Solutions of the Quantum Yang - Baxter Equations Assocated with ($1-3 / 2)^{-} \mathrm{D}$ Re presentations of SU_{q} (2)

Huang Yijun, Yu Guochen and Sun Hong*
Department of Foundation, the First
Aeronautical College of Air Force,
Xinyang Henan 464000 P. R . China .

Abstract

The solutions of the spectral independent QYBE associated with (1-3/2)-D representations of SU_{9} (2) are derived, based on the weight conservation and extended Kauffman diagrammatic technique. It is found that there are nonstandard solutions.

1 Introduction

It is well known that the quantum Yang-Baxter equations (QYBE) play an important role in various theoretical and mathematical physics, such as completely integrable systems in ($1+1$) dimensions, exactly solvable models in statistical mechanics, the quamtum inverse scatteringmethod and the conformal filed theories in 2 -dimensions. ${ }^{[11}-{ }^{-1 \pi}$ Recently, much remarkable progress has been made in construction the solutions of the QYBE associated with the representations of Lie algebras. ${ }^{[6]-[9]}$ In this paper we derive the solutions of the spectral independent QYBE associated with ($1-3 / 2$)-D representations of $\mathrm{SU}_{\mathrm{q}}(2)$, based on the weight conservation and extended Kauffman diagrammatic technique . It is found that there are nonstandard solutions .

2 Braid relations of $(1-3 / 2)-\mathrm{D}$ representations of $\mathrm{SU}_{\mathrm{q}}(2)$

We know that there is the relation for Universal \mathbf{R}-matrix:

$$
\begin{equation*}
\mathbf{R}_{12}^{\mathrm{j} j_{2}} \mathbf{R}_{13}^{\mathrm{j} j_{1}} \mathbf{R}_{23}^{\mathrm{j} j_{2}}=\mathbf{R}_{23}^{\mathrm{j} j_{1}} \mathbf{R}_{13}^{\mathrm{j} j_{3}} \mathbf{R}_{12}^{\mathrm{j} j_{2}} \tag{2.1}
\end{equation*}
$$

We define the new R -matrix:

$$
\begin{equation*}
\overline{\mathbf{R}}^{j j_{1}}=\mathbf{P R}^{\mathrm{j} j_{2}} \tag{2.2}
\end{equation*}
$$

Where P is the transposition $\quad\left(P: V^{j_{1}}(x) V^{j_{2}} \rightarrow V^{j_{1}}(x) V^{j_{1}}\right)$
Then the eq. $(2-1)$ can be rewritten ax follows

$$
\begin{equation*}
\overline{\mathbf{R}}_{12}^{\mathrm{j}_{12}} \overline{\mathbf{R}}_{23}^{\mathrm{j} j_{,}} \overline{\mathbf{R}}_{12}^{\mathrm{j}, j_{y}}=\overline{\mathbf{R}}_{23}^{\mathrm{j}_{2} \mathrm{j}_{2}} \overline{\mathbf{R}}_{12}^{\mathrm{j} j_{\mathrm{j}}} \overline{\mathbf{R}}_{23}^{\mathrm{j} j_{2}} \tag{2.3}
\end{equation*}
$$

* A dress: Jinan 250023

For the $(1-3 / 2)-D$ representation of $\mathrm{SU}_{\mathrm{q}}(2),\left(\mathrm{j}_{1}, \mathrm{j}_{2}, \mathrm{j}_{3}\right) \in(1,1,3 / 2)$, then eq. (2.3) gives the following relations

$$
\begin{array}{llllll}
\overline{\mathbf{R}}_{12}^{11} & \overline{\mathbf{R}}_{23}^{13 / 2} & \overline{\mathbf{R}}_{12}^{13 / 2} & =\mathbf{R}_{23}^{-13 / 2} & \overline{\mathbf{R}}_{12}^{13 / 2} & \mathbf{R}_{23}^{11} \\
\overline{\mathbf{R}}_{12}^{-3 / 21} & \mathbf{R}_{23}^{-11} & \mathbf{R}_{12}^{11} & =\overline{\mathbf{R}}_{23}^{11} & \overline{\mathbf{R}}_{12}^{-3 / 21} & \overline{\mathbf{R}}_{23}^{3 / 21} \\
& & & \tag{2.4-3}\\
\overline{\mathbf{R}}_{12}^{13 / 2} & \mathbf{R}_{23}^{11} & \mathbf{R}_{12}^{-3 / 21} & =\overline{\mathbf{R}}_{23}^{-3 / 21} & \mathbf{R}_{12}^{-11} & \mathbf{R}_{23}^{-13 / 2}
\end{array}
$$

