into groups resembling records (as the term

is used in programming languages). The resulting partitioned decision tables can express

the same information as a "flat" decision table far more concisely.

Assertion tables, which represent more general logical formulas than decision tables.

Assertion tables permit one to write assertions about a specification that can be used

either to generate a decision table or else to check whether a given decision table says
what one thinks it should say.

Our algorithms for consistency and completeness analysis extend straightforwardly to decision

tables that may be partitioned or have preconditions. Consistency and completeness analysis

is essentially done automatically as part of generating a decision table from assertions. We

had to generalize our notion of structural analysis in order to apply it to partitioned decision
tables.

• (Chapter 3) Placing decision tables in a more general formal program development methodol-

ogy. We propose a tabular specification method that permits a complex system to be specified

using a family of decision tables. These tables specify not only how to choose one of a num-

ber of courses of action (the selection), but also what each course of action actually is (the

behavior).

The resulting system is essentially a variant of Parnas's A-7 specification method [10, 28],
using decision tables with behaviors rather than Parnas's tables as the main definitional

element, and using other tabular forms to declare system variables.

Our system also bears a significant resemblance to Leveson's RSML [17] minus its statecharts.

Leveson uses decision tables (selection part), divided up into pieces to define state transitions

in her statecharts. Essentially, a state transition (arc in the statechart) in RSML corresponds

to an operational procedure in ours. In Leveson's approach, as in its parent, Harel's state-

charts [7], the overall state is represented partly by locations in the statechart and partly by

values of state variables. In ours, as in Parnas's A-7 method, the state is represented entirely
by state variables.

A promising idea that we have not worked out here is the idea of a decision table as an

object with an internal state (its operational procedure) and some associated methods (its

behaviors). We think it will provide a basis for a compelling connection between state machine
specification methods and decision tables.

• (Chapter 4) In the context of his A-7 specification method, Parnas uses a variety of speci-

fication tables. On the ground that these may be useful instead of or in conjunction with

decision tables, we review the varieties of Parnas tables, explaining them in terms of decision
tables.

7



• (Chapter 5) We explore the problems of generating code that is testable according to a certain

test coverage criterion (MC/DC) and show how to generate such code along with a test suite

meeting the coverage requirement from a decision table.

We also explore the idea of a test coverage criterion for decision tables so that they can be

tested in order to validate them as requirements.

• (Chapter 6) We present a short survey of formal and quasi-formal methods as applied to

software safety.

• (Appendix A) We are developing a new version of Tablewise incorporating new methods

reported here. Appendix A is a short description of what will be new in Tablewise 2.

We believe that the most important contributions reported here are the table extensions in Chap-

ter 2 and the work on testing tables and test generation in Chapter 5.

1.1 Basics of Decision Tables

O5 ational Procedures

Ot ational
S _rios

Oper
Beh_

I
Scenario

Inl_u ts (SIi)

States (si)
I

_tional
.vior

[
Behavior

OnU_puts (BOi)

Functions (fj)
[

Operational Procedure

Scenarios

Inputs

s/1

s/2

s/3

Behavior

States

SI_S2

SI_S2, S3

$1,..._Sn

Op Proc 1

Scen 1 Scen 2

Sl Sl

$1 "SI

,_ 8 2

Behavior 1

Op Proc 2

Seen 3

82

Sl

Sn

Behavior 2

Outputs

B01

B02

B03

Functions

fl, • ° ° _ _Tr_

f2

fl

f2

Figure 1.1: A decision table with both selection and behaviors parts [25].

A decision table (Figure 1.1, as presented in [25]) is a tabular format for specifying a choice of

the actions that a system is to take. Overall, the decision table specifies a mission. The possible

courses of action that will be used to implement the mission under different circumstances are called

8



operational procedures (or opprocs, for short). A decision table is divided into two parts. The top
half specifies the conditions under which each operational procedure will be selected. This half of

the table is called the selection part. The selection part is composed of two things.

The signature lists input variables whose values affect the selection of an operational procedure
and the possible values, or states, that those variables may take.

In Figure 1.1, the input variables are SI1, SI2, and SI3; the possible states of SI2, are sl, s2,
and s3.

The body associates an engagement criterion with each operational procedure. Each engage-

ment criterion is a set of scenarios, and each scenario is a list associating a set of possible
values to each input variable.

In Figure 1.1, the engagement criterion of Operational Procedure 1 consists of Scenario 1

and Scenario 2. Operational Procedure 1 will be selected if either of those scenarios holds.

Scenario 1 holds if SI1, SI2 have value Sl. The "." opposite SI3 means that it may have any

value ("don't care").

A scenario or an engagement criterion corresponds in a natural way to a logical formula

that is true of the inputs if and only if the scenario or engagement criterion holds. We will

frequently abuse terminology by speaking as if the scenario or engagement criterion and the

corresponding formula were the same thing.

The bottom half of the decision table is the behaviors part. It specifies just what course of action,

or behavior, is associated with each operational procedure. A behavior is an assignment of values to

a number of behavior outputs. The values of behavior outputs are called functions (as in the word

"functionality," rather than the phrase "mathematical function"). A function might be to assign

a particular value to some quantity or to assign an algorithm for computing a given quantity from

sensor inputs during the period that the operational procedure is in force. Some of the functions

might be defined by reference to other decision tables.

Note that while several scenarios can be associated with an operational procedure, an operational
procedure has only one behavior.

In all of this report except Chapter 3, we consider only the selections part of a decision table.

The main reason is that the selections part is where the logical content of a decision table lies;

therefore logical methods of analysis can be most easily and directly applied to the selections

part. Nevertheless, decision tables with behaviors appear to have important connections with state

machine based specification methods, such as statecharts [7, 17].

1.2 Summary of Table Forms

In Chapters 2 and 3 of this report we define a rather large number of tabular forms. We present a

summary of them here. In Chapter 4 we describe in addition a number of forms defined by Parnas

[22], but we do not describe them here, since they are relevant only to that chapter.

9



Selection table. The selection half of a decision table.

(RecursiveIy) partitioned decision table. A decision table whose input variables have been grouped
into records like those of Pascal or Ada.

Decision tables with preconditions. Decision tables in which certain opprocs (Always, Never, Pre-

cond, Illegal) indicate conditions which are or are not expected to hold of the input variables of a
decision table.

Assertion table. A variant of a selection table that describes conditions under which various opprocs

must or must not be selected.

Assertion result table. A table showing ways in which a decision table violates assertions made in
an assertion table.

Type declaration table. A table defining names as abbreviations for complex types (essentially a

table of type definitions).

Variable declaration table. A tabular representation of variable declarations.

Function table (functional decision table). A decision table with a single behavior output, called

output, equipped with a list of formal parameter declarations that indicate how the table should

be translated into a function subprogram.

1.3 Logical Notation

In mathematical contexts we use the usual logical notations for Boolean operations. For the con-
venience of the non-mathematical reader, we summarize them here.

Symbol Meaning

AAB

AVB

--,A

A:_B

A_B

A and B (conjunction, meet)

A or B (disjunction, join)

not A (negation, complement)

if A then B (implication)

A if and only if B (equivalence)

10



Chapter 2

Three Extensions of Decision Table

Syntax and Semantics

This chapter gives the syntax and semantics for three extensions of decision tables: partitioned

decision tables, decision tables with preconditions or illegal scenarios, and assertion tables.

Partitioned decision tables are decision tables in which input variables may be (recursively) grouped

into records. This grouping has numerous advantages.

• Grouping input related variables helps organize a decision table and makes it more under-
standable.

A partitioned decision table is typically less cluttered and can be far more compact than a

"flat," simple decision table.

Partitioned decision tables correspond closely to a well-structured "formal" English language

specification that uses logical constructs in an orderly fashion.

As presented here, partitioned decision tables are more general than previously described [12, 13,

11]. In those presentations an entire table was partitioned to a fixed depth. Here, variables are

individually structured into a structure of subvariables which is essentially the same as the concept

of a record type in programming languages.

Use of preconditions allows one to indicate scenarios that are always or never expected to occur,

clarifying the meaning of a table and making it possible for analysis to avoid reporting flaws in a
table that can never be exercised.

The purpose of assertion tables is twofold.

• First they allow one to make assertions about what a decision table specifies. One can then

check whether the table says what one thinks it says by testing whether it satisfies these
assertions.

11



• Second,onecandesigna tablebyusingassertionsto describewhat thetableshouldsay.One
can then generatethe table from the assertions,successivelyadding,removing,strengthing
or weakeningassertionsuntil a consistentandcompletetableis obtained.

Assertiontablespresentanimportant opportunityto applythe methodof refinement [29, 6] to the

development of decision table-based specifications.

2.1 Recursively Partitioned Decision Tables

Ordinary "flat" decision tables have input variables that take values in an unstructured finite set.

Their type is what programming language definitions call an enumerated type or an enumeration

type. A standard way of structuring types is by forming record types. An variable of a record

type is essentially a collection of variables (fields) of simpler types. A value of the record variable

consists of an assignment of values to its fields. We can define record types based on enumeration

types as follows. We assume that a class Value of atomic values and a class Vble of variable names

are given.

TYPE ::= ENUM_TYPE [ RECORD_TYPE

ENUM_TYPE ::= (wl,..., wn), wi E Value distinct

RECORD_TYPE ::= (Vl :T1,...,vn : T,_), vi E Vble distinct, Ti E TYPE, i = 1,...,n.

A record type is also called a signature, because it is a sequence of variables with their types.

Observe that a record type as shown above is like the signature of a decision table, whose variables

are Vl,...,v,_ with types T1,...,Tn. If T1,...,T,_ were all simple types, it is clear in the context

of decision tables what an assertion about a value of that type should be: an engagement criterion

with entries suitable to T1,..., Tn. Formally, abstract entries, scenarios, and engagement criteria
are defined as follows.

• An entry for a simple type T = (wl,..., wn) is a set s C {Wl,... , Wn}.

• A scenario for a sequence of types (T1,...,Tm) is a sequence (el,...,em) where for i =

1,...,m, el is an entry for Ti.

• An engagement criterion for (T1,..., Tin) is a set of scenarios for (T1,..., Tin).

• An entry for a record type (vl :T1,...,v,, :Tin) is an engagement criterion for (T1,...,Tin).

The semantics of a recursively structured decision table is exactly what one would expect given the

standard idea that a scenario represents the conjunction of its entries and an engagement criterion

represents the disjunction of its scenarios.

12



Formally,the logicalformulacorrespondingto anentry for a variablev of type T or a scenario or

engagement criterion corresponding to a signature is defined as follows.

• If v is a variable, T = (Wl,...,w,_) and s C_{Wl,...,wn} then the formula ors for v and T is

vEs

or equivalently

V _ Wil V . . . V V ._ 'll)ir n

where s = {wil,...,wim}.

• If a = (Vl : T1,...,vn : T,_) is a signature and s = (el,...,en) is a scenario for (T1,...,T,_),
then the formula of s for a is

¢1 A ... A Cn

where, for i = 1,..., n, 8i is the formula of ei for vi and ti.

• If E = {sl,..., sin} is an engagement criterion for the signature a, then the formula of E for
a is

_1 v ... v Cm

where, for j = 1,..., m, _bj is the formula of sj for a.

• If ¢ is a formula and v is a variable, then ¢" is the formula obtained by replacing each variable
name v' occurring in ¢ by v.v r.

• If v is a variable of a record type T = (vl : T1,...,v,_ : T,_) and e is an entry for T, namely

an engagement criterion for (vl : T1,..., v_ : T,_), the formula of e for v and T is

where ¢ is the formula of e for T (considered as a signature).

In practise, we will avoid prefixing the name of a record-valued variable to the names of its fields

by choosing distinct field names for fields of distinct variables.

As usual, a decision table (abstractly) consists of a signature a and a body B. The body B is

a function associating each of a set of operational procedures with an engagement criterion for

c_. The table specifies that an operational procedure opp be selected whenever the formula of its

engagement criterion for cr holds.

13



Operational Procedure

Altitude

Status

Altitude

Target Status

Input Variables

II T_keo_ II C_b
States II

climb
flightphase cruise

AC_Alt ) 400

compare(AC..Alt,

Acc_Alt)

Alt_Capt_Hold

climb climb

TRUE
TRUE *

FALSE

LT EQ LT EQ GT
GT

TRUE
FALSE TRUE

FALSE

LT EQ . GT
GT

compare(Alt_Target,

prev_Alt_Target )

II Climb.J.nt_LevelII C_e I
[I [I 1

climb cruise

FALSE TRUE TRUE TRUE

* GT * *

Figure 2.1: A recursively partitioned decision table.

Operational Procedure Jl Takeoff

Input Variables States
climb

Flightphase cruise climb

AC_Alt > 400

compare(AC_Alt,

Acc_Alt)

TRUE

FALSE

LT EQ
GT

TRUE

LT

TRUE
Alt_CaptAtold FALSE FALSE

compare(Alt_Target, LT EQ .

prev_Alt_Target) GT

climb

TRUE

LT

TRUE

GT

Climb II ClimbAnt_Level II Cruise

climb climb climb

EQ GT EQ GT

FALSE TRUE

* GT

cruise

GT

TRUE TRUE

* EQ

Figure 2.2: A simple decision table.

2.1.1 An Example

Figure 2.1, adapted from [24], gives an example of a recursively partitioned decision table equivalent

to the simple decision table in Figure 2.2.

In Figure 2.1, one of the top-level input variables, flightphase, is simple and the other two, Altitude

Status and Altitude Target Status, are record variables with simple components. The grouping

of AC_Alt> 400 and compare(AC_A1t,Acc_Alt) into Altitude Status clarifies their meaning, but

has not been used otherwise since their entries are essentially the same as if they had been simple

variables. The entries for Altitude Target Status under Takeoff and Climb have been grouped into

a mini-engagement criterion. Doing so avoids duplicating the entries for flightphase and Altitude

Status, simplifying and further clarifying the structure of the table.

14



According to Figure 2.1, the engagement criterion of Takeoff is equivalent to the formula

t_ightphase = climb A AC_Alt > 400 A AC_Alt < Acc_A1t A

(-_Alt_Capt_I-Iold V (Alt_Capt_Hold A Air_Target > prev_A1t_Target )).

Engagement criteria in partitioned decision tables correspond closely to a well-structured English-
language specification. For example, the engagement criterion of Takeoff can be written as follows.

Operational procedure Takeoff will be engaged if all of the following conditions hold.

1. The flightphase is climb.

2. The aircraft altitude is above 400 feet.

3. The aircraft altitude is less than the acceleration altitude.

4. Either of the following conditions hold.

(a) Altitude capture hold is false.

(b) Both of the following conditions hold.

i. Altitude capture hold is true.

ii. Altitude target is above the previous altitude target.

As Figure 2.3 shows, tables in which several groups of variables can be grouped into records can

offer a great saving in space over equivalent simple decision tables. (Note that in this table we have

not bothered including names for the records, which are not essential if all field names are distinct.)

2.1.2 Decision Diagram Representations and Algorithms for Partitioned Deci-
sion Tables

Partitioned decision tables can be manipulated using decision diagram algorithms similar to those

for simple decision tables that we described in [13, 12]. The decision diagrams associated with

partitioned decision tables are, however, enriched by giving a record structure to the decision

variables, as partitioned decision tables do.

Given the enriched decision diagram algorithms, consistency and completeness analysis are essen-

tially the same for partitioned decision tables as for simple ones. The notion of structural analysis
had, however, to be generalized in order to be applicable to partitioned decision tables.

The enriched decision diagram algorithms can potentially support similar analysis and manipulation

of Parnas tables [22], described below in Chapter 4.

2.2 Decision Tables with Preconditions or Illegal Configurations

It seems that, for some decision tables, certain configurations of "illegal" or "impossible" values are

expected never to occur. Looked at from another point of view, the table is expected to be used

only when some precondition holds which excludes the illegal configurations.

15



Operational Procedure l[ oe 1
Input Variables _ ]

A TF T F

B TF T *

a TF T F F

_3 TF * T *

7 TF * * F

Operational Procedure OP

Input Variables States [[

A TF T T T F F F

B TF T T T * * *

a TF T F F T F F

_3 TF * T * * T *

7 TF * * F * * F

Figure 2.3: Another partitioned decision table and an equivalent simple decision table.

A natural way to require or exclude certain conditions is by adding dummy operational procedures

Precond, Illegal, Always and Never. Their intended meaning is as follows.

• The engagement criterion of Never denotes conditions which are guaranteed never to hold

when the table is invoked, and which may be completely ignored in analyzing the table. For

example, an overlap between two engagement criteria that is contained in the engagement

criterion of Never will not be reported in an inconsistency analysis. In generating code, no

action need be taken on inputs satisfying the engagement criterion of Never, because there

will never be any.

The two tables in Figure 2.4 are equivalent. They define the three-valued comparison compare.

In this case, Never annotates a mathematical dependency between input variables: it is not

possible for z < y and x > y to both to be true.

• Always is similar to Never but states restrictions in a positive form, i.e., conditions that will

always hold. Scenarios lying outside the Always condition are entirely ignored.

• Precond and Illegal are respectively like Always and Never but are less strict. Their en-

gagement criteria represent conditions that are expected always/never to hold when the table

is invoked. Just in case, however, overlaps of engagement criteria that fall outside Precond

or inside Illegal will be reported by consistency analysis, and in generated code, scenarios

outside Precond or inside Illegal will raise an exception.

16



Onecanimaginefurther waysto treat preconditions,but theremustbeanendof suchthings.The
fourkindsof preconditionannotationscan,of course,beusedin combination.Theyareprovidedin
positive/negativepairssimplybecausesometimesit issimplerto expressthenegationof acondition
asanengagementcriterion,andsometimesit is easierto expressthe conditionitself.

In general,excessiveuseof Precond and Illegal, or Always and Never, except when they annotate

mathematical relations among input variables, make decision tables less reusable. If a table is

correct only if used in a context that guarantees certain preconditions, then it cannot be used

without modification in another context that does not guarantee the same preconditions.

In general extending our algorithms to tables with precondition annotations is trivial. Sometimes,

however, one might want to express an engagement criterion in the simplest possible way given

that it does not matter whether impossible scenarios are included or excluded. What is a good

algorithm for performing such a simplification?

