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I. Introd_l¢fi0n

This is the final report for the project NAGW-2848 entitled "MHD Studies of the

Magnetosheath and the Magnetopause." It ran from April 1992 to December 1995. The

research has been centered on the dynamics and structure of the magnetosheath and the

magnetopause, a new theory of MHD shock waves, evolution of intermediate shocks, and
shock waves in an anisotropic plasma.

II. Summary_ of AccQmpli_hment_

A. Dynamics of the magnetosheath and the magnetopause

We have been using MHD to study the global aspect of the dynamics at the

magnetosheath. We used a time asymptotic method to obtain steady state solutions for

the MHD flow past a sphere (Wu, 1992). The results indicate the formation of a depletion

layer near the obstacle due to the increase of the magnetic field, as was predicted by Lees

(1964). However, our results indicate that along the earth-sun line (which is also a

stagnation streamline) the plasma density increases first and then decreases from the bow

shock to the magnetopause. This shows that the flow after the shock is similar to those of

gas dynamics. In contrast, Lees (1964) predicted that the density should decrease

monotonically. The discrepancy can be traced back to the pressure balance assumption of

Lees, which is shown in our calculation to be valid only near the obstacle but not valid in

the region right after the shock. Our results also show that the depletion layer exists

throughout the whole dayside magnetopause and is not restricted to the subsolar region.

Our results show a nearly linear decrease of the normal velocity, a magnetic field pileup

and a density drop on approach to the magnetopause. Phan et al. (1994) found that this is
consistent with their observations for northward IMF cases.

When the IMF direction is tilted from the solar wind flow, the north-south

symmetry of the magnetosheath flow is broken. When the Alfven Mach number is small,

we found that the effect of the magnetic field is so strong that it influences the shape and

the position of the bow shock (Wu, 1993). Thus the bow shock location is a function of

the IMF direction, the Alfven Mach number, and the sonic Mach number. The model

results agree with the recent Phobos-2 bow shock data at Mars (Slavin et al., 1992).

During two subsolar bow shock traversals, Phobos-2 found one event with a strong

(Ms=5.9, MA=5.1) quasi-parallel (0BN=40-60 °) bow shock at a distance of 1.5 R M from

the center of Mars. This is very near the mean position derived from a number of Mars

missions. The second event yielded a much weaker (Ms= 10, MA= 1.8) quasi-perpendicular

(0BN=70 °) bow shock at the unusual distance of 2.8 RM, or 3 to 4 times the average

subsolar shock altitude. The model calculations show such strong dependence (Wu,
1993).

B. Intermediate shocks in dissipative MHD and Kinetic theory

It has been known for some 40 years that the MHD Rankine-Hugoniot relations
have six shock solutions -- fast and slow shocks, and four different intermediate shocks.

Application of the so-called MHD "evolutionary conditions" (Akhiezer et al., 1958;

Taniuti, 1962; Kantrowitz and Petschek, 1966) soon ruled out the intermediate shocks.

A new theory of MHD shock waves has recently emerged from a series of



numericaland analyticalinvestigationsbasedon the dissipativeMHD equations(Wu,
1987,1988a,1988b,1990)and the Cohen-Kulsrud-Burgers(CKB) equation(Kennelet
al., 1990;Wu andKennel1992a,1992b).We found that intermediateshocksdo form by
wavesteepening,andthat the evolutionandstructureof intermediateshocksare related:
in additionto theupstreamanddownstreamstates,specificationof an intermediateshock's
structure is required to determine its evolution. (Thus, the usual shock-capturing
numericalschemes,whichdo not considershockstructures,cannotapplywhenthereare
intermediateshocks.)