These are the braid relations associated $(1-3 / 2)-D$ representations of $\mathrm{S}_{\mathrm{q}}(2)$. We suppose that the $\overline{\mathrm{R}}$ satisfies the $\mathrm{C}-\mathrm{P}$ invarance, then eq . (2.4-1) is equal to eq. (2.4-2).

3 The weight conservation and the solutions of QYBE

To determine the structure for the solutions, We consider the weight conservation

$$
(\bar{R})_{d}^{a b}=0 \quad \text { unless } a+b=c+d \quad \text { (3.1) }
$$

where

$$
\overline{\mathbf{R}}=\overline{\mathbf{R}}^{13 / 2} \quad, \overline{\mathbf{R}}^{3 / 21}, \overline{\mathbf{R}}^{11}
$$

a. b, c.d $\in(\pm 3 / 2, \pm 1 / 2, \pm 1,0)$

It is well known that $\overline{\mathbf{R}}^{\prime \prime}$ which satisfied the conditions of $\mathbf{c}-\mathrm{p}$ invarance and eq. (3, 1) be written as

$$
\begin{align*}
\bar{R}^{\prime \prime}= & \sum_{a}^{u_{a} E_{a m} \otimes E_{a a}+\sum_{a<b} W^{(a b)} \quad E_{a b} \otimes E_{a b}+\sum_{a \pm b} F^{(a, b)} E_{a b} \otimes E_{b a}} \\
& +\sum_{a \leqslant b{ }_{a+b}^{(a, c)}\left(E_{a b} \otimes E_{c d}+E_{c d}\left(\otimes E_{a b}\right)\right.} \tag{3,2}
\end{align*}
$$

Where

$$
\begin{align*}
& u_{0}=1, u_{ \pm 1}=q^{2}, \quad p^{(0.1)}=p^{(1.0)}=1, p^{(+1,+1)}=q^{-2} \\
& w^{(0.1)}=w=q^{2}-q^{-2}, w^{(-1.1)}=\left(1-q^{-2}\right) w, q_{0}^{(-1.0)}=q_{0}^{(0 .-1)}=q^{-1} w \tag{3,3}
\end{align*}
$$

By the weight conservation $\overline{\mathrm{R}}^{13 / 2}$ can be constructed in the form

$$
\begin{equation*}
\bar{R}^{13 / 2}=\sum_{a \cdot b} p_{a+b}^{a \cdot b} \quad E_{a b}(X) E_{b a}+\sum_{\substack{a<d \\ c<d}} q^{a \cdot c} \quad E_{a c}^{a \cdot b}(X) E_{b d} \tag{3.4}
\end{equation*}
$$

Where

$$
a, b \in(\pm 1,0) ; \quad b, c \in(\pm 3 / 2, \pm 1 / 2) \quad P_{a+b}^{(a b)} \quad \text { and } \quad q_{a+b}^{(a, c)}
$$

are the determined parameters.
Substituting eq. (3.2), (3.4) into eq. (2.4-1.3), We obtain the unknown parameters by extended Karffman diag rammatic techique.

$$
\begin{align*}
& \mathbf{P}_{5 / 2}^{(13 / 2)}=\mathbf{q}^{3}, \mathbf{P}_{-5 / 2}^{(-1,-3 / 2)}=P_{5 / 2}^{(1,3 / 2)} \quad \mathbf{Q}=q^{3} \mathrm{Q} \\
& \mathrm{P}_{-3 / 2}^{(-1,-1 / 2)}=\mathrm{P}_{3 / 2}^{(1,1 / 2)} \quad \mathrm{Q}=\mathrm{qQ} \quad, \quad \mathrm{P}_{\mathrm{b}}{ }^{(0, \mathrm{~b})}=\mathrm{Q}^{1 / 2} \quad(3.5-1) \tag{3.5-1}
\end{align*}
$$