Operational Procedure It LT II EQ II CT IIINever I

Inpu Variable IStatesII II II }ll I

y<z TF F F T T

[ Operational Procedure [] LT [[ EQ II CT I[I Never I

}Input Variables [States [I II ]} Ill I

y<z TF * F T T

Figure 2.4: Two equivalent decision tables with precondition annotations.

2.3 Assertion Tables

Assertion tables permit one to specify more general relations between operational procedures and

logical conditions than are possible in decision tables. In an assertion table, sets of operational

procedures may be associated with several engagement criteria, and in several ways: in an if, in

an only if, or in an iff (if and only if) relation.

• An if relation means that some opproc in the set must be selected if the engagement criterion

holds, but may also be selected under other conditions.

• An only if relation means that an opproc in the set may be selected only if the engagement

criterion holds, but does not have to be selected just because the engagement criterion holds.

17



• An iff relation is the combination of if and only if--the engagement criterion states the exact

conditions under which some opproc in the set will be selected.

These different relations can be used to make assertions about what a decision table is meant to

be like. These assertions can be used either to check whether a decision table satisfies them or to

construct the least specific decision table that does satisfy them.

Figure 2.5 gives an example of an assertion table. It says the following things.

• If the flightphase is climb then one of the opprocs Takeoff, Climb, or Climb Int Level will be

selected. One of these opprocs will be selected only if the flightphase is climb.

• Takeoff may be selected only if AC_AIt < Acc_Alt.

• Climb may be selected only if AC_AIt >_ AccAlt.

• Climb Int Level will be selected if and only if flightphase is climb, Alt_Capt_Hold is true, and

Alt_Target >_ prev_Alt_Target.

• If the flightphase is cruise then the operational procedure Cruise must be chosen.

Assertions

Input Variab|es I States

climb
flightphase cruise

AC..AIt < Acc_Alt T F

Aft.Capt.-Hold T F

Aft_Target > prev_Alt_Target T F

1 2 3 4 5

Takeoff, Climb, Takeoff Climb Climb Int Level Cruise
Climb Int Level

iff only if only if iff if

climb * * climb cruise

• T F * *

• * * T *

• _ * F

Figure 2.5: An assertion table.

2.3.1 Checking a Table Against Assertions

Checking a selection table against an assertion table produces a result table listing violations of

the assertions.

The selection table in Figure 2.6 is a sort of botched condensation of the table in Figure 2.1.

Testing the table in Figure 2.6 against the assertion table in Figure 2.5 produces the result table

in Figure 2.7. The result table indicates the following things.

• The first column says that Assertion 1 is violated because the indicated scenario is not assigned

an operational procedure by the selection table.

18



Operational Procedure

Input Variables

fligh tphase

AC_AIt < Acc_Alt

Alt_Capt_Hold T F

Alt_Target > prey_Aft_Target T F

 t tesI  e° Jl°imbl i b tLeve Cruise
climb

climb climb climb cruise
cruise

TF T T * *

• T * T * *

Figure 2.6: A table to test against assertions.

• No violation of the second assertion is listed, indicating that it is satisfied.

• The third assertion is violated by both scenarios under Climb in the selection table.

• The fourth assertion is violated because the engagement criterion of Climb Int Level fails to

exclude the case Alt_Target > prev_Alt_Target.

• The fifth assertion is violated because the engagement criterion of Cruise restricts Alt_CaptAIold.

Of course, most of these errors are silly and have been contrived to illustrate all the different kinds

of possible errors.

Assertion.1 ! Asser lion.3 Assertion,3 [ Assertion.4
Assertion Results (unassigned) Climb.1 Climb.2 Climb Int Level.1Iinput Variables I States ]

climb

flightphase cruise climb climb climb climb

AC..Alt < Acc.._it T F F T T *

Alt_Capt-Hold T F F F T

Alt_Tar[_et > prev..Alt_Tar.get T F = * T

Assertion.5

Cruise.l

cruise

T

T *

Figure 2.7: Results of assertion check.

2.3.2 Generating Selection Tables from Assertions

A natural way to develop a selection table is to write down principles it is supposed to embody

as assertions, then build a table that satisfies those assertions. In fact, the selections table can be

generated automatically from assertions. Figure 2.8 shows the table generated from the assertion

table in Figure 2.5. This generated table is in fact complete and correct.

In general, however, a set of assertions will not fully specify a complete and correct decision table.

Typically, we would expect a designer to proceed incrementally, as follows.

1. Write down an assertion.

19



Operational Procedure

Input Variables

flightphase

States

climb

cruise

AC_AIt < Acc_Alt T F

Alt_CaptAtold T F

Alt_Target > prev_Alt_Target TF

Takeoff Climb

climb climb

T F

* T * T

Climb Int Level Cruise

climb cruise

Figure 2.8: A table generated from assertions.

2. Generate and examine the induced selection table.

3. Add or modify assertions accordingly, or else correct the table by hand.

4. Go back to step 2.

To illustrate this process, consider the weaker set of assertions in Figure 2.9. Those assertions

generate the decision table in the same Figure. In that decision table Takeoff and Climb have not

been disambiguated and no restrictions have been placed in the opproc for the scenario in which

flightphase is cruise and Alt_Capt_Hold is false. These deficiencies might be corrected by revising

the assertion table to be the same as that in Figure 2.5.

2.3.3 Semantics of Decision Tables and Assertion Tables

In this section we will define and justify our algorithm for generating decision tables from assertion

tables. Justifying the algorithm means defining the semantics of assertion tables and decision tables

and showing that the semantics of an assertion table and the semantics of the decision table are

equivalent.

Consequently, we will go into some detail about the semantics of decision tables and assertion

tables, providing enough detail to prove that our algorithm preserves semantics. Thinking about
decision tables in relation to assertion tables has also caused us to revise our earlier definition of

decision table semantics [12]. The changes only affect tables that are incomplete or incorrect and

therefore are irrelevant to the finished product of decision table development. We made the changes

for the following reasons:

• to help design a sensible algorithm for generating a decision table from assertions;

• to make reducing inconsistency and incompleteness in a decision table correspond to refining

it (strengthening the formula it denotes);

• to make refinement of an assertion table (i.e. adding assertions) correspond to refinement of

the decision table it generates.

2O



Assertions Takeoff, Climb, Climb Int Level Cruise
Climb Int Level

Input Variables States iff iff if

climb
fligh tphase cruise climb climb cruise

AC_AIt < Acc_Alt T F * * *

Alt_Capt_Hold T F * T T

Air_Target > prey_Aft_Target T F * F *

Takeoff
Operational Procedure Climb Climb Int Level Cruise •

Input Variables States

fligh tphase
climb

cruise

AC_Alt < Acc_Alt T F

Alt_Capt_Hold T F

Air_Target > prev_Alt_Target T F

climb

*] *

climb

T

F

cruise cruise

:¢ g,

Figure 2.9: A weaker assertion table and the decision table it generates.

Semantics of Assertion Tables

There is only one thing about the semantics of assertion tables that is not clearly annotated in

the table: exactly which opprocs may be selected? We adopt the convention that only the opprocs

listed in an assertion table are possible outputs. One can always make sure _l intended opprocs

are there by adding an assertion

(list of all selectable opprocs) _ true.

Abstractly, an assertion table is a set of triples

(engagement criterion, logical connective, set of opprocs);

The engagement criterion is a logical formula in terms of input variables and their possible values.

The logical connective is one of =>, _=, or _. The meaning [A] of an assertion

A = o, {or1,..., opn})

is

EC :_ ( OP = opl V ... V OP = opn),

21



whereOP denotes the opproc to be selected. The meaning I_4] of an assertion table

A = {A1,...,An}

is

[AA ^... ^ [An]^ (OP = opl v ... voe = opm)

where {opt,..., opm } is the set of selectable opprocs.

Semantics of Decision Tables

Abstractly, a generalized decision table of the sort generated from assertions is a set of clauses,

which are pairs of the form

(engagement criterion, set of opprocs),

where the engagement criterion is, as it always is abstractly, a logical formula in terms of the table's

input variables and their possible values. In a "normal" decision table, the set of opprocs must

always contain exactly one element, but in tables generated from assertions, the sets of opprocs

may have more than one element or be empty. The difference from the elements of an assertion

table is that the logical connective has been left out as understood. But what connective should be

understood? The candidates are: A, _, ¢_ and ¢=. Furthermore, should the interpretations of the

element clauses of a decision table be conjoined, as for assertion tables, to form the interpretation of

the whole table, or should they be joined together some other way? Two reasonable interpretations

of a decision table present themselves. Let

v =

be a decision table (set of clauses).

• IT'll = (_EC1] A OP e 31) V...V ([ECm] A OP E sin).

,, _:D]_ = (_EC1] =_ OP E sl) ^... ^ ([ECm] =_ OP E sin).

Let us consider the properties of these two interpretations.

I. If EC1,..., ECru are exhaustive and mutually exclusive, then [/)]1 and [/_]2 are equivalent.

2. If EC_ and ECj overlap but si and sj do not, then _D]I is ambiguous (allows OP to be either

a member of si or a member of sj), but [:P]2 is inconsistent.

3. [/?]1 says that the input variables must always satisfy ECI V...V ECn. [/)]2 leaves the choice

of opproc completely unspecified if EC1 v... v ECn does not hold.

22



4. In _:P_l,aclause(EC, {}) isvacuous--addingordeletingit doesnot changetheinterpretation.
In [D]2, (EC, {}) meansthat the input variablesareforbiddento satisfyEC.

5. [_P]l becomes stronger (is refined) if each [ECi] is made stronger (smaller) and each si is

made stronger (smaller). [D]2 becomes stronger if each _ECi_ is made weaker (larger) and

each si is made stronger (smaller).

Elsewhere [13] we have given [:D]I as our interpretation of decision tables.

On overlap, we are inclined to believe that _:P_l is the best interpretation: if engagement criteria

overlap, that probably means we have failed to decide exactly which opproc to choose in some cases.

Incompleteness, on the other hand, probably means that we have forgotten about some cases and

have therefore failed to specify them. That corresponds to [:D_2. We therefore adopt the following

modification of _D_I as our official interpretation of decision tables.

ID] = (EC1 A OR C s_) V ... V (ECm A OF E sin) V (-"ECl A... A -_ECm).

That is, on inputs satisfying some ECi, i = 1,..., m, OP must be selected compatibly with one of

the clauses of the table. Otherwise the opproc selection is unspecified.

This interpretation preserves both overlap as ambiguity and incompleteness as failure to specify

some cases. In [[:P], a clause (EC, {}) also becomes a contradiction if EC is not contained in the

union of the other engagement criteria. It is also the case that [D]] is equivalent to [D]I as long as

Z_ the engagement criteria of different opprocs in :i9 are mutually exclusive.

Generating Decision Tables from Assertions

The interpretation of a decision table is a formula and so is the interpretation of a set of assertions.

If a decision table is generated from a set of assertions, then those formulas should be equivalent.

We achieve this by the following translation algorithm, each step of which preserves equivalence of

interpretations. Tablewise uses a more efficient decision diagram algorithm to produce the same
result.

1. Replace each assertion of the form (EC, ¢*, s) by two assertions (EC, =_, s) and (EC, ¢=, s).

2. Replace each assertion of the form (EC, ¢=, s) by (_EC, =_, sO), where s c is the set of all

opprocs which do not belong to s but are mentioned in the table.

3. Replace each pair of assertions (EC, :*, s), (EC', :*, s') by the three assertions

(EC ^ -,EC', :*, s),

(EC ^ EC', =_, s n s'),
(EC' ^ -,EC, :,, ,'),

discarding any of these for which the first component is equivalent to false. Repeat until for

every such pair of assertions, EC A EC I is false.

23



4. For eachset s of opprocs, if

(EC1, ::#, s),..., (ECn, =_, s)

are all the assertions with third component s, replace them by

(EC1 v ... v EC_, o, s).

5. Form a decision table 79 by eliminating the middle component of each assertion.

The final set of assertions A] has the property that for any two distinct assertions (EC, o, s) and

(EC_,_,s I) in it, s ¢ sI and EC ^ EC _ is equivalent to false. We have

gas] = [vb -- 179],

the equality by definition and the equivalence by our remark above that [:D] and [7922 are equivalent

when the engagement criteria of different opprocs 79 are mutually exclusive, as is the case here.

Preconditions and Forbidden Scenarios

We require that assertions related to preconditions (Always, Never, Precond, BlegM) take one of

the following forms.

( EC, ,I=, positive restriction)

and

( EC _, o , negative restriction)

That is, such an assertion must state either that a condition EC must hold or that a condition EC _

must not hold.

In generating a decision table from assertions, we replace an assertion about a positive restriction,

such as, (EC, .¢=,Precond), by a negative form, in this case (_EC, ----*,not-Precond). It is necessary

to do so because the semantics of positive preconditions is dual to that of negative preconditions

and ordinary opprocs, but in generating tables we need to treat all opprocs and preconditions the

same.

2.3.4 Refinement of Assertion Tables and Decision Tables

We mentioned above that we have modified our definition of decision tables and have set up our

relation between decision tables and assertion tables in order to be compatible with a notion of

refinement. Here, we will outline what refinement is, why it is important, and how refinement

applies to decision tables.

A specification of a simple computer program or subprogram has the form (P, R), where P, the

precondition predicate, is a logical formula in terms of the inputs to the program, and R, the input-

output relation, is a logical formula in terms of both the inputs and the outputs. For example, Z

24



schemas[27]arealwaysof this form--the part abovethe line is P and the part below the line is

R. P defines the competency of the subprogram, that is, the conditions under which it is valid to

invoke it. R specifies, though perhaps only partially, what effect the subprogram will have when

it is invoked. Together, P and R amount to much the same thing as the single formula P =_ R,

which can be considered as an input/output relation. Sometimes, however, R may not make sense

or may be ill-defined when P fails, so it is best to indicate P separately.

An important operation on specifications is that of refinement. One refines a specification by

making it logically more precise. We say that a specification (P', R') refines (P, R) if

pI A R I =a R.

That is, within its competence, R _ is consistent with and at least as specific as R.

Refinement is an accepted formal method for developing specifications. One starts with a rather

loose (weak) specification and proceeds to refine (strengthen) it until it is strong enough to translate

easily into code.

What is refinement for decision tables? First, what is the specification associated with a decision

table? There are two definitions: strict, counting only Always and Never as real restrictions and

treating Precond, or rather not-Precond, and Illegal as ordinary opprocs; and liberal, treating

Precond and Illegal as restrictions.

Let D be a decision table
D = { (opl,EC,),...,(op,_,EC,_),

(Always, EC Aiways) ,

(Never, EC Never ),

( Precond, EC precond),

(nlegal, ECil eg l ) },

where opl , ..., opn are distinct and not among Always, Never, Precond, and Illegal.

• The strict specification consists of

P = ECAiway s A -_ECNeve r

and

R = EC1 A OP = opl V... V ECn A OP = op_ V not-Precond A -_ECprecon d VIllegal A ECillegal.

• The liberal specification consists of

P = ECAlway s A _ECNeve r A ECprecon d A -_ECillegal

and

R = Eel A OP = oPl V ... V ECn A OP -" oPn.

In either sense, adding assertions refines the specification (either kind) of the generated decision
table.

25



Chapter 3

Tables with Behaviors

Elsewhere in this report we deal with decision tables that only choose a course of action, called an

operational procedure, that shall be active under a given set of conditions, called its engagement

criterion. But an operational procedure does cause something to happen; that something is called

a behavior. A behavior consists of outputs, whose values are called functions, as in the phrase

"what is the function of this object," rather than the phrase "mathematical function."

Once one begins to treat behaviors in decision tables, it becomes natural to use decision tables to

define the different possible behaviors. One would want, then, to define a framework supporting

systems of decision tables that refer to each other. This chapter is our preliminary essay in this
direction. The ideas worked out here closely resemble Parnas's A-7 requirements model [10, 28].

The idea of regarding a decision table as an object, described below, suggests ways of going beyond

what we do here and possibly making connections to explicitly state machine-based specification

methods such as Harel's statecharts [7] or Leveson's RSML [17].

A classical way to view a decision table is as a means of denoting a subprogram in some programming

language. In that case, a behavior consists of simply a value to be returned as a result (if a function

subprogram) or an assignment of values to out variables or globals (if a procedure subprogram).

A more modern way to look at a decision tables with behaviors is as an object or state machine

whose main internal state variable is the operational procedure. The function of the object may

be to provide methods for computing certain values. How those values are computed depends on

the current value of the operational procedure. From time to time the operational procedure itself

would be determined as indicated by the decision table, either periodically or as triggered by some

sort of event.

For example, suppose we have a system whose operational procedure is determined once per second,

but whose function is to compute some control values fifty times each second.

It might be that under operational procedure O, the control value x will be computed as y2, where

y is the current value of some sensor, while under operational procedure O _ the value x displayed is

computed as (w ÷ z)/2, where w and z are the values of two other sensors. What the operational

26



proceduredeterminesis not the valueof x, but the formula to be used to compute x fifty times
during the second in which that operational procedure is in force.

These two points of view are not entirely at odds--they can be reconciled by imagining a subprogram

that returns a mathematical function for computing the value of x, as can easily be, indeed, is best

done in an "impure" functional programming language like ML. We remark also that an object-

oriented programming language is not actually required to treat a decision table as representing an
object.

Our point of view in this chapter will be the more old fashioned idea that a decision table is meant

to specify a subprogram in a programming language. One reason for this choice is that we came

to understand the idea of a decision table as an object after most of this work had been done, and

have not had time to rethink it. The other reason is that the subprogram point of view is adequate
to represent the idea of a function embodied by methods if mathematical functions can be returned
as values.

For concreteness, we will imagine the programming language to be Ada.

Considering behaviors and regarding decision tables as subprograms requires that we face a number

of problems.

How are behaviors to be represented?

Will it be one subprogram or more? In Ada or C++ we would implement the object oriented

point of view by having one subprogram to select the operational procedure and one for each
behavior output.

How will the signature of the subprogram(s) be represented?

The signature of a selection table acts as a set of declarations of its input variables or pa-

rameters. But those "variables" need not be or correspond to variables of a programming

language--they can be more general expressions. The programming language variables in
them need to be declared somewhere.

Complex systems are normally assemblages of subprograms, organized according to some

module structure. Presumably we would want the same for complex systems specified by
families of decision tables.

We will spend the rest of this chapter addressing these problems.