We havealso shownthat thereexistsa new classof time-dependentshock-like
structures,whichdo not obeyRankine-Hugoniotconditionssincetheyviolatecoplanarity.
Theseso-called"time-dependentintermediateshocks"play an essentialrole in the new
MHD shock theory. On the one hand,they are the neighboringstatesof the regular
coplanarintermediateshocks;on the other hand, they approachvery broad rotational
discontinuitiesat large time. In non-coplanarRiemannproblems,time-dependent2 - 3
intermediateshocksevolve in time as a localizedself-similarstructurewhose strength
decreasesast-1/2,and whosewidth expandsas t1/2(Wu and Kennel, 1992a). For the

time-dependent 2 - 3 intermediate shocks, we have derived a set of structural relations,

similar to Rankine-Hugoniot relations, between the plasma properties and the magnitude

of the transverse magnetic field, which we hope can help identify them at the

magnetopause, in the solar wind, and elsewhere in space (Wu and Kennel, 1992c).

We have shown that a rotational discontinuity is inf'mitely wide in dissipative

MHD, or in other words, a rotational discontinuity cannot exist with a finite width. As a

consequence, time-dependent intermediate shocks are needed in non-coplanar situations.
We have also considered kinetic effects on intermediate shocks. The results indicate that

both the two-fluid and hybrid calculations follow a similar development to the MHD case

and show the formation of intermediate shocks (Wu and Hada, 1991a). Similarly,

rotational discontinuities are shown to be unstable in both two-fluid and hybrid models
(Wu and Hada, 1991 b).

We expect intermediate shocks to be involved at the earth's magnetopause during

magnetic reconnection process. Intermediate shocks may also exist in the solar wind.

Indeed, Chao et al., (1993) has found candidates for intermediate shocks from Voyager 1

and 2 data. It is also suggested that intermediate shocks may constitute the Alfven shock

trains upstream of the earth's bow shock and in the interaction of the solar wind with

Comet Giacobini-Zinner (Kennel et al., 1988). We have considered evolution of Alfven

waves subject to a long wavelength, plane-polarized, monoclu'omatic instability (Malkov
et al., 1991). The calculated waveforms resembled those observed.

The small amplitude MHD Riemann problem based on the CKB equations has

been completed recently (Wu and Kennel, 1993). We found that the time-dependent 2 - 3

intermediate shock is important because it is the attractor of all non-coplanar Riemann

systems at large time. Since there are literally hundreds of cases of the full MHD Riemann

problem, we have limited our study to the constant-pressure Riemann problem, in which

the upstream and downstream states have the same total pressure (Wu, 1995a). These

solutions will be pertinent to sub-fast flows in the Earth's magnetic tail and near the

magnetopause, two of the most important applications of intermediate shock theory.

Although the Riemann solutions are complicated, several simple rules were found. When



the transversemagneticfieldsof the upstream and downstream states point in opposite

directions, an intermediate shock is formed. A condition is found regarding the position of

the intermediate shock. When the transverse magnetic fields are in the same direction, no

intermediate shock is involved if the velocity shear is small. However when the velocity

shear is large, two intermediate shocks can form. We have also shown that for a high 13

plasma, as B n (normal magnetic field component) becomes small, the shock-frame fluid

velocity becomes Alfvenic for slow shocks, intermediate shocks and the front of a slow

rarefaction wave, and that the Walen relation, which is exact for a rotational discontinuity,
can also be well satisfied by them. Therefore observation of the Walen relation at the

magnetopause does not necessarily mean the existence of a rotational discontinuity.

Since pressure anisotropy exists in the magnetosheath, at the magnetopause, and in

the magnetotail, we have begun to consider shock waves and discontinuities in anisotropic

plasmas (Wu, 1995b, 1996). We showed the existence of intermediate shocks, two types

of contact discontinuities and rarefaction shocks. In particular, we showed that all four

types of slow shocks in an anisotropic plasma can be formed through wave steepening.