$$
\begin{align*}
& q_{1 / 2}^{-1,1 / 2)}=Q^{1 / 2} q_{-1 / 2}^{(0,-3 / 2)}=\left(1-q^{-2}\right) q^{-1 / 2} \quad([3]!)^{1 / 2} Q^{1 / 4} \\
& q_{1 / 2}^{(0,-1 / 2)}=Q^{-1 / 2} q_{1 / 2}^{(-1,-1 / 2)}=\left(1-q^{-2}\right) q^{1 / 2}([2]!)^{3 / 2} Q^{-1 / 4} \\
& \mathrm{q}_{1 / 2}^{(-1,-1 / 2)}=\mathrm{q}_{-1 / 2}^{(-1,-3 / 2)}=\left(1-\mathrm{q}^{-2}\right) \mathrm{q}([2]![3]!)^{1 / 2} \mathrm{Q}^{3 / 4} \tag{3.5-2}
\end{align*}
$$

Where

$$
\begin{equation*}
[u] \equiv \frac{q^{u}-q^{-u}}{q-q^{-1}},[u]!\equiv[u][u-1] \ldots[1],[0]!\equiv 1 \tag{3.5-3}
\end{equation*}
$$

Substituting eq.(3.5) into eq.(3.4), we obtain the solutions $\overline{\mathbf{R}}^{13 / 2}$. And we obtain the solutions $\overline{\mathbf{R}}^{3 / 2 \quad 1}$ by employing the $\mathrm{c}-\mathrm{p}$ invarance.

We have derived the solutions of the spectral independent QYBE associated with ($1-3 / 2$)-D representations. It is easy to see that there is a new arbitary parameter, Q, then there are new solutions. In fact when $Q=1$, the solutions is Universal R-matrix of SU_{q} (2).

$$
\begin{align*}
& \left(\bar{R}^{j_{2} j_{1}}\right)_{m_{1} m_{2}}^{m_{2} m_{1}}=\delta \boldsymbol{m}_{m_{1}+m_{2}}^{\left.m_{\left[m_{1}^{\prime}+m_{1}^{\prime}\right]}^{\left[\left(1-q^{-2}\right)^{m_{1}^{\prime}-m_{1}}\right]} q^{m_{1} m_{2}^{\prime}+m_{2} m_{1}^{\prime}-1 / 2\left(m_{1}^{\prime}-m_{1}\right)\left(m_{1}^{\prime}-m-1\right)}\right)} \\
& \left\{\frac{\left(j_{1}+m_{1}^{\prime}\right)!\left(j_{1}-m_{1}\right)!\left(j_{1}-m_{2}^{\prime}\right)!\left(j_{2}+m_{2}\right)!}{\left(j_{1}-m_{1}^{\prime}\right)!\left(j_{1}+m_{1}\right)!\left(j_{2}+m_{2}^{\prime}\right)!\left(j_{2}-m_{2}\right)!}\right\}^{1 / 2} \tag{3.6}
\end{align*}
$$

Standard solutions. When $\mathrm{Q} \neq 1$, there are new solutions .

Referene

[1] C. N. Yang, phys. Rev. Lett . 19 (1967) 1312; Phys . Rev. 168 (1968) 1920.
[2] R . J. Baxter, Exactly Solved Models in Statistical Mechanics, Academic London (1982) .
[3] A . B . Zamolodchikov and AI . B . Zamolochikov, Am . of Phys . 120 (1979) 253.
[4] L . D . Faddeev, Integrable Models in (1+1) -D Quantum Field Theory. Les Houches Sesio XXXIX . (1982) 536.
[5] E. X. Skyanin, L. A. Takhtajan and L. D. Faddeev, Math . Phys . 40 (1979) 194 (in Russian)
[6] L. A. Takhtajan and L. D. Faddeev, Uspekhi Mat. Nauk. 24 (1979) 13.
[7] G. Segal, Comformal field theory, Oxford pereprint 1987.
[8] M. L. G. and K. Xue, phys . Lett . Al46 (1990) 245.
[9] A . N. Kirillov and N. Yu, Reshetikhin . Lomt . Preprint (1988).