If we were to carry the idea of systems of decision tables with behaviors to its logical conclusion, we

would build a small design specification or programming language (or both) that included decision

tables. In terms of Ada, a logical thing to do would be to embed decision tables into Ada as a way

of defining subprograms. Such ideas are considered by Metzner [19]. We have not pursued things

so far, however, partly because of the work it would involve, and partly because, from the point

of view of design, we would first like to explore (elsewhere) the relationship of decision tables to

statecharts, RSYIL, and object oriented methodology. Accordingly, we will keep the programming

27



languageaspectsof things assimpleaspossible.Nevertheless,thinking in termsof Ada givesa
concretenessthat helpspoint out somepotentialproblems,sowewill doso.

Sinceweoriginallydid this work,wehavehadsecondthoughtsabout whetherit is a goodideato
try to connectdecisiontablescloselyto anexistingprogramminglanguage.Not to doso,however,
would requiremakingdecisiontablesinto their own language--perhapsno improvement--and
wouldrequirecodegenerationto bemoresophisticated.Of course,this is by nomeansimpossible,
but wouldrequiremuchmorethoughtandwork.

Thiswork isbasedonsimpledecisiontablesin whichvariableshavesimpletypes,andhasnot been
upgradedto supportpartitioneddecisiontablesandrecordtypes.

3.1 Table Definitions and Their Environments

A system of decision tables will be a list of the following kinds of things in any order:

• type declarations;

• variable declarations;

• decision tables (including selection, behavior, and subprogram signature).

We will define each of these in turn in the following sections. They may occur in any order, subject

types and variables being declared before use. In order to permit recursion, we do not require
tables to be defined before use.

3.2 Type declarations

A type declaration is essentially an Ada enumeration type declaration. It is of the form:

id : (idl,...,ida)

where id, idl,..., id,_ are Ada identifiers, idl,..., id,_ distinct; id is the type name, idl,..., id,_ the

name of its elements. The type name id may not be integer or boolean (which are considered

predefined) or any type name that has occurred earlier in the list of type declarations.

We have excluded real as a type, assuming that floating-point types will not be used because of
the difference between machine arithmetic and mathematical arithmetic of real numbers.

Type declarations will be grouped in tabular form as in Figure 3.1. Descriptive phrases for the

type and its elements could be added for use in generating documentation. Each type must have
at least one element listed.

28



Type Name Elements Typephrase elementphrases
Flightphase climb,cruise flightphasetype climb,cruise
Comparison LT, EQ, GT comparison less than, equal, greater than

Figure 3.1: A type declaration table.

A type declaration table induces a set Type of types, consisting of all types mentioned in the list,

a set Value of values, consisting of all values listed, and a mapping valset : Type _ 7_+(Value),

where for 1- E Type, va/set(T) is the set of values listed beside _- in the type declaration table.

The set Value is not necessarily the value set of any decision table, but any decision table defined

in an environment with value set Value may use only values in Value.

3.3 Variable Declarations

A variable declaration is a pair

id : type_name

where id is the variable name, an identifier that has not occurred earlier as a variable name or as

the name of an element of any type (including TRUE, FALSE), and type_name is the name of one of

the types previously declared (or predefined). Like type declarations, variable declarations can be

grouped together and represented in tabular form along with descriptive phrases, as in Figure 3.2.

Variable Name Type Description

flightphase Flightphase flightphase

ac_alt integer aircraft altitude

acc_alt integer acceleration altitude

alt_capt_hold boolean altitude target being captured or maintained

alt_target integer altitude target

prev_alt_target integer previous altitude target

Figure 3.2: A variable declaration table.

As for types, the variable declaration table defines a set Variable of variables, consisting of all the

variables declared, a function type : Variable _ Type, mapping each variable, to the type listed

beside it, and a function valset : Variable --+ 7)+( Value) given by valset(v) = valset( type(v) ).

Note that Variable is not the same as the set Vble of "input variables" of a decision table. The

"input variables" are actually expressions, defined below.

29



3.4 Expressions

Since expressions other than variables may appear in decision tables either as "input variables" or

as values to be assigned to output variables, we need to define expressions before going on to define

decision tables for a given environment (class of type and variable declarations).

We could use any reasonable notion of expression. For concreteness, we give a simple definition

adequate for the examples we have encountered.

• An integer expression is either:

- an integer variable or constant;

- abs(E), (-E), E1 + E2, E1 - E2, or E1 * E2, where E, El, E2 are integer expressions.

• A Boolean expression is either:

- a Boolean variable or constant;

- E1 < E2, E1 <__E2, E1 = E2, E1 _> E2, or E1 > E2, where E1 and E2 are integer

expressions;

- not B, B andC, or B orC, where B and C are Boolean expressions.

• An expression of any other type is a variable or constant of that type.

For any type, function tables of that type, which we will define below, are also expressions.

Our definition gives each expression e a type type(e). We can also define valset(e) = valset(type(e)).

3.5 States and Assignments

Given a set of variables V and an assignment valset : V ---, S of a nonempty value set to each

variable, a state for vaIset is a mapping a : V --* S such that for each v E V, a(v) E valset(V).

3.6 Decision Tables with Behaviors

The environment of a decision table declaration consists of the type and variable declarations earlier

in the system as well as all decision tables.

A decision table with behaviors consists of the following items.

• A name, not already used in the environment.

• A set OP of operational procedures.

3O



A selectionssignaturewhosesimplevariablesareall expressionsof atypewhoseelementsare
the sameasthe setof valuesassignedby thesignature.(In fact, the setof valuesis already
determinedby the typeof theexpressionasdeterminedby the environment.)

A selectionsbody,that is, a mappingeng_critfrom OP to finite sets of scenarios.

A set of variables O declared in the environment (the output variables).

An assignment e for 0 (a map e defined on 0 such that for each v E O, e(v) is either an

expression of the type of v or else a decision table in the environment that has v as an output

variable. If e(v) is a decision table, that table e(v) is said to be a dependent table of the table
in whose behaviors it occurs.

The semantics of the table is a binary relation R on states, defined as follows.

A pair of states (a, a I) E RT if for each table T I that occurs as an output expression in T there is

a state aT, such that (a, aT,) E RT, such that

• there is some opproc op E OP such that eng_crit(op) is true when variables are given the

values assigned to them by a; and

• for any variable v in the environment,

= v ¢ o
= a(e(v)), e(v) an expression,
= e(v) = T'.

Notes:

• (a, a p) E RT means that if a is the initial state, a r is a possible output state. If T is complete
and consistent, then there is only one possible output state, and RT can be regarded as a

function.

• We are assuming that each dependent table is invoked only once in an invocation of T, even

though it may occur more than once in T. Furthermore, if a dependent table has output

variables that do not occur in T, then their values do not change in the state.

3.7 Checking

A decision table with behaviors is complete (consistent) if it and all its (recursively) dependent

tables are complete (consistent).

One would expect that in checking completeness and consistency of a dependent decision table,

the (disjunction of the) engagement criteria of the opprocs under which it occurs could be used as

31



a precondition. In the exampleswehavelookedat however,the variablesrelevantto dependent
tableshavebeenall or mostlydifferentfrom thosein the mastertable,sothis kind of dependency
checkingseems,sofar, to beirrelevant.Rather,thesituationsuggestsanorganizationinto objects
sothat the variablesof differenttablesare(mostly)the statevariablesof differentobjects.

3.8 Function Tables

The use of dependent tables above was slightly odd. The master table corresponds to a procedure

subprogram: it changes the state. A dependent table, however, acts more like function subprograms:

it only changes the state of the output variable in whose row it occurs. The fact that "output

expressions" are not just expressions, but either expressions or tables, suggests that we should

augment expressions with tables corresponding to function subprograms, and eliminate the special

case in output expressions.

Use of function tables also makes it possible to define expressions that we could not define before.

For instance, the compare function, which appears in Figure 2.1, takes values of type Comparison,

an enumeration type, is defined as follows.

compare(x,y) = LT, x < y

= EQ, x=y

= GT, x>y

But according to our definition, the only expressions of an enumeration type are constants and

variables, so for distinct integer variables x and y, compare(x, y) cannot in general be defined.

A function table consists of the following items.

• A name.

• An output type.

• A variable declaration table, declaring the arguments of the table considered as a function

subprogram.

• A decision table with behaviors that has only one output variable, called output. The envi-
ronment of this table is the environment of the function table itself with the local variable

declarations added to the environment variable declarations (superceding the environment if

there are any name clashes).

For each opproc op, the expression assigned to output under op must be of the output type.

A function table named T with arguments xl,..., x,_ of types rl,..., 7,_ can be invoked as an ex-

pression by writing T(E1,..., E,_) where El,..., E,_ are expressions of types T1,. •., V,_, respectively.

Figure 3.3 shows what a table defining the function compare would look like.

32



Function table

Y

output

integer

integer

Comparison

compare

Selection

Input Variables [ States [[ 1[ Illegal

x = y TRUE, FALSE FALSE TRUE FALSE TRUE

Behavior

output [Comparison [[ LT I EQ I GT [[

Figure 3.3: Function table for the function compare.

Notes.

• Given type and variable declarations, the listing of states (possible values) of input expressions

of a decision table is redundant, though helpful. Listing the possible functions (expressions)

that can be assigned to an output does not seem useful. Instead, we have listed the type,

which is helpful in filling in the table.

• "Ordinary" (not functional) decision tables would look like functional ones except that the

title would be something like "Procedure Table," there would be no list of local declarations,

there would be headings giving operational procedure names, and there could be more than

one output.

• Note that in the compare table, we have used Illegal to indicate that it is impossible for both

x < y and x = y to be true. A potential enhancement would be to build in basic checking for

order and equality.

33



Chapter 4

A Guide to Parnas Tables

Originally Parnas's A-7 specification method [10] relied on English-language specifications. Since

then it has come to be more oriented toward formai specifications expressed in the form of tables

[28]. In the report [22], Parnas describes a number of different kinds of tables for use in representing

specifications or logical formulas in general.

The purpose of this chapter is to summarize Parnas's tables in a way easy for users of decision

tables to understand and to examine ideas in Parnas's work that may be applicable to our work on
decision tables.

The part of Parnas's report [22] that is most difficult to understand is the definitions of tables

of more than two dimensions, which cannot easily be illustrated by a diagram. Our approach

will be to avoid higher dimensions and abstract definitions, explaining by example. We suggest

that readers who are familiar with decision tables and are interested in thoroughly understanding

Parnas's report should first read this chapter, then Parnas's report concentrating on imagining

what generalizations of tables to higher dimensions would be like, then Parnas's report another

time carefully reading the definitions.

The table definitions are not, of course, the whole of Parnas's A-7 method. That method is similar

to the specification framework described in Chapter 3, but with any of Parnas's tables used instead

of only decision tables with behaviors.

4.1 Taxonomy of Parnas Tables

In all, Parnas defines ten kinds of tables:

• normal function tables;

• inverted function tables;

• vector function tables;

34



• normalrelationtables;

• invertedrelation tables;

• vectorrelationtables;

• mixedvectortables;

• predicateexpressiontables;

• characteristicpredicatetables;

• generalizeddecisiontables.

Besidesthese,hedefinesa numberof forms(conjunctiongrids,uniongrids,substitutiongrids,and
concatenationgrids)designedto reduceclutter in favorof structurein the rowsof tables. In this
chapterwewill discussonly the tableslisted,not the ancillaryforms.

SinceParnas'stablesinclude severalkinds of function tables,we will usethe term "functional
decisiontable" to denotewhatwerecalled"function tables"in Chapter3.

4.2 Background: Data States and Black-Box Program Specifi-
cations

The purpose of Parnas tables (and decision tables, for that matter) is to specify programs. Let us

start, then, by reviewing the basic ideas of program specification.

By a data state of a program we mean a function a : Variable _ Value that assigns a value of the

appropriate type to each variable of the program.

A black boz specification of a subprogram is composed of two parts:

• a precondition P(a), which is a state predicate (set of states) indicating on which input states

the subprogram can be expected to behave reasonably;

• an input-output relation R(_,¢I) such that:

for any data state a, if P(a) then there exists a' such that R(a, a');

whenever the subprogram is invoked in an initial state a that satisfies P(a), the program

will terminate and its final state a' will satisfy R(a, a').

Often there is only one intended output to a program on a given input; in that case the relation R

can be replaced by a function F such that F(a) = a' whenever R(a, a').

Using an input/output relation instead of a function allows nondeterminism--a subprogram can be

permitted to produce a variety of different outputs. Sometimes one may really want such a program,

35



but moreoften this is a specificationdeviceto avoidspecifyingat an early stageexactly what
a subprogramshoulddo (designnondeterminism--Heimdahland Leveson[9] argueagainstthis
practise).Usually,though,a deterministicspecification(with afunctionF) is easier to understand

than a nondeterministic one (with a relation R).

Normally, a and a _ will occur in R only in a form such as a(x), where z is a variable. The a

is mostly just clutter, so it is usual to let the variable itself stand for its value in a given state.

The problem here is that we are interested in values of variables in two states, before and after

execution of the subprogram. Most often this is done by writing x for the value of the variable x

before execution and x _ for the value after execution (this has the advantage that P does not have

to have any primes in it). Parnas, however, writes 'x for the value of x before execution and x _ for

the value of x after execution. Parnas also calls R the characteristic predicate of the subprogram.

The classic specification of this kind is the Z schema [27], which consists of exactly the definition

of such a P (the part above the line) and R (the part below the line), together with the necessary

type and variable declarations.

Floating-point computations provide natural examples of nondeterministic specifications because

one normally specifies the result only up to roundoff error. Consider, for example, a subprogram

sqrt(x,y) such that, on input x > 0, on return x has not changed but y is the square root of x with
relative error at most some constant e. Its precondition P and input/output relation R would be

P(x) z > 0,

R(z, y, x', y') x = ^ IN' - <

4.3 The Tables

In the interest of understandability, we will mainly consider tables that can be represented in two

dimensions. Mostly we will consider the different kinds of Parnas function tables and how they

would correspond to functional decision tables.

4.3.1 Normal Function Tables

Consider Figure 4.1, which is Figure 1 in Parnas [22].

The table defines a function of f(x, y) using different formulas for the result depending on the

conditions on x and y listed along the side (for x) and across the top (for y) of the table. For

instance, if x < 3 and y > 27 then

f(z, y)= y + _/-(z - 3).

Since this kind of a table defines a function, it should correspond to functional decision table.

Figure 4.2 shows such a functional decision table.

Remarks:

36



I y=27 I y>27 I y<27

27 + v_ 54 + _/27 y2 + 3

27+ x/-(x - 3) y+ _/-(x - 3) y2+ (_ _ 3)2
27 + ,,/x - 3 2,y+v/x-3 y_ + (3- x) 2

Figure 4.1: A normal function table.

Function table [] compare

x real

y real

output real

Selection

Input Variables " States II

LT, LT,GT LT LT EQ
compare(x,3) EQ, GT

compare(y,27) LT, EQ, LT EQ GT LT
GT

Behavior

output real y2 + (x - 3) 2 27 + x/3 - x y + x/3 - x y2 + 3

(continuation)

compare(x,3) LT, EQ, EQ EQ GT GT
GT

compare(y,27) LT, EQ, EQ GT EQ GT
GT

Behavior

output [ real _ 27+_ _ 54 -4-V/_ H 27+_ _ 2*y+

Figure 4.2: A functional decision table corresponding to Figure 4.1.

The table in Figure 4.1 does not directly specify whether x and y are formal parameters of

the function or global variables. We have treated them as formal parameters.

In this example, where almost every pair of conditions on inputs has a different output

expression, Parnas's form is more compact and more perspicuous than the functional decision

table.

On the other hand, when there are more than two arguments, we have problems representing

a normal function table on two dimensional paper.

37



One approach would be to present the table one two-dimensional slice at a time. An example

with a third variable z, for which the relevant predicates are z = 0, z < 0, and z > 0, is

shown in Figure 4.3.

An alternative approach would be to simply divide the variables into two groups, "stacking"

them when one or both of the groups contains more than one variable. Figure 4.4 gives the

stacked equivalent of the table in Figure 4.3.

(Both slices and stacking are our idea--they do not come from Parnas [22].)

Corresponding to the requirement of consistency for a decision table, Parnas has a notion of

a normal function being proper, namely that the conditions designating different outputs do

not overlap.

Note that the output expressions are arranged so that the argument of square root is always

positive. The precondition of square root is that its argument is nonnegative.

[ y=2¢ [ y>2¢ 1 y<27 I

27 + ,/27z

27 -I- -,_-(x - 3)z

27 + x/x - 3z

54 + x/_z

y + _/-(_ - 3)z
2*y+ v/x -3z

' y2 -t- 3z

y2 + (x - 3)2z

y_ + (3 - z)2z

I y= 27 I y> 27 I y < 27

27- v/27z 54- _/27z

27 + .,,/-(x - 3)z y - X/-(x - 3)z

27+ V_x- 3 2,y-_x-3z

y2 + 3z

y_ + (x - 3) 2

y_ - (3- x)2z

y = 27 ] y > 27 I Y < 27

27

27

27

54

y + _/-(_ - 3)
2*y+_/x-3

y2

y'Z

y2

Figure 4.3: A normal function table with three input variables, presented in slices.

4.3.2 Inverted Function Tables

The inverted form of function table is suitable when conditions on the variables are more numerous

than the different formulas for output. The name "inverted" comes from the fact that, compared

38



x=3

z>0 x<3

x>3

x=3

z<0 x<3

x>3

x=3

z=0 x<3

x>3

y=27 I y>27 I y<27 I

27 + v/27z

27 + x/-(x - 3)z

27 + v/z - 3z

27- v/27z

27+ ,/-(_ - 3)z
27+ _/x - 3

27

27

27

54 + _/27z

y+ _/-(x - 3)z
2 * y + _/x - 3z

54- Vr27z

y- _/-(z- 3)z
2 , y - v/x - 3z

54

y+ J-(_ - 3)
2*y+v/x-3

,2 + 3z

y2 ._ (X -- 3)2Z

y2 + (3.-- X)'ZZ

y2 + 3z

y2 + (x -- 3) 2

y2 - (3 - x)'Zz

y2

y2

y2

Figure 4.4: A normal function table with three input variables, two of them "stacked" on the left.

to the normal function table, the output values and the conditions for one of the input variables

have changed places. An example is Figure 4.5, which is Parnas's Figure 2.

y<3 y=3 y>3

y<x y>x y=x

y < --x y > -x y_ w_

Figure 4.5: An inverted function table.