Across the four types of slow shocks, density can either increase or decrease and the

strength of the magnetic field can also either increase or decrease. We also showed that

the wave structure and the Riemann solution are very complicated and that the Riemann

solution can be very different from that of MHD and thus can lead to a different physical

picture, such as regarding the magnetic reconnection process. In an anisotropic plasma,

the slow wave can move faster than the intermediate wave and thus it is possible for an

intermediate shock to follow a slow shock. Indeed, recent observation of an anomalous

slow shock and a rotational discontinuity (or intermediate shock) supports the results from

the anisotropic plasma model (Walthour et al., 1994).

C. Development of central schemes for multi-dimensional magnetohydrodynamics

In last 15 years, upwind differencing schemes have been very popular for solving

hyperbolic partial differential equations with discontinuous solutions. We have applied the

upwind scheme to MHD (Brio and Wu, 1988), and since then several versions of upwind

MHD schemes have been constructed (Zachary and Colella, 1992; Dai and Woodward,

1994a,b; Gombosi et al., 1994). Just as upwind schemes for gas dynamics, the upwind

MHD schemes are very robust and capture shocks and discontinuities in very few grid

points. However an upwind MHD scheme is very difficult to construct because it involves

solving MHD Riemann problems. It is also very expensive to run since it requires many

more operations and is difficult to vectorize. On a Cray computer, it can be two-order-of-

magnitude increase in cpu time compared to a vectorized Lax-Wendroff code.

A family of new schemes that are non-oscillatory, second-order, and central

difference for hyperbolic conservation laws has been constructed by Nessyahu and

Tadmor (1990). The approximation can be viewed as a natural extension of the first-order

Lax-Friedrichs scheme. In particular, TVD (total variation diminishing) is proved for the

scalar case. Unlike the upwind scheme, no Riemann solver is required and thus the scheme

is rather inexpensive and easy to construct. These new central schemes are very much as a

two-step Lax-Wendroff scheme in its structure and their cpu time per grid update is

therefore about the stone as a two-step Lax-Wendroff scheme. However because of the



requirementfor numericalstabilitythecentralschemesrequirethetime-stepsizeto behalf
of theusualCFL condition.

We haverecentlyconstructedsecond-orderand third-ordercentralschemesfor
MHD (TadmorandWu, 1996).Thetest resultscomparefavorablywith that obtainedby
the second-orderupwind scheme(Brio and Wu, 1988). We haveextendedthe second-
ordercentral schemeto 2D MHD andhavesuccessfullysimulatedthe Kelvin-Helmholtz
instabilityincluding theshockformationdueto thevortexflow (Miura,1984;Wu, 1986).

D. Other topics: Spherical implosion of shock waves

The structure and stability of shocks generated by spherical and cylindrical

implosions have received much attention in the past decade. The impetus has come from

astrophysics and plasma fusion research. More recently it has been conjectured that such

shocks are an essential part of the mechanism responsible for sonoluminescence, i.e., the

light which under certain conditions is emitted from a bubble of gas trapped in a liquid and

compressed by incident spherically sylnmetric sound waves. In a series of papers (Wu and

Roberts, 1993, 1994; Roberts and Wu, 1996), we have successfully modeled the

sonoluminescence phenomenon and studied the structure and stability of a converging

spherical shock wave.



HI, References

Akhiezer, A. I., G. J. Lubarski, and R. V. Polovin, The stability of shock waves in

agnetohydrodynamics, Zh. Eksperim. i Teor. Fiz., 35.731, 1958 [Soviet Phys.]-
JETP, 8,507, 1959.

Brio, M., and C. C. Wu, An upwind differencing scheme for the equations of

magnetohydrodynamics, J. Comp. Physics, 75, 400, 1988.

Chao, J. K., B. H. Wu, A. J. Lazarus, and T. S. Chang, Observation of an intermediate

shock in interplanetary space, J. Geophy. Res. 98, 17443, 1993.

Dai, W.and P.R.Woodward, J. Comp. Physics., 111,354, 1994.

Dai, W.and P.R.Woodward, J. Comp. Physics., 115,485, 1994.

Gombosi, T.I., K.G. Powell, and D.L. De Zeeuw, J. Geophys. Res., 99, 21525, 1994.