Here, the conditions on x are written along the side, the conditions on y are in the body of the

table, and the output expressions are along the top. For example, if x < 3 and y = x then the

output is x • y.

This arrangement permits a different set of conditions on y to be used for each condition on x. A

different notion of properness applies: the conditions on x (the left hand column) must be complete

and consistent and each set of conditions on y must be complete and consistent.

Recasting Figure 4.5 as a functional decision table gives Figure 4.6. Recasting Figure 4.5 as a

normal function table would yield a more awkward three dimensional table.

Notes:

• Although in this case the inverted function table is rather neat, we can see that the circum-

stances that make it so are rather special: even though each condition on x is associated with

a different set of three conditions on y, there are still only three output expressions.

39



Function table

x integer

y integer

output integer

Selection

Input Variables States

anonymous

compare(x,3) LT, EQ, GT

compare(y,x) LT, EQ, GT

compare(y,-x) LT, EQ, GT

EQ LT GT EQ LT GT

LT LT * EQ GT *

• * LT * * GT

EQ LT VT
GT EQ *

• * EQ

Behavior

output integer x "b y II x - y II x* y

Figure 4.6: Decision table corresponding to Figure 4.5.

• It is perhaps even more obvious here than for normal function tables that properness is

not just a matter of propositional logic, but may depend on other mathematical properties,

usually properties of order.

4.3.3 Vector Function Tables

Vector function tables are to normal function tables as procedure decisional tables (those with

several named outputs) correspond to functional decision tables. That is, they are basically the

same thing except that they have several named outputs instead of a single unnamed outputs.

These tables have the drawback that only tables with a single input variable can be represented

directly in two dimensions. In that case they essentially are decision tables. For example, consider

Figure 4.7, which is Parnas's Figure 3.

I I w--o I w>o I

x+y+q x+2-q x-w
y+2 x+y x+y+2

z-w z z+w

Figure 4.7: A vector function table.

As we understand it, a vector function table indicates an operation changing the values of the

4O



output variables.Thus,in the rowof Figure4.7correspondingto the output x, we understand x

and y (and q) in the expression x + y + q to mean the values of those variables before invocation

of the table (or of the subprogram specified by the table).

Figure 4.8, the functional decision table corresponding to Figure 4.7 is nearly the same.

If we used the "stacking" representation for vector tables with several input variables, we would

end up with tables quite similar to what we call Parnas-style decision tables, discussed below and

shown in Figure 4.15.

Decision table compare

w integer

x integer

y integer

z integer

Selection

input Variables States

compare(w,O) LT, EQ, GT LT EQ 1] GT

Behavior

x integer x + y + q x + 2 - q x - w

y integer y + 2 x + y x + y + 2

z integer z - q z z 4- w

Figure 4.8: Decision table corresponding to Figure 4.7.

4.3.4 Normal, Inverted, and Vector Relation Tables; Mixed Vector Tables

Normal relation tables are like normal function tables except that the entries of the body of the

table, instead of being expressions of the desired output type, are Boolean expressions (logical

formulas) containing a special symbol R standing for the output ("result"). The idea is that any

value satisfying the formula is an acceptable output if that formula is selected. For example consider

Figure 4.9, which is Parnas's Figure 4. If x <: 3 and _ > 27 (and implicitly y >_ 0), then any

output R satisfying x 2 = R2 (i.e., R = +x) is acceptable. If x = 3 and y < 0 then any value of R is

acceptable, since any value of R satisfies the formula true. If x < 3 and y < 0 then no value of R is

acceptable.

Inverted and vector relation tables are analogous to inverted and vector function tables except that,

as for normal relation tables, acceptable outputs are indicated by formulas that they must satisfy

instead of expressions giving their value.

For vector relation tables, the output variables are named, so the formulas use the name of the

41



I  <27 { >27 I y<o I

x'Z + y2 = R_ x_ __ y2 true
y_ = R2 x 2 = R2 false

! X "z : R z X -" R > 3 xZ + yZ = R'z

Figure 4.9: A normal relation table.

appropriate output instead of R. In my view, this makes vector relation tables somewhat confusing,

because some occurrences of variables in the formulas specifying the outputs indicate values of

variables before invocation and others values after invocation, and the only way to tell which is

which is to see which variable the row belongs to. For instance, in Figure 4.10, which is Parnas's

Figure 6, it appears that in the x row, z stands for the value after, but in the y row it stands for
the value before invocation of the table.

{ w<o { { ]

X = W X2=4 X2 "- W

y'z=x+2 y=z+2 y={x{+2

z "z=z _+y_+w "z z _=x _+y z=5

Figure 4.10: A vector relation table.

These problems are fixed in characteristic predicate tables, described below.

Mixed vector tables allow some output values to be specified by an expression and others by a

formula, with a notation to indicate which are which.

We could make a decision table analog of relation tables by allowing formulas instead of expressions

to define outputs.

4.3.5 Predicate Expression Tables

In form, predicate expression tables are like normal function tables, except that the entries of the

body are logical formulas instead of terms. This class of tables provides a means to represent logical

formulas two dimensionally without identifying some values as inputs and others as outputs.

A two-dimensional table with formulas A1,..., A,_ listed in the left-hand header, formulas B1,..., B_

in the headers across the top, and formulas Ci,y, 1 < i < m, 1 <_ j _< n, in the body denotes the

42



formula
V AiABjACi,j.

l<i<rn,l <j<n

Here V means "or" (disjunction) and A means "and" (conjunction).

A particular example is shown in Figure 4.11, which is compressed from Parnas's Figure 8. Fig-
ure 4.11 is equivalent to the following formula.

(z _< 3A w_< 0Ay = 5)

V (x<3Aw>OAy+x=w)

V (x>3hw<<_Ohy>7)

V (x>3Aw>Ohy-x=6)

w>O ]

y>.7 y-x 6

Figure 4.11: A predicate expression table.

4.3.6 Characteristic Predicate Tables

Characteristic predicate tables are similar to predicate expression tables except that each variable

x occurring in it occurs in two versions, 'x and x _, never plain x, standing for the values of x

before and after some subprogram is invoked. Thus a characteristic predicate table is suitable for

defining the input/output relation of a procedure subprogram, the characteristic predicate of the

subprogram. (In our discussion in section 4.2, we wrote plain x instead of 'x.)

A characteristic predicate table is in some ways an alternate (and, in our opinion, better) way to
write a vector relation table.

Figure 4.12 is essentially Parnas's Figure 9. It says, for example that if the initial value of x is 3

and the initial value of w is 0, then the final values of x and w are both equal to the initial value

of y.

Note that in Figure 4.12 the variables occurring in the headers are both "before" variables. We

would expect this to be the normal case, though there is no rule that says header variables must
be of that kind.

43



I I I 1

'Z =3 Xl = _z h Z I = 'y hW_ = 'x W_ = 'y

'x <3 y_='x y_='y
'x >3 /_ = 4 x _+ w' = 'y

Figure 4.12: A characteristic predicate table.

4.3.7 Generalized Decision Tables

The main difference between generalized decision tables and decision tables as we would write them

is that the input expressions need not be finite valued and the entries of the body are predicates

on that input expression rather than lists of permitted values. The symbol # indicates where the

input expression for a given row goes in a predicate in that row. Parnas also permits just one

output (as for a functional decision table) and writes the output values for each column at the top.

Figure 4.13 is Parnas's Figure 10. Figure 4.14 is the equivalent "ordinary" decision table.

#<20 #<20
#_>20 #=20

true # > 20

Figure 4.13: A generalized decision table.

Remarks:

• In the generalized decision table, the list of input expressions is, strictly speaking, unnecessary,

since one can use them to replace the instances of # in the row, then delete the input

expression listing, as in Figure 4.15. In fact, we think that would be more in the spirit of the

other tables, whose principle characteristic is the use of logical formulas as entries.

• Writing predicates as entries in the body avoids making up functions like compare, whose

meaning may not be immediately apparent to the reader. For this reason alone we think

that this form of decision table is worth considering. The fact that entries to the table are

predicates may pose some (minor) problems for our checking algorithms, but may also provide

some new ideas about structured decision tables and structured decision diagrams.

44



Function table anonymous

X

Y

output

integer

integer

• integer

Selection

Input Variables

x,y<20

compare(x/y,20)
x 2 > 20

States

TRUE, FALSE

LT, EQ, GT

TRUE, FALSE

TRUE

EQ, GT

TRUE

EQ
TRUE

Behavior

output I integer IJ x+y J[ x-y

Figure 4.14: Functional decision table equivalent to Figure 4.13.

i i x-y I

x,y<20 x,y<20

x/y > 20

true

z/y = 20
x 2 > 20

4.4

Figure 4.15: The "true" Parnas-style decision table.

Conclusions

Compared to decision tables, Parna_ tables economize on space by eliminating the signature,

but to some degree pay back by having more complex entries (formulas).

Eliminating the signature has the more important benefit of allowing input conditions to be

divided into two groups, as in Figure 4.4. Doing so reduces the need to duplicate conditions,

as typically must be done in decision tables.

Note that although in theory the input conditions to a Parnas table could be divided into

arbitrarily many groups, but in practise, tables are written in two dimensions, so either the

conditions must be put into two groups or else the table printed in slices.

In the table definitions as given by Parnas and described above, each condition is a single

predicate. There is, however, no real reason why such predicates could not be organized in

tabular form like an engagement criterion in a decision table, as in a partitioned decision

45



table. The motivationfor tabulatingtheindividualpredicatesis the sameasfor usingtables
in the first place--it organizesthepredicatesexpressedandmakesthemclearerandeasierto
understand.

Thoughwehavenot discussedthemhere,Parnashasa systemof gridsfor abbreviatingsets
of formulasby tabulating themin a numberof ways.Tabulatingformulasinto engagement
criteria might beconsideredanextensionof theabbreviationgrids.

In general,we think that the idea of permitting generalpredicatesto be table entriesis
interestingbecauseit allowsgreatflexibility. On theotherhand,requiringentriesto matcha
givensignature,asin a decisiontable,helpsclassifyandclarifythe informationin theentries,
forcesit to besimple,and makesit easierto perceivelogicaldependenciesbetweenentries.
This is particularlytrue of partitioneddecisiontables.

• As to form assistingexpression,invertedParnastablesseemto be the mostinterestingsince
they provideaneatwayto tabulateadecisioninvolvingtwovariablesin whichtheconditions
on the secondvariablearedependenton the first variable.Nevertheless,it doesnot seem
entirely satisfactorybecausethe resultsthat can beobtainedcannot alsodependon the
conditionon thefirst variableasit canin normalfunctiontables.Is therea compacttabular
form that combinesthesefeaturesof normalandinversefunction tables?

• Parnastablesall definefunctionsor relations.Not havinga notioncomparableto operational
procedure,they do not directly representobjectsin the waythat wesuggestedfor decision
tablesin theprevioussection,thoughof courseobjectscanalwaysbemodeledindirectly by
settingstatevariableson whichotherfunctionsdepend.

Parnas'sA-7 specificationmethodis properlya wayof definingthe functionsand relations
neededto definethe transition andobserverfunctionsusedin a complexsystemcomposed
of state machines,but it doesnot providea notationfor directly definingthe component
statemachines(objects),asStatechartsandRSMLdo. A form of object tablemight bring
Parnas'smethodcloserto theothersandpermit moresynergybetweenthemethods.

46



Chapter 5

Testing Decision Tables and Code
Generated from Decision Tables I

No matter how rigorously formal methods may be applied, and no matter how completely its results

are accepted, testing will still be needed at two points in the process of developing embedded
software.

• At the beginning of the development process, the formal specification must be tested in order

to validate it, i.e. to ensure that it says the right thing. Examining the results of these tests

can also help designers and others understand what the formal specification does say. This

testing of the specification amounts to a systematic simulation of a number of cases.

• At the end of the development process, when the software is finally integrated with the

system's hardware, the entire system must be tested in order to confirm that the combined

system of hardware and software behaves as expected.

Besides these two points, software development standards such as the quasi-regulatory DO-178B

[23] specify the use of testing to verify correctness of software, and suggest the use of particular

test coverage criteria in this testing. Generating test cases that meet one of these coverage criteria

together with the test results specified generated by the decision table may therefore smooth the

way to acceptability of code generated from decision tables.

Systematic testing normally requires that one apply a suite of tests selected so as to satisfy some

test coverage criterion. The test coverage criterion represents some attempt to test rationally so as

to maximize the likelihood of finding (certain types of) errors for a given amount of testing effort.

Section 5.1 describes a number of test coverage criteria mentioned in DO-178B. One of them

is modified condition/decision coverage (MC/DC). MC/DC testing is believed to be as effective

1We thank Steve Miller for numerous explanations that have made this chapter possible. Any errors that it still

contains are the fault of the authors.

47



in practiseastesting accordingto the mostthoroughtest coveragecriterion, multiple-condition
coverage(M-CC), but normallyrequiresfar fewertests(typicallyN +1 for N conditions in MC/DC,

compared to 2 N tests for M-CC). Drawbacks of MC/DC are that it is more difficult to understand

than other test coverage criteria and that not all code even has a test suite providing MC/DC

coverage.

Accordingly, this chapter does the following things.

We discuss testing as a means of validating specifications in the form of decision tables.

Testing a decision table by asking what result it would produce on a given input is not a

problem. Rather, the problem is deciding on a reasonable test coverage criterion in order to

get a good overall picture of what the table specifies. We propose an analog of MC/DC that

applies to decision tables (as opposed to code) and an algorithm for generating an appropriate
suite of tests.

We address the need for testing code generated from tables by producing algorithms that

generate MC/DC testable code from any decision table together with a test suite providing

MC/DC coverage.

Testing is a big subject and we have been able to address only a very small part of it here. Testing

or generating a test suite for an individual decision table or the code generated from it is only a

small part of what is needed to validate the specification of a complex system or to provide a test

suite adequate to test the software implementing that system when it is installed in the hardware

it is to control. We believe, however, that it is a step in the right direction.

5.1 Coverage Properties and Associated Terminology

Here are definitions of some important test coverage properties as given in Chilenski and Miller [5].

The first four are quoted by Chilenski and Miller from the Glossary of DO-178B [23], though only

MC/DC seems to be mentioned in the text of [23].

• Statement Coverage (SC): every statement in the program has been executed [by the test

suite] at least once.

• Decision Coverage (DC): every point of entry and exit in the program has been invoked at

least once and every decision in the program has taken all possible outcomes at least once.

Condition/Decision Coverage (C/DC): every point of entry and exit in the program has been

invoked at least once; every decision in the program has taken all possible outcomes at least

once; and every condition in a decision in the program has taken all possible outcomes at

least once. [I.e., DC plus: every condition in a decision in the program has taken all possible

outcomes at least once.]

48



ModifiedCondition/DecisionCoverage(MC/DC): everypoint of entry and exit in the pro-
gramhasbeeninvokedat leastonce;everyconditionin a decisionin theprogramhastaken
all possibleoutcomesat least once;and eachconditionhas beenshownto independently
affectthedecision'soutcome(by varyingit whilekeepingtheotherconditionsin the decision
fixed).

Multiple-ConditionCoverage(M-CC):everypoint of entry andexit in the programhasbeen
invokedat leastonceand all possiblecombinationsof the outcomesof the conditionswithin
eachdecisionhavebeentakenat leastonce.

Wesaythat a test coverage property A subsumes a test coverage property B if for every program

P, any test suite for P satisfying A also satisfies B.

With the exception of M-CC and MC/DC, it is clear that each coverage property on the list

subsumes the previous ones. M-CC does not subsume MC/DC, however, because M-CC does not

require to show that all conditions have independent effect, as MC/DC does. In fact any program

has a test suite satisfying M-CC. That is not the case for MC/DC, because, as we shall see later,

in some programs not every condition has independent effect in the decision in which it occurs.

The definitions above use a number of technical terms that need to be explained. For concreteness,

we will couch our explanation in terms of Ada programs.

• Program. This term must be taken to mean just one particular subprogram containing the

conditions and decisions in question, not any context in which it is called or any further

subprograms that it calls. The reason is that it will often not be possible to exercise, for

example, all possible outcomes of every condition when a subprogram is used in a particular
context.

• Condition, Decision. DO-178B gives the following definitions.

Condition: A Boolean expression containing no Boolean operators.

Decision: A Boolean expression composed of conditions and zero or more Boolean

operators. A decision without a Boolean operator is a condition. If a condition

occurs more than once in a decision, each occurrence is a distinct condition.

W'e make the following observations.

- Formally, conditions and decisions are instances of Boolean expressions rather than

Boolean expressions.

- The definition does not cover Ada case statements. According to Miller (private com-

munication), a case statement

case COLOR of

red, green => ...

blue -->...

end case ;

49



should be treated asifit were

if COLOR = red or COLOR = green then ...

else if COLOR = blue then ...

end if;

- In a statement

if A and (B or C) then ...

expressionsA and (B or C),B or C,A,B,and C arealldecisions.Normally,one thinks

only of the first, A and (B or C) (a maximal decision) as the decision, but a little

thought will show that it makes no difference to the coverage properties whether decisions

are all Boolean expressions or only maximal ones.

A decision need not occur only in a control statement (if then else, case or uhile).

For example

A := B or C;

both h and B or C axe decisions.

• An outcome of a decision or condition is simply one of the values (true or false) that it may
take.

• Entry, exit. In an Ada subprogram, the only point of entry is the beginning of the subprogram,

exercised by every test, and the exits are the return statements and any exceptions that can

be raised but are not handled, and, in case of a procedure subprogram, the end of the body

of the subprogram and of each exception handler.

We do not consider exceptions that are not explicitly raised in the subprogram as exits. As we

understand it, critical programs are normally written so as not to raise predefined exceptions,

such as CQNSTRAINT_ERROR, and the property of not raising such exceptions is tested using

some form of extremal testing different from what we are discussing here.

• Statement. An Ada statement.

• Independent effect. The key clause of the definition of MC/DC says:

A condition is shown to independently affect a decision's outcome by varying just

that condition while holding fixed all other possible conditions.

Here, we understand the phrase "all other possible conditions" to include at most the con-

ditions occurring in the subprogram containing the particular decision. The word "possible"

says that the outcomes of some of these conditions may also be varied, but is vague about

the exact conditions under which it is permitted to vary them. We discuss this topic further
below in Section 5.3.

In any case, the two test cases required to show the independent effect of a condition on its

decision must both cause control to reach the given decision. For example, the condition A

does not have independent effect in the second decision in the following code.

5O



if A then ...; elsif not A then ...; end if;

A does not independently affect the second decision because the second condition, if reached,

can only come out true. This gives us a rule of thumb for making code MC/DC testable: a

sequence of elsifs must end with a reachable else.

5.2 Test Categories vs. Test Cases

Properly speaking, a test case is an assignment of values to the variables (parameters and global

variables) of a subprogram. Test coverage criteria, however, are defined in terms of how values of

conditions and decisions must be covered rather than directly in terms of values of variables. There

is a difference because some of the conditions are defined in terms of relations applied to actual

variables, as with the condition x < y.

Values of conditions also play the leading role in decision tables. Consequently it makes sense

to divide the task of finding a test case of a certain kind into two subtasks: first find a suitable

combination of values of conditions, then find values of variables that give the required values to
the conditions.

We call an assignment of values to conditions a test category. A test case which gives each condition

the value assigned to it by a test category C is called a realization of C.

Because there can be mathematical relations between conditions, it is not always possible to realize

a test category. For example, consider the following code.

if x < 0 then if x > 0 then raise Impossible; end if; end if;

A test category that exercises the statement raise Impossible is an assignment of the value true
to each of the two conditions x < 0 and x > 0.

A test case that realizes this test category must assign to x a value v that satisfies both v < 0 and

v > 0. Since there is no such value, there is no such test case, and the test category cannot be

realized by a test case.

In general, to find whether a test category is realizable by a test case, it is necessary to look into the

structure of its conditions. Even then it is, in general, not possible to decide whether there exists

any test case realizing a given test category. In some commonly occurring special cases, however,

it is possible to determine whether test cases exist and, if so, find them.

• Ada variables of a Boolean or enumeration type.

• a linear inequality alxl +. • •a,_x,_ +b < O, where al,..., a,_, b are constants with values known
at test time.

• Equivalent to a finite function of the foregoing, but in the form of atomic expressions--no

explicit Boolean operations. (E.g. the three-valued comparison, compare.)

51



Thedecisiontablesfrom avionicsthat wehaveworkedwith haveall hadconditionslike this.

In this specialcase,we can, by a combinationof linear programmingand propositionallogic,
effectivelydeterminewhethera test categoryis realizableand, if realizable,find a test casethat
realizesit (seeNelsonandOppen[20]or Shostak[26]).

Wewill not further addresstest categoryrealizationhere,however,but will concentrateongener-
ating test categorieswhoserealizations,if any,must satisfycertaintest coveragerequirements.

If all unrealizabletest categoriesaredocumentedamongtheimpossiblescenariosunderthepseudo-
operationalprocedureNever, then no unrealizable test categories will be generated from the table.

Test categories may also be useful because it appears to be easy to piece together a test category for

a program with another test category for a subprogram it calls to form a test category for program

and subprogram together. It does not seem so easy to do the same for test cases.

5.3 Independent Effect

The meaning of "independent effect" and of the phrase "all other possible conditions" that occurs

in its definition requires more detailed discussion. Let us begin with the following simple example.

if p = q then ...; elsif p then ...; else ...; end if;

In order to show independent effect of the p in the second condition, we need two test categories v

and v' that differ on p, say v(p) = T, v'(p) = F_ both of which exercise that instance of p.

Let us make some observations.

• Technically, the p in the first decision is a distinct condition. Clearly it is not possible to

change the p in the second decision without changing the other p in the first decision.

• In order to change the p in the second decision, we must also change the q in the first decision.

Thus, the two test categories must be v(p) = T, v(q) = F, and v'(p) - F, v'(q) = T.

Why does this pair of test categories show independent effect of the p in the second decision?

Because under both, the second decision is executed and the other two conditions (i.e., other than

the instance of p in the second condition) that v r changes are not in the second decision at all.

Reasoning in this manner, we arrive at the following definition of independent effect.

A test category v causes a condition p to be evaluated in a decision A if evaluating v(A) does

require evaluation of p, taking account of short circuiting. For example, if v(p) = T, then in p or

else q, v causes the evaluation of p, but not q.

A test category v masks a set S of conditions in a decision A if v(A) does not depend on the values

of conditions in 5. That is, treating the members of S as distinct variables distinct from all other

variables in A and changing their values arbitrarily would not change v(A).

52



The test categoriesv and v_ show independent effect of the condition p lying in the decision B if

the following conditions hold.

• B is evaluated under both of the test cases v and vq

• v(B) ¢ v,(B).

• Both v and v_ mask in t3 the set of all instances of p other than the one whose independent

effect is being shown. Further, for every condition q _ p that is evaluated in B under both v

and v', v(q) = v'(q).

The limitation that only values of conditions evaluated under both v and v _ need be preserved is

intended to allow for legitimate use of short circuit operators to prevent conditions to be evaluated

when they are not well defined. The following code provides an example.

x = 0 or else y/x > i00

It does not make sense to evaluate the second condition unless x _ 0, so we do not require test

cases giving different values to x = 0 to give different values to y/x > 100.

For better or worse, this rule makes it far easier to demonstrate independent effect when short

circuit Boolean operators are used instead of "normal" ones. Consider the following code.

if

p and not q then OP := opl;

elsif

p or else q then OP := op2;

endif ;

Call the second decision B. This code is strongly testable. The test cases

u(p) = u(q) = T, u'(p) = u'(q) = F

demonstrate independent effect of the p in B, while the test cases

v(p) = v'(p) = v'(q) = F, v(q) = T

demonstrate independent effect of the q in B. If the or else were replaced by or, which is not

short circuit, changing the value of q between u and u _ would not be allowed, so u and u _ would

not show independent effect of p in B. Indeed, in the code with or instead of or else, p does not

have independent effect.

Now, in fact the instance ofp in B is superfluous and the code could be rewritten so as to be MC/DC

testable without any evasions. We cannot, however, show that it is always possible to rewrite code

so that all conditions have independent effect without introducing short circuit operators in one way

or another. This advantage suggests that the definition of independent effect should be weakened so

that the use of short circuit operations does not make such a difference. We suggest the following.

53



(Weaklyindependenteffect)Everyconditionq in B, other than the instance of p whose

independent effect is being shown, such that v(q) _ v'(q) and q is evaluated in B under

both v and v', lies in a subexpression C of B such that v(C) = v'(C).

Short circuit operators still have it easier under this definition, but the difference is not as great

and one can always rewrite pure conditional code to be testable in this sense without introducing

short circuit operators.

In Section 5.6, we shall make shameless and systematic use of short circuit operations to weaken the

requirements that we must meet in order to generate MC/DC testable code from decision tables.

5.4 Pure Conditional Code, Tree Code, Decision Trees, and Con-

text

Starting in this section, we will speak about code generated from decision tables in more technical
terms.

For the rest of this chapter, we will allow use only of conditions whose evaluation has no side effects.

5.4.1 Condition statements and Expressions

For simplicity, we will regard

if A then B else C end if

as the only form of control statement. All other forms of conditional statement are equivalent to

one of these. For example:

• The statement

is equivalent to

• The statement

if A then B end if;

if A then B else null; end if;

if A then B elsif C then ...end if;

is equivalent to

54



if A then B else if C zhen ...endif; end if;

• The statement

case E is

when A JB.. C => $I;

when D => 52

when others => $3;

is equivalent to

if E = A or (B <= E and E <= C) then $I

else if E = D then $2

else $3

end if ;

end if;

Strictly speaking, a more complex equivalent is required if E has side effects.

assume that decisions have no side effects.
We always

5.4.2 Boolean Expressions

We assume that the Boolean expressions that may be used are the following.

• Conditions (Boolean expressions that cannot be further decomposed).

• not A, A and B, A or B, A and then B_ A or else B, A = B, where A and B are

Boolean expressions.

• A --* B I C where A, B, and C are Boolean expressions.

The semantics of the alternative operator A ---*B I C is as follows.

Evaluate A. If the result is true, evaluate B and return its value; otherwise evaluate C

and return its value.

The semantics of the other Boolean operations are as in Ada.

The reader will observe that A --+ B I C is just a form of if ...then ...else ...end if that

applies to expressions instead of statements. Indeed, in some languages, such as Lisp or ML, there

is no difference. Hence we will often refer to the alternative as the conditional operator in order

to emphasize its close relationship to the conditional statement. The C language has a conditional

operator, written A ? B : C.

55



5.4.3 Straight Line and Pure Conditional Code

First, observe that the code generated from a decision table will always be pure conditional code,
defined as follows.

• Straight line code is a sequence of assignments possibly terminated by a return statement,

containing no non-constant Boolean expressions.

• Pure conditional code is either:

- a statement sequence S of straight line code; or

- A statement

if A then $1 else S_ end if;

where $1 and $2 are pure conditional code (and the decision A has no side effects).

• Tree code is the special case of pure conditional code in which each decision is a condition.

• Opproc-by-opproc code is of one of the following forms, where $1,..., Sn are straight line
code.

if D1 then SI;

elsif D_ then $2;

elsif D_ then Sn;

or

if DI then SI;

elsif D2 then $2;

else Sn ;

5.4.4 Context

The contezt of an expression B in a larger expression A or a statement S is a logical formula

representing the strongest property that can be guaranteed always to be true when B is evaluated

as part of evaluating A or S. Context is a sort of strongest precondition operator [6], and can

be defined for statements as well as expressions. To define it in generality requires the general

apparatus of predicate transformation, as discussed in [6]. For Boolean expressions without side

effects and pure conditional statements, however, context is easy to define.

The importance of context is the following. In all our discussions of code and testability, we are

assuming that predefined exceptions are not raised. What is it, however, that guarantees that

56



evaluationwill not raise an exception?the context in which the expressionis evaluated. For
example,the expressionm div n, for integervariablesmandn will not raiseanexceptionif it is
evaluatedin a context that implies n # 0.

Note that here, when we define the context of an expression B, we do mean an expression, not an

instance of an expression B. The definition can, however, easily be modified to define the context

of a condition or of any set of instances of expressions. The definition a/so applies when either A

or B is an expression, statement, or statement sequence. (The most convenient point of view for

us would be that of ML or C, in which everything is an expression and statements do not form a

separate syntactic category, but expressions evaluated for side effects may be informally referred to

as statements.)

Figure 5.1 gives the definition of the context of one expression in another. The definition of a

condition, or any instance of an expression, is similar.

context(B, A) = false, if B does not occur in A

context(B, B) = true

context(B, not A) = context(B,A)

context(B, A and A')= context(B, A or A')= context(B, (A = A'))=

context(B, A) V context(B, A')

context(B, A and then A') = context(B, A) V (A A context(B, A'))

context(B, A or else A') = context(B, A) V (_A A context(B, A'))

context(B, A _ C I D) = context(B, A) V (A A context(B, C) v (-_A A context(B, D))

context(B, if A then

context(B, A) V (A

context(B, case A is

context(B, A) V (A

context(B, case A is

context(B, A) V (A

51 else Sn end if; =

A context(B, S1) V (-_A A context(B, $2))

when 01 => SI; ...when On => Sn; end case;) =

6 CI A context(B, 51))... V (A 6 Cn A context(B, Sn)).

when CI => SI; ...when Cn-i => Sn-l; when others => Sn;

E C1 A context(B, $1))... v (A 6 C_ A context(B, S_)).

end case;)=

Figure 5.1: The definition of context.

Context is important for expressing code in different forms. We regard it as permissible to rewrite

code as long as the semantics remains the same in the absence of predefined exceptions: that is,

57



any predefinedexceptionthat canbe raisedby the rewrittencodecanbe raisedby the original
giventhe sameinitial state. If werequirethat in therewrittencodethe contextof eachexpression
is at leastasstrongasin the originalcode,then this propertywill besatisfied.

5.5 Decision Tables and Short Circuit Operations

Chilenski and Miller [5] point out that short circuit operations are sometimes necessary to ensure

that certain conditions will not raise an exception when evaluated, as in the following example.

if x /= 0 and then y/x < 100 then ...

If short circuit operators may occur in code generated from decision tables, we need a convention

to indicate short circuit operators in decision tables. The simplest convention seems to be to the

following.

• Interpret each column as a short circuit conjunction of the interpretations its entries, ordered

from top to bottom, omitting "don't cares".

• For partitioned decision tables, apply this convention recursively to the entries.

We did not say anything about the columns of an engagement criterion (or a complex entry of a

partitioned decision table) forming a short circuit disjunction. Rather, we regard them as forming

an ordinary disjunction. The reason is that we prefer to consider the columns of decision table as

occurring in no particular order. Regarding columns as unordered means that we cannot simplify

later columns by omitting conditions implied by the failure of previous columns. Accordingly, a

decision table must explicitly represent all conditions relevant to a given column.

Our convention gives a natural way to define context of an input variable in a decision table.

• The

• The

context of an input variable in a column is either

false, if the variable's entry in that column is "don't care" (that is, the variable does not

occur), or

the conjunction of the entries above it in that column.

context of an input variable in a decision table is the conjunction of:

- the strict precondition of the table (the conjunction of the engagement criterion of Always

and the negation of the engagement criterion of Never);

- the disjunction of the variable's context in the columns of the table other than the strong

preconditions.

58



• For partitioned decisiontables,apply this definition recursivelyto complexentriesin the
obviousway.

• The contextof a condition,or an instanceof anyexpression,in a decisiontable is defined
similarly.

Regardingeachcolumnas a short circuit conjunctionfrom top to bottom implicitly imposes the

restriction that the context of a condition in the table can only mention other conditions higher in

the table, never lower. One can imagine, however, three conditions A, B, and C, such that when

A is true, C may not be evaluated unless B is true, and when A is false, B may not be evaluated

unless C is true. The way to work around this problem is to enter one of the input variables into the

table twice and specify under Always that the two copies always have the same value. Figure 5.2
illustrates this solution. The solution is a bit awkward, but we expect that this problem will rarely

come up.

O1 02 03

A T,F T T T F F

B _F F T T * *

C T,F * T F F T

B T,F * * * * T

04 Always
F * *

• T F

T * *

F T F

Figure 5.2: Varying order of evaluation in a decision table.

Under this convention, the engagement criterion of O1 in Figure 5.2 would be the following.

(A and then not B) or (A and then B and then C)

The context of C in the table is

(A A B) V -A.

(We have omitted the Always condition because it is vacuous.)

For a table manipulation to be valid, not only must the tables be logically equivalent (considering

that input parameters take an arbitrary possible value in cases where they would actually raise an

exception), but the context of each input variable in the modified table or in generated code must

imply its context in the original table. Then, if evaluating any column in the original table will not

raise an exception, neither will an exception be raised in evaluating columns of the modified table

or in executing generated code.

Our algorithms for manipulating decision tables all assume that decision table as written will

require each input parameter to be evaluated only in a proper context. In the results they produce,

whether code or another decision table, each input variable always has a context at least as strong

as its context in the original table.

59



Perhapsit wouldbeworthwhile,in a systemlike that describedin Chapter3, to providea means
of specifyingthe minimumcontextrequiredby eachinput variable.Onecouldthencheckthat a
giventable providesa sufficientlystrongcontextfor eachof its input variables.

5.6 Generating Testable Code and Tests from Decision Tables

5.6.1 Testable Tree Code

We say that a formula or Boolean expression B is logically independent of another formula A if
both B and -_B are both consistent with A.

We say that a program is MC/DC testable in the context of a logical formula (Boolean expression

without side effects) A (a strict precondition) if the MC/DC testability requirements are satisfied

by a suite of test cases that satisfy A.

Theorem 5.6.1 Tree code is MC/DC testable in the context of A if every condition in it is inde-

pendent of the conjunction of A and its context in the code.

Proof. We prove by induction on tree code S that for any formula A, if every condition C in S

is logically independent of A A context(C, S), then each such condition C can be shown to have

independent effect by a pair of test cases that satisfy A.

The basis case, where S is straight line code, is vacuous, since there are no conditions at all in S.

Suppose that S satisfies the hypothesis and is of the form

if B then $I else $2 endif;

To demonstrate independent effect of B, choose test cases 7-1and r2 respectively satisfying A A B

and A A -_B. These exist since B is logically independent of A. They demonstrate the independent

effect of B in a vacuous sense because no conditions other than B are evaluated under both rl and

7-2.

Now demonstrate independent effect of some other condition C. Suppose that C lies in $1, the

other case being symmetric. Apply the inductive hypothesis to A A B, $1, and C to obtain test

cases vl and r2 satisfying A A B, demonstrating the independent effect of C in $1. These test cases

satisfy A and show independent effect of C in S because they agree on all conditions that both

evMuate in S, namely B and the conditions that both evaluate in $1.

It is easy to transform any pure conditional code into equivalent tree code. One way to do the

latter is to replace a statement of the form

if A and B then $I else $2 end if;

6O



by

if A then if B then S1 else $2 end if; else $2 end if;

Repeat this and similar translation steps for other Boolean operations until all decisions are con-

ditions. This translation preserves context. All conditions but those in B have the same context

in the translation. Those in B have their context strengthened by adding A to it.

Once tree code is obtained, examine each condition to see whether it is independent of its context.

If not_ replace the statement containing it by its sole accessible branch. This operation preserves

context because either the eliminated condition or its negation is a/ready implied by its context.

The resulting pruned code is equivalent to the original code in the context of any given precondition

A.

It is natural to generate tree code from simple decision tables in such a way that the context of

each condition in the code is at least as strong as its context in the decision table. Indeed that sort

of code is generated by Tablewise [13]. Partitioned decision tables suggest a more complex kind of

nested tree structure, the decisions corresponding to the possibly complex entries in the decision

table. We do not know how to generate MC/DC testable code while substantially preserving the

structure of the entries of a partitioned decision table. A modification of the definition of MC/DC

may be necessary to obtain such an algorithm. The problem of generating such code may be the

best place to start thinking about what such a modification should be like, as we consider below

in Section 5.8.