Kantrowitz, A. R. and H. E. Petschek, MHD characteristics and shock waves, in Plasma

Physics in Theory and Application, edited by W.B. Kunkel, pp. 148-206,

MaGraw-Hill, New York, 1966.

Kennel, C. F., M. A. Malkov, R. Z. Sagdeev, V. D. Shapiro, and A. V. Khrabrov, Alfven

shock wave trains with a dispersion, JETP Letter, 48, 25, 1988.

Kennel, C. F., R. D. Blandford, and C. C. Wu, Structure and evolution of small amplitude

intermediate shock waves, Phys. Fluids B, 2, 253, 1990.

Lees, L., Interaction between the solar plasma wind and the geomagnetic cavity, AIAA J.,
2, 2065, 1964.

Malkov, M. A., C. F. Kennel, C. C. Wu, R. Pellat, and V. D. Shapiro, Alfven shock trains,

Phys. Fluids B, 3, 1407, 1991.

Miura, A., Anomalous transport by MHD kelvin-Hehnholtz instabilities in the solar wind-

magnetosphere interaction, J. Geophys. Res., 89, 801, 1984.

Nessyahu, H., and E. Tadmor, Non-oscillatory central differencing for hyperbolic

conservation laws, J. Comp. Phys., 87, 408, 1990.

Phan, T.D., G. Paschmann, W. Baumjohann, N. Sckopke, and H. Luhr, The

magnetosheath region adjacent to tile dayside magnetopause: AMPTEBRM

observations, J. Geophys. Res., 99, 121, 1994.

Roberts, P. H., and C. C. Wu, Structure and stability of a spherical implosion, Physics

Letters A, in press, 1996.

Slavin, J., M. Verigin, K. Gringgauz, G. Kotova,S. Stahara, J. Spreiter, W. Riedler, K.

Schwingenschuh, H. Rosenbauer, and S. Livi, The solar wind interaction with

Mars: Phobos-2 bow shock observations on 24 March 1989, COSPAR meeting,
1992.

Tadmor, E., and C.C. Wu, Central Scheme for Multi-Dimensional

Magnetohydrodynamics, J. Comp. Phys., to be submitted, 1996.

Taniuti, T., A note on the evolutionary condition on hydromagnetic shocks, Progr.

Theoret. Phys. (Kyoto), 28,756, 1962.

Walthour, D.W., J.T. Gosling, B.U.O. Sonnerup, and C.T. Russell, Observation of

anomalous slow-mode shock and reconnection layer in the dayside magnetopause,

J. Geophys. Res., 99, 23705, 1994.

Wu, C.C., Kelvin-Hehnholtz instability at the magnetopause boundary, J. Geophys. Res.,
91, 3042, 1986.

Wu, C. C., On MHD intermediate shocks, Geophys. Res. Lett., 14, 668, 1987.



Wu,C. C.,TheMHD intermediateshockinteractionwith anintermediatewave:Are
intermediateshocksphysical?,J.Geophys.Res.,93,987, 1988a.

Wu,C. C.,Effectsof dissipation on rotational discontinuities, J. Geophys. Res., 93, 3969,
1988b.

Wu, C. C., Formation, structure and stability of MHD intermediate shocks, J. Geophys.

Res. 95, 8149, 1990.

Wu, C. C., MHD flow past an obstacle: Large-scale flow in the magnetosheath, Geophy.

Res. Lett., 19, 87, 1992.

Wu, C.C., Effects of solar wind conditions and interplanetary magneticfield on the bow

shock and the magnetosheath flow, AGU Fall meeting in San Francisco,
December, 1993.

Wu, C. C., Magnetohydrodynamic Riemann Problem and the Structure of the Magnetic

Reconnection Layer, J. Geophys. Res., 100, 5579, 1995a.

Wu, C. C., Shock Waves in an Anisotropic Plasma, AGU Fall meeting in San Francisco,
December 1995b.