5.7 Testable Opproc by Opproc Code

Opproc-by-opproc code is of the form shown in Figure 5.3, the elsifs being regarded as the

equivalent else ifs. It is natural to generate opproc-by-opproc code from a decision table because

the decisions in the code correspond to the engagement criteria of opprocs in the decision table.

if DI then SI;

elsif D2 then $2;

elsif Dn then Sn;

[ else Sn+l; ]

Figure 5.3: Opproc-by-opproc code.

A segment of opproc-by-opproc code will be testable if each decision D_ in it is testable in the

context of A A _D1 A ... A -_Di-1 where A is some overall context.

Making a decision D testable in a context A can be accomplished by methods similar to those used

to make tree code testable.

61



We say that a decision D is in tree form if it and every subexpression of it has the form p _ B I C,

where p is a condition.

The algorithm for making a decision D MC/DC testable in the context of A goes as follows.

• Translate D into tree form, preserving context. The simplest method is the following.

- Choose a condition p in D such that context(p, D) = true.

- Let D TM and D false be the formulas respectively obtained by replacing p by true and

false, then applying this algorithm recursively to the result.

- Reduce p --. D TM [ D false using equivalences such as the following.

(q--+trueIC ) = (q or else C)

(true-_ BIG )= B

Return the result.

• Prune conditionals in which the condition is not independent of the conjunction of A and its
context.

Programming languages like Ada do not have conditional expressions, though some other languages

such as C do have them (A ? B : C). In order to make a testable decision into a testable Ada

expression, eliminate conditional expressions using the following function f in Figure 5.4.

Theorem 5.7.1 If a tree expression B is testable in the context of A, f(B) is equivalent to B

and testable in the context o/A. Furthermore, /or any decision variable q, context(q, f(B)) =-
cod text(q, B ).

Proof. The clauses about equivalence of B and f(B) and their associated context functions are
trivial.

For testability, it will suffice to treat one of the middle cases, to show how they all go, and the last
case.

Suppose then that B is p _ C [ T and f(B) is not p or else C. Any pair of test cases v, v' that

respectively satisfy A A p A _C and A A _p demonstrate the independent effect of p. Such valuations

exist because they are required to demonstrate independent effect of p in B.

Suppose that B is p _ C I D, C, D _ {T, F}, and that f(B) is

(p and then C) or (not p and then D).

Since B is strongly testable given A and neither C nor D is either T or F, there exist valuations

u, u', v, v' such that

62



f(b) = b, b 6 {T,F}

f(p _ T F) = p

f(p-_F T)=notp

f(p _ C T)= not p or else f(C)

f(p_ T D)=p or else f(D)

f(p- c F)= p and then f(c)

.f(p- F D)= not p and then f(D)

f(p- C D)= (p and then f(C)) or else (not p and then f(D)), C,D ¢. {r,F}.

Figure 5.4: How to eliminate the conditional operator.

• u satisfies A A p A C,

• u' satisfies A A _p A -,D,

• v satisfies A A -_p A D,

• u' satisfies A A p A -,C.

The pair u, u' demonstrate the independent effect of the first, positive occurrence of p in f(B),

while v, v' demonstrate the independent effect of the second, negative occurrence of p in f(B). []

5.8 Testable Code Containing More General Decisions

We have been able to give algorithms only for generating code with a rather simple special

structure--either tree structured code or opproc-by-opproc code in which the decisions are tree

structured. We could use the same methods to generate more general testable code, in which de-

cisions could have more complex structure, if the conditions for independent effect were relaxed a

bit so that a conditional expression

A_BIC

would be treated in the same way as the conditional statement

if D then $I else $2 end if;

63



In the conditional statement, to show independent effect of a condition p in $1 only requires two

test cases r_ and r2 that both make D true and that show independent effect of p in $1.

In the conditionM expression, however, to show independent effect of a condition p in B requires

two test cases rl and r2, both making A true, showing independent effect of p in B, and agreeing

on all conditions in A that both rl and r2 cause to be evaluated.

If conditional expressions were treated in the same way as conditional statements, and a similar

change in the rules was made for the short circuit operations and then and or else, then to show

independent effect of a condition C in a decision D built using only short circuit operations, one

would only need two test cases rl and r2, both causing D to be evaluated (i.e. satisfying its context)

and giving D different values.

This notion of independent effect seems a bit weak; perhaps tightening it up a bit would yield a

more satisfactory test coverage criterion.

5.9 Test Coverage for Decision Tables

To test a decision table means to indicate what behavior it prescribes in a particular test case; that

behavior is easily computed from the table. The idea of prescribing a coverage criterion to be met

by a suite of tests is simply to ensure that the tests give a reasonably complete picture of what the

table says.

The aim of this section is to consider the idea of test coverage criteria for decision tables, and in

particular an analog to MC/DC. This work constitutes a preliminary essay toward developing such

a test coverage criterion. We believe that further work along the lines indicated in Section 5.8

would help delineate the idea that should underly such a testing criterion.

Let us start by returning to the definition of MC/DC and see which clauses of its definition can

apply to decision tables, and which cannot.

Modified Condition/Decision Coverage (MC/DC): every point of entry and exit in the

program has been invoked at least once; every condition in a decision in the program

has taken all possible outcomes at least once; and each condition has been shown to in-

dependently affect the decision's outcome (by varying it while keeping all other possible

conditions fixed).

The notion of entries and exits does not make much sense for decision tables. In code generated

from decision tables, the one entry and all the exits get exercised automatically if other conditions

are satisfied. We will therefore ignore the first clause.

The second clause brings up the question: in a decision table what is a condition and what is a
decision?

The way conditions are grouped into decisions in code is rather arbitrary, as is shown by the contrast

between tree-form code (many decisions, one condition per decision) and opproc by opproc code

64



(onlyonedecisionperopproc,manyconditionsin eachdecision).Our considerationsin Section5.8
suggestthat it might bepossibleto dispensewith or at leastreducethe importanceof the rather
arbitrary wayin whichconditionsaregroupedinto decisions.Forthe timebeing,however,wefind
a reasonableway to apply thenotionof a decisionto decisiontables.

Fora decisiontable, therearea numberof reasonablewaysto definedecisions.

• A decisionis anentry.

• A decisionis acolumn,regardedasashort-circuitconjunctionof its nontrivialentries,ordered
from top to bottom•

• A decisionis the engagementcriterionof anopproc.

Here,wechoosetheseconddefinitionbecauseit permitsusto apply the ideaof independenteffect
to conditionsin decisiontablesin anunproblematicbut nontrivialway.

AnMogywith the treatmentof casestatementsabovemakesit clearthat theconditionsarestate-
mentsv = a where v is an input variable of the table and a is one of its possible values. (Of course,

v = true can be abbreviated by v and v = f_lse by -,v.) In the following table, the entry a, b, e for

variable v denotes the disjunction of three conditions, v = a V v = b V v = e.

..o

v I a b,c,d,e • Io,b,el

Our interpretation of independent effect for tables will be guided by the idea that the context of an

entry E in a decision table is the conjunction of the strict precondition of the table and the entries
above E in the same column.

We regard a test category as an assignment of values to input variables, rather than directly to
conditions.

Suppose that the entry E belongs to the input variable v, has context A, and E = {cl,..., cn). To

show independent effect of the condition v = ci, ci E E, we require two test cases, a and 7, both

satisfying A, with a(v) = c_, _-(v) _ E, and a satisfying all entries of the column of E.

Taking individual entries as conditions, but with the same context, would eliminate the need for a

to satisfy the rest of the column.

We do not require that all conditions implied by a decision table have independent effect, since

eliminating all conditions that do not have independent effect might interfere with modification

and reuse of specifications. For example, we might want to use a given column in tables with

different preconditions. One precondition might preclude independent effect of some conditions in

the column, while the other precondition might not. Any such conditions will be eliminated in code

generation in any case.

65



Rather,wesaythat atestsuite_ for adecisiontableT satisfies Tabular MC/DC for every condition

C of every entry of T that has independent effect, :r contains a pair of tests demonstrating the

independent effect of C.

As an example consider the following table.

Input Variables States A B Never

The following test suite satisfies TMC/DC for this table. We use, as usual for "don't care"--any
value will do.

For example, according to our definition either pair {r;, r3} or {r2, 7"4}demonstrates independent

effect of the second entry in the second column of the decision table.

As a final remark, we note that there is no direct connection between test suites that satisfy

TMC/DC for a decision table T and test suites that satisfy MC/DC for various kinds of code

generated from T.

66



Chapter 6

Safety Analysis

Previous chapters have considered table-driven code and the question of whether the entries in the

table determine an unambiguous output for every input. We want to turn toward the bigger picture

of how this code fits into the system as a whole.

Essentially, the component defined by each table is a state machine that interacts with other

software and hardware components. It seems reasonable to picture the entire system as a collection

of communicating state machines. This chapter summarizes a number of papers on requirements

capture and software safety, especially for systems of state machines. All the papers originate in

the group headed by Nancy Leveson, now at the University of Washington.

Some basic terminology (from [14]):

• hazard: a condition that could potentially lead to a mishap (accident)

• safety: the avoidance of hazards

• risk: a measure of the "expected value" of a system in terms of the likelihood of a hazard

arising, the likelihood the hazard will lead to a mishap, and the cost of the mishap.

Safety is defined as the avoidance of hazards rather than the avoidance of accidents themselves,
since the occurrence of an accident often involves conditions in the environment over which the

system designer has no control. (If the railroad crossing gate is up when a train comes roaring

through, that is a hazard even if it does not lead to an accident.)

Some distinct, but related notions: A failure is an error of any kind. The notion of failure treats

all errors as equai--a misspelled message equals a nuclear meltdown. Reliability is the avoidance

of failures. Safety and reliability sometimes conflict: a completely safe bomb, one that cannot go

off, is completely unreliable.

The goal is to find systematic ways to design an acceptable level of safety into a system before

producing it, by reducing or eliminating the occurrences of hazards. This poses problems in science

(such as proofs of correctness), engineering (such as fail-safe design), and management. The special

67



difficulty introducedby softwareis that errorsin softwarecomponentsalmostneverresult from
fabricationerrorsor failuresofmaterials--whoselikelihoodcanbeestimatedbywell-foundedstatis-
tical techniques--butresult,rather, fromerrorsin design;andsoftwaredesignscanbeenormously
complex.In reallife catastrophestypically resultwhenseveralthingsgowrongat once.

Therearewell-establishedgeneralprinciplesfor safedesign(in orderof decreasingdesirability):

• Intrinsically safesystemsincapableofgeneratingor releasingenoughenergyto createhazards.

• Eliminationof hazardsby design,for example

Lockouts,lock-ins,interlocks
Safetykernelsthat isolatecritical from non-criticalfunctions,that limit the authority
of codeor usersto executecertainfunctions,etc.

• Controlof hazardswhentheyoccur,for example

- Fail-safedesigns
- Isolationof hazards

- Detectionof hazards (and appropriate recovery strategies)

• Warning devices, emergency training, etc.

Having, in some way, identified the hazards one can proceed to a safety requirements analysis--that

is, to discovering the safety-relevant requirements on all the system components that will eliminate

or reduce the likelihood of these hazards. The papers considered here are principally concerned

with techniques for discovering the safety requirements on software components, and with general

techniques for specifying system requirements (not only safety requirements).

The discussion will try to make it clear when we are dealing with mathematical procedures and

when we are dealing with aids to systematic brainstorming, which may be formal in the sociological

sense of being highly organized, but are not mathematical. In this chapter "formal" always means
"mathematical."

We will use a slight variation on Leveson's terminology: Hazard analysis attempts to identify the

hazards of a system or, derivatively, the hazardous behaviors of system components that could result

in hazardous behavior of the system. It is necessarily informal--though the product of a hazard

analysis might be a mathematical definition of the hazardous behaviors. Safety analysis begins

with some list of hazards and a formal or informal model of a system (or system component) and

tries to determine whether hazardous behaviors could actually occur. Safety analysis can be either

formal or informal, and is applicable to those parts of the overall system components under the

designer's control. Strictly speaking, a safety analysis can only attempt to bound the probability
that a hazardous state will occur.

The paper [3] considers complex software-controlled systems with very stringent safety requirements

(i.e., a vanishingly small probability of mishap during the system's expected operating life). It

68



arguesthat therewill benowayto providescientifically-basedvalidationof suchasystemunlessthe
systemis designedwith validationin mind. Forexample,the analysiswill alwaysrelyon knowing
certainprobabilitiesthat canonly beestimatedempirically.While thereis a solidscientificbasis
for boundingthe probabilitiesof hardwarefailurethereis nonefor boundingthe probabilitiesof
softwarefailure (not, at least,within the tolerancesrequired). Thus the systemmusteither be
designedsothat softwarefailuresarenot critical, or so that failuresof critical softwareareruled
out (e.g.,by mathematicalproof). Noticethat wecanoftensimplify theverificationof a software
componentby consideringits safetyspecificationalone,andignoringotheraspectsof its functional
correctness.

This chapterrepresentssafetyanalysismoreconcretelyasfollows:A system(or component)is a
non-deterministicstatemachine,a hazardanalysisdefinesa set of hazardousstatesof that state
machine,and asafetyanalysis--whichcanbeformalor informal--attemptsto determinewhether
anyof the hazardousstatesare reachableby executingthe state machinefrom oneof its allowed
initial states.Thepicturecanbedressedupby modelingfailuresastransitionsto particularfailure
states,by assigningprobabilitiesto failures,etc.This maynot be the mostsuitablepicturefor all
systems.In somecasesit maybepreferableto understanda hazardnot asa dangerousstate (a
snapshotin time) but asa dangeroussequenceof events.

Notefinally that, like anyanalysistechnique,a techniquefor safetyanalysismight simplyprovide
a yes/noansweror mightalsohelpguidethe searchfor anacceptabledesign.

6.1 Hazard Analysis

A hazard analysis attempts to identify hazards and evaluate their likelihood and seriousness, taking

into account normal operation, operation in maintenance modes, failures (e.g., hardware failures),

unusual occurrences in the environment, and operator error. In some cases some hazards are defined

by government standards or by law.

By its nature, the process of hazard analysis is informal. The question of whether we have the

right list of hazards, or whether the formal model is adequate to capture all the safety-relevant

information is extra-mathematical. If the system (or component) whose hazards we are describing

has a formal model, it is possible for the product of the hazard analysis to be expressed formally.

Ultimately, some of the products of some of the hazard analysis will have to be interpreted formally,

if we ever want to state precise requirements on the hardware and software components of the

system.

It is expected that hazard analysis, in various forms, will continue throughout the development

cycle. The paper [14] describes typical kinds of hazard analysis, including:

• Preliminary--an initial assessment to identify safety critical areas and functions.

• Subsystem--identifies hazards associated with the design of the subsystems (component fail-

ures, operators' errors, etc.)

69



• System--identifieshazardscreatedby interfacesbetweensubsystems,suchasoccurrencesof
multiplehazardsor failures.

• Operatingandsupport--examines,in particular,hazardscreatedby theman-machineinter-
face.

Variousmethodscanbeusedto performtheseanalyses,includingdesignreviews,walk-throughs,
checklists,etc.

6.2 Safety Analysis

Whether safety analysis is done formally or informally, a common strategy is to work backward

from a hazard in an attempt to identify credible scenarios that will bring the hazard about. This

section describes some strategies for doing so.

6.2.1 Fault-Tree Analysis

One way of proceeding backward, informally, from hazards to hazardous scenarios is fault-tree anal-

ysis. A sample fault-tree for a patient monitoring system, taken from [14], is shown in Figure 6.1.

Each box corresponds to some possible situation. An expert in the problem domain and the design

of the system analyzes each situation into an "OR" (a list of scenarios, any one of which leads to

it) or an "AND" (a list of scenarios all of which taken together lead to it). When the top box

in the tree is a hazard the tree is called a fault-tree. One typically elaborates the tree until each

situation can be attributed either to a single system component or to the system's environment.

We can then use the hazards attributed to a system component as a guide to formulating a safety

specification for the component.

There can be no guarantee that this procedure is complete. It is an aid to brainstorming. Nor is

there any guarantee that the component safety specifications obtained in this way, even if they are

interpreted formally, will combine coherently so as to avoid the hazard. Notice finally that there

is some ambiguity about what decomposition means. It can be understood as purely logical--e.g.,

decomposing "the door is not shut" into the OR of "the door is fully open," "the door is partly

open." It can be understood as temporal or causal--e.g., decomposing "the door is not shut" into

the OR of "the last person out failed to shut it," "the latch failed."

6.2.2 Fault-Tree Analysis of Software

Brainstorming via fault-trees need not stop at the boundary of a component: [16] suggests using a

fault-tree walk-through of the code in order to check that it meets those safety specifications, or to

determine where to insert checking code that will detect hazards. That paper considers software

written in Ada, though the method is applicable to any language.

7O



wrong treatment
administered

vital signs
erroneously reported
as exceeding limits

vital signs exceed
critical limits but

not corrected in time

frequency of
measurement

too low

computer fails
to raise alarm sensor failure

f

I

nurse does not

respond to alarm

computer fails to

read within required
time limits

human error

(doctor sets

wrong)

mechanical
failure

nurse fails to input

vitals manually, or
inputs incorrectly

Figure 6.1: A fault-tree.

The software itself is associated with a well-defined model of execution, so it would seem that we

could actually provide a formal safety analysis along lines suggested by the fault-tree strategy. This

possibility will be discussed briefly in section 6.2.3.

The example given in the paper [16] considers a control system for a traffic light. Four sensors

detect traffic approaching an intersection, and the controller uses reports from those sensors to

change the settings of the lights. The sensors are labeled north, south, easl;, and west: the north

sensor guards the north approach to the intersection, etc. The sensors are represented by an array

sensor of Ada tasks indexed by these four directions.

The first step is to relate the hazards identified in the hazard analysis to events and states occurring

71



in the execution of the software. This is an informal procedure. The key part of each sensor task

looks like this:

loop

accept car_comes; -- Accepting an interrupt from

-- the appropriate sensor device

if (lights(dir) /= green) then

-- dir is the direction guarded by

-- this sensor

controller.notify(dir); -- (+)

-- Rendezvous with the controller

-- while it resets the signals

end if;

end loop;

-- (,)

The way hazard analysis works is to try to imagine each possible hazard and then check whether the

code allows it to occur. Let us examine the process of checking for the hazard described as follows:

"the north car enters the intersection as the east car enters." This symmetric-sounding situation is

(implicitly) decomposed into subcases, and the particular case analyzed is "the sensor (east) task
is in rendezvous with the controller task and the sensor(north) task bypassed the rendezvous":

• sensor(east) is in rendezvous if it is at (+), waiting for the completion of the rendezvous

controller.notify (east).

• sensor(north) bypassed the rendezvous ifit reaches (*) because the test lights(north)

/= green was false.

So the authors have not only identified a particular hazardous subcase, but also interpreted it in

the form of events in the code. This interpretation requires insight that goes beyond identifying

the hazard in the first place.

The idea is that a fault-tree walk-through should identify execution sequences leading to the hazard.

Each programming language construct corresponds to a "generic" template representing the fault-

tree analysis for all instances of the construct. For example, Figure 6.2 gives the template for an

if-then-else. Fault-tree analysis of the code proceeds by applying these templates systematically.

In the case of tasks executing in parallel, the templates are applied separately in each task. There

are also templates representing the entry calls and accept statements whereby tasks communicate.

(This fault-tree procedure seems to omit the possibility of tasks communicating by shared variables.)

The authors apply this if-then-else template to the execution of the following conditional

if (lights(north) /= green) then

72



Else part
causes failure

as exceeding limits

I

Else body j
causes failure

If-Then-Else
course failure

i th condition
evaluation

causes failure

I
Condition false

before If
i th Then body

causes failure

i th Then part
causes failure

i th condition
true before If

Figure 6.2: Fault-tree for a conditional.

controller.notify(north); -- (+)

else

null;

end if; -- (,)

in the task sensor(north). (To make the relation to the template clearer we have added, in

comments, a vacuous "else" part.)

Consider how the analysis of this statement proceeds inside task sensor(north) where the failure

condition is interpreted as "sensor(north) is at (*) after skipping the rendezvous"--presumably

with the additional understanding that the sensor(east) task is simultaneously at (+).

Since this failure condition assumes that the "then" part is not taken, and since there is no real

"else" part, the only possibility left to consider is that the condition evaluated to true and its

evaluation caused a failure, which the authors expand as in Figure 6.3. The "lights(north) is green
•.." condition restates one of the assumptions about the case we are in. Where did the condition

"evaluation occurs as controller changes light" come from? It could result simply from puzzling

about what could go wrong; it could also be regarded as the place, at last, to record explicitly the

73



Sensor (N)
at line 24

I

_g lights(N) -

teen before if/

L

If (lights (N) /-green)
Then...causes failure

Evaluation of lights

(N) causes failure

i

Evaluation occurs
as controller
changes light

Figure 6.3: Applying the template.

assumption about the other task that makes this a hazard.

6.2.3 Making the Analysis Mathematical

Software fault-tree analysis provides a systematic framework for walking through code with safety

requirements in mind. It would take some hard work (especially, work on the semantics of tasking)

to make the procedure fully formal.

We should first of all note that the not-fully-mathematical nature of the procedure described here

gives the authors no heartburn at all. They say that "industrial users of the technique have

commented that the actual process of having people examine the code thoroughly was crucial to

its effectiveness." 1

1The authors mention tools for automating generation of the fault-trees, but it is not clear whether that simply
means some kind of structure editor that would pop up appropriate templates or whether it means something with

74



The authors note that their procedure is essentially predicate transformation, a well-known tech-

nique for analyzing the consistency of software with some given specification. In a certain sense

they are merely doing predicate transformation with respect to the predetermined specification "a
hazardous state does not arise."

There are two problems with making this procedure precise. One is the highly technical one of

understanding how to do predicate transformation at all for a complex language, in particular for

code that involves tasking. The other is to define the language of "software events" into which the
assertions about hazards are translated.

For the example presented, the language of software events must be able to assert that executions

in two tasks simultaneously reside at certain control points, and that execution in one of those

tasks got there by proceeding along a certain path (because the if-test was false). One question is

whether, in general, we know" what this language of software events will be.

Predicate transformation is not the only way to formalize safety analysis of software. We could

instead translate the code directly into a state machine and then use one of the techniques for

analyzing state machines. To make this tractable it might be necessary to reduce the number of

states by abstracting away from unnecessary information. If, for example, only the sequence in

which tasks rendezvous is important (not the values passed at each rendezvous) we can consider

a model that ignores the values passed. This may well lead to a model that contains execution

sequences impossible in the original, but such a conservative approximation is legitimate.

6.2.4 Formal Safety Analysis via Petri Nets

To repeat: a formal safety analysis (of the kind we are considering in this chapter) starts from a

formal model of a system as a state machine and a formal definition of all its hazardous states. The

paper [18] considers the case in which the system is formally modeled as a Petri net. The analysis

attempts to determine whether the hazardous states are reachable--and, if so, to provide guidance

on how to redesign the system.

Intuitively, we can think of a Petri net model of a system as follows: the state of the net at some

moment represents a property of the system state at that moment. If the net can make a transition

from state sl to state s2 that means that the system can make a transition from a state in which

"the property represented by sl is true" to a state in which "the property represented by s2 is

true."

Untimed Petri Nets

Somewhat more precisely, a Petri net consists of a collection of places and a collection of transitions.

Graphically, we represent each place by a circle and each transition by a bar. In Figure 6.4, taken

from [18], the places are P1, ..-, P12 and the transitions are tl, ..., fT. Each transition is associated

with one or more input places (graphically, arrows go from the input places to the transition bar)

more semantic content.

75



and oneor moreoutput places(arrowsgo from the transition bar to its output places). So,for
example,in Figure6.4theonly input placeof transitiontl is P1 and its output places are P2 and

P3.

Each place may contain zero or more tokens, and the distribution of tokens on places is called the

marking of the net. Figure 6.4 has tokens in places P1, P6, and Pll, while Figure 6.5--a different

marking of the same net--has tokens in places P2, Ps, P6, and Pll. The state of a net is its marking.

We can think of each place as representing a simple proposition about the system, which is true

when the place contains a token and false otherwise. 2

The nets shown in Figures 6.4 and 6.5 model different states of a system that consists of a train,

a crossing gate that guards an intersection, and a controller for the gate. Place Pll represents the

proposition that the crossing gate is up and P12 the assertion that it is down. Thus, the markings in

both Figure 6.4 and Figure 6.5 "say" that the gate is up (because PI_ contains a token). Similarly,

the places P1, ..., P4 represent propositions about the train: P1, which is marked in Figure 6.4,

says that the train is approaching the crossing, while P2, which is marked in Figure 6.5, says that

it is about to enter the crossing.

The transition rules tell us how to model the evolution of the system by moving tokens around the

net. A transition t is enabled if all its input places have tokens in them. In Figure 6.4 transition

tl, which represents the detection of the approaching train, is enabled. The transitions enabled

in Figure 6.5 are t2, representing the act of entering the crossing, and t4, an internal transition

of the controlling computer. When an enabled transition fires the tokens are removed from its

input places and one token is put on each of its output places, and the resulting marking "says"

something about the system in its new state. 3 Figure 6.5 is the result of firing transition tl in

Figure 6.4. A Petri net is executed by repeatedly firing enabled transitions.

In terms of this model we can formally describe what the product of a hazard analysis is supposed

to be---a list of all the markings of the Petri net that represent hazards. (The way in which we

decide what constitutes a hazard is still non-mathematical.) In this case, presumably, the hazards

are all those markings in which P3 and Pll have tokens; that is, all those situations in which the

gate is up when the train is in the crossing.

From this formal definition of hazards and formal model of the system we can attempt a purely

mathematical safety analysis. There are two obvious strategies: one is to determine whether,

starting from some given initial state, a hazard is reachable by executing the net; the other is to
start from a hazard state and run the Petri net backward to see whether the given initial state

could have been a precursor of the hazard (and, if not, the hazard is avoided).

For a complex system brute force application of either method might be computationally in-

tractable. The authors of [18] suggest a strategy that is computationally cheaper. One first does

a relatively cheap search for certain "critical" states that represent key decision points: from a

2Strictly speaking, this interpretation makes sense only when there can never be more than one token on any

place.

3Again, this discussion makes strict sense only if there is never more than one token on each place. The rules

concerning multiple tokens per place and multiple arrows between a place and a transition are straightforward.

76



Approach

Before
Crossing

Within

Past

Train

Up

t6 t7

Railroad

Crossing

Gate

Computer

Figure 6.4: A Petri net model of a rail-crossing.

critical state it is possible for the system either to make a transition to either a safe or an unsafe

state. For example, if the system is in the state s = P2PzPgP11 it can take two transitions:

• Transition t2 results in the hazardous state P3PzP9Pll--hazardous because P3 means that

the train is in the crossing and Pll means that the gate is up.

• Transition t7 results in the state P2PTP12, which is completely safe--it is non-hazardous and
cannot lead to a hazardous state.

This makes s a critical state. To remove the hazard from our design, we can add to the design an

interlock giving preference to t7 over t2.

This strategy has strengths and weaknesses. The strengths:

• It is (relatively) computationally cheap.

• It can be used to help develop a safe design, and not merely to check a completed design for

safety.

77



Approach /

Before

Crossing

Within

t2

Down

Railroad

Crossing

Gate

t7

Past

Train
Computer

Figure 6.5: A different marking of the Petri net.

The weaknesses:

• It is conservative. The strategy may identify critical states that are not actually reachable

and, as a result, add features to the design for the sake of a nonexistent danger.

• The revised design, with its interlocks, is purely abstract and may not be straightforwardly

implementable. (How do you build the interlock that keeps the train from entering the

crossing until the gate is down? One cannot do so directly. One would have to build a more

complex model incorporating a mechanism to trigger an emergency brake if a train threatened

to enter the crossing before the gate was lowered.)

Timed Petri Nets

The Petri net formalism just described models the sequencing of states and transitions, but not

their timing. Various reM-time extensions have been proposed. The authors of [18] adopt one
in which each transition t is associated with two numbers Mint and Maxt, between 0 and oc,

representing the minimum and maximum transition times for t. Intuitively, t cannot fire unless

78



it has been continuously enabled for at least Mint and it must fire once it has been continuously

enabled for time Maxt. (To be sensible, one requires that Mint <_ Maxt.)

For example, safety of the railway crossing control system modeled by the Petri nets in Figures 6.4

and 6.5 may rely on a timing property: it always takes longer for a train to cross the approach

sector than it does for the crossing gate to be lowered. The untimed Petri net model of the system

is unsafe because it does not capture this property, which would naturally be captured in a timed
model.

General analysis of these timed models seems difficult. Instead, the authors incorporate them into

the strategy already described: One first ignores the timing information and identifies the critical

states just as before; but now a greater repertoire of options is available for designing around the

hazards. In particular, one can add to the design (or find already present in the design) timing

constraints that will force the system down a safe path. For example, it may suffice to add a

watchdog timer that will put the system into a safe state if it is taking too long for some transition
to fire.

Petri Nets with Failures

One can also generalize Petri nets in order to model failures, by adding to the model a special set

of failure transitions (distinct from the normal ones) and a special set of failure places (distinct

from the normal ones). The output place of a failure transition is a failure place. A failure place
might represent, for example, the failure of a processor.

In this formalism it is possible to model a number of important ideas about faults and fault-

tolerance. For example, a system is fail-safe (for some particular failure) if no execution that

proceeds from that failure transition arrives at a hazardous state. Based on engineering judgements

about the worst hazards and the most likely failures, this model can be used to design for safety in
the presence of various kinds of failures.

6.2.5 Other Means of Formal Safety Analysis

Two questions arise for formal safety analysis of the kind we are considering: Are some repre-

sentations of state machines more helpful than others? What other analysis techniques might be

helpful?

Representing State Machines

Consider again the crossing guard system represented by the Petri net of Figure 6.4. Note one way

in which the Petri net representation is economical. Even if we restrict attention to markings that

put at most one token on each place, the 12 places can have 212 different markings. 4 Thus this

small diagram represents a state machine that could have as many as 21_ states, which is much

4Not all of these states are reachable from any given initial state.

79



more compact than the "garden variety" representation of a state machine in which each of these

states would be represented by a circle of its own. Here is a case in which the exponential function

is working in our favor.

Looking more closely, the system "really" consists of the interaction of three components: the

train, the controller, and the gate. There is always precisely one token on the places P1, -.. P4

(which represent states of the train) and precisely one token on the places Pn and P12 (which

represent states of the gate). The markings of the controller are more complex. One weakness of
the Petri net formalism as a specification notation is the lack of a built-in mechanism for this kind

of decomposition. (That weakness is irrelevant if the Petri net is merely the "compiled form" of a

model initially described in a notation that is more highly structured.)

Thus the economy of this Petri net representation can largely be achieved by any formalism that

explicitly decomposes the problem into three communicating components, each of which is a state

machine. The one seeming advantage for Petri nets is representation of the controller, which

does have fewer places than the controller has reachable states. On the other hand, this "more

economical" representation can be obscure--the rules for firing transitions amount to a rather

opaque notation for writing programs.

Analyzing State Machines

Reachability We may regard the Petri net as simply one implementation technique for permit-

ting analysis of the teachability graph of the state machine it represents. The reachability graph can

be thought of as the directed graph that results from "unrolling" execution of the state machine.

Figure 6.6, taken from Figure 3 of [18] shows the reachability graph of the Petri net model from

Figure 6.4. Each node in the reachability graph is a state of the system (in the Petri net model,

that means a marking of the graph) and each arrow is a transition. Execution paths are paths

through this graph. For pedagogical purposes the nodes corresponding to hazardous states have

been drawn as rectangles.

In general, the reachability graph may be enormous. The critical-states trick described in sec-

tion 6.2.4 is a way of generating useful information by looking only at small pieces of the graph.

This trick can be implemented on top of any formal state-machine model--in particular, for RSML

or StateCharts (see section 6.3). We only need to be able to generate the set of successor states

and the set of predecessor states of any given state. This computation is easy for Petri net models

and more complex for the RSML or StateCharts models described in section 6.3.

Model-Checking

Model checking consists of clever ways to make brute force techniques for analyzing reachability

graphs more efficient and tractable. Symbolic model checking varies these techniques by incor-

porating symbolic manipulations roughly analogous to those used in symbolic algebra packages.
When successful, model checkers permit analysis of a richer collection of properties than those

expressible in the form "state s is never reached." For example, model checking can analyze prop-

8O



Figure6.6: A reachabilitygraph.

ertiesof the sequencingof events,suchas "betweeneveryrequestand receipttheremust bean
acknowledgement."The literatureonmodelcheckingandsymbolicmodelcheckingis large[2,1].
Thesymbolicmodelcheckingmethodof [1]canrepresentthetimedPetrinetsdescribedaboveand
analyzesuchtiming propertiesas "the systemwill neverspendmorethan t seconds continuously

in state _." It is an open question how well this method will scale up.

6.3 Requirements Specification

The Requirements State Machine Language (RSML) is a specification notation that allows a user to

describe a system as a collection of communicating state machines. The basic problem it addresses

81



is the problemof scale:how to write a large,complex,realisticspecificationin an intelligible
way. The paper [17]describesapplyingRSMLto specifyingTCAS II, the airbornecollisionalert
systemfor civilian aircraft; and [9] describessometechniquesfor automaticallycheckingRSML
specificationsfor certaincompletenessand consistencyproperties.

The TCAS specificationgivesRSMLa greatdealof credibility: startingasa shadowproject, the
RSMLspecificationworkoutperformedthe "ordinary" processsowell that, part waythroughthe
experiment,it becamethe official standard. In particular, the designersof RSML claim a good
degreeof successin makingthespecificationsaccessibleto pilots,externalreviewers,programmers,
etc. This is the most seriousexampleweknow of applyingformal descriptivetechniquesto a
complexreactivesystem.

Theunderlyingmathematicalmodelof RSMLis statemachinethat canperformbasicactionsofthe
followingkind: receivean event that triggers a transition, resulting in a new state and (possibly)

the generation of more events. In particular, the environment in which TCAS operates can itself be

modeled by such machines, which provides a way to record all the assumptions about the operating

environment of TCAS.

Different kinds of specification information are written in different formats: graphs, tables, and

text. The graphical notation, depicting states and transitions between them, is based largely on

the StateCharts notation of Harel [7]. Once again the problem is scale: the authors estimate that,

if written out as a single conventional state machine, a model of TCAS II would contain 104° states.

The notation makes this manageable by organizing the graphical representation of a state machine

in certain hierarchical ways--in particular, using the notions of superstate and parallel states. As

a result, the specification uses only about 100 states.

Figure 6.7 (taken from Figure 5 of [17]) shows the representation of a superstate. In this example,

the superstate Q contains two substates, R and S. When a machine is in state Q it is also

in (precisely) one of the substates R and S. (This is sometimes expressed by saying that Q is

OR-decomposed into R and S.) This representation allows certain economies in describing the

transitions of the machine. For example, transition C, represented by an outgoing arrow from

the boundary of the superstate Q, is a transition from Q--that is, a transition that takes place

regardless of which of its substates Q is in. Without the grouping of R and S into Q, we would

have to represent the meaning of C by two arrows, one from R and one from S. Transition D, by

contrast, is a transition from S, and cannot be taken from substate R.

Figure 6.8 (taken from Figure 6 of [17]) shows the representation of parallel states. In this case,

state S is decomposed into the four states A, B, C, and D (which, in this picture, are themselves

superstates). Being in state S means being simultaneously in each of these states, which is some-

times expressed by saying that S is the AND-decomposition of A, B, C, and D. Since the four

parallel states are themselves superstates, being in S means being in exactly one of the (unnamed)

circles from each of the four states. Now a transition from S can be described with one arrow

instead of 3 x 3 x 2 x 4 (i.e., one for each possible combination of circles).

Each transition arrow is associated with three things: a triggering event, a condition (which must

82



/6
R

J

A

C

D

Figure 6.7: A superstate.

hold if a triggered transition is actually to occur), and the events (if any) it generates. 5 In the

StateCharts notation this information is written directly beside each arrow. For the TCAS specifi-
cation that proved impractical, so in RSML the events and conditions associated with transitions

are separately specified in a format that is partly textual (name of transition, source and destination

states, triggering event, etc.) and partly tabular (the condition).