Wu, C.C., Shock Waves in an Anisotropic Plasma, J. Geophys. Res., to be submitted,
1996.

Wu, C. C., and T. Hada, Formation of intermediate shocks in both two-fluid and hybrid

models, J. Geophys. Res., 96, 3769, 1991a.

Wu, C. C., and T. Hada, On rotational discontinuity in both two-fluid and hybrid models,

J. Geophys. Res. 96, 3755, 1991b.

Wu, C. C., and C. F. Kennel, Structure and evolution of time-dependent intermediate

shocks, Phys. Rev. Lett., 68, 56, 1992a.

Wu, C. C., and C. F. Kennel, Evolution of small-amplitude intermediate shocks in a

dissipative and dispersive system, J. Plasma Plays., 47, 85, 1992b.

Wu, C. C., and C. F. Kennel, Structural relations for time-dependent intermediate shocks,

Geophys. Res. Lett. 19, 2087, 1992c.

Wu, C. C., and C. F. Kennel, The small amplitude magnetohydrodynamic Riemann

problem, Plays. Fluids B5, 2877, 1993.

Wu, C. C., and P. H. Roberts, Shock-wave propagation in a sonoluminescing gas bubble,

Physical Review Letters, 70, 3424, 1993.

Wu, C. C., and P. H. Roberts, A model of sonoluminescence, Proceedings of the Royal

Society of London, Series A, 445,323, 1994.

Zachary, A., and P. Colella, J. Comp. Phys. 99,341, 1992.

6



IV. Publications and talks resulting from the support

A. Publications

C.C. Wu and C.F. Kennel, Structural relations of time-dependent intermediate shocks,

Geophys. Res. Letts., 19, 2087, 1992.

C.C. Wu and C.F. Kennel, The small amplitude MHD Riemann problem, Phys. Fluids,
B5, 2877, 1993.

C.C. Wu and P.H. Roberts, Shock-wave propagation in a sonoluminescing gas bubble,
Physical Review Letters, 70, 3424, 1993.

C.C. Wu and P.H. Roberts, A model of sonoluminescence, Proceedings of the Royal

Society of London, Series A, 445,323, 1994.

C.C. Wu, Magnetohydrodynamic Riemann problem and the structure of the magnetic

reconnection layer, J. Geophys. Res., 100, 5579, 1995.

C.C. Wu, Intermediate shocks, Physica Scripta, T60, 97, 1995.

P.H. Roberts and C.C. Wu, Structure and stability of a spherical implosion, Physics

Letters A, in press, 1996.

C.C. Wu, Shock waves in an anisotropic plasma, J. Geophys. Res., to be submitted, 1996.

E. Tadmor and C.C. Wu, Central scheme for the multidimensional MHD equations, J.

Computational Phys., to be submitted, 1996.

B. Talks presented at meetings

C.C. Wu, Structure and evolution of intermediate shocks, AGU meeting in Hong Kong,

August, 1992. (Invited)

C.C. Wu and C.F. Kennel, Structural relations for time-dependent intermediate shocks,

AGU Fall meeting in San Francisco, December, 1992.

C.C. Wu, Intermediate shocks, IUGG meeting in Argentina, August, 1993.(Invited)

C.C. Wu, Effects of solar wind conditions and interplanetary magneticfield on the bow

shock and the magnetosheath flow, AGU Fall meeting in San Francisco,
December, 1993.

C.C. Wu, The MHD Riemann problem and the structure of the reconnection layer,

Chapman Conference on Physics of the Magnetopause, SanDiego, March, 1994.

C.C. Wu, A new theory of MHD shock waves, Kyoto Workshop on Nonlinear Waves,

Kyoto, Japan, June, 1994. (Invited)

C.C. Wu, Shock waves in an anisotropic plasma, AGU Fall meeting in San Francisco,
December, 1994.

C.C. Wu, Shock waves in anisotropic plasmas, AGU Fall meeting in San Francisco,
December, 1995.