The top level of an RSML description is a set of components. Each component is a state machine

described in the hierarchical notation of superstates and parallel states. The events generated by

components are of two kinds, internal and external. An internal event generated by some transition

of component C is broadcast within C, and can trigger transitions of C, but is not visible outside

C. (Internal events are used to regulate the ordering of actions within a component.) External

events represent the sending and receiving of messages between components. The SEND(msg)
event triggers a corresponding RECEIVE(msg) event in the destination component, but SEND and

5In the language of tables that we have been using in other parts of the project, the condition for a transition

corresponds to the engagement criterion for a particular operational procedure.

83



B D

Figure 6.8: A parallel state.

RECEIVE are not assumed to be simultaneous. Typically, a RECEIVE event triggers a transition

that causes a state change: certain input variables of the receiving component are updated with

information contained in the message and the transition may generate internal events as well

Interfaces between components, which document the effects of these send and receive transitions,

are economically described by a special-purpose RSML construct.

Experience with the TCAS project led the authors to diverge from the StateCharts notation in

various ways. We have already noted that certain information-labels that StateCharts attaches to

the graphical arrows are represented separately in RSML. In addition, the RSML notation makes

heavy use of redundant information that supplies convenient cross-referencing. For example, an

identifier I that denotes a variable defined on page 32 is always written as Iv-32, the subscript

v serving as a reminder that I is a variable and the 32 as a reminder of where the definition

can be found. Surprisingly, some of the more sophisticated notations of StateCharts that support

information hiding have been removed because their use was found to cause more problems than

they solved.

84



There is one substantialsemanticdifferencebetweenRSMLand StateCharts,which lies in the
definitionof a single"executionstep" for a singlecomponent.The two definitionsof execution
stephavegeneralsimilarities:someexternaleventsarriveat the boundaryof a component;these
externaleventsmaytriggerinternal transitions,generatingeventsthat maytriggerother internal
transitions,etc.; theresulting"step"of thecomponent--whichis atomicfromthe externalpoint of
view--is completedwhenall suchpossibilitiesfor internal transitionsareexhausted.Thedifference
liesin the definitionsof howtheinternaltransitionscascade.Theauthorsof [17]claimthat RSML's
definitionof anexecutionstep,thoughcomplex,is somewhatmoreintuitive than the definitionin
StateCharts.However,the definition of stepusedin StateChartsdoeshaveonevirtue that the
RSMLdefinitionlacks:it is guaranteedto terminate.

6.3.1 Tools for RSML

Leveson et al. have, or have under development, a number of prototype tools for RSML, including

a simulator, tie-ins with fault-tree analysis and other kinds of safety analysis, and tools for doing

consistency checking.

The consistency-checking tools, described in [9], have much in common with Tablewise. An RSML

specification describes, potentially, a very big state machine, which could in principle be defined

by a table. The consistency-checking problem amounts to checking whether this very big table is
exhaustive and exclusive.

The strategy is to define the state machine in a highly structured way so that its checking can be

factored into the checking of lots of smaller pieces. The natural pieces to consider are the definitions
of individual transitions. The idea is to restrict the definitions of individual transitions in such a

way as to guarantee that they will be well-behaved when put together.

Here are two illustrations of possibilities that complicate the composition of transitions, and must

be ruled out (if this particular kind of local analysis is desired). 6

Example 1 Suppose that the event e can trigger both a transition from state A to state B

(enabling condition x > 0) and a transition from state A to state C (enabling condition x < 2).

If e occurs when x = 1 both transitions are enabled, but they cannot both be taken. In the

RSML semantics this is regarded as a nondeterministic choice. The nondeterminism complicates

the analysis, so the analysis tool must forbid it. The user must change the conditions so that an
event enables at most one transition from each state.

Example 2 Suppose that A and B are parallel states. We consider an example that introduces

undesired complexity into the definition of taking simultaneous transitions out of both states. We
have

6The underlying mathematics is not well explained in [9]. The interested reader should instead consult the Ph.D.

thesis [8].

85



• evente can trigger a transition A --* A t subject to the condition that "the system is also in
state B"

• event e can trigger a transition B --* B I subject to the condition "true"--that is, the transition

is always enabled and e can always trigger it

The analysis would represent simultaneous transitions via interleaving. That is, it would represent

the "simultaneous" transition from both of the parallel states as a result either of evaluating the

transition A _ A t followed by transition B --* B t, or of evaluating transition B _ B t followed

by transition A _ X. For this to work the two choices must lead to the same result (and must lead

to the same result as a simultaneous transition). If we choose the first order, then after evaluating

the two transitions we are jointly in states A t and B r. If we choose the second order, the effect of

transition B ---* B _ is to make the condition on the transition from A false (because the system is

no longer in state B). So the second transition is a no-op and we wind up jointly in the states A

and B _, a different result. The analysis tool must forbid this pair of transitions.

86



Chapter 7

Conclusions and Further Work

Our work has introduced four significant advances in decision table methodology:

• structural analysis of decision tables;

• partitioned decision tables;

• assertion tables and generation of decision tables from assertion tables;

• preconditions for decision tables.

We believe that the idea of decision tables with behaviors as objects, if properly developed, and our

work on generating testable code, if properly finished, have the potential to be important advances
as well.

The following list describes a number of directions in which the work described in this report could

be pursued.

Work out a form of structural analysis that applies to partitioned decision tables and decision

tables with preconditions. (In fact, we have worked out a preliminary algorithm for such a

form of structural analysis.)

• Follow up the idea that a decision table with behavior can represent an object. Use this idea

to forge stronger connections with state machine or statechart based specification approaches.

• Deepen the connection with formal program development methods begun by our methods of

generating decision tables from assertions.

• Sherry [25] associates with decision tables a specification development methodology with the

following non-formal refinement path.

87



mission(entiretable) _ opprocs_ scenarios
behaviors_ dependentmissions(tables)

Canweprovidefurther formal supportfor this methodology?

• StrengthentheTablewiselogicmodulesoasto support(at least)lineararithmetic.Doingso
wouldallow it to supportthefollowing.

- Automaticdetectionof mathematicalrelationsbetweentableentries.

- Automaticextractionof test casesfrom test categoriesin fairly generalsituations.
- Analysisof Parnas-styletables,wheretableentriesarepredicates.

• Exploremethodsfor automaticallysimplifyingdecisiontablesand codegeneratedfrom deci-
siontablesin thecontextof a precondition.

• Decisiontablescanbe regardedasa meansof describingtransitionsof statemachinesusing
logicalconditionsexpressedin tabular form. Petri netscanbelookedat asawayof defining
statesandtransitionsof state machines using logic in graphical form (a node of a Petri net =

a logical proposition). Can the two be usefully connected? Petri nets are also closely related

to the programming notation of UNITY [4], which is associated with a simple and elegant

temporal logic. Both Petri nets and UNITY specifications can be analyzed using techniques

such as model checking. Can a fruitful connection be made with decision table methods?

• The underlying idea of decision tables, and more so of partitioned decision tables, is to

provide a well-structured way of stating logical propositions. The structure assists both

understanding by humans and analysis by automated means. Continue to exploit the idea

of using logical analysis to assist both understanding and analysis. Although humans and

computers have different abilities, we believe that on the whole something that is easier for

humans to understand is easier to analyze efficiently using a computer.

• Implement generation of testable code and tests, as well as behaviors of decision tables, as

described in Chapter 3 and Chapter 5.

• The work for this task has led to several major innovations in decision table methodology:

partitioned decision tables, assertion tables, preconditions for tables. Because these are inno-

vations, we need to promote their acceptance by using them for significant work on examples

and by refining them as necessary to make them more understandable and usable by ordinary

users.

88



Bibliography

[1] R. Alur, T.A. Henzinger, and P.-H. Ho. Automatic symbolic verification of embedded systems.

In Proceedings of the 14th Annual Real-time Systems Symposium, pages 2-11. IEEE Computer
Society Press, 1993.

[2] J.R. Butch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Symbolic model checking:

102° states and beyond. Information and Computation, 98(2):142-170, 1992.

[3] R.W. Butler and G.B. Finelli. The infeasibility of quantifying the reliability life-critical real-

time software. IEEE Transactions on Software Engineering, 19(1):3-12, January 1993.

[4] K. Mani Chandy and Jayadev Misra. Parallel Program Design, A Foundation. Addison-Wesley,

New York, 1988.

[5] John Joseph Chilenski and Stephen P. Miller. Applicability of modified condition/decision

coverage to software testing. Distributed by FAA.

[6] E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, Englewood Cliffs, N.J., 1976.

[7] D. Harel. Statecharts: A visual formalism for complex systems. In The Science of Computer

Programming 8, pages 231-274, 1987.

[8] Mats Per Erik Heimdahl. Static analysis of state-based requirements. PhD thesis, UC Irvine,

Irvine, California, 1994.

[9] Mats Per Erik Heimdahl and Nancy G. Leveson. Completeness and consistency analysis of

state-based requirements. In Proceedings of the 17th international conference on software

engineering, April 1995.

[10] K. L. Heninger. Specifying software requirements for complex systems: New techiques and

their applications. IEEE Transactions on Software Engineering, SE-6(1):2-18, 1980.

[11] D. N. Hoover. Three extensions of decision table syntax and semantics. Technical report,
Odyssey Research Associates, Inc., Ithaca NY 14850-1326, March 1995.

[12] D. N. Hoover and Zewei Chen. Tbelh A mathematical tool for analyzing decision tables.

NASA Contractor Report 195027, November 1994.

89



[13] D. N. Hoover and Zewei Chen. Tablewise: A decision table tool. In John Rushby, editor,

COMPASS '95, 1995.

[14] Nancy G. Leveson. Software safety: Why, What, and How. Computing Surveys, 18(2):125-163,
June 1986.

[15]

[16]

[17]

[18]

[19]

[2o]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

Nancy G. Leveson. Software safety in embedded computer systems. CACM, 34(2):34-46,

February 1991.

Nancy G. Leveson, Stephen Cha, and Timothy Shimeall. Safety verification of Ada programs

using software fault trees. IEEE Software, pages 48-59, July 1991.

Nancy G. Leveson, Mats Per Erik Heimdahl, Holly Hildreth, and Jon Damon Reese. Require-

ments specification for process-control systems. IEEE Transactions on Software Engineering,

20(9):684-707, September 1994.

Nancy G. Leveson and Janice Stolzy. Safety analysis using petri nets. IEEE Transactions on

Software Engineering, SE-13(3):386-397, March 1987.

John R. Metzner. Decision Table Languages and Systems. Academic Press, New York, 1977.

Greg Nelson and Derek C. Oppen. Simplification by cooperating decision procedures. A CM

Transactions on Programming Languages and Systems, 1(2):245-257, October 1979.

John K. Ousterhout. Tcl and the Tk Toolkit. Addison-Wesley, Reading, Mass., 1994.

David L. Parnas. Tabular representation of relations. Technical Report 260, McMaster Uni-

versity Communications Research Laboratory, Hamilton, Ontario, Canada L8S 4K1, October
1992.

RCTA, Inc., 1140 Connecticut Ave. NW, Suite 1020, Washington, D.C. 20036. Software Con-

siderations in Airborne Systems and and Equipment Certification, December 1990. Document

No. RCTA/DO-178-B.

Lance Sherry. Apparatus and Method for Controlling the Vertical Profile of an Aircraft. Hon-

eywell, Inc., Aug. 16 1994. United States Patent #5,337,982.

Lance Sherry. A structured approach to requirements specification for software-based systems

using operational procedures. In IEEE Digital Avionics Systems Conference, 1994.

Robert E. Shostak. A practical decision procedure for arithmetic with function symbols.

Journal of the Association for Computing Machinery, 26(2):351-360, April 1979.

J. M. Spivey. The Z Notation: A Reference Manual. Prentice-Hall, Englewood Cliffs, N.J.,

2nd edition, 1992.

9O



[28] A. JohnvanSchouwen.Thea-7requirementsmodel:Re-examinationfor real-timesystemsand
anapplicationto monitoringsystems.TechnicalReportCRLReportNo.242, Communications

Research Laboratory, Faculty of Engineer, McMaster University, Hamilton, Ontario, Canada
L8S 4K1, February 1992.

[29] N. Wirth. Program development by stepwise refinement. Comm. ACM, 14:221-227, 1971.

91



Appendix A

Notes on Tablewise 2

During work on the predecessor to this task, we developed a decision table tool, eventually named

Tablewise, and described in [12, 13]. Tablewise is composed of a window-based decision table editor

(selection part only) and a logic module that performs basic completeness and consistency analysis
of decision tables as well as structural analysis and naive generation of tree code. Analysis results

are displayed in table form by the table editor module.

During this task, we have been implementing a revision of Tablewise, called Tablewise 2, which

incorporates a number of the decision table extensions described in this report as well as making

a number of other improvements in both algorithms and "system" aspects. In this chapter we

summarize the changes made and the features to be added or not.

A.1 Decision Table Extensions in Tablewise 2

We intend that eventually Tablewise 2 will support all the decision table extensions described in

this report. As a deeply revered writer has observed, however, with man not all things are possible;
therefore the initial release of Tablewise 2 will support only the extensions that we consider the

most significant, innovative, and necessary to demonstrate by use of a decision table tool that

supports them.

Extensions to be Supported by Tablewise 2.

• Partitioned decision tables. The table editor will support only one-level as described in

[12, 13].

• Table preconditions (Precond, Illegal, Always, Never).

• Assertion tables, testing of decision tables against assertions, generation of decision tables

from assertion tables.

92



• Structuralanalysisfor partitioneddecisiontablesand tableswith preconditions.

Extensions Not Included in the Initial Release of Tablewise 2.

Behaviors, systems of related tables. (Single tables with behaviors will be included in a later

release. Systems of tables need another design cycle, taking full account of the idea of object

tables.)

Generation of MC/DC testable code, test generation. We will probably include code gen-

eration in an early release, perhaps even in the initial release. For test generation, we will

probably wait until we strengthen the logic module to extract test cases from test categories,
which is a nontrivial task.

• Parnas-style decision tables permitting arbitrary predicates as entries.

A.2 System and Algorithm Considerations in Tablewise 2

• The logic module has been ported from SML to CAML Light, another ML dialect. CAML

Light produces far smaller executables that will load faster and will run conveniently on PCs

that have a normal amount of power by current standards.

It also produces a form of intermediate code that can be compiled into an executable for

any platform that has a CAML Light compiler (many Unix platforms plus PCs with DOS or

Windows 3.1). That means we can support the logic module on many platforms by simply

distributing the intermediate code.

• The table editor is written in Tcl/Tk [21], as it was for the original Tablewise. It should

run on most Unix platforms, though we may have to either distribute source or support it

on those platforms ourselves. We believe that porting the table editor to PCs with Windows

will be straightforward but will require a significant amount of labor.

• Because we have had a number of requests from people interested in using the Tablewise logic
module with a different interface, in Tablewise 2 we have coupled the table editor and the

logic module less closely than in Tablewise 1. The logic module will be run in batch mode

accepting input with the same syntax as the table editor uses to store tables. The table

storage grammar will be included in the Tablewise 2 release, probably in a Lex/YACC form.

• Analysis algorithms will be much more flexible and adaptable than in Tablewise 1. Tablewise 2

will, in fact, economically perform several forms of analysis simultaneously, so the logic module
will not need to be called so often.

• Because the analysis algorithms will be more flexible, others may want to adapt them to uses

we have not thought of. To this end, source for the top level of the logic module will be made

public.

93



p,

Form Approved
REPORT DOCUMENTATION PAGE OMBJVo.oTo4.o,aa

Puiohc reDortmg burden for th_s cogectlon of InfoTmatlOl_ _$ estlmateo to average 1 hour per resOonse, ,lc_udlng the time for reviewing iflstructlorts, searching extstm9 data sources,

gathefmg and rnainta=n=ng the data needed, and completing anO rewewmg the COllection of mformat_on Send comments re_arding this burden estimate or any other aspect of this

collection of information, including sugge_tfons for reducing th_s buroen to Washington He_dcluarters Services. Oire_orate tor InTorrlnatlon uperatloris aria R_DOrt$. |215 Jenersok_

Daws Highway. Suite 1204. Arlington. VA 22202-4302. and to the Office of Management and 8udget, Paperwork Reduction Pro ect (0704-0188). Washington. O[ 20503.

I" AGENCY USE ONLY (Leave blank) I2"REPO'RTDATEApril1996 I 3"REPORTTYPEANDDATESCOVEREDCOntractOrReport

4. TITLE AND SUBTITLE 5. FUNDI_IG NUMBERS

Applications of Formal Mekhods to Specification and

Safety of Avionics Softwaze

,i

6. AUTHOR(S}

D.N. Hoover, David Guaspari, and Polar Humenn

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Odyssey Research Associates, Inc.

301 Dates Drive

Ithaca, NY 14850-1326

9. SPONSORING/MONITORING AGENCYNAME(S) AND ADORESS(ES)

National Aeronautics and Space Administration

Langley Research Center

Hampton, VA 23665-5225

C NASI-20335

TA02

WU 505-64-50-03

8. PERFORMING ORGANIZATION
REPORT NUMBER

TM-95-0091

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

NASA CR-4723

11. SUPPLEMENTARY NOTES

Langley Technical Monitor:

Final Report

C. Michael Holloway

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified - Unlimited

Subject Category 62

12b. DISTRIBUTION CODE

13. ABSTRACT(Maximum200wor_)

This report treats several topics in applications of formal methods to avionics

software development. Most of these topics concern decision tables, an orderly,

easy-to-understand format for formally specifying complex choices among alternative

courses of action.

The topics relating to decision tables include: generalizations of decision tables

that are more concise and support the use of decision tables in a refinement-based

formal software development process; a formalism for systems of decision tables with

behaviors; an exposition of Parnas tables for users of decision tables; and test

coverage criteria and decision tables. We outline features of a revised version of

ORA's decision table tool, Tablewise, which will support many of the new ideas

described in this report.

We also survey formal safety analysis of specifications and software.

14. SU_ECT TERMS

Formal specification, decision tables, Tablewise, assertion

tables, Parnas tables, A-7 Specification method, code generation,

testing, MC/DC test coverage, formal safety analysis, RSML
17. SECURITY CLASSIFICATION 1B, SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION

OFREPORT OFTHIS PAGE OF ABSTRACT

Unclassified Unclassified

NSN 75_%2B0-5500

15. NUMBER OF PAGES

95

16. PRICE CODE

A05

20. LIMITATION OF ABSTRACT

Unclassified

Standard Form 298 (Rev 2-89)
Prescribed by ANSI Std Z39-18

298-102






